JP4442394B2 - Vehicle turning device - Google Patents

Vehicle turning device Download PDF

Info

Publication number
JP4442394B2
JP4442394B2 JP2004325332A JP2004325332A JP4442394B2 JP 4442394 B2 JP4442394 B2 JP 4442394B2 JP 2004325332 A JP2004325332 A JP 2004325332A JP 2004325332 A JP2004325332 A JP 2004325332A JP 4442394 B2 JP4442394 B2 JP 4442394B2
Authority
JP
Japan
Prior art keywords
wheel
turning
vehicle
load
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004325332A
Other languages
Japanese (ja)
Other versions
JP2006131189A (en
Inventor
智彦 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004325332A priority Critical patent/JP4442394B2/en
Publication of JP2006131189A publication Critical patent/JP2006131189A/en
Application granted granted Critical
Publication of JP4442394B2 publication Critical patent/JP4442394B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

本発明は、車両の旋回動作をコントロールする車両旋回装置に関する。   The present invention relates to a vehicle turning device that controls a turning operation of a vehicle.

車両走行の操作性を左右する要因の一つに車両の旋回性能が挙げられる。一般に、車両の最小旋回半径が小さいほど走行時の小回りがきいて、良好な車両操作性を得ることができる。そのため車両の旋回性能を向上させる技術がいくつか提案されている。例えば特許文献1では、簡単な構成で最小旋回半径を小さくする車両の旋回装置が提案されている。また、その他にも車両の旋回性能をコントロールする技術が提案されている(例えば特許文献2参照)。
特開平10−264634号公報 特開平3−511号公報
One factor that affects the operability of vehicle travel is the turning performance of the vehicle. In general, the smaller the minimum turning radius of the vehicle, the smaller the turning at the time of traveling, and the better the operability of the vehicle can be obtained. Therefore, several techniques for improving the turning performance of the vehicle have been proposed. For example, Patent Document 1 proposes a turning device for a vehicle that reduces the minimum turning radius with a simple configuration. In addition, a technique for controlling the turning performance of the vehicle has been proposed (see, for example, Patent Document 2).
JP-A-10-264634 Japanese Unexamined Patent Publication No. 3-511

上記の特許文献1で開示されている技術は、左右一対の前輪における接地荷重の配分を接地荷重可変機構によって調整するものであり、例えば低車速、大舵角旋回時に旋回外側前輪の接地荷重を増加させるとともに旋回内側前輪の接地荷重を低減させることで旋回半径を縮小することができる。このようにして旋回半径を縮小する際、サスペンションスプリングの伸縮やスタビライザのねじれなどのために、車体が旋回内側のロール方向へ傾斜する場合がある。車体の傾斜は、その程度が大きい場合には車両搭乗者に違和感を与えることがある。また車体の傾斜によるサスペンションの底付きや車輪の浮きを防止するために接地荷重の分配を制限する必要が生じる場合もあるため、結果的に旋回半径を効果的に縮小させることが難しい場合がある。   The technique disclosed in Patent Document 1 described above is to adjust the distribution of the ground load on the pair of left and right front wheels by a ground load variable mechanism. For example, the ground load on the front wheel outside the turn at the time of turning at a low vehicle speed and a large steering angle. The turning radius can be reduced by increasing the ground contact load of the turning inner front wheel. When the turning radius is reduced in this way, the vehicle body may be tilted toward the roll direction on the inside of the turn due to expansion / contraction of the suspension spring or twisting of the stabilizer. If the degree of the inclination of the vehicle body is large, the vehicle occupant may feel uncomfortable. In addition, it may be necessary to limit the distribution of contact load in order to prevent suspension bottoming and wheel lift due to vehicle tilt, and as a result, it may be difficult to effectively reduce the turning radius. .

本発明は上述の事情を鑑みてなされたものであり、その目的は、車両の旋回半径の縮小を図るとともに車両姿勢を良好に保つ技術を提案することにある。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to propose a technique for reducing the turning radius of a vehicle and maintaining a good vehicle posture.

本発明の一態様は車両旋回装置に関する。この車両旋回装置は、左右前輪の接地荷重を調整する前輪接地荷重調整機構と、左右後輪の接地荷重を調整する後輪接地荷重調整機構と、前記前輪接地荷重調整機構および前記後輪接地荷重調整機構を制御する接地荷重制御手段と、を備え、前記接地荷重制御手段は、車両旋回時に、前輪のうち旋回外側輪の接地荷重が増大するように前記前輪接地荷重調整機構を制御するとともに、後輪のうち旋回内側輪の接地荷重が前輪の旋回外側輪の接地荷重に応じて調整されるように前記後輪接地荷重調整機構を制御することを特徴とする。   One embodiment of the present invention relates to a vehicle turning device. The vehicle turning device includes a front wheel ground load adjustment mechanism that adjusts a ground load of left and right front wheels, a rear wheel ground load adjustment mechanism that adjusts a ground load of left and right rear wheels, the front wheel ground load adjustment mechanism, and the rear wheel ground load. A grounding load control means for controlling the adjustment mechanism, and the grounding load control means controls the front wheel grounding load adjustment mechanism so that the grounding load of the turning outer wheel of the front wheels increases when the vehicle turns. The rear wheel ground load adjusting mechanism is controlled so that the ground load of the turning inner wheel of the rear wheels is adjusted according to the ground load of the turning outer wheel of the front wheel.

当該車両旋回装置によれば、車両旋回時に、前輪の旋回外側輪の接地荷重の調整により車両の旋回半径を縮小化することができ、また後輪の旋回内側輪の接地荷重の調整により車両姿勢をコントロールすることができる。   According to the vehicle turning device, when turning the vehicle, the turning radius of the vehicle can be reduced by adjusting the ground load of the turning outer wheel of the front wheel, and the vehicle posture can be adjusted by adjusting the contact load of the turning inner wheel of the rear wheel. Can be controlled.

前記接地荷重制御手段は、舵角が所定値以上であるとともに車速が所定値以下である前記車両旋回時に、前輪のうち旋回外側輪の接地荷重が増大するように前記前輪接地荷重調整機構を制御するとともに、後輪のうち旋回内側輪の接地荷重が前輪の旋回外側輪の接地荷重に応じて調整されるように前記後輪接地荷重調整機構を制御してもよい。この場合、舵角が比較的大きく車速が比較的遅い場合の車両旋回挙動を精度良くコントロールすることができる。   The grounding load control means controls the front wheel grounding load adjustment mechanism so that the grounding load of the turning outer wheel of the front wheels increases when the vehicle turns when the steering angle is not less than a predetermined value and the vehicle speed is not more than a predetermined value. In addition, the rear wheel ground load adjustment mechanism may be controlled so that the ground load of the turning inner wheel of the rear wheels is adjusted according to the ground load of the front turning outer wheel. In this case, the vehicle turning behavior when the steering angle is relatively large and the vehicle speed is relatively slow can be controlled with high accuracy.

前記接地荷重制御手段は、前記車両旋回時に、車両のロール変動を抑制するように前記前輪接地荷重調整機構および前記後輪接地荷重調整機構を制御してもよい。この場合、ロール変動を抑制した乗り心地の良い車両姿勢にコントロールすることができる。   The ground load control means may control the front wheel ground load adjustment mechanism and the rear wheel ground load adjustment mechanism so as to suppress vehicle roll fluctuations when the vehicle turns. In this case, it is possible to control the vehicle posture with a comfortable ride with suppressed roll fluctuation.

前記接地荷重制御手段は、前記車両旋回時に、左右の前記前輪の接地荷重が等しい場合に前記後輪の旋回内側輪に作用する接地荷重よりも前記車両旋回時に前記後輪の旋回内側輪に作用する接地荷重のほうが増大するように、前記車両旋回時の前記後輪接地荷重調整機構の制御量を決定してもよい。この場合、車両姿勢のバランスを効果的にとることができる。   The grounding load control means acts on the inner turning wheel of the rear wheel during the turning of the vehicle rather than the grounding load acting on the inner turning wheel of the rear wheel when the grounding loads of the left and right front wheels are equal when the vehicle turns. The control amount of the rear wheel ground load adjustment mechanism when the vehicle turns may be determined so that the ground load to be increased increases. In this case, it is possible to effectively balance the vehicle posture.

前記接地荷重制御手段は、前記車両旋回時に、当該車両旋回時に前記前輪接地荷重調整機構によって調整される前記前輪の旋回外側輪の接地荷重が仮に舵角が当該車両旋回時の舵角よりも小さいときに前記前輪の旋回外側輪に作用した場合に前記後輪の旋回内側輪にもたらされる接地荷重に基づいて、前記車両旋回時の前記後輪接地荷重調整機構の制御量を決定してもよい。この場合、車両姿勢のバランスを効果的にとることができる。   The ground load control means is configured such that when the vehicle turns, the ground load of the turning outer wheel of the front wheel adjusted by the front wheel ground load adjustment mechanism at the time of turning of the vehicle is temporarily smaller than the rudder angle at the time of turning of the vehicle. Sometimes, the control amount of the rear wheel ground load adjustment mechanism at the time of turning of the vehicle may be determined based on the ground contact load brought to the inner turning wheel of the rear wheel when acting on the turning outer wheel of the front wheel. . In this case, it is possible to effectively balance the vehicle posture.

本発明の別の態様も車両旋回装置に関する。この車両旋回装置は、車輪の接地荷重を調整して車両の最小旋回半径を低減させる最小半径低減手段と、前記最小半径低減手段の作動時に車両のロール変動を低減させるロール変動低減手段と、を備えることを特徴とする。   Another aspect of the present invention also relates to a vehicle turning device. The vehicle turning device includes: a minimum radius reducing unit that reduces a minimum turning radius of the vehicle by adjusting a wheel ground load; and a roll fluctuation reducing unit that reduces a roll fluctuation of the vehicle when the minimum radius reducing unit is operated. It is characterized by providing.

当該車両旋回装置によれば、最小旋回半径で車両旋回する場合に、ロール変動を低減さて乗り心地の良い車両姿勢にコントロールすることができる。   According to the vehicle turning device, when turning the vehicle with the minimum turning radius, it is possible to control the vehicle posture with a comfortable ride by reducing the roll fluctuation.

前記最小半径低減手段は、左右の前輪のうち旋回外側輪の接地荷重が比較的大きくなるように調整し、前記ロール変動低減手段は、前記前輪の旋回外側輪の接地荷重に応じて左右の後輪のうち旋回内側輪の接地荷重を調整してもよい。この場合、車両姿勢のバランスを効果的にとることができる。   The minimum radius reducing means is adjusted so that the ground contact load of the turning outer wheel of the left and right front wheels is relatively large, and the roll fluctuation reducing means is the left and right rear wheels according to the ground load of the turning outer wheel of the front wheel. The ground contact load of the turning inner wheel may be adjusted. In this case, it is possible to effectively balance the vehicle posture.

本発明の別の態様も車両旋回装置に関する。この車両旋回装置は、左右前輪の接地荷重および左右後輪の接地荷重の調整を制御する接地荷重制御手段であって、車両旋回時に、前輪のうち旋回外側輪の接地荷重を増大させるとともに後輪のうち旋回内側輪の接地荷重を前輪の旋回外側輪の接地荷重に応じて調整する接地荷重制御手段を備えることを特徴とする。   Another aspect of the present invention also relates to a vehicle turning device. This vehicle turning device is a contact load control means for controlling the adjustment of the contact load of the left and right front wheels and the contact load of the left and right rear wheels, and increases the contact load of the turning outer wheel among the front wheels when turning the vehicle. Among these, a grounding load control means for adjusting the grounding load of the turning inner wheel according to the grounding load of the turning outer wheel of the front wheel is provided.

本発明によれば、前輪および後輪の接地荷重を調整することで、車両旋回時の旋回半径を縮小化させることができるとともに、車両姿勢を良好に保つことができる。   ADVANTAGE OF THE INVENTION According to this invention, by adjusting the ground load of a front wheel and a rear wheel, while being able to reduce the turning radius at the time of vehicle turning, a vehicle attitude | position can be kept favorable.

以下、図面を参照して本発明の一実施の形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施の形態を適用した車両10の全体構成を示す図である。車両10は、車体12の右前に設けられた右前輪14a、車体の左前に設けられた左前輪14b、車体の右後ろに設けられた右後輪14c、および車体の左後ろに設けられた左後輪14dを備える。以下、右前輪14a、左前輪14b、右後輪14c、および左後輪14dを総称して「車輪14」と呼ぶ。また、右前輪14aおよび左前輪14bを総称して「前輪14a、14b」と呼び、右後輪14cおよび左後輪14dを総称して「後輪14c、14d」と呼ぶ。また右前輪14aに対応する機器類には符号の末尾に「a」を付し、左前輪14bに対応する機器類には符号の末尾に「b」を付し、右後輪14cに対応する機器類には符号の末尾に「c」を付し、左後輪14dに対応する機器類には符号の末尾に「d」を付し、それらの機器類を総称する場合には末尾の「a〜d」を省略した符号で表記する。   FIG. 1 is a diagram showing an overall configuration of a vehicle 10 to which an embodiment of the present invention is applied. The vehicle 10 includes a right front wheel 14a provided on the right front side of the vehicle body 12, a left front wheel 14b provided on the left front side of the vehicle body, a right rear wheel 14c provided on the right rear side of the vehicle body, and a left side provided on the left rear side of the vehicle body. A rear wheel 14d is provided. Hereinafter, the right front wheel 14a, the left front wheel 14b, the right rear wheel 14c, and the left rear wheel 14d are collectively referred to as “wheels 14”. Further, the right front wheel 14a and the left front wheel 14b are collectively referred to as “front wheels 14a, 14b”, and the right rear wheel 14c and the left rear wheel 14d are collectively referred to as “rear wheels 14c, 14d”. The equipment corresponding to the right front wheel 14a is suffixed with "a", the equipment corresponding to the left front wheel 14b is suffixed with "b", and corresponds to the right rear wheel 14c. “C” is added to the end of the code for the devices, “d” is added to the end of the code for the devices corresponding to the left rear wheel 14d. The symbols a to d are omitted.

車輪14は、車軸16に連結され、この車軸16を中心に軸回転する。なお車軸16の端部のうち車輪14が連結される側とは反対側の端部は、車体12に連結されていてもよいし、左右反対側の車輪14に連結された車軸16と連結されていてもよい。各車輪14a、14b、14c、14dは車体12の前後左右において同様の位置に配置されており、前輪14a、14bのトレッド幅と後輪14c、14dのトレッド幅はほぼ等しい。   The wheel 14 is connected to an axle 16 and rotates about the axle 16. Note that the end of the axle 16 opposite to the side to which the wheel 14 is connected may be connected to the vehicle body 12 or connected to the axle 16 connected to the wheel 14 on the opposite side. It may be. The wheels 14a, 14b, 14c, and 14d are disposed at similar positions on the front, rear, left, and right sides of the vehicle body 12, and the tread widths of the front wheels 14a and 14b and the tread widths of the rear wheels 14c and 14d are substantially equal.

車軸16には、車輪14の接地圧力を車軸16を介して調整する油圧式サスペンション機構32が取り付けられている。油圧式サスペンション機構32は、油圧によって動作が制御される油圧シリンダ34および作動ピストン35を有し、作動ピストン35の先端は車軸16に連結されている。この油圧式サスペンション機構32には、油圧式サスペンション機構32に供給される油圧を調整する圧力制御バルブ30が油圧配管28を介して接続されている。   A hydraulic suspension mechanism 32 that adjusts the ground pressure of the wheel 14 via the axle 16 is attached to the axle 16. The hydraulic suspension mechanism 32 includes a hydraulic cylinder 34 and an operation piston 35 whose operation is controlled by hydraulic pressure, and the tip of the operation piston 35 is connected to the axle 16. A pressure control valve 30 for adjusting the hydraulic pressure supplied to the hydraulic suspension mechanism 32 is connected to the hydraulic suspension mechanism 32 via a hydraulic pipe 28.

また車体12には、車輪14の舵角θを検出する舵角センサ22と、車両速度(「車速」とも表記する)Vを検出する車速センサ24と、圧力制御バルブ30、舵角センサ22、および車速センサ24が接続された電子制御装置20(「ECU20」とも表記する)とが搭載されている。舵角センサ22および車速センサ24は、所定周期で目的とする状態量を検出して、ECU20に検出結果を送信する。   The vehicle body 12 includes a steering angle sensor 22 that detects the steering angle θ of the wheel 14, a vehicle speed sensor 24 that detects a vehicle speed (also referred to as “vehicle speed”) V, a pressure control valve 30, a steering angle sensor 22, And an electronic control unit 20 (also referred to as “ECU20”) to which the vehicle speed sensor 24 is connected. The steering angle sensor 22 and the vehicle speed sensor 24 detect a target state quantity at a predetermined cycle, and transmit a detection result to the ECU 20.

ECU20は、CPUを含むマイクロプロセッサとして構成されており、マイクロコンピュータによる演算を行う演算ユニット、各種の処理プログラムを記憶するROM、一時的にデータやプログラムを記憶してデータ格納やプログラム実行のためのワークエリアとして利用されるRAM、データを記憶するハードディスク等の記憶装置、および各種信号の送受信を行うための入出力ポート等を有する。このECU20は、舵角センサ22や車速センサ24などの各種センサ類や電子機器類等から送られてくる各種情報に基づいて、圧力制御バルブ30などの各種機器類を制御し、車両10の様々な状態をコントロールする。   The ECU 20 is configured as a microprocessor including a CPU, an arithmetic unit for performing calculations by the microcomputer, a ROM for storing various processing programs, and temporarily storing data and programs for data storage and program execution. It has a RAM used as a work area, a storage device such as a hard disk for storing data, and an input / output port for transmitting and receiving various signals. The ECU 20 controls various devices such as the pressure control valve 30 on the basis of various information sent from various sensors such as the rudder angle sensor 22 and the vehicle speed sensor 24 and electronic devices. Control the state.

図2は、各車輪14a、14b、14c、14dの接地荷重の調整に関連する各種機器類の構成関係の一例を示す図である。本実施の形態では、各車輪14a、14b、14c、14dに対応するようにして接地荷重調整機構50a、50b、50c、50dが構成されている。接地荷重調整機構50は、車輪14の接地荷重を調整する機構であって、車輪14、車軸16、油圧式サスペンション機構32、および圧力制御バルブ30を含んで構成されている。なお図2には右前輪14aに対応する接地荷重調整機構50aの構成が図示されているが、他の接地荷重調整機構50b、50c、50dも同様の構成を有する。   FIG. 2 is a diagram illustrating an example of a configuration relationship of various devices related to the adjustment of the ground load of each wheel 14a, 14b, 14c, and 14d. In the present embodiment, the ground load adjustment mechanisms 50a, 50b, 50c, and 50d are configured so as to correspond to the wheels 14a, 14b, 14c, and 14d. The ground load adjusting mechanism 50 is a mechanism for adjusting the ground load of the wheel 14 and includes the wheel 14, the axle 16, the hydraulic suspension mechanism 32, and the pressure control valve 30. Although FIG. 2 shows the configuration of the ground load adjustment mechanism 50a corresponding to the right front wheel 14a, the other ground load adjustment mechanisms 50b, 50c, and 50d have the same configuration.

ECU20は、舵角センサ22および車速センサ24の検出結果を受信して各種演算を行うマイクロコンピュータ40と、マイクロコンピュータ40の演算結果に基づいて各圧力制御バルブ30a、30b、30c、30dを制御する駆動回路42a、42b、42c、42dと、を有する。車体12には、作動オイルを貯留するリザーバ38と、リザーバ38に貯留される作動オイルを各圧力制御バルブ30a、30b、30c、30dに供給する油圧ポンプ36とが搭載されている。   The ECU 20 receives the detection results of the steering angle sensor 22 and the vehicle speed sensor 24 and performs various calculations, and controls each pressure control valve 30a, 30b, 30c, 30d based on the calculation results of the microcomputer 40. Drive circuits 42a, 42b, 42c, and 42d. Mounted on the vehicle body 12 are a reservoir 38 that stores hydraulic oil, and a hydraulic pump 36 that supplies the hydraulic oil stored in the reservoir 38 to the pressure control valves 30a, 30b, 30c, and 30d.

本実施の形態において各車輪14a、14b、14c、14dの接地荷重の配分調整は、油圧式サスペンション機構32a、32b、32c、32dの伸縮に応じて調整され、具体的には以下のようにして行われる。すなわち、マイクロコンピュータ40における演算結果に基づいて駆動回路42から圧力制御バルブ30に制御信号が送られ、圧力制御バルブ30はその制御信号に応じて油圧シリンダ34内の油圧状態をコントロールする。油圧シリンダ34内の油圧状態に応じて作動ピストン35が車軸16を押す力が調整され、車軸16に連結された車輪14の接地荷重がコントロールされる。したがってマイクロコンピュータ40では各車輪14a、14b、14c、14dの接地荷重が所望の配分に調整されるように各種演算が行われ、その演算結果に基づいて圧力制御バルブ30は油圧式サスペンション機構32の油圧状態を調整して、各車輪14a、14b、14c、14dの接地荷重を所望の配分に調整する。   In the present embodiment, the distribution adjustment of the ground load of each wheel 14a, 14b, 14c, 14d is adjusted according to the expansion and contraction of the hydraulic suspension mechanisms 32a, 32b, 32c, 32d, and specifically, as follows. Done. That is, a control signal is sent from the drive circuit 42 to the pressure control valve 30 based on the calculation result in the microcomputer 40, and the pressure control valve 30 controls the hydraulic state in the hydraulic cylinder 34 according to the control signal. The force with which the operating piston 35 pushes the axle 16 is adjusted according to the hydraulic state in the hydraulic cylinder 34, and the ground load of the wheel 14 connected to the axle 16 is controlled. Therefore, in the microcomputer 40, various calculations are performed so that the ground load of each wheel 14a, 14b, 14c, 14d is adjusted to a desired distribution, and the pressure control valve 30 of the hydraulic suspension mechanism 32 is based on the calculation result. The hydraulic pressure state is adjusted to adjust the ground load of each wheel 14a, 14b, 14c, 14d to a desired distribution.

次に、本実施の形態における車両旋回の原理などについて説明する。   Next, the principle of vehicle turning in the present embodiment will be described.

車両旋回時に左右の前輪14a、14bの接地荷重の配分を調整することで、旋回半径の大きさをコントロールすることができる。例えば図1に示すように、左右の前輪のうち右前輪14aのみに接地荷重を配分して右前輪14aを基準とした場合、車両旋回動作の中心点(「仮想旋回中心点」とも表記する)は点Xとなり、一方、左前輪14bを基準とした場合の仮想旋回中心点は点Zとなる。そして、左右の前輪14a、14bの両者に接地荷重が配分されている状態の仮想旋回中心点Yは、点Xと点Zの間に存在することとなる。したがって、右前輪14aの接地荷重を増大させるとともに左前輪14bの接地荷重を減少させて仮想旋回中心点を点Xに近づけることで、車両10の旋回半径を縮小させることができる。   The size of the turning radius can be controlled by adjusting the distribution of the ground contact load between the left and right front wheels 14a and 14b when the vehicle is turning. For example, as shown in FIG. 1, when the ground load is distributed only to the right front wheel 14a among the left and right front wheels and the right front wheel 14a is used as a reference, the center point of the vehicle turning operation (also referred to as “virtual turning center point”) Is the point X, while the virtual turning center point when the left front wheel 14b is used as a reference is the point Z. The virtual turning center point Y in a state where the ground contact load is distributed to both the left and right front wheels 14a and 14b exists between the point X and the point Z. Therefore, the turning radius of the vehicle 10 can be reduced by increasing the ground load of the right front wheel 14a and decreasing the ground load of the left front wheel 14b to bring the virtual turning center point closer to the point X.

一方、各車輪14a、14b、14c、14dの接地荷重の合計は通常、車両10の重量と等しくなり、各車輪14a、14b、14c、14dの接地荷重はその配置位置関係に応じて適宜バランスがとられる。例えば前輪のトレッド幅と後輪のトレッド幅がほぼ等しく各車輪から車両の重心までの距離が各々ほぼ等しい一般的な4輪車両では、前輪の旋回外側輪の接地荷重をΔW増加させると、車両に作用するモーメントの物理的な釣り合いを保つために、前輪のうち旋回内側輪の接地荷重および後輪の旋回外側輪の接地荷重がΔW減少するとともに、後輪の旋回内側輪の接地荷重がΔW増加する。そのため従来の車両において前輪の旋回外側輪の接地荷重のみを制御する場合には、車両にロール変動が生じて車両搭乗者に違和感を与えることがあった。   On the other hand, the sum of the ground loads of the wheels 14a, 14b, 14c, and 14d is usually equal to the weight of the vehicle 10, and the ground loads of the wheels 14a, 14b, 14c, and 14d are appropriately balanced according to the arrangement positional relationship. Be taken. For example, in a general four-wheeled vehicle in which the tread width of the front wheels and the tread width of the rear wheels are substantially equal and the distances from the wheels to the center of gravity of the vehicle are substantially equal, if the ground contact load of the front turning outer wheel is increased by ΔW, In order to maintain the physical balance of the moment acting on the front wheel, the ground load of the turning inner wheel and the ground load of the rear turning outer wheel of the front wheels are reduced by ΔW, and the ground load of the turning inner wheel of the rear wheel is ΔW To increase. For this reason, when only the ground contact load of the turning outer wheel of the front wheel is controlled in the conventional vehicle, roll fluctuation may occur in the vehicle, which may give the vehicle occupant an uncomfortable feeling.

上述の事情を鑑みて本実施の形態のECU20は、車両旋回時に、前輪14a、14bのうち旋回外側輪(「旋回外側前輪」とも表記する)の接地荷重が増大するように旋回外側前輪の圧力制御バルブを制御するとともに、後輪14c、14dのうち旋回内側輪(「旋回内側後輪」とも表記する)の接地荷重が旋回外側前輪の接地荷重に応じて調整されるように旋回内側後輪の圧力制御バルブを制御する。この車両旋回時のECU20による圧力制御バルブ30の制御量は、車両旋回時の旋回半径が小さくなるとともに車両10のロール変動が抑制されるように決定される。   In view of the above-described circumstances, the ECU 20 of the present embodiment determines the pressure of the turning outer front wheel so that the ground contact load of the turning outer wheel (also referred to as “turning outer front wheel”) of the front wheels 14a and 14b increases during vehicle turning. While controlling the control valve, the turning inner rear wheel so that the grounding load of the turning inner wheel (also referred to as “turning inner rear wheel”) of the rear wheels 14c and 14d is adjusted according to the grounding load of the turning outer front wheel. Control the pressure control valve. The control amount of the pressure control valve 30 by the ECU 20 at the time of turning of the vehicle is determined so that the turning radius of the turning of the vehicle becomes small and the roll fluctuation of the vehicle 10 is suppressed.

この車両旋回時においてECU20は、「左右の前輪14a、14bの接地荷重が等しい場合に旋回内側後輪に対し作用する接地荷重」よりも「車両旋回時に旋回内側後輪に対し作用する接地荷重」のほうが大きくなるように、圧力制御バルブ30の制御量を決定する。具体的には、車両旋回時においてECU20は、当該車両旋回時に前輪接地荷重調整機構によって調整される旋回外側前輪の接地荷重が仮に「舵角が当該車両旋回時の舵角よりも小さくほぼ0度であって車両が直進している時」にもたらされる接地荷重(「想定接地荷重」とも表記する)のうち旋回内側後輪に関する想定接地荷重を推測する。そしてECU20は、その想定接地荷重に基づいて旋回内側後輪に対応する圧力制御バルブの制御量を決定し、その旋回内側後輪に対応する圧力制御バルブを積極的に制御して、旋回内側後輪に対し想定接地荷重を積極的に加える。   When the vehicle is turning, the ECU 20 determines that “the contact load acting on the turning inner rear wheel when turning the vehicle” rather than “the contact load acting on the turning inner rear wheel when the ground contact loads of the left and right front wheels 14a and 14b are equal”. The control amount of the pressure control valve 30 is determined so that becomes larger. Specifically, when the vehicle is turning, the ECU 20 supposes that the contact load on the outer front wheel adjusted by the front wheel contact load adjusting mechanism when the vehicle turns is “the steering angle is smaller than the steering angle at the time of turning the vehicle and approximately 0 degrees. Of the grounding load (also referred to as “assumed grounding load”) brought about when the vehicle is traveling straight ahead, the grounding load assumed for the rear wheel inside the turn is estimated. Then, the ECU 20 determines the control amount of the pressure control valve corresponding to the turning inner rear wheel based on the assumed ground load, and actively controls the pressure control valve corresponding to the turning inner rear wheel, Actively apply the assumed ground load to the wheel.

本実施の形態のECU20は、旋回半径を縮小するために旋回外側前輪の接地荷重をΔW増大させた場合、ロール変動を抑えるために旋回内側後輪の接地荷重がΔW増大するよう、旋回内側後輪の油圧式サスペンション機構の作動ピストンに加えられる油圧の目標値(「圧力目標値」とも表記する)Pを以下の式(1)に基づいて求める。なお以下の各式において「K」は、「後輪に関する接地荷重変化」と「その接地荷重変化を得るために必要な油圧式サスペンション機構32における油圧」とを対応させる係数であり、「後輪の車軸と油圧式サスペンション機構の取付位置」と「後輪の車軸と後輪の取付位置」との位置関係などを補正する係数である。また「PR0」は、旋回外側前輪および旋回内側後輪の接地荷重をΔW増大させる前に、旋回内側後輪の作動ピストンに加えられていた油圧である。 ECU20 in the present embodiment, when the vertical load of the front outside wheel was increased [Delta] W F in order to reduce the turning radius, so that the vertical load of the turning inner rear wheel in order to suppress the roll variation is increased [Delta] W F, turning obtained based hydraulic target values applied to the working piston of a hydraulic suspension system of the inner rear wheel (also referred to as "pressure target value") and P R in the formula (1) below. In the following equations, “K R ” is a coefficient that correlates “change in ground load with respect to the rear wheel” and “hydraulic pressure in the hydraulic suspension mechanism 32 necessary to obtain the change in ground load”. This is a coefficient for correcting the positional relationship between the “wheel axle and hydraulic suspension mechanism mounting position” and the “rear wheel axle and rear wheel mounting position”. The "P R0" is prior to the vertical load of the front outside wheel and the turning inner rear wheel is increased [Delta] W F, a hydraulic pressure has been applied to the actuation piston of the turning inner rear wheel.

=+K×ΔW+PR0 式(1) P R = + K R × ΔW F + P R0 Formula (1)

例えば右前輪14aの接地荷重を通常の直進時よりもΔW増大させて旋回半径を縮小する場合(図1参照)、各油圧式サスペンション機構32a、32b、32c、32dの作動ピストン35a、35b、35c、35dに加えられる油圧の目標値(「圧力目標値」とも表記する)PFR、PFL、PRR、PRLを以下の式(2)〜(5)に基づいて求めることができる。 For example, in the case where the grounding load of the right front wheel 14a is increased by ΔW from the normal straight travel to reduce the turning radius (see FIG. 1), the operating pistons 35a, 35b, 35c of the respective hydraulic suspension mechanisms 32a, 32b, 32c, 32d. , 35d, the target values (also referred to as “pressure target values”) P FR , P FL , P RR , P RL can be obtained based on the following equations (2) to (5).

FR=−K×ΔW+PFR0 式(2)
FL=+K×ΔW+PFL0 式(3)
RR=−K×ΔW+PRR0 式(4)
RL=+K×ΔW+PRL0 式(5)
P FR = −K F × ΔW + P FR0 formula (2)
P FL = + K F × ΔW + P FL0 formula (3)
P RR = −K R × ΔW + P RR0 formula (4)
P RL = + K R × ΔW + P RL0 formula (5)

各式において、「K」は、「後輪の車軸と油圧式サスペンション機構の取付位置」と「後輪の車軸と後輪の取付位置」との位置関係を補正する係数である。「PFR0」は、右前輪14aおよび左後輪14dの接地荷重をΔW増大させる前に、右前輪14aの作動ピストン35aに加えられていた油圧である。「PFL0」は、右前輪14aおよび左後輪14dの接地荷重をΔW増大させる前に、左前輪14bの作動ピストン35bに加えられていた油圧である。「PRR0」は、右前輪14aおよび左後輪14dの接地荷重をΔW増大させる前に、右後輪14cの作動ピストン35cに加えられていた油圧である。「PRL0」は、右前輪14aおよび左後輪14dの接地荷重をΔW増大させる前に、左後輪14dの作動ピストン35dに加えられていた油圧である。 In each equation, “K F ” is a coefficient for correcting the positional relationship between “rear wheel axle and hydraulic suspension mechanism mounting position” and “rear wheel axle and rear wheel mounting position”. “P FR0 ” is the hydraulic pressure applied to the working piston 35a of the right front wheel 14a before increasing the ground load of the right front wheel 14a and the left rear wheel 14d by ΔW. “P FL0 ” is the hydraulic pressure applied to the operating piston 35b of the left front wheel 14b before increasing the ground load of the right front wheel 14a and the left rear wheel 14d by ΔW. “P RR0 ” is the hydraulic pressure applied to the operating piston 35c of the right rear wheel 14c before increasing the ground load of the right front wheel 14a and the left rear wheel 14d by ΔW. “P RL0 ” is the hydraulic pressure applied to the operating piston 35d of the left rear wheel 14d before increasing the contact load of the right front wheel 14a and the left rear wheel 14d by ΔW.

このように本実施の形態では、ECU20が前輪14a、14bの接地荷重調整機構50a、50bを制御し、この接地荷重調整機構50a、50bが「左右の前輪のうち旋回外側輪の接地荷重が比較的大きくなるように」車輪の接地荷重を調整して車両の最小旋回半径を低減させる。またECU20が後輪14c、14dの接地荷重調整機構50c、50dを制御し、旋回外側前輪の接地荷重に応じて旋回内側後輪の接地荷重を調整することで、前輪14a、14bの接地荷重調整機構50a、50bの作動時に車両10に生じうるロール変動を低減させる。   As described above, in the present embodiment, the ECU 20 controls the ground load adjustment mechanisms 50a and 50b of the front wheels 14a and 14b, and the ground load adjustment mechanisms 50a and 50b indicate that the ground load of the turning outer wheel among the left and right front wheels is compared. Adjust the wheel ground load to reduce the minimum turning radius of the vehicle. Further, the ECU 20 controls the ground load adjusting mechanisms 50c, 50d of the rear wheels 14c, 14d, and adjusts the ground load of the rear inner wheel according to the ground load of the outer front wheel, thereby adjusting the ground load of the front wheels 14a, 14b. Roll fluctuation that may occur in the vehicle 10 when the mechanisms 50a and 50b are operated is reduced.

なお上述のような車両旋回時の制御は、車両に作用する力成分などの影響が比較的小さい低速走行時であって、比較的大きな舵角で旋回する場合に特に有効である。したがって本実施の形態のECU20は、舵角センサ22が検出する舵角が所定値以上であるとともに車速センサ24が検出する車速が所定値以下である低速旋回時に、旋回半径を縮小するとともにロール変動を抑制するための上述の各処理を行う。なお、ここでいう「舵角が所定値以上」とは、車両毎に決定することが可能であり、例えば前輪の最大舵角から0〜10度の範囲の舵角とすることも可能である。また「車速が所定値以下」とは、車両毎に決定することが可能であり、例えば時速0kmよりも大きくて時速20kmよりも小さい範囲の車速とすることも可能である。   Note that the above-described control during turning of the vehicle is particularly effective when the vehicle is turning at a relatively large rudder angle when the vehicle is traveling at a low speed where the influence of a force component acting on the vehicle is relatively small. Therefore, the ECU 20 of the present embodiment reduces the turning radius and roll fluctuation during low-speed turning when the steering angle detected by the steering angle sensor 22 is not less than a predetermined value and the vehicle speed detected by the vehicle speed sensor 24 is not more than a predetermined value. The above-described processes for suppressing the above are performed. The “steering angle is equal to or greater than a predetermined value” as used herein can be determined for each vehicle. For example, the steering angle can be set to a range of 0 to 10 degrees from the maximum steering angle of the front wheels. . Further, “the vehicle speed is equal to or less than a predetermined value” can be determined for each vehicle. For example, the vehicle speed can be set in a range greater than 0 km / h and less than 20 km / h.

図3は、車両旋回時の処理の流れを示すフローチャートであり、主にECU20における処理を中心に示したフローチャートである。ECU20では、舵角センサ22および車速センサ24が所定周期で検出する舵角θおよび車速Vをマイクロコンピュータ40が受信する(図3のS11)。マイクロコンピュータ40では、舵角センサ22が検出する舵角θが所定の舵角θ以上か否かが判断される(S12)。舵角センサ22が検出する舵角θが所定の舵角θ以上の場合(S12のY)、車速センサ24が検出する車速Vが所定の速度V以下か否かが判断される(S13)。舵角センサ22が検出する舵角θが所定の舵角θ以上ではない場合(S12のN)や車速センサ24が検出する車速Vが所定の速度V以下ではない場合(S13のN)、後述の各処理(S14およびS15参照)は行われない。 FIG. 3 is a flowchart showing a flow of processing when the vehicle turns, and is a flowchart mainly showing processing in the ECU 20. In the ECU 20, the microcomputer 40 receives the steering angle θ and the vehicle speed V detected by the steering angle sensor 22 and the vehicle speed sensor 24 at a predetermined cycle (S11 in FIG. 3). In the microcomputer 40, the steering angle steering angle sensor 22 detects theta whether a predetermined steering angle theta 1 or more is determined (S12). If the steering angle steering angle sensor 22 detects θ is 1 or θ predetermined steering angle (S12 of Y), vehicle speed V vehicle speed sensor 24 detects whether or not a predetermined speed V 1 or less is judged (S13 ). When the steering angle θ detected by the steering angle sensor 22 is not greater than or equal to the predetermined steering angle θ 1 (N in S12), or when the vehicle speed V detected by the vehicle speed sensor 24 is not less than or equal to the predetermined speed V 1 (N in S13). Each process described later (see S14 and S15) is not performed.

一方、車速センサ24が検出する車速Vが所定の速度V以下の場合(S13のY)、ECU20のマイクロコンピュータ40では、旋回半径を縮小するとともにロール変動を抑制するために必要な各車輪14a、14b、14c、14dの接地荷重が算出されるとともに、その接地荷重を各車輪14a、14b、14c、14dにもたらすのに必要な各油圧式サスペンション機構32a、32b、32c、32dにおける油圧(「荷重調整目標油圧」とも表記する)および各圧力制御バルブ30a、30b、30c、30dの制御量が上記の各式などに基づいて算出される(S14)。図1に示す例ではマイクロコンピュータ40において、旋回外側前輪である右前輪14aの油圧式サスペンション機構32aの荷重調整目標油圧および圧力制御バルブ30aの制御量が所望の旋回半径縮小量に応じて算出され、また旋回内側後輪である左後輪14dの油圧式サスペンション機構32dの荷重調整目標油圧および圧力制御バルブ30dの制御量がロール変動の抑制の程度に応じて算出される。そして、算出された各圧力制御バルブ30a、30b、30c、30dの制御量に相当する制御信号が各駆動回路42a、42b、42c、42dから各圧力制御バルブ30a、30b、30c、30dに送られ、各油圧シリンダ34a、34b、34c、34d内の油圧が荷重調整目標油圧に調整される(S15)。このように本実施の形態では、旋回外側前輪だけではなく旋回内側後輪に関しても、想定接地荷重に基づいて算出された荷重調整目標油圧および圧力制御バルブ30の制御量に基づいて圧力制御バルブ30が駆動回路42により積極的に制御され、想定接地荷重が積極的に加えられる。 On the other hand, when the vehicle speed V the vehicle speed sensor 24 detects the predetermined speed V 1 or less (of S13 Y), the microcomputer 40 of the ECU 20, the wheels 14a required to suppress the roll varies with reduced turning radius , 14b, 14c, and 14d are calculated, and the hydraulic pressures ("" in the hydraulic suspension mechanisms 32a, 32b, 32c, and 32d necessary to bring the ground loads to the wheels 14a, 14b, 14c, and 14d) are calculated. Load control target hydraulic pressure ”) and control amounts of the pressure control valves 30a, 30b, 30c, and 30d are calculated based on the above-described equations (S14). In the example shown in FIG. 1, in the microcomputer 40, the load adjustment target hydraulic pressure of the hydraulic suspension mechanism 32a of the right front wheel 14a, which is the turning outer front wheel, and the control amount of the pressure control valve 30a are calculated according to the desired turning radius reduction amount. In addition, the load adjustment target hydraulic pressure of the hydraulic suspension mechanism 32d of the left rear wheel 14d that is the turning inner rear wheel and the control amount of the pressure control valve 30d are calculated according to the degree of suppression of roll fluctuation. A control signal corresponding to the calculated control amount of each pressure control valve 30a, 30b, 30c, 30d is sent from each drive circuit 42a, 42b, 42c, 42d to each pressure control valve 30a, 30b, 30c, 30d. The oil pressure in each of the hydraulic cylinders 34a, 34b, 34c, 34d is adjusted to the load adjustment target oil pressure (S15). As described above, in this embodiment, not only the turning outer front wheel but also the turning inner rear wheel, the pressure control valve 30 based on the load adjustment target hydraulic pressure calculated based on the assumed ground load and the control amount of the pressure control valve 30. Is actively controlled by the drive circuit 42, and an assumed ground load is positively applied.

以上説明したように本実施の形態によれば、旋回半径を縮小するために旋回外側前輪の接地荷重を変動させる場合であっても、旋回内側後輪の接地荷重を積極的に調整することで、接地荷重の変動により車両に生じるロールに関連するモーメントを相殺することができる。これによりロール変動によってもたらされうる油圧式サスペンション機構32の伸縮やその伸縮に基づく車両10の傾きを防止して車両姿勢を良好に維持した状態で、各車輪14a、14b、14c、14dの接地荷重の配分を調整することができる。旋回半径を効果的に縮小する際には、旋回内側の前輪の接地荷重がほぼ0となる程度にまで旋回外側前輪の接地荷重を大きくする必要があるが、従来の手法では、旋回外側前輪の接地荷重が所定荷重よりも大きくなると各車輪のサスペンション機構のストローク量のバランスが崩れてしまって車体がロールしてしまうことがあった。また、スプリングなどのサスペンション機構のバネ手段やいわゆるスタビライザのバネ剛性やねじり剛性を高くして硬くすることにより、各車輪の接地荷重の分配時における車両のロールを低減させることも可能である。ただし、この場合には衝撃や振動などの吸収性能、緩和性能が悪化する傾向があるため、乗り心地や操縦安定性などが損なわれてしまうことがある。一方、本実施の形態によれば、小さな旋回半径で車両旋回させる場合であっても、上述の各処理に基づいて車両姿勢を調整することで、乗り心地や操縦安定性などを損なうことなく車両旋回時の車両搭乗者の違和感を効果的に防ぐことができる。   As described above, according to the present embodiment, even when the ground contact load on the outer front wheel is changed in order to reduce the turning radius, the ground load on the rear inner wheel is positively adjusted. The moment related to the roll generated in the vehicle due to the fluctuation of the ground load can be canceled. Thus, the wheels 14a, 14b, 14c, and 14d are grounded in a state in which the vehicle suspension is prevented from being expanded and contracted and the vehicle 10 is tilted based on the expansion and contraction that may be caused by roll fluctuation. The load distribution can be adjusted. In order to effectively reduce the turning radius, it is necessary to increase the ground contact load of the front outer wheel until the ground contact load of the front wheel inside the turn becomes almost zero. When the ground contact load becomes larger than a predetermined load, the balance of the stroke amount of the suspension mechanism of each wheel may be lost and the vehicle body may roll. Further, by increasing the spring rigidity and torsional rigidity of a spring means of a suspension mechanism such as a spring or a so-called stabilizer, the roll of the vehicle at the time of distributing the ground load of each wheel can be reduced. However, in this case, the absorption performance and the relaxation performance such as shock and vibration tend to be deteriorated, so that ride comfort and handling stability may be impaired. On the other hand, according to the present embodiment, even when the vehicle is turned with a small turning radius, the vehicle posture is adjusted based on each of the above-described processes, so that the vehicle comfort is not impaired and the handling stability is not impaired. It is possible to effectively prevent the vehicle passengers from feeling uncomfortable when turning.

なお上述の手法を応用することで車両旋回時の車両姿勢を任意の傾きに調整することも可能である。例えば上述の各式を用いる場合には、KやKの値を調節することで旋回時の車両姿勢を適宜調整することができ、旋回時に車両姿勢を積極的に傾斜させることも可能である。また、車軸16、車輪14、および油圧式サスペンション機構32の相対的な配置関係が前輪と後輪で相違する場合であっても、KやKの値を適宜調節することで適切に対応させることが可能である。 In addition, it is also possible to adjust the vehicle posture at the time of vehicle turning to an arbitrary inclination by applying the above-described method. For example, in the case of using each the above formula, K F and K R value vehicle attitude during cornering can be appropriately adjusted by adjusting the vehicle attitude during cornering can be actively tilting the is there. Further, even when the relative positional relationship of the axle 16, wheels 14 and hydraulic suspension mechanism 32, are different in the front and rear wheels, respond appropriately by appropriately adjusting the value of K F and K R It is possible to make it.

本発明は上述の実施形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を上述の実施形態に対して加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれうる。   The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added to the above-described embodiments based on the knowledge of those skilled in the art. Embodiments described may also fall within the scope of the present invention.

例えば、上述の実施の形態では油圧式サスペンション機構32を用いて車輪14の接地荷重を調整する例について説明したが他の装置類を使用することも可能であり、油圧式の代わりに電磁式やエアー式などの他の方式のサスペンション機構を用いることも可能である。また左右の車輪間に配置されるいわゆるスタビライザーのねじりなどを利用して車輪14の接地荷重を調整する場合にも本発明を応用することが可能である。   For example, in the above-described embodiment, the example in which the ground contact load of the wheel 14 is adjusted using the hydraulic suspension mechanism 32 has been described. However, other devices can be used. It is also possible to use other types of suspension mechanisms such as an air type. The present invention can also be applied to the case where the ground load of the wheel 14 is adjusted by using a so-called stabilizer torsion arranged between the left and right wheels.

本発明の一実施の形態を適用した車両の全体構成を示す図である。1 is a diagram showing an overall configuration of a vehicle to which an embodiment of the present invention is applied. 各車輪の接地荷重の調整に関連する各種機器類の構成関係の一例を示す図である。It is a figure which shows an example of the structural relationship of the various apparatuses relevant to adjustment of the grounding load of each wheel. 車両旋回時の処理の流れを示すフローチャートであり、主にECUにおける処理を中心に示したフローチャートである。It is a flowchart which shows the flow of the process at the time of vehicle turning, and is the flowchart which mainly showed the process in ECU.

符号の説明Explanation of symbols

10 車両、 12 車体、 14 車輪、 16 車軸、 20 ECU、 22 舵角センサ、 24 車速センサ、 28 油圧配管、 30 圧力制御バルブ、 32 油圧式サスペンション機構、 34 油圧シリンダ、 35 作動ピストン、 36 油圧ポンプ、 38 リザーバ、 40 マイクロコンピュータ、 42 駆動回路、 50 接地荷重調整機構。   DESCRIPTION OF SYMBOLS 10 Vehicle, 12 Car body, 14 Wheel, 16 Axle, 20 ECU, 22 Steering angle sensor, 24 Vehicle speed sensor, 28 Hydraulic piping, 30 Pressure control valve, 32 Hydraulic suspension mechanism, 34 Hydraulic cylinder, 35 Actuation piston, 36 Hydraulic pump , 38 reservoir, 40 microcomputer, 42 drive circuit, 50 ground load adjustment mechanism.

Claims (7)

左右前輪のサスペンションの伸縮により接地荷重を調整する前輪接地荷重調整機構と、
左右後輪のサスペンションの伸縮により接地荷重を調整する後輪接地荷重調整機構と、
前記前輪接地荷重調整機構および前記後輪接地荷重調整機構を制御する接地荷重制御手段と、を備え、
前記接地荷重制御手段は、車速が所定値以下である車両旋回時に、前輪のうち旋回外側輪のサスペンションを伸ばすように前記前輪接地荷重調整機構を制御するとともに、後輪のうち旋回内側輪のサスペンションを、前輪の旋回外側輪のサスペンションが伸ばされる量に応じて伸ばすように前記後輪接地荷重調整機構を制御することを特徴とする車両旋回装置。
Front wheel contact load adjustment mechanism that adjusts the contact load by extending and contracting the suspension of the left and right front wheels,
Rear wheel contact load adjustment mechanism that adjusts the contact load by extending and contracting the left and right rear wheel suspensions ;
A grounding load control means for controlling the front wheel grounding load adjustment mechanism and the rear wheel grounding load adjustment mechanism, and
The ground contact load control means, when the vehicle turning speed is equal to or less than the predetermined value, controls the front wheel contact load adjustment mechanism to extend the suspension of the turning outer wheel of the front wheel, the turning inner wheel of the rear wheel suspension The vehicle turning device is characterized in that the rear wheel contact load adjusting mechanism is controlled so as to extend in accordance with the amount by which the suspension of the turning outer wheel of the front wheel is extended .
前記接地荷重制御手段は、舵角が所定値以上であるとともに車速が所定値以下である前記車両旋回時に、前輪のうち旋回外側輪の接地荷重が増大するように前記前輪接地荷重調整機構を制御するとともに、後輪のうち旋回内側輪の接地荷重が前輪の旋回外側輪の接地荷重に応じて調整されるように前記後輪接地荷重調整機構を制御することを特徴とする請求項1に記載の車両旋回装置。   The grounding load control means controls the front wheel grounding load adjustment mechanism so that the grounding load of the turning outer wheel of the front wheels increases when the vehicle turns when the steering angle is not less than a predetermined value and the vehicle speed is not more than a predetermined value. The rear wheel ground load adjusting mechanism is controlled so that the ground load of the inner turning wheel of the rear wheels is adjusted according to the ground load of the outer turning wheel of the front wheel. Vehicle turning device. 前記接地荷重制御手段は、前記車両旋回時に、車両のロール変動を抑制するように前記前輪接地荷重調整機構および前記後輪接地荷重調整機構を制御することを特徴とする請求項に記載の車両旋回装置。 2. The vehicle according to claim 1 , wherein the ground load control unit controls the front wheel ground load adjustment mechanism and the rear wheel ground load adjustment mechanism so as to suppress a roll change of the vehicle when the vehicle turns. Swivel device. 前記接地荷重制御手段は、左右の前記前輪の接地荷重が等しい場合に前記後輪の旋回内側輪に作用する接地荷重よりも前記車両旋回時に前記後輪の旋回内側輪に作用する接地荷重のほうが増大するように、前記車両旋回時の前記後輪接地荷重調整機構の制御量を決定することを特徴とする請求項1乃至3のいずれかに記載の車両旋回装置。 The ground contact load control means, than the vertical load acting on the turning inner side wheel of the rear wheel when the front wheel ground load of the left right equal vertical load acting on the turning inner side wheel of the rear wheel when the vehicle turns 4. The vehicle turning device according to claim 1, wherein a control amount of the rear wheel ground load adjustment mechanism at the time of turning of the vehicle is determined such that the vehicle turns more. 前記接地荷重制御手段は、当該車両旋回時に前記前輪接地荷重調整機構によって調整される前記前輪の旋回外側輪の接地荷重が仮に舵角が当該車両旋回時の舵角よりも小さいときに前記前輪の旋回外側輪に作用した場合に前記後輪の旋回内側輪にもたらされる接地荷重に基づいて、前記車両旋回時の前記後輪接地荷重調整機構の制御量を決定することを特徴とする請求項1乃至3のいずれかに記載の車両旋回装置。 The ground contact load control means, the front wheel when if the steering angle is a vertical load of the front wheel of the turning outer wheel to be adjusted during those said vehicle turning by the front wheel contact load adjustment mechanism is smaller than the steering angle at the vehicle turning The control amount of the rear wheel ground load adjustment mechanism at the time of turning of the vehicle is determined based on a ground load applied to the inner turning wheel of the rear wheel when acting on a turning outer wheel of the vehicle. The vehicle turning device according to any one of 1 to 3. 車速が所定値以下である車両旋回時に、左右の前輪のうち旋回外側輪のサスペンションを伸ばして車両の最小旋回半径を低減させる最小半径低減手段と、
前記最小半径低減手段の作動時に前記前輪の旋回外側輪のサスペンションが伸ばされる量に応じて左右の後輪のうち旋回内側輪のサスペンションを伸ばして車両のロール変動を低減させるロール変動低減手段と、を備えることを特徴とする車両旋回装置。
A minimum radius reducing means for extending the suspension of the turning outer wheel of the left and right front wheels to reduce the minimum turning radius of the vehicle when the vehicle turns with a vehicle speed of a predetermined value or less ;
Roll fluctuation reducing means for reducing the roll fluctuation of the vehicle by extending the suspension of the turning inner wheel of the left and right rear wheels in accordance with the amount of suspension of the turning outer wheel of the front wheel when the minimum radius reducing means is activated; A vehicle turning device comprising:
左右前輪のサスペンションの伸縮による接地荷重および左右後輪のサスペンションの伸縮による接地荷重の調整を制御する接地荷重制御手段であって、車速が所定値以下である車両旋回時に、前輪のうち旋回外側輪のサスペンションを伸ばすとともに後輪のうち旋回内側輪のサスペンションを、前輪の旋回外側輪のサスペンションが伸ばされる量に応じて調整する接地荷重制御手段を備えることを特徴とする車両旋回装置。 A ground contact load control means for controlling the adjustment of the contact load due to the expansion and contraction of the suspension of ground load and the rear wheels due to the expansion and contraction of the left and right front wheels of the suspension when the vehicle turning speed is equal to or less than the predetermined value, the turning outer wheel of the front wheel of the suspension of the turning inner wheel of the rear wheel with extended suspension, vehicle turning device, characterized in that it comprises a vertical load control means for adjusting in response to the amount front turning outer wheel of the suspension is extended.
JP2004325332A 2004-11-09 2004-11-09 Vehicle turning device Expired - Fee Related JP4442394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004325332A JP4442394B2 (en) 2004-11-09 2004-11-09 Vehicle turning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004325332A JP4442394B2 (en) 2004-11-09 2004-11-09 Vehicle turning device

Publications (2)

Publication Number Publication Date
JP2006131189A JP2006131189A (en) 2006-05-25
JP4442394B2 true JP4442394B2 (en) 2010-03-31

Family

ID=36725098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004325332A Expired - Fee Related JP4442394B2 (en) 2004-11-09 2004-11-09 Vehicle turning device

Country Status (1)

Country Link
JP (1) JP4442394B2 (en)

Also Published As

Publication number Publication date
JP2006131189A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
US7516965B2 (en) Variable rear wheel toe angle control system for a vehicle
US20100211261A1 (en) Vehicle behavior control system
JP2003226127A (en) Stabilizer device
EP1892179B1 (en) Variable rear wheel toe angle control system for a vehicle
JPH06247126A (en) System for closed and/or open loop control of car chassis
JP4998758B2 (en) Vehicle integrated control device
JP2006062505A (en) Suspension device for vehicle
JP4876924B2 (en) Roll control device for vehicle
JP4442394B2 (en) Vehicle turning device
JP4596133B2 (en) Vehicle integrated control device
JPS63188512A (en) Vehicle attitude control device
JP2005350063A (en) Grounding load control device for vehicle
KR102417401B1 (en) Stabilization control method using active roll stabilization and stabilization control system
JP5787023B2 (en) Vehicle suspension system
WO2018180719A1 (en) Vehicle control device
KR102417406B1 (en) Stabilization control method for quick braking vehicle and stabilization control system
JP2006007803A (en) Rolling control device of vehicle
JP2553861B2 (en) Stabilizer control device
JP2718251B2 (en) Vehicle braking force control device
JP5043804B2 (en) Vehicle behavior control device
JP5104594B2 (en) Vehicle control device
JP2757568B2 (en) Active suspension
KR102093207B1 (en) Active roll control apparatus and method
JP2004359181A (en) Vehicular suspension device
JP3809845B2 (en) Vehicle ground load control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

R151 Written notification of patent or utility model registration

Ref document number: 4442394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees