JP4443433B2 - Optical fiber preform drawing method - Google Patents

Optical fiber preform drawing method Download PDF

Info

Publication number
JP4443433B2
JP4443433B2 JP2005033573A JP2005033573A JP4443433B2 JP 4443433 B2 JP4443433 B2 JP 4443433B2 JP 2005033573 A JP2005033573 A JP 2005033573A JP 2005033573 A JP2005033573 A JP 2005033573A JP 4443433 B2 JP4443433 B2 JP 4443433B2
Authority
JP
Japan
Prior art keywords
optical fiber
fiber preform
outer diameter
diameter
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005033573A
Other languages
Japanese (ja)
Other versions
JP2006219331A (en
Inventor
俊一郎 平船
琢 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005033573A priority Critical patent/JP4443433B2/en
Publication of JP2006219331A publication Critical patent/JP2006219331A/en
Application granted granted Critical
Publication of JP4443433B2 publication Critical patent/JP4443433B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、光ファイバの母材を延伸させる光ファイバ母材延伸装置及び光ファイバ母材延伸方法に関する。   The present invention relates to an optical fiber preform stretching apparatus and an optical fiber preform stretching method for stretching an optical fiber preform.

光ファイバは、一般に以下の手順を経て製造される。
まず、VAD(Vapor phase Axial Deposition)法などにより、コアとなる部分を含むガラス微粒子の堆積体を製作し、その後、この堆積体を焼結することにより中間母材を得る。次に、中間母材の外側にガラスの微粒子を堆積させ、高温下でガラス化することにより光ファイバ母材を得る。そして、この光ファイバ母材を線引き(延伸)することにより光ファイバを得ることができる。
An optical fiber is generally manufactured through the following procedure.
First, a glass fine particle deposit including a core portion is manufactured by a VAD (Vapor phase Axial Deposition) method or the like, and then the intermediate is obtained by sintering the deposit. Next, an optical fiber preform is obtained by depositing glass fine particles on the outside of the intermediate preform and vitrifying it at a high temperature. An optical fiber can be obtained by drawing (stretching) the optical fiber preform.

図11は、上記のような光ファイバ母材延伸装置の構成を示す図である。
この光ファイバ母材延伸装置101は、光ファイバ母材106を送り出す送り側チャック部102と、光ファイバ母材106を引き取る引き側チャック部103と、光ファイバ母材106を加熱するヒータ部105を内部に備える加熱炉104とからなる。
FIG. 11 is a diagram showing the configuration of the optical fiber preform stretching apparatus as described above.
This optical fiber preform stretching apparatus 101 includes a feed side chuck portion 102 that feeds the optical fiber preform 106, a pull side chuck portion 103 that retrieves the optical fiber preform 106, and a heater portion 105 that heats the optical fiber preform 106. It comprises a heating furnace 104 provided inside.

この光ファイバ母材延伸装置101は、加熱炉104内で光ファイバ母材106を加熱し、送り側チャック部102の下降(送出)速度より早い速度で引き側チャックを下降させることにより光ファイバ母材106に張力を付与し、これを延伸させる。
特開2001−19457号公報
The optical fiber preform stretching apparatus 101 heats the optical fiber preform 106 in the heating furnace 104 and lowers the pull side chuck at a speed higher than the lowering (sending) speed of the feed side chuck portion 102 to thereby reduce the optical fiber preform. A tension is applied to the material 106 and it is stretched.
JP 2001-19457 A

しかしながら、上記の光ファイバ母材延伸装置においては、以下に示すような解決すべき課題が存在する。
近年、光ファイバの製造コストの低減のため、母材の大型化ならびに長尺化が進んでいるが、特に長尺化に母材の外径変動が大きくなるという問題が発生している。
However, the above-described optical fiber preform stretching apparatus has the following problems to be solved.
In recent years, in order to reduce the manufacturing cost of an optical fiber, the base material has been increased in size and lengthened, but in particular, there is a problem that the outer diameter fluctuation of the base material becomes large due to the increase in length.

これは、母材の透明化を行う工程において生じる問題であり、多孔質ガラス母材を吊り下げ、加熱領域を通過させ、これにより透明化する場合には、多孔質ガラス母材の加熱領域より下方にある部分が重なり、下方向に引き伸ばそうとする力が発生し、多孔質ガラス母材が引き伸ばされる。   This is a problem that occurs in the process of transparentizing the base material. When the porous glass base material is suspended and allowed to pass through the heating region, and this makes it transparent, the heating region of the porous glass base material The lower portion is overlapped, and a force to stretch downward is generated, and the porous glass base material is stretched.

この透明化処理が進行し、多孔質ガラス母材が下方に移動し、加熱領域が多孔質ガラス母材の上部に位置するようになると、この多孔質ガラス母材の加熱領域より下の部分が大きくなるため、この部分の重量が増加し、この重量に引かれて外径が小さくなる。   When this clearing process proceeds, the porous glass base material moves downward, and the heating region is positioned above the porous glass base material, the portion below the heating region of the porous glass base material becomes Since it becomes larger, the weight of this part increases, and the outer diameter is reduced by being pulled by this weight.

このため、透明化処理により得られる透明ガラス母材の外径は、概して、上端に近いほど細く、下端に近いほど太くなる。また、この透明ガラス母材の外径変動は、多孔質ガラス母材が長尺になるほど大きくなる。   For this reason, the outer diameter of the transparent glass base material obtained by the clearing treatment is generally thinner as it is closer to the upper end and thicker as it is closer to the lower end. Moreover, the outer diameter fluctuation | variation of this transparent glass base material becomes so large that a porous glass base material becomes long.

以下、上記の問題の原因について説明する。
上記の延伸処理においては、上下(送り側及び引き側)のチャック部の速度差により母材を変形させるが、加熱炉内部に送り込む母材体積と加熱炉から出る母材の体積は等しい。
Hereinafter, the cause of the above problem will be described.
In the above stretching process, the base material is deformed by the speed difference between the upper and lower (feeding side and pulling side) chuck portions, but the base material volume fed into the heating furnace and the base material coming out of the heating furnace are equal.

つまり、「元母材体積=延伸後母材体積」、「送り側速度×元母材半径^2×円周率=引き取り側速度×目標延伸径^2×円周率」、「送り速度:引き取り側速度=元母材半径^2:目標延伸径^2」の関係により、チャック部の速度比は元母材径(以下、基準母材径)の2乗と目標延伸径の2乗の比により定まり、この速度差でチャック部を動かすことで目標通りの延伸が可能となる。   That is, “original base material volume = base material volume after stretching”, “feed side speed × original base material radius ^ 2 × circumferential ratio = take-up side speed × target stretched diameter ^ 2 × circumferential ratio”, “feed speed: The speed ratio of the chuck portion is the square of the original base material diameter (hereinafter referred to as the reference base material diameter) and the square of the target extension diameter due to the relationship of take-up side speed = original base material radius ^ 2: target extension diameter ^ 2. The ratio is determined by the ratio, and by moving the chuck portion with this speed difference, it becomes possible to stretch as intended.

しかしながら、延伸工程が進行するにつれて、加熱炉内の断熱材は発熱体から熱量を受け取ることにより温度が上昇し、ガラス母材の未軟化部を輻射熱で加熱するとともに、ガラス母材の加熱軟化部から未軟化部に熱が伝導する。このため、元母材外径から目標とする延伸径に変化している間の距離(以下、母材の外径変動領域)が変化する。つまり、図12(a)に示すように、延伸開始時には短いが、図12(b)に示すように、延伸工程が進むにつれて長くなる。   However, as the stretching process progresses, the temperature of the heat insulating material in the heating furnace rises by receiving the amount of heat from the heating element, and heats the unsoftened part of the glass base material with radiant heat. Heat is conducted from the unsoftened part. For this reason, the distance (henceforth the outer diameter fluctuation | variation area | region of a preform | base_material) changes while changing from the original preform | base_material outer diameter to the target extending | stretching diameter. That is, as shown in FIG. 12 (a), it is short at the start of stretching, but becomes longer as the stretching process proceeds as shown in FIG. 12 (b).

この際の変化量は、延伸速度が遅い場合には小さく、延伸速度が速くなると大きくなる。このため、延伸開始直後と終了間際では送り側速度と引き取り側速度との比率を定める元母材径の位置(基準外径位置)がずれる。このために、計算での速度と実際に目標延伸径にするための必要な速度に差が生じてしまい延伸径の変動が生じていた。   The amount of change at this time is small when the stretching speed is low, and is large when the stretching speed is high. For this reason, the position (reference outer diameter position) of the original base material diameter that determines the ratio between the feed side speed and the take-up side speed immediately after the start of stretching and just before the end. For this reason, a difference has occurred between the calculated speed and the speed required to actually obtain the target stretched diameter, resulting in fluctuations in the stretched diameter.

また、従来は、延伸する前の母材の外径変動が小さかったり、延伸速度が遅かったりしたために問題とはならなかったが、前記の母材の長尺化(大型化)と、処理の高速化により顕著な問題となっている。   In addition, conventionally, there was no problem because the fluctuation of the outer diameter of the base material before stretching was small or the stretching speed was slow, but the length of the base material (upsizing) and the processing This is a prominent problem due to the increase in speed.

このような事情に鑑み本発明は、光ファイバ母材の外径変動の影響を受けずに、適切に延伸を行うことが可能な光ファイバ母材延伸装置及び光ファイバ母材延伸方法を提供することを目的とする。   In view of such circumstances, the present invention provides an optical fiber preform stretching apparatus and an optical fiber preform stretching method that can be appropriately stretched without being affected by fluctuations in the outer diameter of the optical fiber preform. For the purpose.

本発明に係る光ファイバ母材延伸方法は、長尺状で長手方向に沿って外径変動した光ファイバ母材の一端側を送り側チャックで把持し、前記光ファイバ母材の他端側を引き側チャックで把持し、前記送り側チャックと前記引き側チャックとを同一方向に移動させながら前記光ファイバ母材を加熱炉で加熱して延伸する光ファイバ母材延伸方法であって、前記加熱炉のヒータ近傍に、前記送り側チャックの送り速度と前記引き側チャックの引き速度とを算出するための前記光ファイバ母材の基準外径値を決める基準外径位置が定められ、前記光ファイバ母材の長手方向に沿って外径値を測定して、前記光ファイバ母材の長手方向の各位置に対する外径値を含む位置外径情報を取得し、前記基準外径位置に対応する光ファイバ母材の外径値を前記位置外径情報から求めて前記基準外径値とし、前記光ファイバ母材の基準外径値と目標延伸径とから、前記加熱炉へ送られる光ファイバ母材送出量と前記加熱炉から引き出される光ファイバ母材引出量とが同じとなるように前記送り速度と前記引き速度とを算出し、前記送り側チャックと前記引き側チャックとを、算出された送り速度と引き速度とで同一方向に移動させながら前記光ファイバ母材を前記加熱炉で加熱して延伸加工し、前記延伸加工中、前記光ファイバ母材の延伸径を測定し、前記光ファイバ母材の延伸径と前記目標延伸径とにずれが生じたときに、前記基準外径位置を前記位置外径情報に基づいて前記光ファイバ母材の延伸径と前記目標延伸径とのずれを修正するために、前記光ファイバ母材に沿う方向に移動することを特徴とする。In the optical fiber preform drawing method according to the present invention, the one end side of the optical fiber preform whose outer diameter is varied along the longitudinal direction is gripped by a feeding chuck, and the other end side of the optical fiber preform is An optical fiber preform stretching method in which the optical fiber preform is heated and stretched in a heating furnace while being gripped by a pull chuck and moving the feed chuck and the pull chuck in the same direction. A reference outer diameter position for determining a reference outer diameter value of the optical fiber preform for calculating the feed speed of the feed side chuck and the pull speed of the pull side chuck is determined in the vicinity of the heater of the furnace, and the optical fiber A light corresponding to the reference outer diameter position is obtained by measuring an outer diameter value along the longitudinal direction of the preform, obtaining position outer diameter information including an outer diameter value for each position in the longitudinal direction of the optical fiber preform. The outer diameter value of the fiber preform Obtained from the outside diameter information as the reference outside diameter value, and from the reference outside diameter value of the optical fiber preform and the target stretched diameter, the optical fiber preform delivered to the heating furnace and drawn from the heating furnace The feeding speed and the pulling speed are calculated so that the optical fiber base material drawing amount is the same, and the feeding side chuck and the pulling side chuck are set in the same direction at the calculated feeding speed and the pulling speed. The optical fiber preform is heated by the heating furnace while being moved and stretched. During the stretching, the stretched diameter of the optical fiber preform is measured, and the stretched diameter of the optical fiber preform and the target stretched diameter are measured. In order to correct the deviation between the drawing diameter of the optical fiber preform and the target drawing diameter based on the position outside diameter information, the optical fiber preform is corrected when the deviation occurs in the reference outer diameter position. Specially moving in the direction along To.

本発明に係る光ファイバ母材延伸方法において、前記光ファイバ母材はテーパ状に形成され、前記送り側チャックは前記光ファイバ母材の小外径側を把持し、前記引き側チャックは前記光ファイバ母材の大外径側を把持し、前記延伸加工中、前記光ファイバ母材の延伸径が前記目標延伸径より大きくなるときに、前記基準外径位置を前記光ファイバ母材の引き出し側に移動することが好ましい。In the optical fiber preform stretching method according to the present invention, the optical fiber preform is formed in a tapered shape, the feed side chuck grips a small outer diameter side of the optical fiber preform, and the pull side chuck Grip the large outer diameter side of the fiber preform, and when the drawing diameter of the optical fiber preform becomes larger than the target drawing diameter during the drawing process, the reference outer diameter position is set to the drawing side of the optical fiber preform. It is preferable to move to.

本発明によれば、このような事情に鑑み本発明は、光ファイバ母材の外径変動の影響を受けずに、適切に延伸を行うことが可能となる。   According to the present invention, in view of such circumstances, the present invention can be appropriately stretched without being affected by fluctuations in the outer diameter of the optical fiber preform.

以下、本発明の光ファイバ母材延伸装置及び光ファイバ母材延伸方法についての説明を行う。
なお、以下の実施例は、あくまでも本発明の説明のためのものであり、本発明の範囲を制限するものではない。したがって、当業者であれば、これらの各要素又は全要素を含んだ各種の実施例を採用することが可能であるが、これらの実施例も本発明の範囲に含まれる。
また、実施例を説明するための全図において、同一の要素には同一の符号を付し、これに関する反復説明は省略する。
Hereinafter, the optical fiber preform stretching apparatus and the optical fiber preform stretching method of the present invention will be described.
The following examples are only for the purpose of explaining the present invention and do not limit the scope of the present invention. Accordingly, those skilled in the art can employ various embodiments including each or all of these elements, and these embodiments are also included in the scope of the present invention.
In all the drawings for explaining the embodiments, the same reference numerals are given to the same elements, and repeated explanation thereof is omitted.

図1は、本発明の第1の実施例に係る光ファイバ母材延伸装置1aの構成図である。
この光ファイバ母材延伸装置1aは、送りモータ部2と、螺子部3と、送り側チャック部4と、張力測定部5と、引きモータ部6と、螺子部7と、引き側チャック部8と、加熱炉9と、ヒータ部10と、演算部11と、制御部12と、外径測定部13とからなる。
FIG. 1 is a configuration diagram of an optical fiber preform stretching device 1a according to a first embodiment of the present invention.
The optical fiber preform drawing apparatus 1a includes a feed motor unit 2, a screw unit 3, a feed side chuck unit 4, a tension measuring unit 5, a pull motor unit 6, a screw unit 7, and a pull side chuck unit 8. And a heating furnace 9, a heater unit 10, a calculation unit 11, a control unit 12, and an outer diameter measurement unit 13.

送り側チャック部4は、送りモータ部2と、これから発せられた動力を伝達する螺子部3とにより駆動し、光ファイバ母材14を下方へ送り出す。   The feed side chuck portion 4 is driven by the feed motor portion 2 and the screw portion 3 that transmits power generated from the feed motor portion 2, and feeds the optical fiber preform 14 downward.

一方、引き側チャック部8は、送りモータ部6と、これから発せられた動力を伝達する螺子部7とにより駆動し、光ファイバ母材14を下方へ引く。   On the other hand, the pull-side chuck portion 8 is driven by the feed motor portion 6 and the screw portion 7 that transmits power generated therefrom, and pulls the optical fiber preform 14 downward.

光ファイバ母材14は、加熱炉9内のヒータ部10により加熱され、上記のチャック部4及び8の作用により延伸される。   The optical fiber preform 14 is heated by the heater unit 10 in the heating furnace 9 and stretched by the action of the chuck units 4 and 8 described above.

張力測定部5は、光ファイバ母材にかかる張力を測定する。   The tension measuring unit 5 measures the tension applied to the optical fiber preform.

演算部11は、光ファイバ母材14の移動速度や移動量等を算出する。   The calculation unit 11 calculates the moving speed, moving amount, and the like of the optical fiber preform 14.

外径測定部13は、光ファイバ母材14の外径を測定する。   The outer diameter measuring unit 13 measures the outer diameter of the optical fiber preform 14.

演算部11は、外径測定部13により測定された外径に基づいて送り側チャック部4の送り速度と引きチャック部8の引き速度とを算出する。   The computing unit 11 calculates the feed speed of the feed side chuck unit 4 and the pulling speed of the pull chuck unit 8 based on the outer diameter measured by the outer diameter measuring unit 13.

制御部12は、演算部11により演算された速度に基づいて送りモータ部2や引きモータ部6の回転数を制御する。また、ヒータ部10の出力も制御する。   The control unit 12 controls the rotation speed of the feed motor unit 2 and the pulling motor unit 6 based on the speed calculated by the calculation unit 11. Moreover, the output of the heater unit 10 is also controlled.

以下、上記の構成を有する光ファイバ母材延伸装置1aにおける延伸処理の詳細について説明する。
本発明の光ファイバ母材延伸装置1aにおいては、光ファイバ母材14の送り側移動量と、この光ファイバ母材14の延伸開始直後基準外径位置と延伸中盤の基準外径位置とを変更する。
Hereinafter, details of the stretching process in the optical fiber preform stretching apparatus 1a having the above-described configuration will be described.
In the optical fiber preform drawing apparatus 1a of the present invention, the feed-side movement amount of the optical fiber preform 14 and the reference outer diameter position immediately after starting the drawing of the optical fiber preform 14 and the reference outer diameter position of the drawing middle plate are changed. To do.

延伸開始時の光ファイバ母材14の基準外径位置は、そのヒータ部10の近傍にある部分を指す。   The reference outer diameter position of the optical fiber preform 14 at the start of stretching refers to a portion in the vicinity of the heater unit 10.

延伸が開始されてしばらく経つと、加熱炉9内の断熱材の温度は、発熱体から受け取る熱量と炉体などに逃げる熱量とが等価となるため安定する。   After a while after the start of stretching, the temperature of the heat insulating material in the heating furnace 9 becomes stable because the amount of heat received from the heating element and the amount of heat escaping to the furnace body become equivalent.

また、光ファイバ母材14の加熱軟化部から未軟化部への熱伝導による温度上昇も、炉体や雰囲気に逃げる熱量とが等価となるため安定する。   Further, the temperature rise due to heat conduction from the heat softened portion to the unsoftened portion of the optical fiber preform 14 is stable because the amount of heat escaping to the furnace body and atmosphere is equivalent.

上記の状態になった時に基準外径位置を開始時の位置よりも引き取り側(下方)にずらす。以下、その詳細について説明する。   When the above state is reached, the reference outer diameter position is shifted to the take-off side (downward) from the starting position. The details will be described below.

従来の技術においては、図2(a)に示すように、延伸開始後に送り側チャックの移動量分だけ基準外径の位置を移動させて延伸速度を算出するのが従来の方法であるが、本発明においては、図2(b)に示すように、送り側移動量と基準外径位置を延伸中で変更する。なお、望ましくは、延伸開始時から段階的に位置をずらしていくのがよい。   In the conventional technique, as shown in FIG. 2 (a), it is a conventional method to calculate the stretching speed by moving the position of the reference outer diameter by the amount of movement of the feed side chuck after starting stretching, In the present invention, as shown in FIG. 2B, the feed-side movement amount and the reference outer diameter position are changed during stretching. Desirably, the position should be shifted stepwise from the start of stretching.

基準外径位置を変更する時期やその量は、延伸速度、炉の構造、炉内温度などにより変化するが、母材径の変化には鈍感なため(延伸前の平均母材径が10mm程度の変化では大きな影響はない)に、延伸速度や炉内温度などの作業条件が同じであれば、基準外径位置の変更する時期や変更する量を同じにしても十分に外径変動が低減できる。   The timing and amount of change of the reference outer diameter position varies depending on the stretching speed, furnace structure, furnace temperature, etc., but is insensitive to changes in the base material diameter (the average base material diameter before stretching is about 10 mm). However, if the working conditions such as the drawing speed and the furnace temperature are the same, the variation in the outer diameter can be reduced sufficiently even if the reference outer diameter position is changed and the amount of change is the same. it can.

上記のように基準外径位置を移動させることで、光ファイバ母材14の延伸後の外径が太くなったり、細くなったりする。   By moving the reference outer diameter position as described above, the outer diameter of the optical fiber preform 14 after being stretched becomes thicker or thinner.

図4(a)に示すように、延伸径が太くなった場合は、途中までは基準母材径位置が合っているが、それ以降は基準外径位置が延伸開始位置側(図の左側)にずれている。   As shown in FIG. 4 (a), when the stretched diameter becomes thicker, the reference base material diameter position is matched up to the middle, but after that, the reference outer diameter position is the stretch start position side (left side of the figure). It is shifted to.

この理由としては、例えば、延伸前母材が図4(a)中の○の部分を延伸している場合、基準外径位置が開始位置側にずれていると、図3(a)に示すように、実際の母材径は○の位置の外径より大きくなる。このため、基準母材径を○の位置の外径として送り出しと引き取り速度の比を算出して延伸しても、実際の外径は太いので延伸径が細くなりきらずに延伸径が太くなり、図3(b)に示すように、理想の外径、つまり母材の外径が一定とならない。   As the reason for this, for example, when the base material before stretching is stretched in the portion of ○ in FIG. 4A, the reference outer diameter position is shifted to the start position side, as shown in FIG. Thus, the actual base material diameter is larger than the outer diameter at the position of ◯. For this reason, even if the reference base material diameter is the outer diameter at the position of ○ and the ratio of the feeding and take-off speed is calculated and stretched, the actual outer diameter is thick, so the stretched diameter becomes thick without being thinned, As shown in FIG. 3B, the ideal outer diameter, that is, the outer diameter of the base material is not constant.

一方、図4(b)に示すように、延伸径が細くなった場合、途中までは基準母材径位置が合っているが、それ以降は基準外径位置が延伸終了位置側(図の右側)にずれている。   On the other hand, as shown in FIG. 4 (b), when the stretched diameter is reduced, the reference base material diameter position is matched up to the middle, but after that, the reference outer diameter position is the stretch end position side (right side of the figure). ).

例えば、延伸前母材が太くなった場合と同じところを延伸しているとする.基準母材径位置が終了位置側にずれていると、実際の母材径は○の位置の外径より小さくなる。このため、基準母材径を○の位置の外径とし、これに基づいて送り出しと引き取り速度の比を算出して延伸しても、実際の外径は細いので延伸径が細くなりすぎる
したがって、実際に調整を行うにあたっては、上記のずれが生じ始めた位置が、基準外径位置を変更する位置となり、目標延伸径と実際に延伸した母材径との差からずれ量の調整量を見積もることができる。
For example, suppose that the same stretch as the base material before stretching is stretched. If the reference base material diameter position is shifted to the end position side, the actual base material diameter becomes smaller than the outer diameter at the position of ◯. For this reason, the reference base material diameter is set as the outer diameter at the position of ◯, and the ratio of the feeding speed and the take-off speed is calculated based on this, and the extension diameter becomes too thin because the actual outer diameter is thin. In the actual adjustment, the position at which the above-mentioned deviation starts to occur is the position to change the reference outer diameter position, and the adjustment amount of the deviation amount is estimated from the difference between the target drawn diameter and the actually drawn base material diameter. be able to.

また、光ファイバ母材14としては、テーパ状になっているものを使用することが望ましい。   Further, as the optical fiber preform 14, it is desirable to use a tapered one.

仮に、外径がほとんど一様な母材では、基準母材径位置がずれても延伸径が変わらないため、ずれ量や位置の見積もりができない。   If the base material has a substantially uniform outer diameter, even if the reference base material diameter position is shifted, the stretched diameter does not change.

図5は、上記の構成を有する光ファイバ母材延伸装置1aの一連の動作を説明するための図である。
まず、ユーザからの指令により処理が開始されると(S51)、外径測定部13により光ファイバ母材14の位置・外径情報が取得され(S52)、送り側チャック部4の送り速度が演算部11により算出され(S53)、加工が開始される(S54)。
FIG. 5 is a diagram for explaining a series of operations of the optical fiber preform stretching apparatus 1a having the above-described configuration.
First, when processing is started by a command from the user (S51), the position / outer diameter information of the optical fiber preform 14 is acquired by the outer diameter measuring unit 13 (S52), and the feeding speed of the feeding side chuck unit 4 is changed. Calculation is performed by the calculation unit 11 (S53), and machining is started (S54).

なお、上記のS52における位置・外径情報は母材14の外径値を含む。例えば、母材14の全長が2000mmであり、その外径値が既知であり、また、送り側チャック部4が螺子部3の最上部に位置している際、これとヒータ部10との距離は2500mmであり、次に、送り側チャック部4を700mm下降させ、母材14の下端を引き側チャック部8に固定した場合、母材14の下端はヒータ部10よりも200mm下方に位置していることになる The position and outer diameter information in S52 in the above including the outer diameter value of the base material 14. For example, when the total length of the base material 14 is 2000 mm, the outer diameter value is known, and the feed side chuck portion 4 is positioned at the uppermost portion of the screw portion 3, the distance between this and the heater portion 10. Next, when the feed side chuck portion 4 is lowered by 700 mm and the lower end of the base material 14 is fixed to the pull side chuck portion 8, the lower end of the base material 14 is positioned 200 mm below the heater portion 10. Will be .

加工が開始されると、光ファイバ母材14の移動量が演算部11により算出される(S55)。なお、この移動量は、送りモータ部2及び引きモータ部6の回転数等から求められる。   When processing is started, the amount of movement of the optical fiber preform 14 is calculated by the calculation unit 11 (S55). The amount of movement is obtained from the rotational speeds of the feed motor unit 2 and the pulling motor unit 6.

次に、算出された移動量から基準外径位置をずらす必要があるか否かが判定され(S56)、必要があると判定された場合(S56:Yes)は、外径基準位置の移動量及び送り速度の修正値が演算部11により算出され(S57)、外径基準位置が移動されるとともに送り速度値が修正される(S58)。そして、光ファイバ母材14が所望の外径となるまで延伸
されているか否かが判定され(S59)、所望の外径となっている場合(S59:Yes)は、加工が終了される(S60)。
Next, it is determined whether or not the reference outer diameter position needs to be shifted from the calculated movement amount (S56). If it is determined that it is necessary (S56: Yes), the movement amount of the outer diameter reference position is determined. Then, the correction value of the feed speed is calculated by the calculation unit 11 (S57), the outer diameter reference position is moved, and the feed speed value is corrected (S58). Then, it is determined whether or not the optical fiber preform 14 has been stretched until it has a desired outer diameter (S59). If the optical fiber preform 14 has a desired outer diameter (S59: Yes), the processing is finished ( S60).

図6は、上記の構成を有する光ファイバ母材延伸装置1aの一連の動作(別の例)を説明するための図である。
まず、ユーザからの指令により処理が開始されると(S61)、外径測定部13により光ファイバ母材14の基準外径位置等に関する情報が取得され(S62)、送り側チャック部4の送り速度が演算部11により算出され(S63)、
加工が開始される(S64)。
FIG. 6 is a diagram for explaining a series of operations (another example) of the optical fiber preform stretching apparatus 1a having the above-described configuration.
First, when processing is started by a command from the user (S61), information regarding the reference outer diameter position of the optical fiber preform 14 is acquired by the outer diameter measurement unit 13 (S62), and the feed side chuck unit 4 feeds. The speed is calculated by the calculation unit 11 (S63),
Processing is started (S64).

加工が開始されると、光ファイバ母材14の移動量が演算部11により算出され、外径値が外径測定部13により測定され(S65)、前記の移動量と外径値に基づいて、送り速度が算出され(S66)、上記の各値に基づいて基準外径位置をずらす必要があるか否かが判定され(S67)、必要があると判定された場合(S67:Yes)は、外径基準位置の移動量及び送り速度の修正値が演算部11により算出され(S68)、外径基準位置が移動されるとともに送り速度値が修正される(S69)。そして、光ファイバ母材14が所望の外径となるまで延伸されているか否かが判定され(S70)、所望の外径となっている場合(S70:Yes)は、加工が終了される(S71)。   When processing is started, the movement amount of the optical fiber preform 14 is calculated by the calculation unit 11, the outer diameter value is measured by the outer diameter measurement unit 13 (S65), and based on the movement amount and the outer diameter value. Then, the feed speed is calculated (S66), and it is determined whether or not the reference outer diameter position needs to be shifted based on each of the above values (S67), and when it is determined that it is necessary (S67: Yes). The movement amount of the outer diameter reference position and the correction value of the feed speed are calculated by the calculation unit 11 (S68), and the outer diameter reference position is moved and the feed speed value is corrected (S69). Then, it is determined whether or not the optical fiber preform 14 has been stretched until it has a desired outer diameter (S70). If the optical fiber preform 14 has a desired outer diameter (S70: Yes), the processing is terminated ( S71).

次に、以上の構成を有する光ファイバ母材延伸装置1aを用いて光ファイバ母材を延伸した場合と、従来の技術を用いて延伸を行った場合の差異について説明する。   Next, a difference between the case where the optical fiber preform is drawn using the optical fiber preform drawing apparatus 1a having the above configuration and the case where the drawing is performed using the conventional technique will be described.

<比較例>
外径130mm、長さ1000mmの長手方向に外径変動のある母材を目標延伸径30mmで延伸を行った。なお、基準外径の位置は最後まで同じ位置で延伸を行った。
<Comparative example>
A base material having an outer diameter variation of 130 mm in outer diameter and 1000 mm in length in the longitudinal direction was stretched with a target stretching diameter of 30 mm. The standard outer diameter was stretched at the same position until the end.

延伸張力300N、炉電力30kWとし、送り側の平均速度は30mm/minであった。   The drawing tension was 300 N, the furnace power was 30 kW, and the average speed on the feed side was 30 mm / min.

その結果、延伸後母材にて、延伸前母材の外径変動と逆の傾向(引き始め側が細くなり、段々と太くなり、引き終わりでまた細くなる)が見られ、外径変動が30mm±3mmになった。   As a result, in the base material after stretching, a tendency opposite to the outer diameter variation of the base material before stretching (the drawing start side becomes thinner, gradually becomes thicker and becomes thinner at the end of drawing), and the outer diameter variation is 30 mm. It became ± 3 mm.

なお、図7(a)は延伸前の母材径及び長手方向位置を示す図であり、図7(b)は延伸後の母材径及び長手方向位置を示す図である。   FIG. 7A is a diagram showing the base material diameter and longitudinal position before stretching, and FIG. 7B is a diagram showing the base material diameter and longitudinal position after stretching.

<実施例>
外径130mm、長さ1000mmの長手方向に外径変動のある母材を目標延伸径30mmで延伸を行った。なお、基準外径の位置を送り側が150mm移動した時点から引き取り側に15mmずらして延伸を行った。
<Example>
A base material having an outer diameter variation of 130 mm in outer diameter and 1000 mm in length in the longitudinal direction was stretched with a target stretching diameter of 30 mm. In addition, it extended | stretched by shifting the position of a reference | standard outer diameter 15 mm to the taking-out side from the time of the feed side moving 150 mm.

延伸張力300N、炉電力30kWとし、送り側の平均速度は30mm/minであった。   The drawing tension was 300 N, the furnace power was 30 kW, and the average speed on the feed side was 30 mm / min.

その後、延伸後母材の外径変動が小さくなり、延伸前母材径の変動に応じた外径変動が見られない延伸径の変動は30mm±0.5mmとなった。   Thereafter, the variation in the outer diameter of the base material after stretching was reduced, and the variation in the stretched diameter in which no variation in the outer diameter corresponding to the variation in the base material diameter before stretching was found was 30 mm ± 0.5 mm.

なお、図8(a)は延伸前の母材径及び長手方向位置を示す図であり、図8(b)は延伸後の母材径及び長手方向位置を示す図である。   FIG. 8A is a diagram showing the base material diameter and longitudinal position before stretching, and FIG. 8B is a diagram showing the base material diameter and longitudinal position after stretching.

図9は、本発明の第2の実施例(実施例2)に係る光ファイバ母材延伸装置1bの構成図である。
この光ファイバ母材延伸装置1bにおいては、加熱炉9内部のヒータ部10の下側に外径測定部13が配置されており、このため、延伸中であっても即時的に外系を測定できる。
FIG. 9 is a configuration diagram of an optical fiber preform stretching apparatus 1b according to a second embodiment (embodiment 2) of the present invention.
In this optical fiber preform drawing apparatus 1b, an outer diameter measuring unit 13 is disposed below the heater unit 10 inside the heating furnace 9, and therefore the outer system is measured immediately even during drawing. it can.

図10は、本発明の第3の実施例(実施例3)に係る光ファイバ母材延伸装置1cの構成図である。
この光ファイバ母材延伸装置1cにおいては、加熱炉9の外部の上側に外径測定部13が配置されている。このため、延伸前に外径を測定でき、これにより測定に要する時間を短縮できる。
FIG. 10 is a configuration diagram of an optical fiber preform stretching device 1c according to a third embodiment (Example 3) of the present invention.
In the optical fiber preform drawing device 1 c, an outer diameter measuring unit 13 is disposed on the upper side outside the heating furnace 9. For this reason, an outer diameter can be measured before extending | stretching and this can shorten the time which a measurement requires.

なお、上記の光ファイバ母材延伸装置を用いた光ファイバ母材延伸方法も本発明の範囲に含まれる。   An optical fiber preform stretching method using the above optical fiber preform stretching device is also included in the scope of the present invention.

以上のとおり、本発明によれば、光ファイバ母材の外径変動の影響を受けずに、適切に延伸を行うことが可能となる。   As described above, according to the present invention, it is possible to appropriately perform stretching without being affected by fluctuations in the outer diameter of the optical fiber preform.

また、これにあたって装置に大規模な改修を施す必要がないため、簡易的に上記の効果を奏する装置を実現できる。   In addition, since it is not necessary to make a large-scale refurbishment of the apparatus at this time, an apparatus having the above effects can be realized simply.

本発明の実施例1に係る光ファイバ母材延伸装置の構成図である。It is a block diagram of the optical fiber preform | stretching apparatus which concerns on Example 1 of this invention. 図1の光ファイバ母材延伸装置の基準外径位置の移動処理を説明するための図である。It is a figure for demonstrating the movement process of the reference | standard outer diameter position of the optical fiber preform extending | stretching apparatus of FIG. 図1の光ファイバ母材延伸装置の基準外径位置の移動処理を説明するための図である。It is a figure for demonstrating the movement process of the reference | standard outer diameter position of the optical fiber preform extending | stretching apparatus of FIG. 図1の光ファイバ母材延伸装置の基準外径位置の移動処理を説明するための図である。It is a figure for demonstrating the movement process of the reference | standard outer diameter position of the optical fiber preform extending | stretching apparatus of FIG. 図1の光ファイバ母材延伸装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the optical fiber preform extending | stretching apparatus of FIG. 図1の光ファイバ母材延伸装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the optical fiber preform extending | stretching apparatus of FIG. 比較例における長手方向位置と母材径との関係を示す図である。It is a figure which shows the relationship between the longitudinal direction position and base material diameter in a comparative example. 実施例における長手方向位置と母材径との関係を示す図である。It is a figure which shows the relationship between the longitudinal direction position and base material diameter in an Example. 本発明の実施例2に係る光ファイバ母材延伸装置の構成図である。It is a block diagram of the optical fiber preform extending | stretching apparatus which concerns on Example 2 of this invention. 本発明の実施例3に係る光ファイバ母材延伸装置の構成図である。It is a block diagram of the optical fiber preform extending | stretching apparatus which concerns on Example 3 of this invention. 従来の光ファイバ母材延伸装置の構成図である。It is a block diagram of the conventional optical fiber preform | stretching apparatus. 図11の光ファイバ母材延伸装置における問題点を説明するための図である。It is a figure for demonstrating the problem in the optical fiber preform extending | stretching apparatus of FIG.

符号の説明Explanation of symbols

1a、1b、1c 光ファイバ母材延伸装置
2 送りモータ部
3、7 螺子部
4 送り側チャック部
5 張力測定部
6 引きモータ部
8 引き側チャック部
9 加熱炉
10 ヒータ部
11 演算部
12 制御部
13 外径測定部
14 光ファイバ母材
101 従来の光ファイバ母材延伸装置
102 従来例における送り側チャック部
103 従来例における引き側チャック部
104 従来例における加熱炉
105 従来例におけるヒータ部
106 従来例における光ファイバ母材
DESCRIPTION OF SYMBOLS 1a, 1b, 1c Optical fiber preform | stretching apparatus 2 Feeding motor part 3, 7 Screw part 4 Feeding side chuck part 5 Tension measuring part 6 Pulling motor part 8 Pulling side chuck part 9 Heating furnace 10 Heater part 11 Calculation part 12 Control part DESCRIPTION OF SYMBOLS 13 Outer diameter measurement part 14 Optical fiber preform | base_material 101 Conventional optical fiber preform | stretching apparatus 102 Feed side chuck | zipper part 103 in a conventional example 103 Pull side chuck | zipper part in a conventional example 104 Heating furnace in a conventional example 105 Heater part in a conventional example 106 Conventional example Optical fiber preform in

Claims (2)

長尺状で長手方向に沿って外径変動した光ファイバ母材の一端側を送り側チャックで把持し、前記光ファイバ母材の他端側を引き側チャックで把持し、前記送り側チャックと前記引き側チャックとを同一方向に移動させながら前記光ファイバ母材を加熱炉で加熱して延伸する光ファイバ母材延伸方法であって、One end side of an optical fiber preform that is elongated and has an outer diameter variation along the longitudinal direction is gripped by a feed side chuck, the other end side of the optical fiber preform is gripped by a pull side chuck, and the feed side chuck An optical fiber preform stretching method that heats and stretches the optical fiber preform in a heating furnace while moving the pull side chuck in the same direction,
前記加熱炉のヒータ近傍に、前記送り側チャックの送り速度と前記引き側チャックの引き速度とを算出するための前記光ファイバ母材の基準外径値を決める基準外径位置が定められ、In the vicinity of the heater of the heating furnace, a reference outer diameter position that determines a reference outer diameter value of the optical fiber preform for calculating the feed speed of the feed side chuck and the pull speed of the pull side chuck is determined,
前記光ファイバ母材の長手方向に沿って外径値を測定して、前記光ファイバ母材の長手方向の各位置に対する外径値を含む位置外径情報を取得し、Measure the outer diameter value along the longitudinal direction of the optical fiber preform to obtain position outer diameter information including the outer diameter value for each position in the longitudinal direction of the optical fiber preform,
前記基準外径位置に対応する光ファイバ母材の外径値を前記位置外径情報から求めて前記基準外径値とし、Obtaining the outer diameter value of the optical fiber preform corresponding to the reference outer diameter position from the position outer diameter information as the reference outer diameter value,
前記光ファイバ母材の基準外径値と目標延伸径とから、前記加熱炉へ送られる光ファイバ母材送出量と前記加熱炉から引き出される光ファイバ母材引出量とが同じとなるように前記送り速度と前記引き速度とを算出し、From the reference outer diameter value of the optical fiber preform and the target stretched diameter, the optical fiber preform delivery amount sent to the heating furnace and the optical fiber preform withdrawal amount drawn from the heating furnace are the same. Calculate the feed speed and the pulling speed,
前記送り側チャックと前記引き側チャックとを、算出された送り速度と引き速度とで同一方向に移動させながら前記光ファイバ母材を前記加熱炉で加熱して延伸加工し、The optical fiber preform is heated and stretched in the heating furnace while moving the feed side chuck and the pull side chuck in the same direction at the calculated feed speed and pull speed,
前記延伸加工中、前記光ファイバ母材の延伸径を測定し、前記光ファイバ母材の延伸径と前記目標延伸径とにずれが生じたときに、前記基準外径位置を前記位置外径情報に基づいて前記光ファイバ母材の延伸径と前記目標延伸径とのずれを修正するために、前記光ファイバ母材に沿う方向に移動することを特徴とする光ファイバ母材延伸方法。During the drawing process, the drawing diameter of the optical fiber preform is measured, and when there is a deviation between the drawing diameter of the optical fiber preform and the target drawing diameter, the reference outside diameter position is determined as the position outside diameter information. In order to correct the deviation between the stretched diameter of the optical fiber preform and the target stretched diameter, the optical fiber preform is stretched in a direction along the optical fiber preform.
請求項1に記載の光ファイバ母材延伸方法であって、The optical fiber preform drawing method according to claim 1,
前記光ファイバ母材はテーパ状に形成され、前記送り側チャックは前記光ファイバ母材の小外径側を把持し、前記引き側チャックは前記光ファイバ母材の大外径側を把持し、The optical fiber preform is formed in a tapered shape, the feed side chuck grips the small outer diameter side of the optical fiber preform, the pull side chuck grips the large outer diameter side of the optical fiber preform,
前記延伸加工中、前記光ファイバ母材の延伸径が前記目標延伸径より大きくなるときに、前記基準外径位置を前記光ファイバ母材の引き出し側に移動することを特徴とする光ファイバ母材延伸方法。An optical fiber preform characterized in that, during the stretching process, when the stretched diameter of the optical fiber preform becomes larger than the target stretched diameter, the reference outer diameter position is moved to the drawing-out side of the optical fiber preform. Stretching method.
JP2005033573A 2005-02-09 2005-02-09 Optical fiber preform drawing method Expired - Fee Related JP4443433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033573A JP4443433B2 (en) 2005-02-09 2005-02-09 Optical fiber preform drawing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033573A JP4443433B2 (en) 2005-02-09 2005-02-09 Optical fiber preform drawing method

Publications (2)

Publication Number Publication Date
JP2006219331A JP2006219331A (en) 2006-08-24
JP4443433B2 true JP4443433B2 (en) 2010-03-31

Family

ID=36981883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033573A Expired - Fee Related JP4443433B2 (en) 2005-02-09 2005-02-09 Optical fiber preform drawing method

Country Status (1)

Country Link
JP (1) JP4443433B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9328012B2 (en) 2013-07-02 2016-05-03 Shin-Etsu Chemical Co., Ltd. Glass base material elongating method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5213116B2 (en) 2008-09-05 2013-06-19 信越化学工業株式会社 Method for manufacturing preform for optical fiber
JP5576342B2 (en) 2010-09-08 2014-08-20 信越化学工業株式会社 Glass rod manufacturing apparatus and manufacturing method
JP5576343B2 (en) 2010-09-08 2014-08-20 信越化学工業株式会社 Glass rod manufacturing apparatus and manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9328012B2 (en) 2013-07-02 2016-05-03 Shin-Etsu Chemical Co., Ltd. Glass base material elongating method

Also Published As

Publication number Publication date
JP2006219331A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
US5755849A (en) Method for elongating glass preform
US9328012B2 (en) Glass base material elongating method
US20150218031A1 (en) Glass rod machining method and machining apparatus
JP4443433B2 (en) Optical fiber preform drawing method
JP3777746B2 (en) Drawing method of glass base material
EP2617686B1 (en) Method for elongating a glass preform
US20120055198A1 (en) Apparatus for fabricating a glass rod and method of same
US8881552B2 (en) Apparatus for fabricating a glass rod and method of same
WO2005056487A1 (en) Method of stretching optical fiber base material and stretching device
JP2001010839A (en) Apparatus and method for drawing glass preform
US7886561B2 (en) Method for drawing glass parent material and drawing machine for use therein
JP4120783B2 (en) Method for drawing glass base material and drawing apparatus used therefor
JP4325165B2 (en) Drawing method of glass base material
JPH0253376B2 (en)
JPH0597459A (en) Drawing device for base material of optical fiber
JP3932585B2 (en) Drawing method of glass base material
JP3151386B2 (en) Manufacturing method of optical fiber preform
WO2004110941A1 (en) Sintering device and sintering method for optical fiber base material
JP4188011B2 (en) Optical fiber preform manufacturing method and glass rod bending correction method
JP2007197225A (en) Method for drawing glass preform
JP2004189579A (en) Method of drawing glass preform
JPH0930827A (en) Production of optical fiber preform
JP2003206147A (en) Method for drawing glass base material
JP6701900B2 (en) Glass base material stretching method
JP2010248033A (en) Method for drawing glass preform for optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees