JP4438022B1 - DC motor - Google Patents

DC motor Download PDF

Info

Publication number
JP4438022B1
JP4438022B1 JP2009209098A JP2009209098A JP4438022B1 JP 4438022 B1 JP4438022 B1 JP 4438022B1 JP 2009209098 A JP2009209098 A JP 2009209098A JP 2009209098 A JP2009209098 A JP 2009209098A JP 4438022 B1 JP4438022 B1 JP 4438022B1
Authority
JP
Japan
Prior art keywords
conductive contact
coil terminal
coil
contact
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009209098A
Other languages
Japanese (ja)
Other versions
JP2011061976A (en
Inventor
只好 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UGK Inc
Original Assignee
UGK Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UGK Inc filed Critical UGK Inc
Priority to JP2009209098A priority Critical patent/JP4438022B1/en
Application granted granted Critical
Publication of JP4438022B1 publication Critical patent/JP4438022B1/en
Publication of JP2011061976A publication Critical patent/JP2011061976A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Motor Or Generator Current Collectors (AREA)
  • Dc Machiner (AREA)

Abstract

【課題】複雑な制御回路を構築せずして、電機子コイルに対してアーク火花の発生を抑制しながら大電流を供給することのできる耐久性のよい直流モータを提供する。
【解決手段】ロータ軸4を回転させるための駆動電流が流される複数の電機子コイル2と、電機子コイル2に作用する界磁束を発生する界磁マグネット51と、電機子コイル2の各両端に導電接続するコイル端子32と、直流電源Eに導電接続してコイル端子32に断続的に導電接触する正負一対の導電接触子7と、コイル端子32と導電接触子7との接触部分を挟んで対向する一対の磁極間に磁界を形成する磁界発生ユニット6とを備える。コイル端子32と導電接触子7は、ロータ軸4を中心として相対的に回転しながら磁界発生ユニット6による磁界内で接触離間する。
【選択図】図1
A highly durable direct current motor capable of supplying a large current to an armature coil while suppressing generation of arc sparks without constructing a complicated control circuit.
SOLUTION: A plurality of armature coils 2 through which a drive current for rotating a rotor shaft 4 flows, a field magnet 51 for generating a field flux acting on the armature coil 2, and both ends of the armature coil 2 are provided. A coil terminal 32 that is conductively connected to the coil, a pair of positive and negative conductive contacts 7 that are conductively connected to the DC power source E and intermittently conductively contact the coil terminal 32, and a contact portion between the coil terminal 32 and the conductive contact 7 And a magnetic field generating unit 6 for forming a magnetic field between a pair of opposing magnetic poles. The coil terminal 32 and the conductive contact 7 are contacted and separated in a magnetic field generated by the magnetic field generation unit 6 while rotating relatively around the rotor shaft 4.
[Selection] Figure 1

Description

本発明は、車両の駆動源として用いて好適な直流モータに係わり、特にアーク火花の発生を抑制することのできる直流モータに関する。   The present invention relates to a DC motor suitable for use as a vehicle drive source, and more particularly to a DC motor capable of suppressing the occurrence of arc sparks.

近年、原動機(内燃機関)と電動機を併用するハイブリッド車両の普及が顕著である。係るハイブリッド車両にも車輪の駆動源として原動機と電動機の双方を交互に切り換えて使用するパラレル形と、原動機を専ら電動機の駆動電力を得るための発電に利用するシリーズ形とがあるが、原動機を搭載せずしてバッテリによる蓄電電力や燃料電池による発電電力を用いて走行用電動機を駆動する電気自動車も増加傾向にある。   In recent years, the spread of hybrid vehicles using both a prime mover (internal combustion engine) and an electric motor has been remarkable. Such hybrid vehicles also have a parallel type in which both a prime mover and an electric motor are used alternately as a wheel drive source, and a series type in which the prime mover is exclusively used for power generation to obtain the drive power of the motor. There is also an increasing trend in electric vehicles that drive electric motors for driving by using stored electric power from batteries and electric power generated by fuel cells without being installed.

一方、電動機として、直流電源により駆動されるDCモータと、交流電源により駆動されるACモータが知られるが、整流子とブラシを用いるDCモータでは、銅などから成る整流子片とカーボンなどから成るブラシとが摺接するために摩耗が著しく、ノイズやアーク放電による火花を発生するという問題もあるほか、カーボン製ブラシによる通電制約のために電流量を大きくとることができず、ブラシレス化するにも多数のトランジスタを用いるなどして複雑な電子回路を構成しなければならない。   On the other hand, as an electric motor, a DC motor driven by a DC power source and an AC motor driven by an AC power source are known. In a DC motor using a commutator and a brush, a commutator piece made of copper or the like and carbon are used. In addition to the problem of excessive wear due to sliding contact with the brush, there is a problem of generating sparks due to noise and arc discharge, and it is not possible to make a large amount of current due to the energization restriction by the carbon brush, so it can be made brushless A complicated electronic circuit must be constructed by using a large number of transistors.

このため、ハイブリッド車、電気自動車、燃料電池車などでは、電動機としてACモータを用い、インバータにより直流電源を交流電源に変換してACモータを駆動するようにしている(例えば、特許文献1)。   For this reason, in a hybrid vehicle, an electric vehicle, a fuel cell vehicle, and the like, an AC motor is used as an electric motor, and an AC motor is driven by converting a DC power source into an AC power source by an inverter (for example, Patent Document 1).

特開2006−333552号公報JP 2006-333552 A

しかしながら、走行用駆動源としてACモータ(ACサーボモータ)を用いる車両によれば、直流電力を交流電力に変換するために、高価なインバータほか複雑な制御機器を必要としてコスト高になるという問題がある。   However, according to a vehicle using an AC motor (AC servo motor) as a driving source for traveling, there is a problem that an expensive inverter and a complicated control device are required to convert DC power into AC power, resulting in high cost. is there.

本発明は以上のような事情に鑑みて成されたものであり、その目的は複雑な制御回路を構築せずして、電機子コイルに対してアーク火花の発生を抑制しながら大電流を供給することのできる耐久性のよい直流モータを提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to supply a large current to the armature coil while suppressing the occurrence of arc sparks without constructing a complicated control circuit. An object of the present invention is to provide a DC motor with good durability that can be used.

本発明は上記目的を達成するため、
ロータ軸を回転させるための駆動電流が流される複数の電機子コイルと、その電機子コイルに作用する界磁束を発生する界磁システムと、前記電機子コイルの各両端に導電接続するコイル端子と、直流電源に導電接続して前記コイル端子に断続的に導電接触する正負一対の導電接触子と、前記コイル端子と導電接触子との接触部分を挟んで対向する一対の磁極間に磁界を形成する磁界発生ユニットとを備え、前記コイル端子と導電接触子が前記ロータ軸を中心として相対的に回転しながら前記磁界発生ユニットによる磁界内で接触離間するようにした直流モータであって、
前記コイル端子と導電接触子が、加圧下で導電性を示して無加圧下で電気絶縁性を示す半導電性潤滑剤を介して導電接触すると共に、
前記半導電性潤滑剤は、潤滑性を有する潤滑油に、導電性を有する固体粒子が分散するものであることを特徴とする。
In order to achieve the above object, the present invention
A plurality of armature coils through which a drive current for rotating the rotor shaft flows, a field system that generates a field flux acting on the armature coils, and coil terminals that are conductively connected to both ends of the armature coils; A magnetic field is formed between a pair of positive and negative conductive contacts that are conductively connected to a DC power source and intermittently conductively contact the coil terminal, and a pair of magnetic poles that are opposed to each other with the contact portion between the coil terminal and the conductive contact A DC motor , wherein the coil terminal and the conductive contact are in contact with and separated from each other in the magnetic field generated by the magnetic field generation unit while relatively rotating around the rotor axis ,
The coil terminal and the conductive contact are in conductive contact via a semiconductive lubricant that exhibits electrical conductivity under pressure and exhibits electrical insulation under no pressure,
The semiconductive lubricant is characterized in that solid particles having conductivity are dispersed in a lubricating oil having lubricity .

加えて、前記コイル端子の導電接触面に対して前記導電接触子を押圧する加圧バネを備えていることを特徴とする。   In addition, a pressure spring that presses the conductive contact against the conductive contact surface of the coil terminal is provided.

本発明に係る直流モータによれば、複数の電機子コイルの各両端に導電接続するコイル端子と、直流電源に導電接続してコイル端子に断続的に導電接触する正負一対の導電接触子と、コイル端子と導電接触子との接触部分を挟んで対向する一対の磁極間に磁界を形成する磁界発生ユニットとを備え、コイル端子と導電接触子がロータ軸を中心として相対的に回転しながら、磁界発生ユニットによる磁界内で接触離間する構成とされていることから、コイル端子と導電接触子との間に発生したアーク放電にローレンツ力を作用せしめてアーク火花を吹き消すことができる。このため、安全性の高いモータにして、アーク放電による電気ノイズの発生を抑制し、他の電子機器への悪影響を防止することができる。   According to the direct current motor according to the present invention, a coil terminal that is conductively connected to both ends of the plurality of armature coils, a pair of positive and negative conductive contacts that are conductively connected to the DC power source and intermittently conductively contact the coil terminal, A magnetic field generating unit that forms a magnetic field between a pair of magnetic poles facing each other across a contact portion between the coil terminal and the conductive contact, while the coil terminal and the conductive contact rotate relatively around the rotor axis, Since it is configured to contact and separate within the magnetic field generated by the magnetic field generating unit, the arc spark generated between the coil terminal and the conductive contact can be applied to the arc spark to blow out the arc spark. For this reason, it can be set as a highly safe motor, generation | occurrence | production of the electrical noise by arc discharge can be suppressed, and the bad influence to other electronic devices can be prevented.

加えて、コイル端子の導電接触面に対して導電接触子を押圧する加圧バネを備えていることから、導電接触子とコイル端子との間の接触不良を防止しながら、その両者の接触により電機子コイルに大きな駆動電流を供給することができる。   In addition, since a pressure spring that presses the conductive contact against the conductive contact surface of the coil terminal is provided, contact failure between the conductive contact and the coil terminal can be prevented while preventing contact failure between the conductive contact and the coil terminal. A large drive current can be supplied to the armature coil.

又、コイル端子と導電接触子が半導電性潤滑剤を介して導電接触することから、コイル端子と導電接触子の摺接による摩耗を抑制して、メンテナンスフリー化を図ることができる。   In addition, since the coil terminal and the conductive contact are in conductive contact via the semiconductive lubricant, wear due to sliding contact between the coil terminal and the conductive contact can be suppressed, and maintenance-free operation can be achieved.

本発明に係る直流モータを示す縦断面図1 is a longitudinal sectional view showing a DC motor according to the present invention. 同モータにおける電機子の構造を示す平面概略図Schematic plan view showing the structure of the armature in the motor 電機子コイルの配置部分を示す斜視図The perspective view which shows the arrangement | positioning part of an armature coil 電機子コイルの配置部分を示す部分拡大断面図Partial expanded sectional view which shows the arrangement | positioning part of an armature coil 界磁システムの構造を示す底面概略図Schematic bottom view showing the structure of the field system コイル端子と導電接触子の接触部分を示す拡大断面図Enlarged sectional view showing the contact portion between the coil terminal and the conductive contact 図6のX−X断面図XX sectional view of FIG. 電機子コイルと界磁マグネットの位置関係を示す説明図Explanatory drawing showing the positional relationship between the armature coil and the field magnet 図7の部分拡大図Partial enlarged view of FIG.

以下、図面に基づいて本発明に係る直流モータの好適な実施形態を説明する。先ず、図1において、係る直流モータは一般的なDCモータとは違いステータSmが電機子、ロータRmが界磁システムとされている。   Hereinafter, preferred embodiments of a DC motor according to the present invention will be described with reference to the drawings. First, in FIG. 1, the direct current motor is different from a general DC motor in that a stator Sm is an armature and a rotor Rm is a field system.

ステータSmは、図示せぬ外胴に固定されたリング状の鉄心1と、鉄心1の周方向に一定の間隔をあけて配置された複数の電機子コイル2と、鉄心1の内側に固定された整流子機3を有して構成されている。このうち、整流子機3は、マイカやプラスチックといった電気絶縁体からなるリング状の絶縁板31に対し、電機子コイル2の各両端部に導電接続されたコイル端子32を固着せしめて構成されるものであり、その絶縁板31は鉄心1の内側に嵌合状態で固着されている。又、コイル端子32は、絶縁板31の周方向に等間隔で配列され、その各先端部が絶縁板31の内周面より突出されている。   The stator Sm is fixed to the inside of the iron core 1, a ring-shaped iron core 1 fixed to an outer cylinder (not shown), a plurality of armature coils 2 arranged at a predetermined interval in the circumferential direction of the iron core 1. The commutator 3 is provided. Among these, the commutator 3 is configured by fixing coil terminals 32 electrically connected to both end portions of the armature coil 2 to a ring-shaped insulating plate 31 made of an electrical insulator such as mica or plastic. The insulating plate 31 is fixed inside the iron core 1 in a fitted state. In addition, the coil terminals 32 are arranged at equal intervals in the circumferential direction of the insulating plate 31, and each tip portion thereof protrudes from the inner peripheral surface of the insulating plate 31.

尚、本例において、電機子コイル2とコイル端子32は、図2に示されるように鉄心1の周方向において36個設けられており、隣り合う2つの電機子コイル2,2の各一端がその両者の中間に位置する一つのコイル端子32に導電接続されている。従って、全ての電機子コイル2はコイル端子32を介して導通状態にある。   In this example, 36 armature coils 2 and coil terminals 32 are provided in the circumferential direction of the iron core 1 as shown in FIG. 2, and one end of each of the two adjacent armature coils 2 and 2 is provided. It is conductively connected to one coil terminal 32 located between the two. Accordingly, all the armature coils 2 are in a conductive state via the coil terminals 32.

又、図3及び図4に示されるように、リング状の鉄心1にはその外周面から内周面に通じるスリット1a,1bが所定のピッチで放射状に形成されている。そして、隣り合うスリット1a,1bの間をコア部1cとして、その各コア部1cの周囲に絶縁被膜が施された導線を巻き付けることにより電機子コイル2が構成されている。尚、図3では、片面にスリット1a,1bが形成される鉄心1を示すが、実際には図3に示されるような鉄心1が背向かいにして重ね合わされる。   As shown in FIGS. 3 and 4, the ring-shaped iron core 1 is formed with slits 1 a and 1 b radially extending from the outer peripheral surface to the inner peripheral surface at a predetermined pitch. And the armature coil 2 is comprised by winding the conducting wire by which the insulating film was given to the circumference | surroundings of each core part 1c by making between the adjacent slits 1a and 1b the core part 1c. 3 shows the iron core 1 in which the slits 1a and 1b are formed on one side, but actually, the iron core 1 as shown in FIG.

一方、図1において、ロータRmは、図示せぬ外胴に軸受を介して回転自在に支持されるロータ軸4と、そのロータ軸4に固着された2つのロータ円板5を備える。その両ロータ円板5は、ロータ軸4の軸方向においてステータSmの鉄心1を挟んで対向配置されており、電機子コイル2と対向する位置には界磁システムを構成する複数の界磁マグネット51が固着されている。界磁マグネット51は、ロータ軸4を回転させるに必要な界磁束を発生する永久磁石であり、各々その一方の磁極が電機子コイル2側に配向されている。   On the other hand, in FIG. 1, the rotor Rm includes a rotor shaft 4 that is rotatably supported by a not-shown outer trunk via a bearing, and two rotor disks 5 fixed to the rotor shaft 4. The two rotor disks 5 are arranged opposite to each other with the iron core 1 of the stator Sm sandwiched in the axial direction of the rotor shaft 4, and a plurality of field magnets constituting a field system are arranged at positions facing the armature coil 2. 51 is fixed. The field magnet 51 is a permanent magnet that generates a field flux necessary for rotating the rotor shaft 4, and one of the magnetic poles thereof is oriented to the armature coil 2 side.

図5から明らかなように、本例では相対向する2つのロータ円板5にそれぞれ6つの界磁マグネット51が組み込まれ、それら界磁マグネット51がロータ円板5の周方向に等間隔で配列されている。尚、界磁マグネット51は、金属磁石でも焼結磁石でもよいが、中でも大きな保磁力を有するネオジム磁石を用いることが好ましい。又、電機子コイル2側に向けられる界磁マグネット51の露出表面の磁極は、隣り合うもの同士で異なっている。すなわち、一つの界磁マグネット51に着目して、その露出表面がN極である場合、その両隣に位置する界磁マグネット51の露出表面はS極とされ、ロータ円板5の周方向に沿ってN極とS極が交互に現れるようになっている。   As is apparent from FIG. 5, in this example, six field magnets 51 are incorporated in the two rotor disks 5 facing each other, and these field magnets 51 are arranged at equal intervals in the circumferential direction of the rotor disk 5. Has been. The field magnet 51 may be a metal magnet or a sintered magnet, but a neodymium magnet having a large coercive force is preferably used. Moreover, the magnetic poles on the exposed surface of the field magnet 51 directed to the armature coil 2 side are different from each other. That is, paying attention to one field magnet 51, when the exposed surface is an N pole, the exposed surface of the field magnet 51 located on both sides thereof is an S pole, and along the circumferential direction of the rotor disk 5. N poles and S poles appear alternately.

又、図1及び図6から明らかなように、相対向するロータ円板5,5の間には、ステータSmを構成する鉄心1の内側に位置する磁界発生ユニット6が介在されている。磁界発生ユニット6は、ロータ軸4を取り囲むリング状の永久磁石61を挟んでその両磁極側に磁性体からなるリング状の磁性ピース62,62を配置し、その両磁性ピース62の片面が異なる一対の磁極(N極およびS極)として対向する構成とされている。尚、この永久磁石61も界磁マグネット51と同じく金属磁石でも焼結磁石でもよいが、中でも大きな保磁力を有するネオジム磁石を用いることが好ましい。   As is clear from FIGS. 1 and 6, a magnetic field generating unit 6 positioned inside the iron core 1 constituting the stator Sm is interposed between the rotor disks 5 and 5 facing each other. In the magnetic field generating unit 6, ring-shaped magnetic pieces 62, 62 made of a magnetic material are disposed on both magnetic pole sides with a ring-shaped permanent magnet 61 that surrounds the rotor shaft 4, and one side of each of the magnetic pieces 62 is different. It is set as the structure which opposes as a pair of magnetic pole (N pole and S pole). The permanent magnet 61 may be a metal magnet or a sintered magnet, like the field magnet 51, but it is preferable to use a neodymium magnet having a large coercive force.

ここに、係る磁界発生ユニット6は、ロータRmを回転駆動させることに関与するものでなく、上記コイル端子32と後述の導電接触子が接触離間するときのアーク火花の発生を抑制するためのものであり、当該磁界発生ユニット6を構成する磁性ピース62,62の間は直流磁界を形成する磁気ギャップGとされ、その磁気ギャップG内にコイル端子32の先端部が入り込む構成とされている。特に、磁性ピース62,62の対向面にはそれぞれ凹部62aが形成され、その凹部62a内に導電接触子7が嵌合配置されており、その導電接触子7が各コイル端子32のそれぞれと断続的に順次導電接触するようになっている。すなわち、コイル端子32と導電接触子7は、ロータ軸4を中心として相対的に回転(本例においてコイル端子32が固定された状態で導電接触子7がロータ軸4と共に回転)しながら、磁界発生ユニット6による直流磁界(磁気ギャップG)内で接触離間する。   Here, the magnetic field generating unit 6 is not involved in rotationally driving the rotor Rm, but for suppressing the occurrence of arc sparks when the coil terminal 32 and a conductive contact described later are brought into contact with and separated from each other. A magnetic gap G that forms a DC magnetic field is formed between the magnetic pieces 62 and 62 constituting the magnetic field generating unit 6, and the tip of the coil terminal 32 enters the magnetic gap G. In particular, concave portions 62a are formed on the opposing surfaces of the magnetic pieces 62, 62, and the conductive contacts 7 are fitted and disposed in the concave portions 62a. The conductive contacts 7 are intermittently connected to the respective coil terminals 32. Thus, the conductive contact is sequentially made. That is, the coil terminal 32 and the conductive contact 7 rotate relative to each other about the rotor shaft 4 (in this example, the conductive contact 7 rotates together with the rotor shaft 4 while the coil terminal 32 is fixed), while the magnetic field Contact and separation in the DC magnetic field (magnetic gap G) by the generating unit 6.

本例において、導電接触子7は正負一対として、図5のように一つの磁性ピース62に対して6つ(3組)が周方向に等間隔に組み込まれており、磁性ピース62の周方向において極性の異なるもの同士が隣り合うようになっている。尚、図5において、ハッチングした導電接触子7は正極であり、ハッチングしてない白抜きの導電接触子7は負極であることを示す。   In this example, the conductive contacts 7 are a pair of positive and negative, and six (three sets) are incorporated at equal intervals in the circumferential direction as shown in FIG. In FIG. 2, the ones having different polarities are adjacent to each other. In FIG. 5, the hatched conductive contact 7 is a positive electrode, and the non-hatched white conductive contact 7 is a negative electrode.

そして、それら導電接触子7は、磁性ピース62とロータ円板5とを貫通するスライドピン71を介して図1に示される直流電源E(自動車などに搭載される蓄電池)に導電接続される。但し、正極とされる導電接触子7はスライドピン71、回転電極板72a、及び固定摺動子72bを介して直流電源Eの正極に導電接続され、負極とされる導電接触子7はスライドピン71、回転電極板73a、及び固定摺動子73bを介して直流電源Eの負極に導電接続される。   The conductive contacts 7 are conductively connected to a DC power source E (storage battery mounted in an automobile or the like) shown in FIG. 1 via a slide pin 71 penetrating the magnetic piece 62 and the rotor disk 5. However, the conductive contact 7 as the positive electrode is conductively connected to the positive electrode of the DC power source E via the slide pin 71, the rotating electrode plate 72a, and the fixed slider 72b, and the conductive contact 7 as the negative electrode is the slide pin. 71, the rotating electrode plate 73a, and the fixed slider 73b are conductively connected to the negative electrode of the DC power source E.

回転電極板72a,73aは、それぞれロータ円板5と同心のリング状にして、そのロータ円板5に電気絶縁体72c,73cを介して固定されており、その両回転電極板72a,73aに対して固定摺動子72b,73bが摺接するようになっている。尚、回転電極板72a,73aと摺動子72b,73bは離間することなく常時接触されるのであり、それ故それ両者間においてアーク放電は発生しない。   The rotating electrode plates 72a and 73a are concentric with the rotor disk 5, respectively, and are fixed to the rotor disk 5 via electric insulators 72c and 73c. The rotating electrode plates 72a and 73a are fixed to the rotating electrode plates 72a and 73a. The fixed sliders 72b and 73b are in sliding contact with each other. The rotating electrode plates 72a and 73a and the sliders 72b and 73b are always in contact with each other without being separated from each other, and therefore no arc discharge occurs between them.

又、図6において、導電接触子7は、ロータ軸4の軸方向において極性が同じもの同士がコイル端子32を挟んで対向し、且つ凹部62a内においてロータ軸4の軸方向に移動可能とされている。特に、図7から明らかなように、磁性ピース62内には、一端が導電接触子7に連結される上記スライドピン71の周囲において圧縮コイルバネなどからなる加圧バネ8が組み込まれ、その加圧バネ8により導電接触子7がコイル端子32の導電接触面32aに対して押圧されるようになっている。このため、導電接触子7とコイル端子32との間の接触不良を防止しながら、その両者7,32の接触により上記電機子コイル2に大きな駆動電流を供給することができる。尚、導電接触子7、スライドピン71、及び加圧バネ8は、それぞれ磁性ピース62及びロータ円板5に対して電気的に絶縁されている。   Further, in FIG. 6, the conductive contacts 7 having the same polarity in the axial direction of the rotor shaft 4 face each other with the coil terminal 32 interposed therebetween, and are movable in the axial direction of the rotor shaft 4 in the recess 62a. ing. In particular, as is apparent from FIG. 7, a pressure spring 8 made of a compression coil spring or the like is incorporated in the magnetic piece 62 around the slide pin 71 whose one end is connected to the conductive contact 7. The conductive contact 7 is pressed against the conductive contact surface 32 a of the coil terminal 32 by the spring 8. For this reason, it is possible to supply a large drive current to the armature coil 2 by the contact between the conductive contact 7 and the coil terminal 32 while preventing the contact failure between the conductive contact 7 and the coil terminal 32. The conductive contact 7, the slide pin 71, and the pressure spring 8 are electrically insulated from the magnetic piece 62 and the rotor disk 5, respectively.

ここに、導電接触子7がバネ力によりコイル端子32の導電接触面32aに押圧された状態のまま回転すると、その両者7,32の摩耗に起因して短期間でのメンテナンスが必要となる。そこで、本例において、コイル端子32と導電接触子7は、その基材が銅その他の良導体とされる一方、その表面に基材よりも耐摩耗性に優れるモリブデンやタングステンなどによる超硬導電被膜が施される。これによれば、コイル端子32と導電接触子7の摩耗を抑制してメンテナンスフリー化を図ることが可能となる。   Here, if the conductive contact 7 rotates while being pressed against the conductive contact surface 32a of the coil terminal 32 by a spring force, maintenance in a short period is required due to wear of both of them. Therefore, in the present example, the coil terminal 32 and the conductive contact 7 have a base material of copper or other good conductor, and a surface of which is super hard conductive film made of molybdenum, tungsten, or the like, which has better wear resistance than the base material. Is given. According to this, it becomes possible to make maintenance-free by suppressing wear of the coil terminal 32 and the conductive contact 7.

特に、本発明によれば、コイル端子32と導電接触子7との間に半導電性潤滑剤が介在され、その半導電性潤滑剤を介してコイル端子32と導電接触子7が導電接触するようになっている。その半導電性潤滑剤は、加圧下で導電性を示して無加圧下で電気絶縁性を示す粘性流体である。特に、係る半導電性潤滑剤は、潤滑性を有する非導電性の潤滑油に導電性を有する固体粒子が分散する液体潤滑剤、又は半固体潤滑材であり、潤滑油には石油系潤滑油、脂肪系潤滑油、又は混成潤滑油が用いられ、導電性を有する固体粒子としてはカーボン粉末や銅その他の金属粉末が用いられる。そして、係る半導電性潤滑剤によれば、コイル端子32と導電接触子7との間に潤滑性を付与して両者の摩耗を抑制しながら、コイル端子32と導電接触子7との接触部分においてのみ加圧バネ8による加圧力を受けて導電性を示し、これによりコイル端子32と導電接触子7の両者を電気的に接続することができる。すなわち、加圧バネ8により導電接触子7がコイル端子32の導電接触面32aに押圧されると、その両者7,32間に介在する半導電性潤滑剤中の固体粒子が各々結合して導電性を発揮するようになる。逆に、コイル端子32と導電接触子7の非接触部分では半導電性潤滑剤が電気絶縁性を示すために、その半導電性潤滑剤によりコイル端子32や導電接触子7が短絡することが防止される。   In particular, according to the present invention, a semiconductive lubricant is interposed between the coil terminal 32 and the conductive contact 7, and the coil terminal 32 and the conductive contact 7 are in conductive contact via the semiconductive lubricant. It is like that. The semiconductive lubricant is a viscous fluid that exhibits electrical conductivity under pressure and exhibits electrical insulation under no pressure. In particular, the semiconductive lubricant is a liquid lubricant in which solid particles having conductivity are dispersed in a nonconductive lubricant having lubricity, or a semisolid lubricant. Fat type lubricating oil or hybrid lubricating oil is used, and carbon powder, copper or other metal powder is used as the conductive solid particles. And according to the semiconductive lubricant, a contact portion between the coil terminal 32 and the conductive contact 7 while imparting lubricity between the coil terminal 32 and the conductive contact 7 and suppressing wear of both. Only, the coil terminal 32 and the conductive contact 7 can be electrically connected. That is, when the conductive contact 7 is pressed against the conductive contact surface 32a of the coil terminal 32 by the pressurizing spring 8, the solid particles in the semiconductive lubricant interposed between the two are connected to each other and become conductive. It comes to show the sex. On the contrary, since the semiconductive lubricant exhibits electrical insulation in the non-contact portion between the coil terminal 32 and the conductive contact 7, the coil terminal 32 and the conductive contact 7 may be short-circuited by the semiconductive lubricant. Is prevented.

尚、図7において、相対向する導電接触子7は、加圧バネ8による付勢力を受けて互いに接触してしまうことはなく、その両者7,7間に少なくとも一つのコイル端子32が常時介在することにより離間した状態に保たれるのであり、これによりコイル端子32が相対向する導電接触子7,7の間を通過することが許容されている。   In FIG. 7, the opposing conductive contacts 7 do not come into contact with each other due to the urging force of the pressure spring 8, and at least one coil terminal 32 is always interposed between the two contacts 7 and 7. By doing so, the coil terminal 32 is allowed to pass between the conductive contacts 7 and 7 facing each other.

次に、上記のように構成される直流モータの作用について説明すれば、図5に示される6つの導電接触子7は、図2に示される36個のコイル端子32に対して5つおきに導電接触する。上述のように、導電接触子7は正極、負極が周方向に交互に配置されるので、それら導電接触子7に直流電源Eから直流電圧が印加されると、正負一対の導電接触子7が接触するコイル端子32の間に位置する電機子コイル2には、6つ1組として隣り合う組の電機子コイル2と逆向きの駆動電流が流れるようになる。これにより、それら電機子コイル2を有するステータSmのリング状鉄心1はその周方向において60度おきにN極とS極が交互に現れるよう磁化される。これを模式的に示したものが図8である。   Next, the operation of the DC motor configured as described above will be described. The six conductive contacts 7 shown in FIG. 5 are arranged at intervals of five for the 36 coil terminals 32 shown in FIG. Conductive contact. As described above, since the positive and negative electrodes of the conductive contact 7 are alternately arranged in the circumferential direction, when a DC voltage is applied to the conductive contacts 7 from the DC power source E, a pair of positive and negative conductive contacts 7 is formed. In the armature coils 2 positioned between the coil terminals 32 that are in contact with each other, a drive current in a direction opposite to that of the adjacent armature coils 2 flows as a set of six. Thereby, the ring-shaped iron core 1 of the stator Sm having the armature coils 2 is magnetized so that N poles and S poles appear alternately every 60 degrees in the circumferential direction. This is schematically shown in FIG.

図8において、導電接触子7の正極を黒丸、負極を白丸で示し、その間に位置する6組の電機子コイル2により鉄心1の片面が同図のように磁化される場合、界磁マグネット51は各組の電機子コイル2に対し、それぞれ同一磁極を向かい合わせつつ10度程度位相ずれした状態で位置するようになっている。よって、図8の状態において、界磁マグネット51を含むロータは図8の反時計回りに回転し、これにより導電接触子7がコイル端子32の一つ分(1ピッチ)だけ回転移動すると、電機子コイル2による鉄心1の磁極が電機子コイル2の一つ分だけロータの回転方向に移動し、この繰返しによりロータが一方向に連続回転するようになる。   In FIG. 8, when the positive electrode of the conductive contact 7 is indicated by a black circle and the negative electrode is indicated by a white circle, and one side of the iron core 1 is magnetized as shown in FIG. Are positioned so as to be out of phase by about 10 degrees with each pair of armature coils 2 facing the same magnetic poles. Therefore, in the state of FIG. 8, the rotor including the field magnet 51 rotates counterclockwise in FIG. 8, and as a result, when the conductive contact 7 is rotated by one coil terminal 32 (one pitch), the electric machine The magnetic pole of the iron core 1 by the child coil 2 moves in the rotation direction of the rotor by one armature coil 2, and this rotation causes the rotor to continuously rotate in one direction.

このように、係る直流モータによれば、電機子コイル2及びコイル端子32ならびに界磁マグネット51及び導電接触子7が同軸上に配置されるため、負荷変動による同期ずれを発生せず、複雑な制御回路を構築せずして高い回転性能を得ることができる。   As described above, according to the DC motor, the armature coil 2 and the coil terminal 32, the field magnet 51, and the conductive contact 7 are arranged on the same axis. High rotational performance can be obtained without constructing a control circuit.

ここに、コイル端子32と導電接触子7との断続的な導電接触が繰返し行われると、その両者7,32間にアーク放電に起因するアーク火花を発生するが、本発明によれば、コイル端子32と導電接触子7との接触部分を挟んで対向する磁性ピース62の一対の磁極間に直流磁界が形成され、その直流磁界(磁気ギャップG)内でコイル端子32と導電接触子7の接触離間が行われるために、図9のようにコイル端子32と導電接触子7との間にアーク放電Iが発生した場合、そのアーク放電Iと直流磁界Bとに直交する方向(ロータの回転半径方向)に対し、フレミング左手の法則に基づくローレンツ力Fが発生し、そのローレンツ力Fがアーク放電Iによる火花を吹き消すよう作用する。このため、アーク放電とこれに起因するアーク火花の発生が抑制され、ひいては電気ノイズの発生による他の電子機器への悪影響を防止することができる。尚、図9において、Lは上記の半導電性潤滑剤を示す。   Here, when intermittent conductive contact between the coil terminal 32 and the conductive contact 7 is repeatedly performed, an arc spark due to arc discharge is generated between the two, and according to the present invention, A DC magnetic field is formed between a pair of magnetic poles of the magnetic piece 62 facing each other across the contact portion between the terminal 32 and the conductive contact 7, and the coil terminal 32 and the conductive contact 7 are within the DC magnetic field (magnetic gap G). When the arc discharge I is generated between the coil terminal 32 and the conductive contact 7 as shown in FIG. 9 due to the contact separation, the direction orthogonal to the arc discharge I and the DC magnetic field B (rotation of the rotor) The Lorentz force F based on Fleming's left-hand rule is generated with respect to the radial direction), and the Lorentz force F acts to blow off the spark caused by the arc discharge I. For this reason, generation | occurrence | production of arc discharge and the arc spark resulting from this is suppressed, and the bad influence to other electronic devices by generation | occurrence | production of an electrical noise can be prevented by extension. In FIG. 9, L represents the semiconductive lubricant.

以上、本発明の具体例を説明したが、磁界発生ユニット6はリング状の永久磁石61と磁性ピース62による一体構造とすることに限らず、ロータ軸4を中心にして個々に独立した複数が同一円周上に配置されるようにしてもよい。又、図示例では磁界発生ユニット6をロータRm側に設けたが、これをステータSm側に設けるようにしてもよい。   The specific example of the present invention has been described above. However, the magnetic field generating unit 6 is not limited to an integral structure of the ring-shaped permanent magnet 61 and the magnetic piece 62, and a plurality of independent individual components with the rotor shaft 4 as the center. You may make it arrange | position on the same periphery. In the illustrated example, the magnetic field generating unit 6 is provided on the rotor Rm side, but it may be provided on the stator Sm side.

E 直流電源
Sm ステータ
Rm ロータ
L 半導電性潤滑剤
1 鉄心
2 電機子コイル
3 整流子機
31 絶縁板
32 コイル端子
32a 導電接触面
4 ロータ軸
5 ロータ円板
51 界磁マグネット(界磁システム)
6 磁界発生ユニット
61 永久磁石
62 磁性ピース
7 導電接触子
8 加圧バネ
E DC power source Sm Stator Rm Rotor L Semiconductive lubricant 1 Iron core 2 Armature coil 3 Commutator 31 Insulating plate 32 Coil terminal 32a Conductive contact surface 4 Rotor shaft 5 Rotor disc 51 Field magnet (field system)
6 Magnetic field generation unit 61 Permanent magnet 62 Magnetic piece 7 Conductive contact 8 Pressure spring

Claims (2)

ロータ軸を回転させるための駆動電流が流される複数の電機子コイルと、その電機子コイルに作用する界磁束を発生する界磁システムと、前記電機子コイルの各両端に導電接続するコイル端子と、直流電源に導電接続して前記コイル端子に断続的に導電接触する正負一対の導電接触子と、前記コイル端子と導電接触子との接触部分を挟んで対向する一対の磁極間に磁界を形成する磁界発生ユニットとを備え、前記コイル端子と導電接触子が前記ロータ軸を中心として相対的に回転しながら前記磁界発生ユニットによる磁界内で接触離間するようにした直流モータであって、
前記コイル端子と導電接触子が、加圧下で導電性を示して無加圧下で電気絶縁性を示す半導電性潤滑剤を介して導電接触すると共に、
前記半導電性潤滑剤は、潤滑性を有する潤滑油に、導電性を有する固体粒子が分散するものであることを特徴とする直流モータ。
A plurality of armature coils through which a drive current for rotating the rotor shaft flows, a field system that generates a field flux acting on the armature coils, and coil terminals that are conductively connected to both ends of the armature coils; A magnetic field is formed between a pair of positive and negative conductive contacts that are conductively connected to a DC power source and intermittently conductively contact the coil terminal, and a pair of magnetic poles that are opposed to each other with the contact portion between the coil terminal and the conductive contact A DC motor , wherein the coil terminal and the conductive contact are in contact with and separated from each other in the magnetic field generated by the magnetic field generation unit while relatively rotating around the rotor axis ,
The coil terminal and the conductive contact are in conductive contact via a semiconductive lubricant that exhibits electrical conductivity under pressure and exhibits electrical insulation under no pressure,
The DC motor is characterized in that the semiconductive lubricant is a lubricant in which solid particles having conductivity are dispersed in a lubricating oil having lubricity .
前記コイル端子の導電接触面に対して前記導電接触子を押圧する加圧バネを備えていることを特徴とする請求項1記載の直流モータ。 2. The DC motor according to claim 1, further comprising a pressure spring that presses the conductive contact against the conductive contact surface of the coil terminal.
JP2009209098A 2009-09-10 2009-09-10 DC motor Expired - Fee Related JP4438022B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009209098A JP4438022B1 (en) 2009-09-10 2009-09-10 DC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009209098A JP4438022B1 (en) 2009-09-10 2009-09-10 DC motor

Publications (2)

Publication Number Publication Date
JP4438022B1 true JP4438022B1 (en) 2010-03-24
JP2011061976A JP2011061976A (en) 2011-03-24

Family

ID=42193854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009209098A Expired - Fee Related JP4438022B1 (en) 2009-09-10 2009-09-10 DC motor

Country Status (1)

Country Link
JP (1) JP4438022B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11705796B2 (en) 2018-10-09 2023-07-18 Sou, Inc. Electric motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082607A (en) 2018-10-22 2020-04-28 株式会社电装 Electrical contact device and rotating electrical machine comprising an electrical contact device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171427A (en) * 1986-01-22 1987-07-28 Hitachi Ltd Stator for rotary electric machine
JP2001286104A (en) * 2000-03-31 2001-10-12 Honda Motor Co Ltd Rotating electric machine
JP2007123058A (en) * 2005-10-28 2007-05-17 Nec Tokin Corp Electrical contact switch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171427A (en) * 1986-01-22 1987-07-28 Hitachi Ltd Stator for rotary electric machine
JP2001286104A (en) * 2000-03-31 2001-10-12 Honda Motor Co Ltd Rotating electric machine
JP2007123058A (en) * 2005-10-28 2007-05-17 Nec Tokin Corp Electrical contact switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11705796B2 (en) 2018-10-09 2023-07-18 Sou, Inc. Electric motor

Also Published As

Publication number Publication date
JP2011061976A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
CN100423413C (en) Brush type DC electric machine
US9431862B2 (en) Motor
US2853637A (en) Fractional direct current torque motor
US7362026B2 (en) Homopolar multi-frames (cylinders) generator-motor
JP4438022B1 (en) DC motor
JP2008206310A (en) Electric motor
JP4483978B2 (en) Rotating electric machine for vehicles
JP4768246B2 (en) Inner magnet motor with brush
JP4460629B1 (en) DC motor
RU2303536C2 (en) Electric motor
KR20140136185A (en) Motor having stator of distributed winding
CN101447725A (en) Side sensing permanent magnet DC motor
EP4030598A1 (en) Electric motor and electrical equipment
JP2001104882A (en) Flat type vibration motor
JP2003134747A (en) Rectifying structure and rotating machine using the same
JP2011142760A (en) Direct current rotary electric machine
JP2013179807A (en) Motor
KR101515585B1 (en) A brush card assembly for the motor
JP5179892B2 (en) Energizing device for rotating electrical machines
JP2007259510A (en) Dc motor
WO2022201521A1 (en) Motor with brush
RU227280U1 (en) Electric motor using complementary magnetic pairs
WO2022202274A1 (en) Electric motor and electric blower
JP7499468B2 (en) Electric motors and electrical equipment
KR100586972B1 (en) A commutator type of dc motor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees