JP4442411B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP4442411B2
JP4442411B2 JP2004362627A JP2004362627A JP4442411B2 JP 4442411 B2 JP4442411 B2 JP 4442411B2 JP 2004362627 A JP2004362627 A JP 2004362627A JP 2004362627 A JP2004362627 A JP 2004362627A JP 4442411 B2 JP4442411 B2 JP 4442411B2
Authority
JP
Japan
Prior art keywords
aluminum foil
electrolytic capacitor
solid electrolytic
base material
conductive tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004362627A
Other languages
Japanese (ja)
Other versions
JP2006173303A (en
Inventor
康暢 辻
健司 倉貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004362627A priority Critical patent/JP4442411B2/en
Publication of JP2006173303A publication Critical patent/JP2006173303A/en
Application granted granted Critical
Publication of JP4442411B2 publication Critical patent/JP4442411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は導電性高分子を固体電解質とした固体電解コンデンサの製造方法に関するものである。   The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive polymer as a solid electrolyte.

図5は、従来の固体電解コンデンサの製造方法に用いられる導電性テープの構成を示した断面図であり、同図において、1は金属基材箔、2は粘着剤、3は保護テープである。   FIG. 5 is a cross-sectional view showing the configuration of a conductive tape used in a conventional method for producing a solid electrolytic capacitor. In the figure, 1 is a metal substrate foil, 2 is an adhesive, and 3 is a protective tape. .

このように構成された導電性テープは、導電性高分子膜を形成するときに用いられる固体電解コンデンサで、主に電気化学的反応で導電性高分子膜を形成するときの給電電極として用いられている。   The conductive tape configured as described above is a solid electrolytic capacitor used when forming a conductive polymer film, and is mainly used as a feeding electrode when forming the conductive polymer film by an electrochemical reaction. ing.

この電気化学的反応方法としては、陽極体に触れることなく貼られた導電性テープを電気化学反応の開始点として行うため陽極体を傷つける恐れがなく、電気化学的反応を行うことができるため、漏れ電流がなく高耐圧で信頼性に優れた固体電解コンデンサを得ることができる。   As this electrochemical reaction method, since the conductive tape applied without touching the anode body is used as the starting point of the electrochemical reaction, there is no fear of damaging the anode body, and the electrochemical reaction can be performed. A solid electrolytic capacitor having no leakage current, high breakdown voltage and excellent reliability can be obtained.

前記導電性テープとしては、電解重合液中で陽極酸化性及び化学反応による腐食性がない、例えばニッケル、ステンレス等の金属基材箔が用いられている。   As the conductive tape, for example, a metal base foil such as nickel or stainless steel which is not anodized in an electrolytic polymerization solution and does not corrode due to a chemical reaction is used.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、以下の特許文献が知られている。
特開2000−243663号公報 特開2000−200734号公報
As prior art document information related to the invention of this application, for example, the following patent documents are known.
JP 2000-243663 A Japanese Patent Application Laid-Open No. 2000-200734

しかしながら、上記従来の導電性テープは、陽極酸化性及び化学反応による腐食性のない金属基材箔を使用しているため、材料コストが高く高価な導電性テープになるという課題を有していた。   However, since the conventional conductive tape uses a metal base foil that does not corrode due to anodic oxidation and chemical reaction, there is a problem that the material cost is high and the conductive tape becomes expensive. .

また、安価なアルミニウム箔を使用した場合、陽極酸化皮膜性及び化学反応による腐食性がある金属基材箔のため、電解重合液中で電圧印加を行うと、電気化学的にアルミニウム箔の表面に酸化皮膜を生成する化学反応が起こり、電解重合が短時間で実施ができなかったり、電解重合液中で化学反応を起こし腐食をしてしまうという課題を有していた。   In addition, when an inexpensive aluminum foil is used, it is a metal base foil that has an anodized film property and a corrosive property due to a chemical reaction. Therefore, when voltage is applied in an electrolytic polymerization solution, the surface of the aluminum foil is electrochemically applied. The chemical reaction which produces | generates an oxide film occurred, and there existed a subject that an electropolymerization cannot be implemented in a short time, or a chemical reaction is caused in an electrolytic polymerization liquid, and it corrodes.

本発明はこのような従来の課題を解決し、電解重合液中で電圧印加行うと酸化皮膜を生成する化学反応が起こしたり、電解重合液中での化学反応で腐食することがなく、かつ材料コストを安くすることができるアルミニウム箔のクラッド材に導電性薄膜層を形成した導電性テープを用いた固体電解コンデンサの製造方法を提供することを目的とするものである。   The present invention solves such a conventional problem, and does not cause a chemical reaction that generates an oxide film when a voltage is applied in an electrolytic polymerization solution, and does not corrode due to a chemical reaction in the electrolytic polymerization solution. It is an object of the present invention to provide a method for producing a solid electrolytic capacitor using a conductive tape in which a conductive thin film layer is formed on a clad material of aluminum foil that can reduce the cost.

上記課題を解決するために本発明は、特に、導電性テープとしてアルミニウム箔またはアルミニウム箔のクラッド材を基材とし、貼り付け面の反対側にニッケル、カーボン、ステンレスの少なくともいずれかから導電性薄膜層を形成したものを用いる固体電解コンデンサの製造方法である。   In order to solve the above-mentioned problems, the present invention particularly uses an aluminum foil or a clad of aluminum foil as a base material as a conductive tape, and a conductive thin film from at least one of nickel, carbon, and stainless steel on the opposite side of the attachment surface. It is a manufacturing method of a solid electrolytic capacitor using what formed a layer.

この方法により、基材に陽極酸化性及び化学反応による腐食性のあるアルミニウム箔またはアルミニウム箔のクラッド材を用いても、貼り付け面の反対側にニッケル、カーボン、ステンレスのような陽極酸化性及び化学反応による腐食性のない導電性薄膜層を形成しているので、電解重合液中で電圧印加を行うと酸化皮膜を生成する化学反応を起こしたり、電解重合液での化学反応で腐食することがなく、かつ材料コストを安くすることができるという作用を有している。   By this method, even if an aluminum foil or an aluminum foil clad material that is corrosive due to anodization and chemical reaction is used for the base material, anodizing properties such as nickel, carbon, and stainless steel and Since a conductive thin film layer that does not corrode due to chemical reaction is formed, if a voltage is applied in the electrolytic polymerization solution, it will cause a chemical reaction that forms an oxide film, or it will corrode due to a chemical reaction in the electrolytic polymerization solution. In addition, the material cost can be reduced.

以上のように本発明の導電性テープを用いた固体電解コンデンサの製造方法は、導電性テープがアルミニウム箔またはアルミニウム箔のクラッド材を基材とし貼り付け面の反対側にニッケル、カーボン、ステンレスの少なくともいずれかから導電性薄膜層を形成したものを用いるので、電解重合液中での給電供給機能を損なうことなく、機械的強度が強く、従来品と同等の製品特性が得られ、かつ電気抵抗に優れた安価な導電性テープを用いた固体電解コンデンサの製造方法にすることができるという効果を有する。   As described above, in the method for producing a solid electrolytic capacitor using the conductive tape of the present invention, the conductive tape is made of aluminum foil or aluminum clad clad material as a base material, and nickel, carbon, and stainless steel are formed on the opposite side of the attachment surface. Since a conductive thin film layer formed from at least one is used, the mechanical strength is strong, product characteristics equivalent to conventional products are obtained, and electrical resistance is maintained without impairing the power supply function in the electrolytic polymerization solution. It has the effect that it can be set as the manufacturing method of the solid electrolytic capacitor using the cheap conductive tape excellent in.

本発明においては、陽極部を有する陽極酸化皮膜を形成した陽極体を形成する工程と、陽極部には接さずに陽極体の陽極酸化皮膜に接するように導電性テープを貼り付ける工程と、前記導電性テープを重合開始点として電解重合液に浸漬し電圧を印加することにより陽極部の陽極酸化皮膜上に導電性高分子膜を形成する工程と、前記記導電性テープを剥がした後導電性高分子膜上に陰極層を形成する工程と、前記陰極層の外周に絶縁性樹脂により外装を形成する工程からなる固体電解コンデンサの製造方法において、前記導電性テープとしてアルミニウム箔またはアルミニウム箔のクラッド材を基材とし、貼り付け面の反対側にニッケル、カーボン、ステンレスの少なくともいずれかから導電性薄膜層を形成したものを用いる固体電解コンデンサの製造方法を特徴としている。これにより、基材としてアルミニウム箔またはアルミニウム箔のクラッド材を用いても貼り付ける面の反対側に導電性テープを用いるので、電解重合液中で給電供給機能を損なうことがない導電性テープを得ることができる。   In the present invention, a step of forming an anode body in which an anodic oxide film having an anode part is formed, a step of attaching a conductive tape so as to be in contact with the anodic oxide film of the anode body without being in contact with the anode part, A step of forming a conductive polymer film on the anodic oxide film of the anode part by applying a voltage by immersing the conductive tape in a polymerization polymerization starting point as a polymerization starting point, and conducting after the conductive tape is peeled off In the method for producing a solid electrolytic capacitor comprising a step of forming a cathode layer on a conductive polymer film and a step of forming an outer package with an insulating resin on the outer periphery of the cathode layer, an aluminum foil or an aluminum foil is used as the conductive tape. A solid electrolytic capacitor using a clad material as a base material and a conductive thin film layer formed on at least one of nickel, carbon, and stainless steel on the opposite side of the attachment surface And it features a method of manufacturing the support. As a result, even when an aluminum foil or a clad material of aluminum foil is used as the base material, the conductive tape is used on the opposite side of the surface to be attached, so that a conductive tape that does not impair the power supply function in the electrolytic polymerization solution is obtained. be able to.

また、アルミニウム箔またはアルミニウム箔のクラッド材の厚みが60μm以上になると、電解重合液で電気化学反応を起こす時の開始点となる導電性テープから電気化学反応を起こす電解重合液中部分までの距離が長くなり、化学反応不良を起こすのでアルミニウム箔またはアルミニウム箔のクラッド材の厚みが60μm以下でなければならない。好ましくは40μm以下が好ましい。   In addition, when the thickness of the aluminum foil or the clad material of the aluminum foil is 60 μm or more, the distance from the conductive tape that is the starting point when the electrochemical reaction is caused in the electrolytic polymerization solution to the portion in the electrolytic polymerization solution that causes the electrochemical reaction As a result, the thickness of the aluminum foil or the clad material of the aluminum foil must be 60 μm or less. Preferably it is 40 micrometers or less.

また、アルミニウム箔のクラッド材が純度の低い第1の基材の両面に、それよりも高い純度の第2の基材を配置したものを用いるが、純度の高い第2の基材は引っ張り強度が弱く、純度の低い第1の基材は引っ張り強度が強いため、アルミニウム箔のクラッド材の引っ張り強度が保て、かつ第1の基材の両面に同材質の第2の基材を配設することにより、基材の反りを抑制することができるため、電解重合液中での機械的強度が強くなる。   In addition, the clad material of aluminum foil uses a first base material having a low purity on both sides of a second base material having a higher purity than the first base material, but the second base material having a higher purity has a tensile strength. The first base material, which is weak and low in purity, has high tensile strength, so that the tensile strength of the clad material of the aluminum foil can be maintained, and the second base material of the same material is disposed on both surfaces of the first base material. By doing so, since the curvature of a base material can be suppressed, the mechanical strength in an electrolytic polymerization liquid becomes strong.

また、第2の基材に対する第1の基材の厚み比率は2倍以上にしたものであり、第2の基材に対する第1の基材の厚み比率を2倍未満にすると引っ張り強度を強くした優位性が発揮されない。好ましくは、第1の基材が第2の基材の厚み比率8倍が好ましい。   In addition, the thickness ratio of the first base material to the second base material is doubled or more, and if the thickness ratio of the first base material to the second base material is less than double, the tensile strength is increased. The superiority is not demonstrated. Preferably, the thickness ratio of the first base material is 8 times that of the second base material.

以上のことにより、電解重合液中での給電供給機能を損なうことなく、機械的強度が強く、従来品と同等の製品特性が得られ、かつ電気抵抗に優れた安価な導電性テープを用いた固体電解コンデンサの製造方法が実施できるという効果が得られる。   As described above, an inexpensive conductive tape that has strong mechanical strength, has the same product characteristics as a conventional product, and does not impair the power supply function in the electrolytic polymerization solution. The effect that the manufacturing method of a solid electrolytic capacitor can be implemented is acquired.

以下、本発明の実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は本発明の実施の形態1による固体電解コンデンサ用素子の製造方法を示す概念図である。図2は同導電性テープの構成を示した断面図である。図3は同導電性テープを貼り付けた陽極体を示す平面図である。
(Embodiment 1)
FIG. 1 is a conceptual diagram showing a method for manufacturing a solid electrolytic capacitor element according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view showing the configuration of the conductive tape. FIG. 3 is a plan view showing an anode body to which the same conductive tape is attached.

図1及び図3において、11は陽極体、12は絶縁テープ、13は陽極部、14は導電性テープ、19は電解重合液である。図2において、15は基材、15aは第1の基材、15bは第2の基材、16は導電性薄膜層、17は粘着剤、18は保護テープ、19は電解重合液である。   1 and 3, 11 is an anode body, 12 is an insulating tape, 13 is an anode part, 14 is a conductive tape, and 19 is an electrolytic polymerization solution. In FIG. 2, 15 is a substrate, 15a is a first substrate, 15b is a second substrate, 16 is a conductive thin film layer, 17 is an adhesive, 18 is a protective tape, and 19 is an electrolytic polymerization solution.

図1及び図3に示す、弁作用金属からなる連続した帯状のアルミニウム箔に、表裏面を電気化学的に粗面化し、化成電圧35Vで陽極酸化皮膜を形成して陽極体11とし(図示せず)、この陽極体11の長手方向に所定の間隔で幅方向に2列配設した連続して穴11aをあけ、前記陽極体11にあけられた穴11aを塞ぐように、陽極体11の表裏面に絶縁テープ12を貼り付け、幅方向の端部に所定の間隔でスリットを設けることにより、個々に独立した陽極部13を形成し、化成工程にて、陽極部13の切断面に陽極酸化皮膜を形成するために化成処理を行う。   An anode body 11 is formed by electrochemically roughening the front and back surfaces of a continuous strip-shaped aluminum foil made of a valve action metal shown in FIGS. 1 and 3 and forming an anodic oxide film at a formation voltage of 35 V (not shown). The anode body 11 is formed so that the holes 11a are continuously formed in two rows in the width direction at predetermined intervals in the longitudinal direction of the anode body 11, and the holes 11a formed in the anode body 11 are closed. Insulating tape 12 is attached to the front and back surfaces, and slits are provided at predetermined intervals in the widthwise direction, thereby forming individual anode portions 13. In the chemical conversion step, anodes 13 are cut on the cut surfaces of anode portions 13. Chemical conversion treatment is performed to form an oxide film.

次に、マンガン塗布工程にて、陽極部13に硝酸マンガン水溶液を塗布した後、熱分解工程にて、300℃5分の熱分解処理を行い、陽極部13に導電物としてニ酸化マンガンを形成し、上記陽極体11および絶縁テープ12の表裏面に導電性テープ14を貼り付け、前記陽極体11に導電性テープ14を貼り付けた部分より重合開始点として、重合工程にて、pH3.5の電解重合液19(ピロール0.2モル/リットル、アルキルナフタレンスルホネート0.1モル/リットル水溶液)中に順次浸漬した。   Next, after applying a manganese nitrate aqueous solution to the anode portion 13 in the manganese application step, a thermal decomposition process is performed at 300 ° C. for 5 minutes in the thermal decomposition step, and manganese dioxide is formed on the anode portion 13 as a conductive material. Then, a conductive tape 14 is attached to the front and back surfaces of the anode body 11 and the insulating tape 12, and the polymerization starting point is set to a pH of 3.5 from the portion where the conductive tape 14 is attached to the anode body 11. Were sequentially immersed in the electrolytic polymerization solution 19 (0.2 mol / liter of pyrrole, 0.1 mol / liter aqueous solution of alkyl naphthalene sulfonate).

電解重合液19は重合電極である導電性テープ14を共通の正極、電解重合液中に配設した4つのステンレス板を4つの独立した陰極として、それぞれの間に電圧を30分間印加して電気化学反応が開始され、陽極部13の表裏面全体に所望の厚みの導電性高分子膜が形成されたのち、陽極体11および絶縁テープ12の表裏面に貼り付けた導電性テープ14を剥がす。   The electropolymerization liquid 19 is composed of a conductive tape 14 serving as a polymerization electrode as a common positive electrode and four stainless steel plates arranged in the electropolymerization liquid as four independent cathodes. After a chemical reaction is started and a conductive polymer film having a desired thickness is formed on the entire front and back surfaces of the anode portion 13, the conductive tape 14 attached to the front and back surfaces of the anode body 11 and the insulating tape 12 is peeled off.

次に、上記で形成された導電性高分子膜上にカーボン塗料層および銀塗料層を形成したことにより陰極部が形成され、この陰極部を固体電解コンデンサ素子とし個別に切断して1個のコンデンサ素子とし、陰極部および陽極体11から夫々リードを取り出し、エポキシ樹脂で外装して固体電解コンデンサを作製させた(図示せず)。   Next, by forming a carbon paint layer and a silver paint layer on the conductive polymer film formed as described above, a cathode part is formed, and this cathode part is individually cut as a solid electrolytic capacitor element to obtain one piece. As a capacitor element, leads were taken out from the cathode part and the anode body 11, respectively, and covered with an epoxy resin to produce a solid electrolytic capacitor (not shown).

図2に示す上記導電性テープ14は、第1の基材15aには厚み20μmのAl純度95.70以上の5052のアルミニウム箔を用い、第2の基材15bには厚み5μmのAl純度99.85以上の1085のアルミニウム箔を用い、第1の基材15aの両面に第2の基材箔5bを配設し、幅180mmの厚さ30μmになるように圧延する。次に基材15の一方の面にニッケルを真空蒸着で厚さ0.1μmの導電性薄膜層16を形成し、導電性薄膜層16を形成してないもう一方の面に粘着剤17を形成し、粘着剤17を覆うように保護テープ18を形成する。この導電性テープ14をスリッターで7.5mmにスリットしたものを用いている。   In the conductive tape 14 shown in FIG. 2, a 5052 aluminum foil having an Al purity of 95.70 or more having a thickness of 20 μm is used for the first substrate 15a, and an Al purity 99 having a thickness of 5 μm is used for the second substrate 15b. The aluminum foil of 1085 of 85 or more is used, the second substrate foil 5b is disposed on both surfaces of the first substrate 15a, and rolled so as to have a width of 180 mm and a thickness of 30 μm. Next, a conductive thin film layer 16 having a thickness of 0.1 μm is formed on one surface of the base material 15 by vacuum evaporation, and an adhesive 17 is formed on the other surface where the conductive thin film layer 16 is not formed. The protective tape 18 is formed so as to cover the adhesive 17. This conductive tape 14 is slit to 7.5 mm with a slitter.

このように作製された導電性テープ14は、安価なアルミニウム箔のクラッド材を用いているため、電気抵抗に優れており、かつ製造コストを大幅に低減することができる。また、安価なアルミニウム箔のクラッド材でも機械的に強度が保たれ、電解重合液19中でも給電供給機能を損なうことがなく同等特性が得られる。   Since the conductive tape 14 manufactured in this way uses an inexpensive aluminum foil clad material, the conductive tape 14 is excellent in electric resistance and can greatly reduce the manufacturing cost. Further, even an inexpensive aluminum foil clad material can maintain mechanical strength, and even in the electrolytic polymerization solution 19, an equivalent characteristic can be obtained without impairing the power supply function.

上記第2の基材15bは、Al純度99.50以上の1050のアルミニウム箔を用いても同様の効果が得られる。   Even if the second base material 15b uses a 1050 aluminum foil having an Al purity of 99.50 or more, the same effect can be obtained.

また、上記基材15のクラッド材の厚みを60μm以下としているが、基材箔15のクラッド材の厚みが60μmを越えると電気化学反応の開始点となる導電性テープ14から陽極部13までの距離が長くなり、陽極部13に所望の厚みの導電性高分子膜が形成できなかったり、導電性テープ14の表面上の電解反応したい部分の面積に対する端面露出部分の面積比が大きくなるため、電気化学反応の効率が低下するといった不具合が発生し易くなるので、基材15のクラッド材の厚みは60μm以下としたが、好ましくは40μm以下が好ましい。   Moreover, although the thickness of the clad material of the base material 15 is 60 μm or less, when the thickness of the clad material of the base material foil 15 exceeds 60 μm, the conductive tape 14 from the conductive tape 14 to the anode portion 13 becomes the starting point of the electrochemical reaction. Since the distance becomes longer and a conductive polymer film having a desired thickness cannot be formed on the anode portion 13 or the area ratio of the exposed end portion to the area of the portion where the electrolytic reaction is desired on the surface of the conductive tape 14 is increased, Since problems such as a decrease in the efficiency of the electrochemical reaction are likely to occur, the thickness of the clad material of the base material 15 is set to 60 μm or less, preferably 40 μm or less.

また、上記基材15に厚み100μmのアルミニウム箔を用いても同様の効果が得られる。   The same effect can be obtained even when an aluminum foil having a thickness of 100 μm is used for the base material 15.

さらに、上記基材15の幅も180mmとしたが、それに限らず所望の幅でよい。   Furthermore, although the width of the base material 15 is 180 mm, it is not limited to this and may be a desired width.

上記導電性薄膜層16の材質にニッケルを用いたが、電解重合液19中で陽極酸化性または化学反応による腐食性のない材料であれば良く、カーボン、ステンレスでもよく、厚みも0.1μmとしたがそれに限らず、0.1〜10μmであればよい。   Nickel is used as the material of the conductive thin film layer 16 as long as it is a material that is not anodic or corrosive due to a chemical reaction in the electrolytic polymerization solution 19, and may be carbon or stainless steel with a thickness of 0.1 μm. However, it is not limited to this, and it may be 0.1 to 10 μm.

また、上記電解重合液19のpHも3.5としているがpH4以下であればよく、導電性高分子層もピロールを用いたが、それに限られるものではなく、チオフェン、フランまたは、それらの誘導体であっても同様の効果が得られる。   Moreover, although the pH of the said electropolymerization liquid 19 is also set to 3.5, it should just be pH 4 or less, and although the conductive polymer layer used the pyrrole, it is not restricted to it, Thiophene, furan, or derivatives thereof However, the same effect can be obtained.

また、上記陽極部13に導電物としてニ酸化マンガンを用いたがそれに限られるものではなく、その他の金属酸化物、導電性高分子であってもよい。   Further, although manganese dioxide is used as the conductive material for the anode portion 13, the present invention is not limited thereto, and other metal oxides and conductive polymers may be used.

(実施の形態2)
以下、本発明の実施の形態2について図面を用いて説明する。
(Embodiment 2)
The second embodiment of the present invention will be described below with reference to the drawings.

図4は、弁作用金属の素子形状を表した斜視図である。   FIG. 4 is a perspective view showing the element shape of the valve metal.

図4において、20はニオブ箔、21はスラリー層である。   In FIG. 4, 20 is a niobium foil and 21 is a slurry layer.

まず、平均粒子径0.2μmの公称10万CVのタンタル粉末を用い、これをアクリル系バインダー及び溶剤と共に混合してスラリーを作製した。   First, a nominal 100,000 CV tantalum powder having an average particle diameter of 0.2 μm was used and mixed with an acrylic binder and a solvent to prepare a slurry.

次に、図4に示すような4×3mmの焼結体層を形成するための素子をチドリ状に複数個設けたニオブ箔(厚さ75μm)を用い、この素子部に上記スラリーを塗布(厚さ片面70μm)した。その後、このスラリー層を約120℃で乾燥して成形体(未焼結体)を形成した。   Next, using the niobium foil (thickness 75 μm) provided with a plurality of elements for forming a 4 × 3 mm sintered body layer as shown in FIG. The thickness was 70 μm on one side. Thereafter, the slurry layer was dried at about 120 ° C. to form a formed body (unsintered body).

次に、この成形体をプレス機に挿入して、この成形体を加圧してその表面を平面にする。このとき、成形体の設計厚みを保持するために215μmの厚みのスペーサを入れて両面からプレスする。   Next, the molded body is inserted into a press machine, and the molded body is pressed to make its surface flat. At this time, in order to maintain the design thickness of the molded body, a spacer having a thickness of 215 μm is inserted and pressed from both sides.

次に、プレスした状態で、成形体端部にはみ出した部分を金型により素子形状に打ち抜き、設計通りの形状をした成形体を得る。   Next, in a pressed state, a portion protruding from the end of the molded body is punched into an element shape using a mold to obtain a molded body having a shape as designed.

次に、上記成形体を形成した素子を約500℃に加熱することにより成形体層に含まれたバインダーを除去し、続いて約1300℃で真空焼結することによりタンタル箔上に焼結体を形成して固体電解コンデンサ用陽極体を作製した。   Next, the element formed with the molded body is heated to about 500 ° C. to remove the binder contained in the molded body layer, and then vacuum sintered at about 1300 ° C. to sinter the sintered body on the tantalum foil. To form a solid electrolytic capacitor anode body.

次に、上記固体電解コンデンサ用陽極体をリン酸水溶液中で15Vの陽極酸化を行うことによって焼結体およびニオブ箔の表面に誘電体酸化皮膜層を形成した。   Next, the anode body for a solid electrolytic capacitor was anodized at 15 V in an aqueous phosphoric acid solution to form a dielectric oxide film layer on the surface of the sintered body and niobium foil.

次に、ニオブ箔表面の焼結体が形成されていない部分に導電性テープを貼り付けて、この陽極体を化学重合液(親水基を有するモノマーから得られるポリアニリンを10wt%溶解した水溶液)に浸漬した後、これを引き上げ溶媒である水を揮発させ、その後、160℃で5分間加熱処理を行い、導電性高分子層を形成した。   Next, a conductive tape is attached to a portion of the niobium foil surface where the sintered body is not formed, and this anode body is added to a chemical polymerization solution (an aqueous solution in which 10 wt% of polyaniline obtained from a monomer having a hydrophilic group is dissolved). After soaking, water was pulled up to evaporate the solvent, and then heat treatment was performed at 160 ° C. for 5 minutes to form a conductive polymer layer.

次に、電解重合液(ピロールモノマー0.5mol/リットルとプロピルナフタレンスルホン酸ナトリウム0.1mol/リットルをあらかじめ混合した後に溶媒である水とpH調整剤としてプロピルリン酸エステルを添加しpHを2に調整した)に、上記陽極体の焼結体部を浸漬し、重合開始用電極を導電性高分子層表面に近接させて電解酸化重合を行い、導電性高分子層の表面に導電性高分子からなる固体電解質層を形成した。   Next, an electrolytic polymerization solution (0.5 mol / liter of pyrrole monomer and 0.1 mol / liter of sodium propylnaphthalene sulfonate were mixed in advance, and then propyl phosphate was added as a solvent and water and a pH adjuster to adjust the pH to 2. Adjusted)), the sintered body portion of the anode body is immersed, the electrode for initiating polymerization is brought close to the surface of the conductive polymer layer, and electrolytic oxidation polymerization is performed, and the conductive polymer layer is formed on the surface of the conductive polymer layer. A solid electrolyte layer was formed.

続いて、この固体電解質層上にカーボンと銀ペーストからなる陰極層を形成することによりニオブ箔からなるコンデンサ素子を形成した。   Subsequently, a capacitor layer made of niobium foil was formed by forming a cathode layer made of carbon and silver paste on the solid electrolyte layer.

次に、上記導電性テープを除去したニオブ箔のコンデンサ素子を4枚積層して各コンデンサ素子どうしが重なり合うようにし、続いて導電性テープを除去した部分(陽極取り出し部となる部分)のニオブ箔をレーザ溶接により接合し、溶接されたニオブ箔を外部陽極端子に、陰極層を外部陰極端子に夫々接続し、この外部陽極端子と外部陰極端子の一部が夫々露呈する状態でコンデンサ素子をエポキシ樹脂で被覆するようにモールド成形した後、エージングを行って固体電解コンデンサを作製した。   Next, four capacitor elements of niobium foil from which the conductive tape has been removed are stacked so that the capacitor elements overlap each other, and then the portion of the niobium foil from which the conductive tape has been removed (the part that becomes the anode extraction portion). Are bonded by laser welding, the welded niobium foil is connected to the external anode terminal, the cathode layer is connected to the external cathode terminal, and the capacitor element is epoxyd with the external anode terminal and a part of the external cathode terminal exposed. After being molded so as to be covered with resin, aging was performed to produce a solid electrolytic capacitor.

このように作製された固体電解コンデンサは、導電性テープに安価なアルミニウム箔またはアルミニウム箔のクラッド材を用いているため、電気抵抗に優れており、かつ製造コストを大幅に低減することができる。また、安価なアルミニウム箔またはアルミニウム箔のクラッド材でも機械的に強度が保たれ、化学重合液中で腐食することなく、かつ電解重合液中でも給電供給機能を損なうことがなく従来品と同等の特性が得られる。   Since the solid electrolytic capacitor produced in this way uses an inexpensive aluminum foil or aluminum foil clad material for the conductive tape, it has excellent electrical resistance and can greatly reduce the manufacturing cost. In addition, low-priced aluminum foil or aluminum foil clad material is mechanically strong, does not corrode in chemical polymerization liquid, and does not impair power supply function in electrolytic polymerization liquid. Is obtained.

以下、具体的な実施例について説明する。   Specific examples will be described below.

(実施例1)
前記実施の形態1において、定格10V3.3μFの固体電解コンデンサを作製したものを用いる。
Example 1
In the first embodiment, a solid electrolytic capacitor having a rating of 10 V 3.3 μF is used.

(実施例2)
実施の形態1において、導電性テープの基材をアルミニウム箔100μmのものを用いた以外は、前記実施例1と同様にして固体電解コンデンサを作製した。
(Example 2)
In Embodiment 1, a solid electrolytic capacitor was produced in the same manner as in Example 1 except that the base material of the conductive tape was an aluminum foil having a thickness of 100 μm.

(実施例3)
実施の形態1において、導電性テープの第1基材の上面に第2の基材Al純度99.85以上1085のアルミニウム箔を用い、第1の基材の下面に第2の基材Al純度99.50以上1050のアルミニウム箔を用いてクラッド材を形成した以外は、前記実施例1と同様にして固体電解コンデンサを作製した。
Example 3
In Embodiment 1, an aluminum foil having a second substrate Al purity of 99.85 or more and 1085 is used on the upper surface of the first substrate of the conductive tape, and the second substrate Al purity is formed on the lower surface of the first substrate. A solid electrolytic capacitor was produced in the same manner as in Example 1 except that the clad material was formed using 99.50 or more and 1050 aluminum foil.

(実施例4)
実施の形態1において、導電性テープの第1の基材と第2の基材の厚みを70μmになるように圧延した以外は、前記実施例1と同様にして固体電解コンデンサを作製した。
(Example 4)
A solid electrolytic capacitor was produced in the same manner as in Example 1 except that in Example 1, the thickness of the first base material and the second base material of the conductive tape was rolled to 70 μm.

(比較例)
比較例において、導電性テープを図5に示すように金属基材箔に陽極酸化性及び化学反応による腐食性のないニッケルを用いた以外は前記実施の形態1と同様にして固体電解コンデンサを作製した。
(Comparative example)
In the comparative example, a solid electrolytic capacitor was produced in the same manner as in the first embodiment except that the conductive tape was made of nickel that does not corrode due to anodic oxidation and chemical reaction as shown in FIG. did.

このようにして得られた実施例1〜4の固体電解コンデンサと比較例の固体電解コンデンサついての静電容量、損失角の正接、等価直列抵抗(ESR)、漏れ電流(10V印加、2分値)の初期特性を測定した結果を(表1)に示す。   Capacitance, loss tangent, equivalent series resistance (ESR), leakage current (10V applied, dichotomous value) for the solid electrolytic capacitors of Examples 1 to 4 and the comparative solid electrolytic capacitor thus obtained. (Table 1) shows the results of measuring the initial characteristics of).

また試料数はぞれぞれn=10個で、表は平均値を示す。   The number of samples is n = 10, and the table shows average values.

Figure 0004442411
Figure 0004442411

(表1)から明かになように、実施例1〜3による固体電解コンデンサは、比較例と同等の初期特性が得られているが、基材のクラッド材の厚みを70μmにした実施例4は、所望の時間に導電性高分子膜が形成できず測定ができなかった。   As is clear from Table 1, the solid electrolytic capacitors according to Examples 1 to 3 have the same initial characteristics as the comparative example, but the thickness of the clad material of the base material is 70 μm. Was not able to be measured because the conductive polymer film could not be formed at the desired time.

このように本実施の形態による固体電解コンデンサは、導電性テープとしてアルミニウム箔またはアルミニウム箔のクラッド材を基材とし貼り付け面の反対側にニッケル、カーボン、ステンレスの少なくともいずれかから導電性薄膜層を形成したものを用いたものであり、電解重合液中での給電供給機能を損なうことなく、機械的強度が強く、従来品と同等の製品特性が得られ、かつ電気抵抗に優れた安価な導電性テープを用いた固体電解コンデンサの製造方法を実現することができる。   As described above, the solid electrolytic capacitor according to the present embodiment has a conductive thin film layer made of at least one of nickel, carbon, and stainless steel on the opposite side of the pasting surface using an aluminum foil or a clad of aluminum foil as a base material as a conductive tape. It is a low-cost material that has strong mechanical strength, has the same product characteristics as conventional products, and has excellent electrical resistance without impairing the power supply function in the electrolytic polymerization solution. A method of manufacturing a solid electrolytic capacitor using a conductive tape can be realized.

本発明による固体電解コンデンサの製造方法は、機械的強度が強く、かつ電気抵抗に優れた安価な導電性テープを用いることにより、電解重合液中での給電供給機能を損なうことなく従来品と同等の製品特性が得られ、製造コストを大幅に低減する等に有効である。   The manufacturing method of the solid electrolytic capacitor according to the present invention is equivalent to the conventional product without impairing the power supply function in the electrolytic polymerization solution by using an inexpensive conductive tape having high mechanical strength and excellent electric resistance. This is effective for significantly reducing the production cost.

本発明の実施の形態1による固体電解コンデンサ用素子の製造方法を示す概念図1 is a conceptual diagram showing a method for manufacturing an element for a solid electrolytic capacitor according to Embodiment 1 of the present invention. 同導電性テープの構成を示した断面図Sectional view showing the configuration of the conductive tape 同導電性テープを貼り付けた陽極体を示す平面図Top view showing the anode body with the same conductive tape 本発明の実施の形態2で用いた弁作用金属の素子形状を表した斜視図The perspective view showing the element shape of the valve action metal used in Embodiment 2 of the present invention 従来の導電性テープの構成を示す断面図Sectional drawing which shows the structure of the conventional conductive tape

符号の説明Explanation of symbols

14 導電性テープ
15 基材
15a 第1の基材
15b 第2の基材
16 導電性薄膜層
17 粘着剤
18 保護テープ
DESCRIPTION OF SYMBOLS 14 Conductive tape 15 Base material 15a 1st base material 15b 2nd base material 16 Conductive thin film layer 17 Adhesive 18 Protection tape

Claims (4)

陽極部を有する陽極酸化皮膜を形成した陽極体を形成する工程と、陽極部には接さずに陽極体の陽極酸化皮膜に接するように導電性テープを貼り付ける工程と、前記導電性テープを重合開始点として電解重合液に浸漬し電圧を印加ことにより陽極部の陽極酸化皮膜上に導電性高分子膜を形成する工程と、前記記導電性テープを剥がしたあと導電性高分子膜上に陰極層を形成する工程と、前記陰極層の外周に絶縁性樹脂により外装を形成する工程からなる固体電解コンデンサの製造方法において、前記導電性テープとしてアルミニウム箔またはアルミニウム箔のクラッド材を基材とし、貼り付け面の反対側にニッケル、カーボン、ステンレスの少なくともいずれかから導電性薄膜層を形成したものを用いる固体電解コンデンサの製造方法。 A step of forming an anode body having an anodic oxide film having an anode portion, a step of attaching a conductive tape so as to be in contact with the anodic oxide film of the anode body without being in contact with the anode portion, and the conductive tape A step of forming a conductive polymer film on the anodized film of the anode part by applying a voltage by immersing it in an electrolytic polymerization solution as a polymerization starting point, and on the conductive polymer film after removing the conductive tape In the method of manufacturing a solid electrolytic capacitor comprising a step of forming a cathode layer and a step of forming an exterior with an insulating resin on the outer periphery of the cathode layer, the conductive tape is made of an aluminum foil or an aluminum foil clad material as a base material A method for producing a solid electrolytic capacitor using a conductive thin film layer formed of at least one of nickel, carbon, and stainless steel on the opposite side of the attachment surface. 前記アルミニウム箔のクラッド材の厚みが60μm以下のものを用いる請求項1に記載の固体電解コンデンサの製造方法。 The method for producing a solid electrolytic capacitor according to claim 1, wherein the aluminum foil clad material has a thickness of 60 μm or less. 上記アルミニウム箔のクラッド材が純度の低い第1の基材の両面に、それよりも高い純度の第2の基材を貼り合わせたものを用いる請求項1に記載の固体電解コンデンサの製造方法。 The method for producing a solid electrolytic capacitor according to claim 1, wherein the clad material of the aluminum foil is obtained by bonding a second base material having a higher purity to both surfaces of a first base material having a lower purity. 前記第2の基材に対する前記第1の基材の厚み比率が2倍以上にしたアルミニウム箔のクラッド材を用いる請求項1に記載の固体電解コンデンサの製造方法。 The manufacturing method of the solid electrolytic capacitor of Claim 1 using the clad material of the aluminum foil which made the thickness ratio of the said 1st base material with respect to a said 2nd base material 2 times or more.
JP2004362627A 2004-12-15 2004-12-15 Manufacturing method of solid electrolytic capacitor Active JP4442411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004362627A JP4442411B2 (en) 2004-12-15 2004-12-15 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004362627A JP4442411B2 (en) 2004-12-15 2004-12-15 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2006173303A JP2006173303A (en) 2006-06-29
JP4442411B2 true JP4442411B2 (en) 2010-03-31

Family

ID=36673727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004362627A Active JP4442411B2 (en) 2004-12-15 2004-12-15 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4442411B2 (en)

Also Published As

Publication number Publication date
JP2006173303A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP4660222B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5159598B2 (en) Electrolytic capacitor
JP4664396B2 (en) Metal capacitor and manufacturing method thereof
JP5328870B2 (en) Electrolytic capacitor
JP2018082008A (en) Solid electrolytic capacitor and method for manufacturing the same
JP5062770B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2004087872A (en) Solid electrolytic capacitor
JP4770750B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4753890B2 (en) Manufacturing method of solid electrolytic capacitor
JP4338179B2 (en) Manufacturing method of aluminum solid electrolytic capacitor
JP2008198639A (en) Solid-state electrolytic capacitor
JP4442411B2 (en) Manufacturing method of solid electrolytic capacitor
JP4796975B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2004158577A (en) Process for producing laminated large area aluminum solid electrolytic capacitor and capacitor produced by that process
JP4848952B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5164325B2 (en) Manufacturing method of solid electrolytic capacitor
JP4609045B2 (en) Conductive tape for power supply, method for producing the same, and method for producing a solid electrolytic capacitor using the same
JP6475417B2 (en) Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor
KR100821156B1 (en) Electrode and method for electrochemical polymerization of conductive polymer for stacked type polymer-condenser
JP2828738B2 (en) Solid electrolytic capacitors
JP4596939B2 (en) Manufacturing method of three-terminal solid electrolytic capacitor element
JP5642508B2 (en) Surface mount thin capacitors
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2924310B2 (en) Manufacturing method of capacitor
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070820

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

R151 Written notification of patent or utility model registration

Ref document number: 4442411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3