JP4441213B2 - Battery charge state calculation device - Google Patents

Battery charge state calculation device Download PDF

Info

Publication number
JP4441213B2
JP4441213B2 JP2003279466A JP2003279466A JP4441213B2 JP 4441213 B2 JP4441213 B2 JP 4441213B2 JP 2003279466 A JP2003279466 A JP 2003279466A JP 2003279466 A JP2003279466 A JP 2003279466A JP 4441213 B2 JP4441213 B2 JP 4441213B2
Authority
JP
Japan
Prior art keywords
battery
current
state
voltage
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003279466A
Other languages
Japanese (ja)
Other versions
JP2005044701A (en
Inventor
慎二 藤原
清治 安西
基司 桐林
誠 和根崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
GS Yuasa Corp
Original Assignee
Mitsubishi Electric Corp
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, GS Yuasa Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003279466A priority Critical patent/JP4441213B2/en
Priority to US10/538,268 priority patent/US7323848B2/en
Priority to EP03780721A priority patent/EP1571457A4/en
Priority to PCT/JP2003/015842 priority patent/WO2004053510A1/en
Priority to AU2003289321A priority patent/AU2003289321A1/en
Publication of JP2005044701A publication Critical patent/JP2005044701A/en
Application granted granted Critical
Publication of JP4441213B2 publication Critical patent/JP4441213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

本発明は、車両などに用いられるバッテリの使用中の状態における残存容量の状態(即ち、充電状態)を検知するバッテリ充電状態演算装置に関する。   The present invention relates to a battery charge state calculation device that detects a state of remaining capacity (that is, a charge state) in a state where a battery used in a vehicle or the like is in use.

従来のバッテリの残存容量の推定方法(即ち、バッテリの充電状態の推定方法)としては、バッテリ端子開放電圧をバッテリの充電状態(SOC:State of Charge)の初期値とし、バッテリ充放電電流の積算値で補正する方法が一般的に知られている。
また、特許文献1には、バッテリの分極を考慮した正確なI‐V(電流‐電圧)近似直線を得ることで、ハイブリッドカーでも精度のよい充電状態を得ることのできる「分極を考慮したバッテリ容量演算装置」が開示されている。
As a conventional method for estimating the remaining capacity of a battery (that is, a method for estimating the state of charge of a battery), the battery terminal open voltage is used as the initial value of the state of charge (SOC) of the battery, and the battery charge / discharge current is integrated. A method of correcting with a value is generally known.
Patent Document 1 discloses that a battery that takes into account the polarization can be obtained by obtaining an accurate IV (current-voltage) approximation line that takes into account the polarization of the battery. A “capacity computing device” is disclosed.

この特許文献1に開示されている分極を考慮したバッテリ容量演算装置は、「車両の負荷に放電電流を流すバッテリの電圧・電流を収集して電圧‐電流特性を求め、この電圧‐電流特性を用いてバッテリの現在の電圧を推定し、この推定電圧からバッテリの現在の充電状態を求める一方、収集した電流がバッテリの最大の分極発生の大電流に最初に到達し、かつ該到達後に電流が大電流以下の所定電流値に最初に到達したとき、このときのバッテリ電圧を最大の分極の影響を残した状態の最大分極影響残存時の推定電圧とし、この最大分極影響残存時の推定電圧と走行開始時のバッテリの開回路電圧との差を用いて充電状態を補正する」ことが記載されている。   The battery capacity calculation device in consideration of the polarization disclosed in this Patent Document 1 “collects the voltage and current of a battery that causes a discharge current to flow through a vehicle load to obtain a voltage-current characteristic, and obtains this voltage-current characteristic. Is used to estimate the current voltage of the battery, and the current state of charge of the battery is determined from this estimated voltage, while the collected current first reaches the high current of the battery's maximum polarization occurrence, and the current is When a predetermined current value below a large current is first reached, the battery voltage at this time is regarded as the estimated voltage when the maximum polarization effect remains in the state where the influence of the maximum polarization remains, and the estimated voltage when this maximum polarization effect remains "The state of charge is corrected using the difference from the open circuit voltage of the battery at the start of travel".

特開2001−174535号公報(図1および段落0039)JP 2001-174535 A (FIG. 1 and paragraph 0039)

近年脚光を浴びている低排出ガス・低燃費を目的とした例えばアイドルストップ車両においては、アイドリング中にエンジン停止を行う機能が備わるため、エンジン停止後にエンジン再始動可能な電力をバッテリに蓄えておく必要があり、バッテリの使用中において、その充電状態(即ち、バッテリの残存容量)を正確に把握する必要がある。
しかしながら、バッテリ液量、劣化(軟化、腐食、サルフェーション、等)、バッテリ温度、分極の影響などにより、バッテリの開放電圧、バッテリ容量は変化するため、バッテリ残存容量を正確に推定することは困難であった。
In recent years, for example, in idling stop vehicles that aim at low emissions and low fuel consumption, a function to stop the engine during idling is provided, so that power that can be restarted after the engine is stopped is stored in the battery. It is necessary to accurately grasp the state of charge (that is, the remaining capacity of the battery) during use of the battery.
However, it is difficult to accurately estimate the remaining battery capacity because the battery open-circuit voltage and battery capacity change due to the amount of battery fluid, deterioration (softening, corrosion, sulfation, etc.), battery temperature, and polarization. there were.

この発明は、このような問題点を解決するためになされたもので、バッテリ液量の変化、劣化などに影響されることなく、所定アプリケーションの電流条件において、現在使用中のバッテリの残存容量の状態、言い換えれば、現在使用中のバッテリの充電状態(SOC:State of Charge)を容易に把握(演算)することのできるバッテリ充電状態演算装置を提供することを目的とする。   The present invention has been made to solve such a problem, and the remaining capacity of the battery currently in use is not affected by the change or deterioration of the battery fluid amount under the current conditions of a predetermined application. It is an object of the present invention to provide a battery charge state calculation device that can easily grasp (calculate) a state, in other words, a state of charge (SOC) of a battery that is currently in use.

この発明に係るバッテリ充電状態演算装置は、バッテリの電圧を検出するバッテリ電圧検出手段と、バッテリの電流を検出するバッテリ電流検出手段と、複数のサンプリングポイントにおいて上記バッテリ電圧検出手段および上記バッテリ電流検出手段が検出する電圧値と電流値を用い、現在使用中の状態である第一の状態におけるバッテリの電流−電圧特性を近似的に求め、これを第一の電流−電圧特性として記憶する第1の電流−電圧特性記憶手段と、上記第一の状態よりも取り出せるエネルギー量が少ない第二の状態における第二の電流−電圧特性をあらかじめ記憶している第2の電流−電圧特性記憶手段と、上記バッテリの所定負荷電流値を記憶している所定電流値記憶手段と、第1の電流−電圧特性記憶手段が記憶している上記第一の電流−電圧特性を用いてバッテリ電流が上記所定負荷電流値のときの第一のバッテリ電圧(Vc)を算出し、上記第二の電流−電圧特性を用いてバッテリ電流が上記所定負荷電流値のときの第二のバッテリ電圧(Vc0)を算出する所定負荷時のバッテリ電圧算出手段と、上記所定負荷時のバッテリ電圧算出手段によって算出される上記第一、第二のバッテリ電圧(Vc、Vc0)を用いて、たとえばそれらの電圧差ΔV(Vc−Vc0)からバッテリの充電状態を導き出すような変換マップなどを予め用意しておき、上記第一の状態におけるバッテリの充電状態を演算する充電状態演算手段7とを備えたものである。   The battery charge state calculation device according to the present invention includes a battery voltage detection means for detecting a battery voltage, a battery current detection means for detecting a battery current, the battery voltage detection means and the battery current detection at a plurality of sampling points. First, the current-voltage characteristic of the battery in the first state, which is currently in use, is approximately obtained using the voltage value and current value detected by the means, and is stored as the first current-voltage characteristic. Current-voltage characteristic storage means, and second current-voltage characteristic storage means for preliminarily storing the second current-voltage characteristic in the second state in which the amount of energy that can be extracted is smaller than that in the first state, The predetermined current value storage means for storing the predetermined load current value of the battery, and the first current-voltage characteristic storage means for storing the first load The first battery voltage (Vc) when the battery current is the predetermined load current value is calculated using the current-voltage characteristics of the battery, and the battery current is calculated using the second current-voltage characteristics. Battery voltage calculation means at a predetermined load for calculating the second battery voltage (Vc0) at the time of the above, and the first and second battery voltages (Vc, Vc0) calculated by the battery voltage calculation means at the predetermined load ), For example, a conversion map for deriving the state of charge of the battery from the voltage difference ΔV (Vc−Vc0) is prepared in advance, and the state of charge for calculating the state of charge of the battery in the first state is prepared. And an arithmetic means 7.

また、この発明に係るバッテリ充電状態演算装置は、上記第1の電流−電圧特性記憶手段において、上記所定電流値記憶手段により記憶されている所定負荷電流の(放電されたとする)時の電圧Vcと、上記第1の電流−電圧特性記憶手段において、負荷電流がゼロの(流れていないとする)時の電圧Voから、予め用意されているVo、Vc−性能レベル変換マップなどの性能レベル検出手段8を用いバッテリの性能レベルを検出し、上記充電状態演算手段より求められたバッテリ充電状態を補正することを特徴とするものである。 In the battery charge state calculation device according to the present invention, in the first current-voltage characteristic storage means, the voltage Vc at a predetermined load current (assumed to be discharged) stored in the predetermined current value storage means. In the first current-voltage characteristic storage means, performance level detection such as Vo, Vc-performance level conversion map prepared in advance is performed from the voltage Vo when the load current is zero (not flowing). detecting a performance level of the battery using means 8, it is characterized in that to correct the battery state obtained from the above KiTakashi conductive state calculating means.

また、この発明に係るバッテリ充電状態演算装置は、上記性能レベル検出手段により求められたバッテリの性能レベルから、予め用意されている性能レベル−補正ゲイン変換マップなどの性能レベル補正ゲイン演算手段8によりバッテリの特性に見あった補正ゲインを求め、上記充電状態演算手段により求められたバッテリ充電状態を補正するものである。 In addition, the battery charge state calculation device according to the present invention uses the performance level correction gain calculation means 8 such as a performance level-correction gain conversion map prepared in advance from the battery performance level obtained by the performance level detection means. obtain a correction gain that was observed in the characteristics of the battery, and corrects the battery state of charge obtained by the above KiTakashi conductive state calculating means.

また、この発明に係るバッテリ充電状態演算装置は、上記充電状態演算手段により求められたバッテリの充電状態に、上記バッテリ電流検出手段により求められた電流(充電側を負、放電側を正とする)から、たとえばエンジン停止からエンジン始動などの上記充電状態演算手段実施時に初期化される手段を備えた電流積算手段により求めた電流積算値を減算した値を、たとえば電池規格にあるバッテリの公称電池容量などの最大電池容量で割ったものをバッテリのSOC(State Of Charge)とすることを特徴とするものである。 The battery state of charge computation device according to the present invention, the state of charge of the battery determined by the state of charge calculating means, the battery current determined by the detecting means current (negative charge side and the discharge side is positive from), for example, a value obtained by subtracting the current integrated value obtained by the current integrating means with means to be initialized from the engine stops when KiTakashi conductive state calculating means carried on such engine start, for example, a battery in the battery standards What is divided by the maximum battery capacity such as the nominal battery capacity is the SOC (State Of Charge) of the battery.

また、充電状態SOCの取りうる範囲は、0〜100%でこの範囲を超える値を取ることには意味が無い点に着目し、この発明に係るバッテリ充電状態演算装置は、上記バッテリ電流検出手段から求めた電流(充電側を負、放電側を正とする)を、たとえば電池規格のバッテリ公称電池容量などの上記充電状態演算手段実施時に初期化される手段を備えた電流積算手段により求めた電流積算値に、上記バッテリ充電状態に電流積算値を減算した後にバッテリ充電状態が最大電池容量を超えないようあるいは、負の値をとらないようにするための、上記バッテリ充電状態を上限値とするリミッタ(上限)を通過させ、また上記バッテリ充電状態から、上記最大電池容量を減算したものを下限値とするリミッタ(下限)を通過させることを特徴とするものである。 Also, paying attention to the fact that the range that the state of charge SOC can take is 0 to 100% and it is meaningless to take a value exceeding this range, the battery state of charge calculation device according to the present invention includes the battery current detection means described above. (negative charge side and a positive discharge side) obtained current from the by current integration means having a means to be initialized for example at KiTakashi conductive state calculating means carried on, such as a battery nominal battery capacity of the battery standards In order to prevent the battery charge state from exceeding the maximum battery capacity or taking a negative value after subtracting the current accumulated value from the battery charge state to the obtained current accumulated value, the upper limit is set to the battery charge state. And a limiter (lower limit) whose lower limit is a value obtained by subtracting the maximum battery capacity from the battery charge state. Is shall.

この発明によるバッテリ充電状態演算装置は、バッテリの電圧を検出するバッテリ電圧検出手段と、バッテリの電流を検出するバッテリ電流検出手段と、複数のサンプリングポイントにおいてバッテリ電圧検出手段およびバッテリ電流検出手段が検出する電圧値と電流値を用い、現在使用中の状態である第一の状態におけるバッテリの電流−電圧特性を近似的に求め、これを第一の電流−電圧特性として記憶する第1の電流−電圧特性記憶手段と、第一の状態よりも取り出せるエネルギー量が少ない第二の状態における第二の電流−電圧特性をあらかじめ記憶している第2の電流−電圧特性記憶手段と、バッテリの所定負荷電流値を記憶している所定電流値記憶手段と、第1の電流−電圧特性記憶手段が記憶している第一の電流−電圧特性を用いてバッテリ電流が上記所定負荷電流値のときの第一のバッテリ電圧を算出し、第二の電流−電圧特性を用いてバッテリ電流が所定負荷電流値のときの第二のバッテリ電圧を算出する所定負荷時のバッテリ電圧算出手段と、所定負荷時のバッテリ電圧算出手段によって算出される上記第一、第二のバッテリ電圧を用いて、第一の状態におけるバッテリの充電状態を演算する充電状態演算手段とを備えたので、バッテリ液量の変化、劣化、バッテリ温度などに影響されることなく、所定アプリケーションの電流条件において、現在使用中のバッテリの充電状態(SOC)を、容易、かつ、短時間に判断することができ、常時、充電状態の監視が必要なハイブリッドカーや電気自動車およびアイドルストップ車用のバッテリなどに好適な充電状態演算装置を提供できる。   The battery charge state computing device according to the present invention includes battery voltage detection means for detecting battery voltage, battery current detection means for detecting battery current, and battery voltage detection means and battery current detection means detected at a plurality of sampling points. The battery current-voltage characteristic in the first state, which is currently in use, is approximately obtained using the voltage value and the current value, and the first current- is stored as the first current-voltage characteristic. Voltage characteristic storage means, second current-voltage characteristic storage means for storing in advance the second current-voltage characteristic in the second state, which has less energy than the first state, and a predetermined load of the battery The predetermined current value storage means storing the current value and the first current-voltage characteristic stored in the first current-voltage characteristic storage means And calculating a first battery voltage when the battery current is the predetermined load current value and calculating a second battery voltage when the battery current is the predetermined load current value using the second current-voltage characteristic. Charge state calculation means for calculating the state of charge of the battery in the first state using the first and second battery voltages calculated by the battery voltage calculation means during load and the battery voltage calculation means during predetermined load The battery state of charge (SOC) of the battery currently in use can be easily and quickly measured under the current conditions of a given application without being affected by changes in battery fluid level, deterioration, battery temperature, etc. The charging state suitable for hybrid cars, electric vehicles, and idle stop vehicles that require constant monitoring of the charging state. Possible to provide a computing device.

以下、図面に基づいて、本発明の一実施の形態を説明する。
なお、各図間において、同一符号は同一あるいは相当のものを表す。
実施の形態1.
この発明の一実施例を図面とともに説明する。
図1は、実施の形態1によるバッテリ充電状態演算装置の構成を示すブロック図である。
また、図2は、本実施の形態によるバッテリ充電状態演算装置の動作を説明するための図である。
図1および図2に基づいて、本実施の形態によるバッテリ充電状態演算装置の構成と動作を説明する。
図1において、1はハイブリッドカーや電気自動車およびアイドルストップ車などに搭載されているバッテリ(図示なし)のバッテリ電圧を検出する電圧検出手段、2は該バッテリの充放電電流を検出する電流検出手段である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In the drawings, the same reference numerals represent the same or equivalent.
Embodiment 1 FIG.
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of a battery charge state calculation apparatus according to Embodiment 1. In FIG.
Moreover, FIG. 2 is a figure for demonstrating operation | movement of the battery charge condition calculating apparatus by this Embodiment.
Based on FIG. 1 and FIG. 2, the configuration and operation of the battery charge state calculation device according to the present embodiment will be described.
In FIG. 1, reference numeral 1 denotes voltage detection means for detecting a battery voltage of a battery (not shown) mounted on a hybrid car, an electric vehicle, an idle stop car, and the like, and 2 denotes current detection means for detecting charge / discharge current of the battery. It is.

3はバッテリの第1の電流(I)−電圧(V)特性記憶手段である。
以降は、「電流−電圧特性」のことを「I−V特性」と称することとする。
第1のI−V特性記憶手段3は、充電状態の演算対象である現在使用中のバッテリ(以下、単にバッテリあるいは当該バッテリと称す)のバッテリ電流(負荷電流)を所定負荷時(例えば、エンジン始動などのアプリケーションにおける最大負荷時)の電流からバッテリ負荷開放時の電流まで変化させた時に、電圧検出手段1および電流検出手段2が検出する複数のサンプリングポイント(図2中の●印で示した各ポイント)におけるバッテリ電圧Vおよびバッテリ電流Iを記憶する。
ここで、現在使用中のバッテリの状態のことを「第一の状態」と称することとする。
Reference numeral 3 denotes a first current (I) -voltage (V) characteristic storage means of the battery.
Hereinafter, the “current-voltage characteristics” will be referred to as “IV characteristics”.
The first IV characteristic storage means 3 determines the battery current (load current) of a currently used battery (hereinafter simply referred to as a battery or the battery), which is a target of charge state calculation, at a predetermined load (for example, an engine A plurality of sampling points (indicated by ● in FIG. 2) detected by the voltage detection means 1 and the current detection means 2 when the current from the maximum load in an application such as start-up is changed to the current when the battery load is released. The battery voltage V and battery current I at each point) are stored.
Here, the state of the battery currently in use is referred to as a “first state”.

そして、この第1のI−V特性記憶手段3は、記憶された複数のサンプリングポイントにおけるバッテリ電圧Vおよびバッテリ電流Iの値から、例えば、最小二乗法による一次近似によって、“V=−βI+α”の式で表される当該バッテリの第一のI−V特性(即ち、現在使用中の第一の状態におけるI−V特性)を演算して求め、記憶する。ここで、αおよびβは正の定数である。
なお、図2中の符号Aで示した直線は、この第一のI−V特性を示している。
Then, the first IV characteristic storage means 3 calculates “V = −βI + α” from the stored values of the battery voltage V and the battery current I at a plurality of sampling points, for example, by first-order approximation using the least square method. The first IV characteristic (that is, the IV characteristic in the first state currently used) of the battery expressed by the following formula is calculated and stored. Here, α and β are positive constants.
In addition, the straight line shown with the code | symbol A in FIG. 2 has shown this 1st IV characteristic.

4は第2のI−V特性記憶手段であって、この第2のI−V特性記憶手段4には、当該バッテリから取り出せるエネルギー量が少ない状態の第二の状態における“V=−β′I+α′”の式で表される理論的な第二のI−V特性があらかじめ記憶されている。
ここで、α′、β′、も正の定数である。
図2中の符号Bで示した直線は、第二のI−V特性を示している。
Reference numeral 4 denotes second IV characteristic storage means. The second IV characteristic storage means 4 stores “V = −β” in the second state in which the amount of energy that can be extracted from the battery is small. A theoretical second IV characteristic represented by the formula of I + α ′ ″ is stored in advance.
Here, α ′ and β ′ are also positive constants.
A straight line indicated by a symbol B in FIG. 2 indicates a second IV characteristic.

上述したバッテリの「第二の状態」とは、例えば、バッテリが劣化し、残存容量が少なくなり、使用不可近くまで放電している「深放電状態」の場合、あるいはこれに近い状態のように、バッテリから取り出せるエネルギー量か少ない状態のことである。
なお、「深放電状態」における理論的な第二のI−V特性とは、バッテリが劣化状態であり、所定負荷電流(例えば、エンジン始動に必要な電流)以上の放電電流を流した場合でも、必要とする所定電圧以上のバッテリ電圧を確保できる最低限ラインのI−V特性である。ここで図中に記載の「使用不可領域」との境界として用いられる最低限ラインのI−V特性は、例えば、エンジンが始動可能な最低限の電圧、あるいは自動車に搭載されている制御ユニット(オーディオなど含む)の動作限界としての意味も兼ねている。つまり、ここでいうバッテリ充電状態とはバッテリとしての性能のみならず、接続される電気負荷を含めシステム全体が成立する最低限をSOC=0とすることを意味し、それを示すラインが図2中の符号Bとなる。
The above-mentioned “second state” of the battery is, for example, a case of a “deep discharge state” in which the battery is deteriorated, the remaining capacity is reduced, and the battery is discharged to a near unusable state, or a state close thereto. This means that the amount of energy that can be extracted from the battery is low.
The theoretical second IV characteristic in the “deep discharge state” is that even when the battery is in a deteriorated state and a discharge current exceeding a predetermined load current (for example, a current necessary for starting the engine) is passed. This is the minimum line IV characteristic capable of ensuring a battery voltage higher than the required predetermined voltage. Here, the IV characteristic of the minimum line used as a boundary with the “unusable area” described in the figure is, for example, the minimum voltage at which the engine can be started, or a control unit ( (Including audio etc.) as the operation limit. In other words, the state of charge of the battery here means that not only the performance as a battery but also the minimum that the entire system including the connected electrical load is established is set to SOC = 0. It becomes the inside code B.

5は各アプリケーション(例えば、エンジンの始動など)における所定電流値記憶手段であって、所定電流値記憶手段5には、例えば、エンジン始動に必要な電流値が記憶されている。
6は所定負荷時のバッテリ電圧算出手段であって、所定負荷時のバッテリ電圧算出手段6は、第1のI−V特性記憶手段3に記憶されている第一のI−V特性(即ち、現在使用中の状態におけるバッテリのI−V特性)および所定電流値記憶手段5に記憶されている所定電流値(例えば、エンジン始動電流Ic)を用いて、バッテリ電流が所定電流値(エンジン始動電流Ic)のときのバッテリ電圧Vc(図2参照)を算出する。
なお、第一のI−V特性から得られる「バッテリが所定負荷(所定電流値)のときのバッテリ電圧」を第一のバッテリ電圧と称することとする。
従って、上記の算出されたバッテリ電圧Vcは、第一のバッテリ電圧ということになる。
Reference numeral 5 denotes predetermined current value storage means in each application (for example, engine start). The predetermined current value storage means 5 stores, for example, current values necessary for engine start.
6 is a battery voltage calculation means at a predetermined load, and the battery voltage calculation means 6 at the predetermined load is a first IV characteristic (that is, stored in the first IV characteristic storage means 3). The battery current is set to a predetermined current value (engine start current (engine start current Ic)) using a predetermined current value (for example, engine start current Ic) stored in the predetermined current value storage means 5 and the current IV characteristics of the battery in use. The battery voltage Vc (see FIG. 2) at the time of Ic) is calculated.
The “battery voltage when the battery has a predetermined load (predetermined current value)” obtained from the first IV characteristic is referred to as a first battery voltage.
Therefore, the calculated battery voltage Vc is the first battery voltage.

また、所定負荷時のバッテリ電圧算出手段6は、第2のI−V特性記憶手段4に記憶されている第二のI−V特性および所定電流値記憶手段5に記憶されている所定電流値を用いて、バッテリ電流が所定電流値のときのバッテリ電圧Vc0(図2参照)を算出する。
なお、第二のI−V特性から得られる「バッテリが所定負荷(所定電流値)のときのバッテリ電圧」を第二のバッテリ電圧と称することとする。
従って、上記の算出されたバッテリ電圧Vc0は、第二のバッテリ電圧ということになる。
また、図2において、Vo、Vo0は、それぞれ第一、第二のI−V特性において、バッテリ電流がゼロ(負荷開放時)のときのバッテリ電圧である。
Further, the battery voltage calculation means 6 at a predetermined load includes a second IV characteristic stored in the second IV characteristic storage means 4 and a predetermined current value stored in the predetermined current value storage means 5. Is used to calculate the battery voltage Vc0 (see FIG. 2) when the battery current is a predetermined current value.
The “battery voltage when the battery has a predetermined load (predetermined current value)” obtained from the second IV characteristic is referred to as a second battery voltage.
Therefore, the calculated battery voltage Vc0 is the second battery voltage.
In FIG. 2, Vo and Vo0 are battery voltages when the battery current is zero (when the load is released) in the first and second IV characteristics, respectively.

バッテリのアプリケーションが「エンジン始動」である場合、バッテリ電流がエンジン始動電流Icのときにバッテリ電圧がVc0以下になるまで劣化すると、このバッテリは使用不可ということになる。
7はSOC(充電状態)演算手段であって、SOC(充電状態)演算手段7は所定負荷時のバッテリ電圧算出手段6が算出したバッテリ電圧Vc、およびバッテリ電圧Vc0を用いて、バッテリの充電状態(Ah)を求め、また、電流検出手段2の電流値を積算する電流積算手段9により求められた電流積算値ΣIおよび上記補正ゲインによりSOC(充電状態)を演算する。
When the battery application is “engine start”, the battery is unusable if the battery current deteriorates until the battery voltage becomes Vc0 or less when the engine current is the engine start current Ic.
7 is an SOC (charged state) calculating means. The SOC (charged state) calculating means 7 uses the battery voltage Vc calculated by the battery voltage calculating means 6 at a predetermined load and the battery voltage Vc0 to charge the battery. (Ah) is obtained, and the SOC (charge state) is calculated from the current integrated value ΣI obtained by the current integrating means 9 for integrating the current value of the current detecting means 2 and the correction gain.

この演算結果を表す指数が大きいほどバッテリの残存容量が多く、まだ十分にエネルギーが残存しており、この指数が小さいほど残存容量が少なく、劣化の状態に近いと判断できる。   It can be determined that the larger the index representing the calculation result is, the more the remaining capacity of the battery is, and the energy is still remaining, and the smaller the index is, the smaller the remaining capacity is, which is close to the state of deterioration.

なお、第二のI−V特性は、第2のI−V特性記憶手段4にあらかじめ記憶されているので、第二のバッテリ電圧は短時間で容易に算出することができる。   Since the second IV characteristic is stored in advance in the second IV characteristic storage unit 4, the second battery voltage can be easily calculated in a short time.

以上説明したように、本実施の形態によるバッテリ充電状態演算装置は、現在使用中の状態である第一の状態におけるバッテリのI−V特性(第一のI−V特性)を近似的に求めて記憶する第1のI−V特性記憶手段3と、第一の状態よりも取り出せるエネルギー量が少ない第二の状態におけるバッテリのI−V特性(第二のI−V特性)があらかじめ記憶されている第2のI−V特性記憶手段4と、上記第一のI−V特性を用いてバッテリ電流が上記所定負荷電流値のときの第一のバッテリ電圧を算出し、上記第二のI−V特性を用いてバッテリ電流が上記所定負荷電流値のときの第二のバッテリ電圧を算出する所定負荷時のバッテリ電圧算出手段6と、算出される上記第一、第二のバッテリ電圧を用いて、上記第一の状態におけるバッテリの充電状態を演算する充電状態演算手段7とを備えるので、バッテリ液量の変化、劣化、バッテリ温度などに影響されることなく、所定アプリケーションの電流条件において、現在使用中のバッテリの充電状態(SOC)を、容易、かつ、短時間に把握(判断)することができ、常時、充電状態(残存容量)の監視が必要なハイブリッドカーや電気自動車およびアイドルストップ車用のバッテリなどに好適な充電状態演算装置を提供できる。   As described above, the battery state-of-charge computing device according to the present embodiment approximately obtains the IV characteristics (first IV characteristics) of the battery in the first state that is currently in use. The first IV characteristic storage means 3 for storing in advance and the battery's IV characteristic (second IV characteristic) in the second state where the amount of energy that can be extracted is smaller than that in the first state are stored in advance. A first battery voltage when the battery current is the predetermined load current value is calculated using the second IV characteristic storage means 4 and the first IV characteristic, and the second I Using the -V characteristic, the battery voltage calculation means 6 at a predetermined load for calculating the second battery voltage when the battery current is the predetermined load current value, and the calculated first and second battery voltages are used. The battery in the first state Charging state calculation means 7 for calculating the charging state of the battery, so that it is not affected by the change, deterioration, battery temperature, etc. of the battery liquid amount, and the charging state ( SOC) can be grasped (determined) easily and in a short time, and charging suitable for a battery for a hybrid car, an electric vehicle, an idle stop vehicle, etc. that always requires monitoring of the state of charge (remaining capacity) A state calculation device can be provided.

実施の形態2.
図3は、実施の形態2による図1に示すSOC演算手段7の構成を示すブロック図である。
図において、31は図1で説明済みの第一のバッテリ電圧Vcと同じく図1で説明済みの第二のバッテリ電圧Vc0の電圧差(Vc−Vc0)ΔVからバッテリ充電状態Cを求めるΔV−C変換手段、32はバッテリ公称の電池容量に図4で説明する補正ゲインを乗算することにより求められる最大電池容量Cmaxを求めるための最大電池容量演算手段、33は電流積算値ΣIを先に求めたバッテリ充電状態Cにより制限するための上限リミッタで、同じく34は先に制限されたΣIを先に求めたバッテリ充電状態Cから先に求めた最大電池容量Cmaxを減算したもので制限するための下限リミッタである。
Embodiment 2. FIG.
FIG. 3 is a block diagram showing a configuration of the SOC calculation means 7 shown in FIG. 1 according to the second embodiment.
In the figure, 31 denotes ΔV−C for obtaining the battery charge state C from the voltage difference (Vc−Vc0) ΔV of the second battery voltage Vc0 already explained in FIG. 1 as well as the first battery voltage Vc already explained in FIG. The converting means 32 is a maximum battery capacity calculating means for obtaining the maximum battery capacity Cmax obtained by multiplying the nominal battery capacity of the battery by the correction gain described in FIG. 4, and 33 is the current integrated value ΣI obtained first. An upper limiter for limiting by the battery charge state C. Similarly, 34 is a lower limit for limiting the previously limited ΣI by subtracting the previously determined maximum battery capacity Cmax from the previously determined battery charge state C. It is a limiter.

次に本実施例の形態について説明する。第一のバッテリ電圧Vcと第二のバッテリ電圧Vc0の電圧差ΔVを求め、ΔV−C変換手段31によってバッテリの充電状態Cを検出する。その方法は、たとえば、電圧差ΔV(V)をX軸に、バッテリ充電状態(Ah)CをY軸とした一次元マップとする他、電圧差ΔV(V)をX軸に、補正ゲインをY軸に、バッテリ充電状態(Ah)CをZ軸とした二次元マップ(図5参照)とするなどとして予めバッテリの特性から求めておくこともよい。   Next, the form of a present Example is demonstrated. A voltage difference ΔV between the first battery voltage Vc and the second battery voltage Vc 0 is obtained, and the battery charge state C is detected by the ΔV-C conversion means 31. The method is, for example, a one-dimensional map with the voltage difference ΔV (V) on the X axis and the battery charge state (Ah) C on the Y axis, and the correction gain with the voltage difference ΔV (V) on the X axis. The Y-axis may be obtained in advance from the battery characteristics, for example, as a two-dimensional map (see FIG. 5) with the battery charge state (Ah) C as the Z-axis.

次にバッテリの公称電池容量(Ah)と補正ゲインから最大電池容量演算手段32を用い現在使用中のバッテリ最大電池容量(Ah)を求める。新品電池の場合、一般に公称電池容量より実際の電池容量は大きい。しかしながらバッテリが置かれてきた環境を含めバッテリの使われ方その他の要因で最大電池容量は変化する。一般的に最大電池容量は使用時間によって小さくなる傾向にあるが、それも使われ方によっては一様でない。このことを補正するため図4で説明する性能レベルから求めた補正ゲインにより公称電池容量を補正する。   Next, the maximum battery capacity currently used (Ah) is obtained from the nominal battery capacity (Ah) of the battery and the correction gain using the maximum battery capacity calculation means 32. In the case of a new battery, the actual battery capacity is generally larger than the nominal battery capacity. However, the maximum battery capacity varies depending on how the battery is used and other factors including the environment in which the battery has been placed. In general, the maximum battery capacity tends to be small depending on the usage time, but it is not uniform depending on how it is used. In order to correct this, the nominal battery capacity is corrected by the correction gain obtained from the performance level described in FIG.

次に電流積算値ΣIをΔV−C変換手段31により求めたバッテリ充電状態(Ah)を上限とする値で上限リミッタ33を用い制限する。電流値Iは放電時正、充電時負の値を示す。これは放電が続きバッテリ充電状態Cの値より電流積算値ΣIが大きくなった場合、その先のSOC値が負を示してしまうため抑制するものである。同様に、上限リミッタ33を通過した電流積算値ΣI’をΔV−C変換手段31により求めたバッテリ充電状態(Ah)から最大電池容量演算手段32により求めた最大電池容量Cmaxを減算したものを下限とする値で下限リミッタ34を用い制限する。これは充電が続きバッテリ充電状態Cの値から電流積算値ΣIを減算した値が、その先のSOC演算部分で100%を越えてしまうためこれを抑制するものである。   Next, the current integrated value ΣI is limited using the upper limiter 33 at a value with the battery charging state (Ah) obtained by the ΔV-C conversion means 31 as an upper limit. The current value I indicates a positive value during discharging and a negative value during charging. This is to be suppressed because when the discharge continues and the current integrated value ΣI becomes larger than the value of the battery charge state C, the SOC value beyond that indicates a negative value. Similarly, a value obtained by subtracting the maximum battery capacity Cmax obtained by the maximum battery capacity calculation means 32 from the battery charge state (Ah) obtained by the ΔV-C conversion means 31 for the current integrated value ΣI ′ having passed through the upper limit limiter 33 is the lower limit. The lower limiter 34 is used to limit the value. This suppresses this because charging continues and the value obtained by subtracting the current integrated value ΣI from the value of the battery charge state C exceeds 100% in the SOC calculation part ahead.

実施の形態3.
図4は、実施の形態3よる図1に記載の性能レベル判定・補正手段8の構成を示すブロック図である。
41は第一のバッテリ電圧Vcと、第一のI−V特性において、バッテリ電流がゼロ(負荷開放時)のときのバッテリ電圧Voとから性能レベルを求める性能レベル判定手段、42は性能レベル判定手段41により求められた性能レベルから補正ゲインを求めるための性能レベル補正ゲイン算出手段である。
Embodiment 3 FIG.
FIG. 4 is a block diagram showing a configuration of the performance level determination / correction means 8 shown in FIG. 1 according to the third embodiment.
41 is a performance level determination means for determining a performance level from the first battery voltage Vc and the battery voltage Vo when the battery current is zero (when the load is released) in the first IV characteristic, and 42 is a performance level determination. This is a performance level correction gain calculation means for obtaining a correction gain from the performance level obtained by the means 41.

次に本実施例の形態について説明する。第一のバッテリ電圧Vcと、第一のI−V特性において、バッテリ電流がゼロ(負荷開放時)のときのバッテリ電圧Voとによって性能レベル検出手段8を用い、現在使用中のバッテリの性能レベルを検出する。バッテリは開放電圧を横軸に、第一のバッテリ電圧Vcを縦軸にプロットした場合、劣化度合いが進むに連れてプロット値が右方向に遷移する特性がある。たとえばこれを利用して、第一のI−V特性において、バッテリ電流がゼロ(負荷開放時)のときのバッテリ電圧VoをX軸に、第一のバッテリ電圧VcをY軸に、性能レベルをZ軸とする二次元マップ(図6参照)を予め用意し、性能レベルを検出する。また、性能レベルの影響はΔV−C変換や最大電池容量Cmaxにも影響を及ぼす。性能レベルは比例関係にないため、ΔV−C変換の補正には直接用いにくい。そのためたとえば性能レベルをX軸、補正ゲインをY軸とするマップ(図7参照)などで性能レベル補正ゲイン算出手段42を用いて補正ゲインを求め、直線補間可能なよう以降の補正に用いる。   Next, the form of a present Example is demonstrated. In the first battery voltage Vc and the first IV characteristic, the performance level detection means 8 is used based on the battery voltage Vo when the battery current is zero (when the load is released), and the performance level of the battery currently in use Is detected. When the open-circuit voltage is plotted on the horizontal axis and the first battery voltage Vc is plotted on the vertical axis, the battery has a characteristic that the plotted value transitions to the right as the degree of deterioration progresses. For example, using this, in the first IV characteristic, the battery voltage Vo when the battery current is zero (when the load is released) is set to the X axis, the first battery voltage Vc is set to the Y axis, and the performance level is set. A two-dimensional map (see FIG. 6) for the Z axis is prepared in advance, and the performance level is detected. The influence of the performance level also affects the ΔV-C conversion and the maximum battery capacity Cmax. Since the performance level is not proportional, it is difficult to directly use it for correction of ΔV-C conversion. Therefore, for example, a correction gain is obtained by using the performance level correction gain calculation means 42 on a map (see FIG. 7) with the performance level as the X-axis and the correction gain as the Y-axis, and is used for subsequent corrections so that linear interpolation is possible.

本発明は、車両などに用いられるバッテリの使用中の状態における残存容量の状態を検知するバッテリ充電状態演算装置に適用して好適である。   The present invention is suitable for application to a battery charge state calculation device that detects a state of remaining capacity in a state where a battery used in a vehicle or the like is in use.

実施の形態1によるバッテリ充電状態検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the battery charge condition detection apparatus by Embodiment 1. 実施の形態1によるバッテリ充電状態検出装置の動作を説明するための図である。FIG. 6 is a diagram for explaining the operation of the battery charge state detection device according to the first embodiment. 実施の形態2によるSOC演算手段の構成を示すブロック図である。It is a block diagram which shows the structure of the SOC calculating means by Embodiment 2. 実施の形態3による性能レベル判定・補正手段の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a performance level determination / correction unit according to a third embodiment. 実施の形態2によるΔV−C変換手段の構成を示すブロック図である。It is a block diagram which shows the structure of the (DELTA) V-C conversion means by Embodiment 2. 実施の形態3による性能レベル判定手段の構成を示すブロック図である。It is a block diagram which shows the structure of the performance level determination means by Embodiment 3. 実施の形態3による性能レベル補正ゲイン算出手段の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a performance level correction gain calculation unit according to a third embodiment.

符号の説明Explanation of symbols

1 電圧検出手段 2 電流検出手段
3 第1のI−V特性(電流−電圧特性)記憶手段
4 第2のI−V特性(電流−電圧特性)記憶手段
5 所定電流値記憶手段 6 所定負荷時のバッテリ電圧算出手段
7 SOC(充電状態)演算手段 8 性能レベル判定・補正手段
9 電流積算手段 A 第一の状態のI−V特性
B 最低限ラインのI−V特性 31 ΔV−C変換手段
32 最大電池容量演算手段 33 上限リミッタ
34 下限リミッタ 41 性能レベル判定・補正手段
42 性能レべル補正ゲイン算出手段。
DESCRIPTION OF SYMBOLS 1 Voltage detection means 2 Current detection means 3 1st IV characteristic (current-voltage characteristic) storage means 4 2nd IV characteristic (current-voltage characteristic) storage means 5 Predetermined current value storage means 6 Under predetermined load Battery voltage calculation means 7 SOC (charge state) calculation means 8 performance level determination / correction means 9 current integration means A IV characteristics in the first state B IV characteristics of the minimum line 31 ΔV-C conversion means 32 Maximum battery capacity calculation means 33 Upper limit limiter 34 Lower limit limiter 41 Performance level determination / correction means 42 Performance level correction gain calculation means.

Claims (5)

バッテリの電圧を検出するバッテリ電圧検出手段と、
バッテリの電流を検出するバッテリ電流検出手段と、
複数のサンプリングポイントにおいて上記バッテリ電圧検出手段および上記バッテリ電流検出手段が検出する電圧値と電流値を用い、現在使用中の状態である第一の状態におけるバッテリの電流−電圧特性を近似的に求め、これを第一の電流−電圧特性として記憶する第1の電流−電圧特性記憶手段と、
上記第一の状態よりも取り出せるエネルギー量が少ない第二の状態における第二の電流−電圧特性をあらかじめ記憶している第2の電流−電圧特性記憶手段と、
上記バッテリの所定負荷電流値を記憶している所定電流値記憶手段と、
第1の電流−電圧特性記憶手段が記憶している上記第一の電流−電圧特性を用いてバッテリ電流が上記所定負荷電流値のときの第一のバッテリ電圧を算出し、上記第二の電流−電圧特性を用いてバッテリ電流が上記所定負荷電流値のときの第二のバッテリ電圧を算出する所定負荷時のバッテリ電圧算出手段と、
上記所定負荷時のバッテリ電圧算出手段によって算出される上記第一、第二のバッテリ電圧を用いて、上記第一の状態におけるバッテリの充電状態を演算する充電状態演算手段とを備えたことを特徴とするバッテリ充電状態演算装置。
Battery voltage detection means for detecting the voltage of the battery;
Battery current detection means for detecting the current of the battery;
Using the voltage value and current value detected by the battery voltage detection means and the battery current detection means at a plurality of sampling points, the current-voltage characteristics of the battery in the first state that is currently in use are approximately obtained. First current-voltage characteristic storage means for storing this as a first current-voltage characteristic;
Second current-voltage characteristic storage means for storing in advance a second current-voltage characteristic in a second state in which the amount of energy that can be extracted is smaller than that in the first state;
Predetermined current value storage means for storing a predetermined load current value of the battery;
The first current-voltage characteristic stored in the first current-voltage characteristic storage means is used to calculate the first battery voltage when the battery current is the predetermined load current value, and the second current A battery voltage calculation means at a predetermined load for calculating a second battery voltage when the battery current is at the predetermined load current value using voltage characteristics;
Charge state calculation means for calculating the state of charge of the battery in the first state using the first and second battery voltages calculated by the battery voltage calculation means at the predetermined load. The battery charge state calculation device.
上記第1の電流−電圧特性記憶手段において、上記所定電流値記憶手段により記憶されている所定負荷電流の(放電されたとする)時の電圧Vcと、上記第1の電流−電圧特性記憶手段において、負荷電流がゼロの(流れていないとする)時の電圧Voから、性能レベル検出手段を用いバッテリの性能レベルを検出し、上記充電状態演算手段より求められたバッテリ充電状態を補正することを特徴とする請求項1に記載のバッテリ充電状態演算装置。 In the first current-voltage characteristic storage means, the voltage Vc at the time of a predetermined load current (assumed to be discharged) stored in the predetermined current value storage means, and in the first current-voltage characteristic storage means , from the load current (and not flowing) of the zero voltage Vo of time, to detect the performance level of the battery using the performance level detection means, for correcting the battery state obtained from the above KiTakashi conductive state calculating means The battery state-of-charge computing device according to claim 1. 上記性能レベル検出手段から求められたバッテリの性能レベルから、性能レベル補正ゲイン演算手段によりバッテリの特性に見あった補正ゲインを求め、上記充電状態演算手段により求められたバッテリ充電状態を補正することを特徴とする請求項2に記載のバッテリ充電状態演算装置。 From the performance level of the battery determined from the performance level detection means determines a correction gain that was observed in the characteristics of the battery by performance level correction gain calculating means, correcting the battery state of charge obtained by the above KiTakashi conductive state calculating means The battery state-of-charge computing device according to claim 2, wherein 記充電状態演算手段により求められたバッテリの充電状態において、上記バッテリ電流検出手段により求められた電流(充電側を負、放電側を正とする)から、上記充電状態演算手段実施時に初期化される手段を備えた電流積算手段により求めた電流積算値を減算した値を最大電池容量で割ったものをバッテリのSOC(State Of Charge)とすることを特徴とする請求項1〜3のいずれか1項記載のバッテリ充電状態演算装置。 In the state of charge of the battery obtained by the above KiTakashi conductive state calculating means, the battery current determined by the detecting means current (negative charge side, the discharge-side and positive) from the upper KiTakashi conductive state calculating means carried 2. The SOC (State Of Charge) of a battery is obtained by dividing a value obtained by subtracting a current integrated value obtained by a current integrating means having means initialized at times from the maximum battery capacity. 4. The battery charge state calculation device according to any one of 3 above. 上記バッテリ電流検出手段から求めた電流(充電側を負、放電側を正とする)を、上記充電状態演算手段実施時に初期化される手段を備えた電流積算手段により求めた電流積算値に、上記バッテリ充電状態を上限値とするリミッタ(上限)に通過させ、また上記バッテリ充電状態から、上記最大電池容量を減算したものを下限値とするリミッタ(下限)に通過させることを特徴とする請求項4記載のバッテリ充電状態演算装置。 The battery current detection obtained current from the means (negative charge side, the discharge-side and positive) and current integration determined by current integration means having a means which is initialized at the upper KiTakashi conductive state calculating means carried The value is passed through a limiter (upper limit) whose upper limit is the battery charge state, and is passed through a limiter (lower limit) obtained by subtracting the maximum battery capacity from the battery charge state. The battery charge state calculation device according to claim 4.
JP2003279466A 2002-12-11 2003-07-24 Battery charge state calculation device Expired - Fee Related JP4441213B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003279466A JP4441213B2 (en) 2003-07-24 2003-07-24 Battery charge state calculation device
US10/538,268 US7323848B2 (en) 2002-12-11 2003-12-11 Battery charging state arithmetic operation device for calculating charging state of battery, and battery charging state arithmetic operation method
EP03780721A EP1571457A4 (en) 2002-12-11 2003-12-11 Battery charged condition computing device and battery charged condition computing method
PCT/JP2003/015842 WO2004053510A1 (en) 2002-12-11 2003-12-11 Battery charged condition computing device and battery charged condition computing method
AU2003289321A AU2003289321A1 (en) 2002-12-11 2003-12-11 Battery charged condition computing device and battery charged condition computing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003279466A JP4441213B2 (en) 2003-07-24 2003-07-24 Battery charge state calculation device

Publications (2)

Publication Number Publication Date
JP2005044701A JP2005044701A (en) 2005-02-17
JP4441213B2 true JP4441213B2 (en) 2010-03-31

Family

ID=34265561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279466A Expired - Fee Related JP4441213B2 (en) 2002-12-11 2003-07-24 Battery charge state calculation device

Country Status (1)

Country Link
JP (1) JP4441213B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104303064A (en) * 2012-05-11 2015-01-21 雷诺两合公司 Estimating the state of charge of a battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104303064A (en) * 2012-05-11 2015-01-21 雷诺两合公司 Estimating the state of charge of a battery

Also Published As

Publication number Publication date
JP2005044701A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
JP6155781B2 (en) Storage element management device and SOC estimation method
US7323848B2 (en) Battery charging state arithmetic operation device for calculating charging state of battery, and battery charging state arithmetic operation method
EP2700966B1 (en) Apparatus and method for estimating battery state
JP4864383B2 (en) Deterioration state estimation device for power storage device
JP5506100B2 (en) Battery management system and battery SOC estimation method using the same
EP2439550B1 (en) Battery state of charge calculation device
CN105548906B (en) A kind of battery remaining power dynamic estimation method
EP3379277B1 (en) Capacity maintenance rate estimation apparatus or capacity maintenance rate estimation method
EP3343689A1 (en) Deterioration degree estimation device and deterioration degree estimation method
JP2006338889A (en) Power management system and power system management method
US9400313B2 (en) Method and device for determining the actual capacity of a battery
JP3006298B2 (en) Battery remaining capacity meter
JP4810417B2 (en) Remaining capacity calculation device for power storage device
US11084385B2 (en) Battery control device, battery system, and vehicle
JP2017167163A (en) Power storage element management device and power storage element soc estimation method
JP2007057379A (en) Internal resistance detection method of secondary battery
JP3689084B2 (en) Battery charge state calculation device and battery charge state calculation method
KR100836391B1 (en) Deduction method for battery state of charge in hybrid electric vehicle
US20090319108A1 (en) Electricity storage control apparatus and method of controlling eletricity storage
JP2009300362A (en) Soc calculation circuit, charge system, and soc calculation method
JP4441213B2 (en) Battery charge state calculation device
JP4686139B2 (en) Battery charge state calculation method
JP4686140B2 (en) Battery charge state calculation device
CN115951256A (en) Estimation method of battery pack charge state, charging system and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4441213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees