JP4436153B2 - Blast furnace slag reformer and its reforming method - Google Patents

Blast furnace slag reformer and its reforming method Download PDF

Info

Publication number
JP4436153B2
JP4436153B2 JP2004040288A JP2004040288A JP4436153B2 JP 4436153 B2 JP4436153 B2 JP 4436153B2 JP 2004040288 A JP2004040288 A JP 2004040288A JP 2004040288 A JP2004040288 A JP 2004040288A JP 4436153 B2 JP4436153 B2 JP 4436153B2
Authority
JP
Japan
Prior art keywords
blast furnace
furnace slag
molten
coal ash
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004040288A
Other languages
Japanese (ja)
Other versions
JP2005231918A (en
Inventor
敏行 金子
啓司 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004040288A priority Critical patent/JP4436153B2/en
Publication of JP2005231918A publication Critical patent/JP2005231918A/en
Application granted granted Critical
Publication of JP4436153B2 publication Critical patent/JP4436153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Iron (AREA)
  • Furnace Details (AREA)

Description

本発明は、冷却固化した高炉滓を改質するための改質材及び改質方法に関するものである。 The present invention relates to a reforming material and a reforming method for reforming a cooled and solidified blast furnace furnace.

従来より、溶鉱炉から排出された溶融高炉滓は、徐冷して固める徐冷滓、或いは溶融状態の高炉滓に水を掛けて急冷し水砕にする処理が行われている。
前者の徐冷滓の用途として主に路盤材に利用されていたが、徐冷滓は気孔が多く比重も小さいので、緻密で比重が高くて硬い徐冷滓(徐冷高炉滓)が求められていた。
また、後者の水砕に関しては、主にセメント原料として利用されていたが、新しい用途として「砂代替」としての硬質水砕の造り込み技術が望まれていた。すなわち、気泡が少なく緻密で比重の高い水砕が求められていた。これらの問題に対し、火力発電所等から排出される産業廃棄物である石炭灰(通称フライアッシュと呼ばれ、SiO2 とAl23 を主成分とする)を溶融高炉滓に添加して改質し、高炉徐冷滓或いは高炉水砕を人工土木用骨材として活用する試みも考えられている。
Conventionally, the molten blast furnace slag discharged from the blast furnace has been gradually cooled and solidified, or a molten blast furnace slag is rapidly cooled by watering and crushed.
Although the former was used mainly for roadbed materials as a slow cooling kit, the slow cooling kit has many pores and small specific gravity, so a dense, high specific gravity, hard annealing kit (slow cooling blast furnace kit) is required. It was.
In addition, the latter water granulation has been mainly used as a raw material for cement, but as a new application, a technique for building in hard water granulation as “sand substitute” has been desired. That is, there has been a demand for water granulation with less bubbles and high density. To solve these problems, coal ash (commonly called fly ash, mainly composed of SiO 2 and Al 2 O 3 ), which is industrial waste discharged from thermal power plants, is added to the molten blast furnace slag. Attempts have also been made to modify and use blast furnace slow cooling or granulated blast furnace as an aggregate for artificial civil engineering.

この例としては、特許文献1、特許文献2に提案されているように、石炭灰単身(粉体)を大樋の溶銑中にインジェクションして、溶銑の熱を利用しながら溶銑の上に浮かんだ溶融高炉滓に石炭灰を溶かし込んで、徐冷滓や水砕を作る方法がある。また、特許文献3に提案されているように、石炭灰にCaO含有物質を混合して塩基度を高めてから溶融高炉滓に添加する方法がある。 As an example of this, as proposed in Patent Document 1 and Patent Document 2, coal ash alone (powder) was injected into the hot metal of the hot metal and floated on the hot metal while using the heat of the hot metal. There is a method of melting the coal ash into the molten blast furnace slag and making slow-cooled slag or water granulation. Moreover, as proposed in Patent Document 3, there is a method in which a CaO-containing material is mixed with coal ash to increase the basicity and then added to the molten blast furnace.

特開2001−151540号公報JP 2001-151540 A 特開2001−151546号公報JP 2001-151546 A 特開2003−226561号公報JP 2003-226561 A

しかし、特許文献1及び2に提案されている方法では、溶融高炉滓に石炭灰単身で添加しているために石炭灰の塊が添加場所の耐火物、例えば樋や鍋に付着成長して、添加操業を著しく阻害し、付着した石炭灰主体の焼結状付着物(以下焼結体とも称す)は溶融高炉滓に全く溶けなくなる問題が生じ、操業上安定した石炭灰の添加が困難で、高炉滓の改質が継続して行えないものであった。また、たとえ、オペレーターが付着した焼結体を突き落としつつ添加したとしても、高炉滓が冷却固化した後でも突き落とした塊状の焼結体は異物として高炉滓に混じり、赤色或いは黒色を呈して用途側から敬遠されるのに加えて、高炉滓の粉砕工程でこれら塊状焼結体は粉化して粒度調整に支障をきたすなど、品質上の課題も生じていた。更に、特許文献3に提案されている方法では、塩基度を上げる目的からCaO含有物を多量添加せねばならず、添加した後の溶融高炉滓の温度が下がって添加物の未溶解が生じたり、スラグの粘性が上がって添加後のスラグが樋等の耐火物に付着して操業上の障害になるなどの課題が生じていた。 However, in the methods proposed in Patent Documents 1 and 2, since coal ash is added alone to the molten blast furnace soot, the coal ash lump adheres and grows on the refractory at the addition site, such as firewood and pan, Additive operation is significantly hindered, and the adhering sintered deposit mainly composed of coal ash (hereinafter also referred to as “sintered body”) causes a problem that it does not dissolve at all in the molten blast furnace flaw, making it difficult to add stable coal ash in operation. The blast furnace soot could not be continuously reformed. In addition, even if the operator adds the sintered body to which the operator has adhered, the massive sintered body that has been pushed down even after the blast furnace slag has cooled and solidified is mixed into the blast furnace slag as a foreign substance, showing a red or black color. In addition to being shunned from the above, in the blast furnace pulverization process, these massive sintered bodies were pulverized to hinder the adjustment of the particle size. Furthermore, in the method proposed in Patent Document 3, a large amount of CaO-containing material must be added for the purpose of increasing the basicity, and the temperature of the molten blast furnace after the addition decreases, resulting in undissolved additives. However, the viscosity of the slag is increased, and the slag after the addition adheres to a refractory such as a firewood and causes problems in operation.

本発明は上記課題を解決するためになされたものでありその手段1は、冷却固化される前の溶融高炉滓に添加される改質材であって、石炭灰と換算CaO量を30質量%以上含有するCa含有物の混合粉粒体であり、前記Ca含有物中の換算CaO量(Ca含有物中のCa分をCaOに換算した量)を前記石炭灰の重量に対して5〜60質量%になるように配合したことを特徴とする高炉滓の改質材である。
また、手段2は、前記Ca含有物がダスト、鉄鋼スラグ、及び産業廃棄物のいずれかである手段1の高炉滓の改質材である。
手段3は、溶融高炉滓に改質材を添加した後、冷却固化して高炉滓とするに際して、溶融高炉滓に対して手段1又は2に記載の改質材を1〜30質量%添加した後、冷却して徐冷滓又は水砕とする高炉滓の改質方法である。
手段4は、前記溶融高炉滓に前記改質材を1カ所又は複数カ所で添加し、かつ、その添加する1カ所当たりの添加量が10質量%以下である手段3記載の高炉滓の改質方法である。
The present invention has been made to solve the above problems, and means 1 is a modifier added to the molten blast furnace slag before being cooled and solidified, and the coal ash and the converted CaO amount are 30% by mass. It is a mixed granular material of the Ca-containing material contained above, and the converted CaO amount in the Ca-containing material (the amount obtained by converting the Ca content in the Ca-containing material into CaO) is 5 to 60 based on the weight of the coal ash. A blast furnace soot reforming material characterized in that it is blended in an amount of mass%.
Moreover, it means 2, the Ca-containing substance Hurghada strike a steel slag, and industrial modifier of blast furnace slag means 1 is either waste.
Means 3 is to add the modifying material described in the means 1 or 2 to 1 to 30% by mass with respect to the molten blast furnace when the solidified material is cooled and solidified after adding the modifying material to the molten blast furnace. Thereafter, it is a method for reforming a blast furnace soot that is cooled to be slowly cooled or granulated.
Means 4 is the modification of the blast furnace iron according to means 3, wherein the modifier is added to the molten blast furnace iron at one place or a plurality of places, and the addition amount per place to be added is 10% by mass or less. Is the method.

前記Ca含有物としては、生石灰、生石灰ダスト(生石灰製造プラントから発生するダスト)、石灰石、石膏等建築廃材、製糖業から排出される漂白処理後スラッジ(CaCO3 )、鉄鋼業から排出される溶銑脱燐滓、溶銑脱珪滓、転炉滓、電気炉滓、連続鋳造滓、造塊滓及びCaO含有鉱物等があり、そして、それらの粒度は溶解性の点から2mm以下のものが好ましい。もちろん、これらを複数混合して用いてもよい。
また、上記石炭灰の成分としては、その主成分であるSiO2 とAl23 の質量%の和が65%以上のものが望ましい。何故なら、SiO2 とAl23 のいずれも、高炉滓に溶けて高炉滓の融点を下げる効果が有り、より低い温度で固化するため、固化に至るまでに窒素ガス、亜硫酸ガス等の脱気がより進み、緻密で強固な高炉滓になるからである。
Examples of the Ca-containing material include quick lime, quick lime dust (dust generated from a quick lime production plant), limestone, gypsum and other construction waste, sludge after bleaching treatment (CaCO 3 ) discharged from the sugar industry, and hot metal discharged from the steel industry. There are dephosphorizing iron, hot metal desiliconizing iron, converter iron, electric furnace iron, continuous casting iron, ingot iron, CaO-containing mineral, etc., and the particle size thereof is preferably 2 mm or less from the viewpoint of solubility. Of course, a mixture of these may be used.
As the component of the coal ash, mass% of the sum of SiO 2 and Al 2 O 3 which is a main component is preferable not less than 65%. This is because both SiO 2 and Al 2 O 3 have the effect of lowering the melting point of the blast furnace slag by melting in the blast furnace slag and solidify at a lower temperature, so that nitrogen gas, sulfurous acid gas, etc. are removed before solidification. This is because the spirit is more advanced and it becomes a dense and strong blast furnace.

本発明によれば、改質材の焼結体塊状化を抑制できるので、これら塊状焼結体の耐火物への付着成長及び未溶解等の操業上のトラブルが無く、改質材が容易に溶融高炉滓に添加可能となると共に溶融高炉滓にスムーズに溶解することから、冷却固化後の高炉滓が緻密となり比重が増大して、高炉滓の付加価値が高まり、用途も拡大する等の効果を有するものであり、この分野にもたらす効果は極めて大きい。 According to the present invention, since agglomeration of the sintered body of the reforming material can be suppressed, there are no operational troubles such as adhesion growth and undissolution of the massive sintered body on the refractory, and the reforming material can be easily obtained. Since it can be added to the molten blast furnace slag and melts smoothly into the molten blast furnace slag, the blast furnace slag after cooling and solidification becomes dense, the specific gravity increases, the added value of the blast furnace slag increases, and the use is expanded. The effect brought about in this field is extremely large.

以下、本発明の実施の形態を詳細に説明する。
本発明者らは、石炭灰を単身で溶融高炉滓に添加すると、前記のように石炭灰の耐火物への付着問題が顕在化し、その形態になった石炭灰は溶融高炉滓に溶けなくなるため、その原因を調査にするために、小型坩堝内の溶融高炉滓に石炭灰を単身添加する実験を行った。
この実験は高炉から排出した高炉滓を小型坩堝にて溶解し、そこに表1に示す成分を有する石炭灰を溶融高炉滓の6質量%に相当する量添加して、溶解の様子を観察した。その結果、添加された石炭灰は溶融高炉滓にはなかなか溶けず、塊状に成長して坩堝壁に付着するか溶融高炉滓の上部表面に浮上した儘となった。
Hereinafter, embodiments of the present invention will be described in detail.
When the present inventors add coal ash alone to the molten blast furnace slag, as described above, the problem of adhesion of coal ash to the refractory material becomes obvious, and the coal ash in that form cannot be dissolved in the molten blast furnace slag. In order to investigate the cause, an experiment was conducted in which coal ash was added alone to the molten blast furnace in a small crucible.
In this experiment, the blast furnace slag discharged from the blast furnace was melted in a small crucible, and coal ash having the components shown in Table 1 was added thereto in an amount corresponding to 6% by mass of the molten blast furnace slag, and the state of melting was observed. . As a result, the added coal ash did not readily melt in the molten blast furnace slag, and it grew into a lump and adhered to the crucible wall or became a soot that floated on the upper surface of the molten blast furnace slag.

Figure 0004436153
Figure 0004436153

本発明者らは、この現象のメカニズムを解明するため、添加した石炭灰の未溶解部(坩堝付着部)を採取し、光学顕微鏡調査及びX線回折調査を行った。
その光学顕微鏡調査から、この未溶解石炭灰は極めて気孔の多い、「断熱煉瓦」状の形態をしており、更に、X線回折調査から、未溶解石炭灰中に(1)Mullite(ムライト、3Al23 ・2SiO2 :融点は1934℃)及び(2)Cristobalite(クリストバライト、SiO2 :融点は1734℃)が存在している事が確認された。即ち、石炭灰が溶融高炉滓に添加されると溶融高炉滓の熱で加熱され、上記(1)及び(2)の極めて高融点の結晶体が新たに生成している事が判明した。
In order to elucidate the mechanism of this phenomenon, the present inventors collected an undissolved portion (crucible adhering portion) of the added coal ash, and performed an optical microscope survey and an X-ray diffraction survey.
From the optical microscope investigation, this undissolved coal ash is in the form of “insulated brick” with a lot of pores. Furthermore, from the X-ray diffraction investigation, (1) Mullite (mullite, 3Al 2 O 3 .2SiO 2 : melting point 1934 ° C.) and (2) Cristobalite (Cristobalite, SiO 2 : melting point 1734 ° C.) were present. That is, it was found that when coal ash was added to the molten blast furnace slag, it was heated by the heat of the molten blast furnace slag, and the extremely high melting point crystals of the above (1) and (2) were newly generated.

これらの高融点結晶体(固体)は、石炭灰の一部溶けた融液をバインダーとして焼結反応を起こして焼結体として成長し、耐火物に付着したり、「断熱煉瓦」状の気孔の多い塊状形態となるために伝熱律速(熱がなかなか伝わらない)により上記焼結体の塊が未溶解で残存することが判明した。これら焼結体には上記の極めて融点の高い結晶体が多量に存在するため、この焼結体自身が1500℃程度の溶融高炉滓にはもはや溶けない強固なものになっている事も判明した。 These high-melting-point crystals (solid) grow as a sintered body by using a melt in which coal ash is partly melted as a binder, grow as a sintered body, adhere to refractories, and form pores in the form of “insulating bricks” Therefore, it was found that the sintered compact lump remains undissolved by heat transfer rate control (heat is not easily transmitted). Since these sintered bodies contain a large amount of the above-mentioned crystals having a very high melting point, it has also been found that the sintered bodies themselves are strong and can no longer be melted in a molten blast furnace at about 1500 ° C. .

そこで、本発明者らは、上記の高融点結晶体が生成しない為の方策を実験、検討を重ねた。この結果、Ca含有物を石炭灰に添加すると該石炭灰が高炉滓にスムーズに溶解し、前記(1)及び(2)を含む焼結体の生成が殆ど認められなくなる事を発見した。
これは、CaOを加える事により改質材の成分がSiO2 −Al23 −CaOの3元系酸化物となるため、石炭灰を単身添加した際に生成したSiO2 −Al23 の2元系酸化物に起因する前記(1)及び(2)の高融点結晶体の生成とそれらの焼結体の成長が抑制される効果によるものと判明した。すなわち、CaOを加えた石炭灰を添加した後に冷却固化した高炉滓には上記焼結体は全く生成しておらず、添加物が溶融高炉滓に均一に溶解していることが、顕微鏡観察により明らかとなった。
また、上記改質材を粒径1mm〜10mm程度の粒状に成形して添加しても、粉体と全く同じように問題無く溶融高炉滓に溶解することも確認した。
なお、Ca含有物のCaの形態としては、CaO以外に石灰石に代表されるCaCO3 、石膏に代表されるCaSO4 が有るが、これらは溶融高炉滓への添加時の温度では熱分解して形態がCaOに変わり、元々CaOの形態のCa含有物と同等の効果を発揮する。
Therefore, the present inventors have experimented and studied measures for preventing the above-mentioned high melting point crystal from being formed. As a result, it was discovered that when Ca-containing material is added to coal ash, the coal ash is smoothly dissolved in the blast furnace soot, and the formation of the sintered body containing (1) and (2) is hardly recognized.
This is because, by adding CaO, the component of the modifier becomes a ternary oxide of SiO 2 —Al 2 O 3 —CaO, and thus SiO 2 —Al 2 O 3 produced when coal ash is added alone. It has been found that this is due to the effect of suppressing the formation of the high-melting-point crystals of (1) and (2) and the growth of those sintered bodies due to the binary oxide. That is, the sintered body was not formed at all in the blast furnace slag that had been cooled and solidified after adding the coal ash to which CaO was added, and it was confirmed by microscopic observation that the additive was uniformly dissolved in the molten blast furnace slag. It became clear.
Further, it was confirmed that even when the modifier was added after being formed into granules having a particle size of about 1 mm to 10 mm, it was dissolved in the molten blast furnace without any problem just like the powder.
In addition to CaO, there are CaCO 3 typified by limestone and CaSO 4 typified by gypsum, which are pyrolyzed at the temperature at the time of addition to the molten blast furnace. The form changes to CaO and exhibits the same effect as the Ca-containing material originally in the form of CaO.

また、上記改質材を添加した後に、冷却固化した高炉滓は、気泡が極めて少ない緻密なスラグとなっており、改質材を添加しない従来の高炉滓に比較して比重が重くて硬い強固なスラグになっており、高品質であるし、景観材料等の新規用途としての活用が可能であることが判明した。 In addition, the blast furnace slag that has been cooled and solidified after the addition of the above-mentioned reformer is a dense slag with extremely few bubbles, and has a higher specific gravity and is harder and harder than the conventional blast furnace slag without the addition of a reformer. It has been found that the slag has a high quality and can be used for new uses such as landscape materials.

更に、本発明者らは、Ca含有物による効果発現の条件を明確にするために、石炭灰とCa含有物との配合粉粒体(混合粉粒体)である改質材に具備すべき分条件を明らかにするために、前述した小型坩堝を用いて系統的な実験を重ねた。 Furthermore, the present inventors should equip with the modifier which is a compounding granular material (mixed granular material) of coal ash and Ca containing material in order to clarify the conditions of the effect expression by Ca containing material. In order to clarify the minute conditions, systematic experiments were repeated using the small crucible described above.

先ず、石炭灰に配合するCa含有物中の換算CaO量の割合を種々変更した改質材を用いて焼結体の生成状態を確認する実験を行い図1に示す結果を得た。
なお、この際に改質材に使用した石炭灰は上記表1に示す成分と含有量を有するものであり、更に、Ca含有物としては表2に示す成分と含有量を有する溶銑脱燐滓で、この改質材を添加する溶融高炉滓の温度は1450℃とした。また、溶融高炉滓に対する改質材の添加量は10質量%とした。
First, an experiment for confirming the production state of the sintered body was performed using the modifiers in which the ratio of the converted CaO amount in the Ca-containing material to be blended with the coal ash was changed, and the results shown in FIG. 1 were obtained.
The coal ash used for the modifier at this time has the components and contents shown in Table 1 above, and the Ca-containing material contains hot metal dephosphorized iron having the components and contents shown in Table 2. Therefore, the temperature of the molten blast furnace to which this modifier was added was 1450 ° C. Further, the amount of the modifier added to the molten blast furnace slag was 10% by mass.

Figure 0004436153
Figure 0004436153

図1からわかるように、石炭灰に対してCa含有物の換算CaO量の配合割合が5質量%未満だと、石炭灰の中のSiO2 分とAl23 分から生成される高融点結晶の焼結体の成長を抑制することができず、坩堝壁への付着或いは塊状のまま溶けずに溶融高炉滓の上面に浮上、残留して未溶解として残る石炭灰の割合が多く、操業上、又は高炉滓の品質上好ましくない。一方、配合割合が60質量%を超えると、焼結体の塊状化成長は抑制できるが、換算CaO量過多による改質材の未溶解が生ずる。
従って、石炭灰に対するCa含有物の換算CaO量の配合割合は5〜60質量%が好ましい。
As can be seen from FIG. 1, when the blending ratio of the Ca content equivalent to Ca ash is less than 5% by mass with respect to coal ash, refractory crystals generated from SiO 2 and Al 2 O 3 in coal ash. It is difficult to suppress the growth of the sintered body, and there is a large proportion of coal ash that remains on the upper surface of the molten blast furnace without adhering to the crucible wall or melting as a lump and remaining undissolved. Or, it is not preferable in terms of the quality of the blast furnace. On the other hand, when the blending ratio exceeds 60% by mass, the agglomeration growth of the sintered body can be suppressed, but the undissolved material of the modifying material due to an excessive amount of converted CaO occurs.
Therefore, the blending ratio of the converted CaO amount of the Ca-containing material to the coal ash is preferably 5 to 60% by mass.

更に、Ca含有物の換算CaO量が少な過ぎると、多量の改質材を溶融高炉滓に添加する必要も発生することの懸念から、本発明者らは種々のCa含有物(例えば、ダスト、鉄鋼スラグ、産業廃棄物等)を使った実験を重ねた。この結果、Ca含有物の換算CaO量が30質量%以上含有することが好ましいことが判明した。30%未満では、改質材中のCaO以外の成分が溶融高炉滓に多量混入するために、改質材を高炉滓に添加した際の温度降下が大きくなるし、本来の石炭灰を主成分とする改質材としての効果が十分に得られず、好ましくない。 Furthermore, since there is a need to add a large amount of a modifier to the molten blast furnace furnace when the converted CaO amount of the Ca-containing material is too small, the present inventors have various Ca-containing materials (for example, dust, Experiments using steel slag, industrial waste, etc.) were repeated. As a result, it has been found that the Ca-containing material preferably has a reduced CaO content of 30% by mass or more. If it is less than 30%, components other than CaO in the reforming material are mixed in a large amount in the molten blast furnace so that the temperature drop when adding the reforming material to the blast furnace becomes large, and the original coal ash is the main component. It is not preferable because the effect as a modifier is not sufficiently obtained.

また、図2は、溶融高炉滓に対する本発明の改質材の添加比率と冷却固化後の高炉滓の比重測定値との関係を示す図である。改質材添加比率が1質量%未満だと、冷却固化後の高炉滓の比重の増加が僅かであるが、1質量%を超えると改質材の効果が発現して比重が大幅に増大する。しかし、改質材の添加比率が30質量%を超えると、高炉滓の比重は増大する反面、改質材の顕熱による溶融高炉滓の温度低下が著しくなり、操業に支障をきたす。すなわち、高融点結晶体の生成は無いが、低温の為に溶融高炉滓の耐火物への付着残留傾向が強くなり、操業後の耐火物メンテナンスの負荷が大きくなる。従って、溶融高炉滓に対する本発明の改質材添加比率は1〜30質量%である。
なお、この知見は小型坩堝でのラボテストのみでなく、実炉試験においても全く同様な結果が確認された。
ここで、図2の縦軸は、高炉滓を乾燥した後の嵩比重を測定したものであり、絶乾比重が大きくなる程、それと対応して吸水率も低減するメリットが得られる。
Moreover, FIG. 2 is a figure which shows the relationship between the addition ratio of the modifier of this invention with respect to a molten blast furnace slag, and the specific gravity measured value of the blast furnace slag after cooling solidification. If the modifier addition ratio is less than 1% by mass, the increase in specific gravity of the blast furnace after cooling and solidification is slight, but if it exceeds 1% by mass, the effect of the modifier is manifested and the specific gravity increases significantly. . However, if the addition ratio of the reforming material exceeds 30% by mass, the specific gravity of the blast furnace slag increases, but the temperature of the molten blast furnace slag decreases due to the sensible heat of the reforming material, which hinders operation. That is, although there is no generation of a high melting point crystal, the tendency to adhere to the refractory of the molten blast furnace is increased due to the low temperature, and the load of refractory maintenance after operation increases. Therefore, the modifier addition ratio of the present invention relative to the molten blast furnace is 1 to 30% by mass.
This finding was confirmed not only in a laboratory test using a small crucible but also in an actual furnace test.
Here, the vertical axis in FIG. 2 is obtained by measuring the bulk specific gravity after drying the blast furnace slag, and as the absolute dry specific gravity increases, the merit that the water absorption rate is correspondingly reduced can be obtained.

改質材の添加量が多い場合は、1カ所に集中添加するよりも、溶融高炉滓と改質材の接触面積を大きくするために、改質材を溶融高炉滓中に添加する位置を複数カ所とすることが局部温度低下に伴う耐火物への付着を防止すると共に添加した改質材の溶解を加速させる観点から好ましい。その1カ所当たりの添加量としては、高炉滓に対して10質量%以下が好ましい。 When there is a large amount of modifier added, multiple locations where modifiers are added to the molten blast furnace slag in order to increase the contact area between the molten blast furnace slag and the modifier rather than concentrated addition at one location. It is preferable from the viewpoint of preventing the adhesion to the refractory accompanying the local temperature drop and accelerating the dissolution of the added modifier. The addition amount per one is preferably 10% by mass or less with respect to the blast furnace.

溶融高炉滓への改質材の添加は、高炉の出銑孔から冷却ピットまでにおいて高炉滓が溶融状態に有る場所ならば、どこを利用しても構わない。例えば、出銑孔からスキンマ(溶銑と高炉滓を分離する装置)までの大樋、分離した後のノロ樋(滓樋)或いは溶融高炉滓中の粒鉄を回収する為の流銑鍋(流銑鉢とも称す)、更に、徐冷滓にする場合はピットへの落ち口やピット内に添加しても構わない。溶融高炉滓を搬送する滓鍋に添加しても構わない。また、これらの場所を複数使用しても構わない。添加方式としては、上方から粉粒状で投入しても良いし、粉体状態でスラグ中に吹き込んでも構わない。 The addition of the modifying material to the molten blast furnace slag may be performed anywhere as long as the blast furnace slag is in a molten state from the blast furnace outlet hole to the cooling pit. For example, a large bowl from the tap hole to the skinma (a device that separates the molten iron and the blast furnace), a non-rolled rice cake (seed) after separation, or a ladle for collecting granular iron in the molten blast furnace cake (fluid) In addition, it may be added to the pit or the pit when it is gradually cooled. You may add to the ladle which conveys a molten blast furnace firewood. A plurality of these locations may be used. As an addition method, it may be added in powder form from above, or may be blown into the slag in a powder state.

以下、本発明の実施例について図3を参照して詳細に説明する。
1.実機での改質材添加方法
溶鉱炉から排出された溶融高炉滓がドライピット或いは水砕設備8に到着するまでの流路に、Ca含有物を混合した石炭灰からなる改質材を添加し、徐冷滓又は水砕にした。高炉1の下部に設けられた出銑口2から溶銑と共に流れ出る溶融高炉滓に対して、図3の黒丸印で示した位置で改質材を添加した。すなわち、大樋3、スキンマ4で溶銑と溶融高炉滓を分離した後の滓樋5、溶融高炉滓中の流銑を回収するための容器である流銑鍋6、水砕設備8の直前の水砕・放流樋7、放流ピット9のピット落ち口10、そして放流ピット9内のいずれかの場所を、改質材添加量に応じて改質材添加場所とした。
2.溶融高炉滓の化学成分
表3に示す化学成分の溶融高炉滓に上述の如く改質材を添加した。
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG.
1. Reformer addition method in actual machine Add the reformer made of coal ash mixed with Ca-containing material to the flow path until the molten blast furnace slag discharged from the blast furnace arrives at the dry pit or the granulation facility 8, Slow cooling or water granulation was performed. A reformer was added to the molten blast furnace slag flowing together with the molten iron from the slag opening 2 provided at the bottom of the blast furnace 1 at the position indicated by the black circles in FIG. That is, the water 5 immediately after separating the molten iron from the molten blast furnace slag 5 with the large slag 3 and skinma 4, the smelting pan 6 which is a container for recovering the molten smelt in the molten blast furnace slag Any place in the crushing / release basin 7, the pit drop 10 of the release pit 9 and the release pit 9 was used as a modifier addition site according to the amount of modifier addition.
2. Chemical component of molten blast furnace slag As described above, the modifier was added to the molten blast furnace slag having chemical components shown in Table 3.

Figure 0004436153
Figure 0004436153

3.使用した石炭灰の化学成分
表1に記載した成分の石炭灰を使用した。
4.使用したCa含有物の化学成分
Ca含有物は、表4の欄外に示す主成分を有するものを使用した。なお、溶銑脱燐滓は表2に記載した成分と同じである。
その結果を具体的に表4、表5に示す。
3. Chemical composition of coal ash used Coal ash having the components described in Table 1 was used.
4). As the chemical component Ca-containing material of the Ca-containing material used, one having the main components shown in the column of Table 4 was used. The hot metal dephosphorization is the same as the components described in Table 2.
The results are specifically shown in Tables 4 and 5.

Figure 0004436153
Figure 0004436153

Figure 0004436153
Figure 0004436153

表4、表5は、本発明例及び比較例を示したものであり、実施例1〜実施例10は、本発明の条件の範囲内であることから、改質材添加に伴う耐火物への付着物(未溶解焼結体の生成、成長或いは温度低下増大に伴う溶融高炉滓の樋内面或いは流銑鍋内面の耐火物への付着)起因の操業トラブルを惹起すること無く、改質材を継続添加でき、これにより、石炭灰の未溶解比率も低く抑えられ、比重の大きい高炉滓が得られた。なお、実施例8の滓搬送鍋とは、図3の流銑鍋6から流出した溶融高炉滓を収容して、他の場所に搬送する鍋(図示せず)である。 Tables 4 and 5 show examples of the present invention and comparative examples. Examples 1 to 10 are within the range of the conditions of the present invention. Reducing material without causing operational troubles due to deposits (adhering to the refractory on the inner surface of the molten blast furnace or the inner surface of the ladle as the unmelted sintered body forms, grows or decreases in temperature) As a result, the undissolved ratio of coal ash was kept low, and a blast furnace slag with high specific gravity was obtained. In addition, the firewood conveyance pot of Example 8 is a pot (not shown) which accommodates the molten blast furnace fired which flowed out from the floating heat pot 6 of FIG. 3, and conveys it to another place.

一方、比較例1及び比較例5では、改質材の石炭灰へのCa含有物中の換算CaOの配合比率が本発明範囲の下限を外れた為に、石炭灰が溶融高炉滓にスムーズに溶融せずに高融点結晶の焼結体が生成し、改質材添加による改質効果が得られず、いずれも比重が小さい高炉滓になってしまった。
比較例2は、比較例1とは逆に石炭灰へのCa含有物中換算CaOの配合比率が本発明範囲の上限を外れる多量配合となっているため、焼結体の生成は無いものの改質材を構成する粒子同士が十分に溶け合わず、未溶解物が残留して、改質効果が十分得られず、冷却後の高炉滓の比重は低い値となった。
比較例3は、改質材の溶融高炉滓への添加量が本発明範囲の下限を外れた為に、改質材による改質効果が不足して高炉滓の比重は小さいものであった。
また、比較例4は、比較例3とは逆に改質材の溶融高炉滓への添加量が本発明範囲の上限を外れた為に、該改質材に奪われる顕熱が大きくなり、溶融高炉滓の改質材添加部分の温度が局部的に大きく下がり、改質材は溶けるものの添加後の溶融高炉滓の粘性が上がり、改質材添加後の大樋や流銑鍋の内面耐火物への溶融高炉滓の付着量が増大して、処理後の付着スラグ除去等、煩雑な作業を伴うことになり、操業上の支障が生じた。比較例6は、Ca含有物中の換算CaO含有量が10.7質量%と低いため、CaO以外の成分が溶融高炉滓に多量混入するために、改質材を添加した際の温度降下が大きくなり、操業上の支障をきたし、石炭灰を主成分とする改質材としての効果が十分に得られず、比重は小さい物となった。
On the other hand, in Comparative Example 1 and Comparative Example 5, since the blending ratio of the converted CaO in the Ca-containing material to the coal ash of the reforming material deviated from the lower limit of the scope of the present invention, the coal ash smoothly moved into the molten blast furnace slag. A sintered body of a high melting point crystal was formed without melting, and no reforming effect was obtained by the addition of a modifier, and both became blast furnaces with a low specific gravity.
Contrary to Comparative Example 1, Comparative Example 2 is a large amount of Ca containing compounded CaO to coal ash that is out of the upper limit of the range of the present invention. The particles constituting the material were not sufficiently melted together, undissolved material remained, a sufficient reforming effect was not obtained, and the specific gravity of the blast furnace after cooling was low.
In Comparative Example 3, the amount of the reformer added to the molten blast furnace slag deviated from the lower limit of the range of the present invention, so that the reforming effect by the modifier was insufficient and the specific gravity of the blast furnace slag was small.
Further, in contrast to Comparative Example 3, the amount of modification material added to the molten blast furnace slag deviates from the upper limit of the range of the present invention, so that the sensible heat taken away by the modification material increases. The temperature of the part where the modifier is added in the molten blast furnace drastically decreases locally, but the modifier melts, but the viscosity of the molten blast furnace bowl after the addition increases, and the inner surface refractory of the large bowl and the potato pan after the addition of the modifier The adhesion amount of the molten blast furnace slag increased to a complicated operation such as the removal of the adhered slag after the treatment, resulting in operational problems. In Comparative Example 6, since the converted CaO content in the Ca-containing material is as low as 10.7% by mass, components other than CaO are mixed in a large amount in the molten blast furnace so that the temperature drop when the modifier is added is low. It became large, causing trouble in operation, and the effect as a reformer mainly composed of coal ash was not obtained, and the specific gravity was small.

石炭灰に対するCa含有物中の換算CaO量の配合割合と石炭灰未溶解比率の関係を示す説明図である。It is explanatory drawing which shows the relationship between the mixture ratio of the conversion CaO amount in the Ca containing material with respect to coal ash, and a coal ash undissolved ratio. 溶融高炉滓に対する改質材の添加比率と高炉滓の絶乾比重との関係を示す説明図である。It is explanatory drawing which shows the relationship between the addition ratio of the modifier with respect to a molten blast furnace slag, and the absolute dry specific gravity of a blast furnace slag. 本発明の一実施例に係る高炉滓の改質方法において溶融高炉滓に改質材を添加する位置を示す説明図である。It is explanatory drawing which shows the position which adds a modifier to a molten blast furnace slag in the reforming method of blast furnace slag concerning one Example of this invention.

符号の説明Explanation of symbols

1:高炉、2:出銑口、3:大樋、4:スキンマ、5:滓樋、6:流銑鍋、7:水砕・放流樋、8:水砕設備、9:放流ピット、10:ピット放流口 1: Blast furnace, 2: Outlet, 3: Large bowl, 4: Skinma, 5: Fence, 6: Floating pan, 7: Granulation / release basin, 8: Granulation equipment, 9: Discharge pit, 10: Pit outlet

Claims (4)

冷却固化される前の溶融高炉滓に添加される改質材であって、石炭灰と換算CaO量を30質量%以上含有するCa含有物の混合粉粒体であり、前記Ca含有物中の換算CaO量を前記石炭灰の重量に対して5〜60質量%になるように配合したことを特徴とする高炉滓の改質材。 It is a modifier added to the molten blast furnace before cooling and solidification, and is a mixed granular material of Ca-containing material containing 30% by mass or more of coal ash and converted CaO amount, in the Ca-containing material A reformer for a blast furnace soot having a converted CaO amount of 5 to 60 mass% based on the weight of the coal ash. 前記Ca含有物がダスト、鉄鋼スラグ、及び産業廃棄物のいずれかであることを特徴とする請求項1記載の高炉滓の改質材。 The Ca-containing substance Hurghada strike, steel slag, and industrial waste modifier blast slag according to claim 1, characterized in that either. 溶融高炉滓に改質材を添加した後、冷却固化して高炉滓とするに際して、溶融高炉滓に対して請求項1又は2に記載の改質材を1〜30質量%添加した後、冷却して徐冷滓又は水砕とすることを特徴とする高炉滓の改質方法。 After adding the modifying material to the molten blast furnace slag and then cooling and solidifying to make the blast furnace slag, after adding 1 to 30% by mass of the modifying material according to claim 1 or 2 to the molten blast furnace slag, cooling Then, a method for reforming a blast furnace slag is characterized by being gradually cooled or granulated. 前記溶融高炉滓に前記改質材を1カ所又は複数カ所で添加し、かつ、その添加する1カ所当たりの添加量が10質量%以下であることを特徴とする請求項3記載の高炉滓の改質方法。 The blast furnace slag according to claim 3, wherein the modifier is added to the molten blast furnace slag at one place or a plurality of places, and the addition amount per place to be added is 10% by mass or less. Modification method.
JP2004040288A 2004-02-17 2004-02-17 Blast furnace slag reformer and its reforming method Expired - Lifetime JP4436153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040288A JP4436153B2 (en) 2004-02-17 2004-02-17 Blast furnace slag reformer and its reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040288A JP4436153B2 (en) 2004-02-17 2004-02-17 Blast furnace slag reformer and its reforming method

Publications (2)

Publication Number Publication Date
JP2005231918A JP2005231918A (en) 2005-09-02
JP4436153B2 true JP4436153B2 (en) 2010-03-24

Family

ID=35015266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040288A Expired - Lifetime JP4436153B2 (en) 2004-02-17 2004-02-17 Blast furnace slag reformer and its reforming method

Country Status (1)

Country Link
JP (1) JP4436153B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114057403A (en) * 2021-11-29 2022-02-18 西安热工研究院有限公司 Modification and tempering method for slag liquid of double-U-shaped liquid slag discharging boiler

Also Published As

Publication number Publication date
JP2005231918A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
US4124404A (en) Steel slag cement and method for manufacturing same
JP2005306654A (en) Reforming method for steelmaking slag and reformed steelmaking slag
JP2000169136A (en) Synthetic calcium silicate and mold powder for continuous casting of steel using the same
JP4081427B2 (en) Blast furnace reforming method
JP4436153B2 (en) Blast furnace slag reformer and its reforming method
WO2015131438A1 (en) Device for online modification of thermal-state smelting slag
JP2006315907A (en) Blast furnace slag aggregate using coal ash
JP4318534B2 (en) Treatment method of fly ash using blast furnace slag
JP2021084844A (en) Manufacturing method of aggregate, coarse aggregate and fine aggregate
JP2008261038A (en) Treatment method for melting and reforming steelmaking slag
TWI843517B (en) Direct-reduction iron melting method, solid iron and method for producing solid iron, civil engineering and construction material and method for producing civil engineering and construction material, and direct-reduction iron melting system
JPH0699699B2 (en) Melting point depressant for coal ash
TWI844330B (en) Direct-reduction iron melting method, solid iron and method for producing solid iron, civil engineering and construction material and method for producing civil engineering and construction material
JP7095674B2 (en) How to make concrete
JP5910542B2 (en) Hot metal manufacturing method using vertical melting furnace
KR100668792B1 (en) Vanadium dioxide ingot for substituting ferro-vanadium and method of producing the same
WO2023204063A1 (en) Method for melting direct reduction iron, solid iron and method for manufacturing solid iron, material for civil engineering and construction, method for producing material for civil engineering and construction, and system for melting direct reduction iron
WO2023204069A1 (en) Method for melting direct-reduced iron, solid iron and method for producing solid iron, and civil engineering and construction material and method for producing civil engineering and construction material
JP3800467B2 (en) Method for producing stone by melting waste
JP2007204825A (en) Method for producing molten iron
JPH09156991A (en) Method for producing artificial rock from molten slag of baked ash and apparatus therefor
EP2737091A1 (en) Method and device for treating a molten slag
TW202405194A (en) Fine slag made by refractory material and method of making the same
RU2087544C1 (en) Method of desulfirization of pig iron and charge for production of slag desulfurizer
JP2016084499A (en) Powdery lime for refining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091225

R151 Written notification of patent or utility model registration

Ref document number: 4436153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350