JP4432007B2 - Two-fluid flow control valve device - Google Patents

Two-fluid flow control valve device Download PDF

Info

Publication number
JP4432007B2
JP4432007B2 JP31910999A JP31910999A JP4432007B2 JP 4432007 B2 JP4432007 B2 JP 4432007B2 JP 31910999 A JP31910999 A JP 31910999A JP 31910999 A JP31910999 A JP 31910999A JP 4432007 B2 JP4432007 B2 JP 4432007B2
Authority
JP
Japan
Prior art keywords
valve
flow rate
fluid
bypass
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31910999A
Other languages
Japanese (ja)
Other versions
JP2001129092A (en
Inventor
徹雄 阿部
平八 安川
光教 石井
征洋 小玉
信彦 酒見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikki Co Ltd
Original Assignee
Nikki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Co Ltd filed Critical Nikki Co Ltd
Priority to JP31910999A priority Critical patent/JP4432007B2/en
Publication of JP2001129092A publication Critical patent/JP2001129092A/en
Application granted granted Critical
Publication of JP4432007B2 publication Critical patent/JP4432007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanically-Actuated Valves (AREA)
  • Multiple-Way Valves (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は二種類の流体を混合して目的物に供給するにあたり、各流体の流量をほぼ一定比率に調節するとともに一方の流体の最小流量を確保する機能を具えた流量調節弁装置、殊に患者への麻酔ガス供給に好適な流量調節弁装置に関するものである。
【0002】
【従来の技術】
例えば、手術を受ける患者の呼吸器系に供給する麻酔用のフレッシュガスは、酸素と麻酔ガスを例えば1:3の比率で混合したものとし、且つ必要とする麻酔の程度に応じて供給量を調節している。この場合、酸素と麻酔ガスとを互いに連動する二つの流量調節弁によって所定の比率を維持させながら流量調節し、それらの混合物であるフレッシュガスの量を調節するのが一般的な供給量調節方法である。
【0003】
一方、患者の体内では生命維持のため毎分200乃至300mlの酸素が消費されるものであり、そのために例えば毎分250mlの酸素を確保すると、1:3の比率とした麻酔ガスは毎分750ml供給されることとなる。ここで、低麻酔をかけるため麻酔ガスの流量を減少させると、連動して酸素の流量も減少し、フレッシュガス流量を例えば毎分500mlにすると、酸素は毎分125mlとなって不足してしまう。
【0004】
その対策として、互いに連動する二つの流量調節弁の内で酸素側の流量制御弁にバイパスを設け、両流量制御弁が開弁をはじめるよりも早くバイパスが開いて生命維持に必要な量の酸素を確保してから開弁を開始させることが第2873929号特許公報に開示されている。
【0005】
前記第2873929号公報に開示されている流量調節弁装置は、図7に概略的に示したように酸素用の第一流量調節弁81と麻酔ガス用の第二流量調節弁91とを弁座82,92,弁体83,93,弁棒84,94,ばね85,95を有し一個の弁本体101に平行に並べて配置したものとしている。弁本体101に螺装した弁棒84,94の一方を回転させることによりもう一方も連動歯車機構102によって回転し、ねじ込み方向へ回転すると弁体83,93が弁座82,92に着座した閉弁状態でばね85,95を圧縮して弁座82,92を後退させる。これにより、酸素および麻酔ガスの各流入口87,97,流出口88,98は互いに遮断される。
【0006】
弁棒84,94を弁本体101から抜き出す方向へ回転させると、ばね85,95のばね力により弁座82,92は弁体83,93と一体に閉弁状態を保持してストッパ86,96に当たるまで移動する。第一流量制御弁81の弁座82が収容されている室の流入口87に近い部分と流出口88の適所とはバイパス103にによって接続されており、弁座82が流入口87側の室端面に接した状態からストッパ86に向かって移動を開始するとバイパス103が開いて酸素が流出管104から混合室106を通って患者へと流れる。
【0007】
弁座82,92がストッパ86,96に当たった後も弁棒84,94を抜き出し方向へ回転させると、弁体83,93が弁座82,92から離間して開弁を開始し、麻酔ガスが流出管105から混合室106を通り酸素とともに患者に送られる。このことにより、各流量調節弁81,91の小開度域で、患者の生命維持に必要な量の酸素をバイパス103によって確保したうえで、麻酔ガスを少量として低麻酔にすることを可能としようとするものである。
【0008】
即ち、前記の流量調節弁装置によると、酸素確保のためのバイパス103は弁座82が移動することによって開閉するものであり、弁座82が流入口87を閉止した位置から少し離れたときバイパス103が開きはじめ、弁座82がストッパ86に当たったときバイパス103が全開状態に開放され必要量の酸素が供給されるようになる。
【0009】
【発明が解決しようとする課題】
前記の酸素確保のためのバイパスは弁座の移動量、即ち弁棒の回転数に1:1で対応した開度とされるものであり、麻酔ガスが流れはじめるとき全開とされていることが必要である。従って、弁座を収容した室へのバイパスの開口位置と開口大きさとを適正に設定する必要があり、設計および加工が面倒である。加えて、弁座の外側周面に装着した気密保持用のOリングが、移動の都度バイパスの開口縁に接触して摺動するので傷付きやすく、気密保持機能を低下させて閉止時に漏れを生じさせる、という心配がある。
【0010】
本発明は前記の酸素で例示した第一流体と麻酔ガスで例示した第二流体とをほぼ一定比率の流量に調節し、且つ少流量域では第一流体の最小流量を確保するようにした流量調節弁装置がもっている、第一流体確保用のバイパスの設定および加工が面倒である、第一流体の閉止時における気・液密保持が損なわれる心配がある、という前記課題を解決し、第一流体の最小流量を容易に確保することができるとともに閉止時の気・液密性を損う心配がないものとすることを目的とする。
【0011】
【課題を解決するための手段】
本発明は弁棒の先端に設けた弁体が弁座に対し回転しながら移動して開閉動作することにより第一流体と第二流体の流量を連動して制御する第一流量調節弁および第二流量調節弁と、第一流量調節弁が設けられている第一流体の流路に付設したバイパスとを具え、二つの流量調節弁は閉止位置から開弁方向へ動作するとき初期段階で閉弁状態を保持し、その間にバイパスが開放されて第一流体の最小流量を確保するようにした二種流体の流量調節弁装置について、前記課題を次の手段によって解決させることとした。
【0012】
即ち、二つの流量調節弁を弁棒のそれぞれに設けた円形の歯車およびこれらに噛み合って直線往復動するラックからなる連動機構により互いに連動して開閉動作させるものとした。また、バイパスには弁座に対し弁体が直線移動する開閉弁を設け、この開閉弁の弁体はラックに形成したカムにより動作して流量調節弁が閉弁位置のときバイパスを閉止し開弁方向へ動作を開始したときバイパスを開放するようにした。
【0013】
このように、バイパスを流量調節弁ではなく別途に設けた開閉弁で開閉するものとし、且つ調節弁の弁体の移動量をラックに設けるカムの形状に応じ拡大して開閉弁の弁体を動作させることができるので、速やかに所定の最小流量を確保させることが可能となり、またバイパスの設定および加工がきわめて簡単になるとともに、閉止時の気・液密性を損なう心配が解消されるものである。
【0014】
【発明の実施の形態】
図面を参照して本発明の実施の形態を説明すると、第一流体の流量を制御する第一流量調節弁11と第二流体の流量を制御する第二流量調節弁31とは共通の弁本体1に平行に並べて配置されている。
【0015】
これら二つの流量調節弁11,31は弁本体1に形成した取付孔12,32にねじ込み嵌装して固定した内筒体13,33に弁座14,34を摺動可能に嵌め込むとともにばね押え15,35をねじ込み固定し、弁座14,34とばね押え15,35との間に圧縮コイルばねからなる押ばね16,36を装入している。また、基端につまみ19,39を有するとともに先端に針状乃至円錐状の弁体20,40を設けた弁棒17,37が、中間部分に形成したねじ部18,38を弁本体1に螺装し先端部分を取付孔12,32に突出させて設置されている。
【0016】
内筒体13,33の奥端には内向きフランジ状のストッパ21,41が形成されており、弁座14,34が弁棒17,37に押され押ばね16,36を圧縮してストッパ21,41から離間し、弁座14,34の弁孔22,42を弁体20,40が閉止している図1に示した閉止位置から、弁座14がストッパ21から少し離れているが、弁座34が先行してストッパ41に接しているとともに弁孔22,42が弁体20,40により閉止している図3に示した未開弁位置を経て、弁孔22,42がともに開いている図4に示した開弁状態となる。
【0017】
内筒体13,33は外側周面に形成した環状溝23,43と一個または複数個の連通孔24,44とを有しており、第一流体および第二流体の各流路2,3の流入口2a,3aが環状溝23,43にそれぞれ接続連通し、流出口2b,3bが取付孔12,32の奥端部に形成されている弁室25,45に連通している。
【0018】
図1,図3の状態で流入口2a,3aと流出口2b,3bとは遮断されているが、図4の状態でこれらは連通し、第一流体および第二流体はそれぞれ流入口2a,3a,環状溝23,43,連通孔24,44,ばね室26,46,弁孔22,42,弁体20,40とストッパ21,41との間隙、弁室25,45を通って流出口2b,3bに流れ、更に流量計8a,8bを設けた流出管2c,3cを経て混合室4で合流混合し、放出管5により目的場所へ送られる。
【0019】
二つの流量調節弁11,31は互いに連動して開閉動作させられるものであり、そのための連動機構51は弁棒17に回転自由に嵌装した平歯車からなる歯車52と、弁棒37に固着した同じく平歯車からなる歯車53と、これらに噛み合ったラック54とからなり、ラック54は弁本体1に設けた案内溝55に嵌め込まれて直線往復動する。案内溝55の両端にはラック54のストッパとして働く調節ねじ56,57が設けてあり、図1に示す閉止位置における弁座14,34の位置と図4に示す開弁状態における弁孔24,44の最大開度とを規定する。また、第一流量調節弁11のつまみ19と歯車52とには突起19a,52aがそれぞれ設けられている。
【0020】
図1に示す閉止位置で第二流量調節弁31のつまみ39を開弁方向へ回すと、歯車53に噛み合っているラック54が移動してこれと噛み合っている歯車52も回転し、その突起52aがつまみ19の突起19aと係合して押すことによって第一流量調節弁11の弁棒17も開弁方向へ回転しながら移動する。しかし、その途中で、または開弁した後につまみ39を閉弁方向へ回した場合、突起19a,52aの係合が外れて弁棒17は回転しなくなり、第一流量調節弁11は動作しない。
【0021】
第一流量調節弁11のつまみ19を閉弁方向へ回すと、突起19a,52aが互いに係合して歯車52が回転しラック54,歯車53を介して第二流量調節弁31を閉弁方向へ動作させる。その状態から反転してつまみ19を開弁方向へ回すと、突起19a,52aの係合が外れて第二流量調節弁31は動作しない。
【0022】
前述の突起19a,52aの係合が外れて弁棒17,37のいずれかが回転しない領域は約一回転である。一方、図示実施の形態では二つの弁棒17,37のねじ部18,38の径、ピッチを互いに等しく作るとともに、歯車52,53の歯数比をほぼ3:1としている。このため、後述するバイパス6および第一流量調節弁11を流れる第一流体と、第二流量調節弁31を流れる第二流体とは1:3の流量比に保ちながら流量制御されるが、つまみ19,39を前述のように操作することにより、第一流体の割合を増加することが可能となる。また、流量比を微調整することができるので、部品の寸法誤差、組立ての狂い、温度変化による流量変動などによって生じる流量比のずれを修正することも可能である。
【0023】
次に、第一流体の最小流量を確保させるバイパス6は、第一流量調節弁11の前後である流路2の流入口2aの上流側と流出管2cとを接続して設けられており、開閉弁61によって開閉される。
【0024】
開閉弁61は二つの流量調節弁11,31と共通の弁本体1に形成した取付孔62にねじ込み嵌装して固定した内筒体63の中央部に弁座64を形成するとともに両端に弁ガイド65とばね押さえ66とを嵌め込み固定し、弁座64とばね押さえ66との間のばね室67に円板状の弁体68を嵌入するとともにばね押さえ66と弁体68との間に圧縮コイルばねからなる閉弁ばね69を装入している。また、弁体68を取り付けた弁棒70が弁座64の弁孔71,弁座64と弁ガイド65との間の弁室72,弁ガイド65を貫通している。
【0025】
ばね押さえ66は通孔73を有しており、この通孔73はバイパス6の流入口6aとばね室67とを連通している。また、内筒体63は環状溝74と一個または複数個の連通孔75とを有しており、これらは弁室72とバイパス6の流出口6bとを連通している。
【0026】
この開閉弁61は二つの流量調節弁11,31の間にこれらと互いに平行に並べて配置されており、弁棒70の先端はラック54の上面と向かい合っている。ラック54の上面には、くぼみ部76aとその一側方のラック上面である平面部76bとからなるカム76が形成されている。
【0027】
図1に示す閉止位置でラック54はくぼみ部76aが弁棒70の下方に位置し、閉弁ばね69に押された弁体68が弁座64に着座してバイパス6を閉止している。このとき、弁棒70の先端とくぼみ部76aとは僅かに離れている。これより、二つの流量調節弁11,31を開弁方向へ動作させると、ラック54が移動してくぼみ部76aが弁棒70を開弁方向へ押し、平面部76bが弁棒70に接したとき弁体68を最大開度位置とする。
【0028】
図3は第一流量調節弁11の弁座14がストッパ21に接していないが、これより先に第二流量調節弁31の弁座34がストッパ41に接しており、且つ弁孔22,42を弁体20,40によりともに閉止している未開弁状態で開閉弁61が全開となっている状態を示している。カム76の殊にくぼみ部76aの形状を適宜に設定することにより、図1の閉止位置から開弁方向へ動作を開始したとき、開閉弁61を急速に最大開度とし、流入口6aから通孔73,ばね室67,弁孔71,弁室72,連通孔75,環状溝74を通って所要の最小流量の第一流体が流出口6bへと流れるようにすることができる。
【0029】
二つの流量調節弁11,31が図3の未開弁状態から図4の開弁状態となるとき、開閉弁61は最大開度を保持している。一方、図3の状態で第一流量調節弁11の弁座14はストッパ21に接しておらず、これより開弁方向へ動作させたとき第二流量調節弁31が開弁を開始して第二流体を開度に応じて混合室4へ送るようになり、それより遅れて弁座14がストッパ21に接し第一流量調節弁11が開弁を開始する。
【0030】
図5は第二流量調節弁31のつまみ39を図1に示す閉止位置から開弁方向へ回したときの、回転角度(回転数)に対する第一流体および第二流体の個別流量変化の一例を示す図である。つまみ39を回しはじめると、カム76によって開閉弁61が開弁を開始して急速に最大開度に達し、バイパス6を流れる第一流体は速やかに所定の最小流量を保持するに至る。つまみ39を更に回すと第二流量調節弁31が開弁を開始して第二流体が流路3を流れるようになり、その後に第一流量調節弁11が開弁を開始して第一流体が流路2を流れるようになってバイパス6を流れる第一流体と合算される。尚、各流路2,3を流れる流体の流量はつまみ39の回転角度に比例する。
【0031】
図6はつまみ39の各回転位置における第一流体と第二流体の合計流量に対する個別流量の変化の一例を示す図であって、第一流体は開閉弁61の開弁動作によってA1のように急速に流量を増加して所定の最小流量A2に達し、その後はA2を保持する。第二流体はA2に達すると同時(またはその少し後)に第二流量調節弁31が開弁を開始することによって、B1のように流量を増加する。これより遅れて第一流量調節弁11が開弁を開始すると、第一流体は開度に応じた流量がA2に加算されてA3のように流量を増加することとなる。
【0032】
2からA3に移行を開始する時点でA2とB1との流量比が1:3となるように開閉弁61と第二流量調節弁31との諸元を設定し、以後も第一流体の流量A3と第二流体の流量B2とが1:3の流量比となるように二つの流量調節弁11,31の諸元を設定することにより、二種類の流体の流量を一定比率を保ちながら調節することができる。また、A2とB1の流量範囲では、第一流体の最小流量を確保して流量比を1:2や1:1のように小さくすることができ、従って低麻酔のように生命維持に必要な酸素を確保しながら麻酔ガスを少量とする必要がある場合に好適である。
【0033】
尚、図示実施の形態では図2に示すようにバイパス6の流出口6bに手動の調節弁7が設けてあり、バイパス6が確保する最小流量を調整することができる。
【0034】
【発明の効果】
以上のように、二種類の流体をほぼ一定比率の流量に制御するとともに、一方の流体の最小流量を確保させることを、各流体の流量調節弁とそれらの開閉動作に連動させた別体の開閉弁とによってきわめて簡単且つ適正に、しかも流量調節弁の機能を損う心配なく達成することができるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す閉止位置における縦断面図。
【図2】図1のA−A線に沿う断面図。
【図3】図1の形態の未開弁位置における縦断面図。
【図4】図1の形態の開弁状態における縦断面図。
【図5】図1の形態における第二流量調節弁の開弁操作に伴う第一流体と第二流体の個別流量変化の一例を示す図。
【図6】図1の形態における第二流量調節弁の開弁操作に伴う第一流体と第二流体の合計流量に対する個別流量変化の一例を示す図。
【図7】従来例の縦断面概略図。
【符号の説明】
2,3 流路,6 バイパス,11 第一流量調節弁,14,34 弁座,17,37 弁棒,20,40 弁体,31 第二流量調節弁,51 連動機構,52,53 歯車,54 ラック,61 開閉弁,64 弁座,68 弁体,76 カム,
[0001]
BACKGROUND OF THE INVENTION
In the present invention, when two kinds of fluids are mixed and supplied to an object, a flow rate control valve device having a function of adjusting the flow rate of each fluid to a substantially constant ratio and ensuring the minimum flow rate of one of the fluids. The present invention relates to a flow control valve device suitable for supplying anesthetic gas to a patient.
[0002]
[Prior art]
For example, the fresh gas for anesthesia supplied to the respiratory system of a patient undergoing surgery is a mixture of oxygen and anesthetic gas in a ratio of, for example, 1: 3, and the supply amount is set according to the degree of anesthesia required. It is adjusting. In this case, it is common to adjust the flow rate of oxygen and anesthetic gas while maintaining a predetermined ratio with two flow rate control valves interlocking with each other, and to adjust the amount of fresh gas that is a mixture thereof. It is.
[0003]
On the other hand, the patient's body consumes 200 to 300 ml of oxygen per minute to maintain life. For this reason, for example, if 250 ml of oxygen is secured per minute, anesthesia gas with a ratio of 1: 3 is 750 ml per minute. Will be supplied. Here, if the flow rate of anesthetic gas is decreased in order to apply low anesthesia, the flow rate of oxygen is also decreased, and if the flow rate of fresh gas is set to 500 ml per minute, for example, oxygen is insufficient at 125 ml per minute. .
[0004]
As a countermeasure, a bypass is provided in the flow control valve on the oxygen side of the two flow control valves that are linked to each other, and the bypass opens faster than both flow control valves start to open. It is disclosed in Japanese Patent No. 2873929 to start the valve opening after ensuring the above.
[0005]
As shown schematically in FIG. 7, the flow rate control valve device disclosed in the above-mentioned 28873929 includes a first flow rate control valve 81 for oxygen and a second flow rate control valve 91 for anesthetic gas as a valve seat. 82, 92, valve bodies 83, 93, valve rods 84, 94, springs 85, 95 are arranged in parallel with one valve body 101. When one of the valve rods 84 and 94 screwed to the valve body 101 is rotated, the other is also rotated by the interlocking gear mechanism 102, and the valve body 83 and 93 are seated on the valve seats 82 and 92 when rotated in the screwing direction. In the valve state, the springs 85 and 95 are compressed to retract the valve seats 82 and 92. Thus, the oxygen and anesthetic gas inlets 87 and 97 and the outlets 88 and 98 are blocked from each other.
[0006]
When the valve rods 84 and 94 are rotated in the direction of extracting from the valve main body 101, the valve seats 82 and 92 are held together with the valve bodies 83 and 93 by the spring force of the springs 85 and 95, so that the stoppers 86 and 96 are closed. Move until it hits. A portion near the inlet 87 of the chamber in which the valve seat 82 of the first flow control valve 81 is accommodated is connected to an appropriate position of the outlet 88 by the bypass 103, and the valve seat 82 is a chamber on the inlet 87 side. When the movement toward the stopper 86 is started from the state in contact with the end face, the bypass 103 is opened and oxygen flows from the outflow pipe 104 through the mixing chamber 106 to the patient.
[0007]
Even after the valve seats 82 and 92 hit the stoppers 86 and 96, when the valve rods 84 and 94 are rotated in the extraction direction, the valve bodies 83 and 93 are separated from the valve seats 82 and 92 and start to open. Gas is sent from the outflow tube 105 through the mixing chamber 106 with the oxygen to the patient. This makes it possible to reduce the amount of anesthesia necessary for maintaining the life of the patient by the bypass 103 in a small opening range of each of the flow rate control valves 81 and 91 and to reduce anesthesia gas and reduce anesthesia. It is something to try.
[0008]
That is, according to the flow control valve device, the bypass 103 for securing oxygen opens and closes as the valve seat 82 moves, and bypasses when the valve seat 82 is slightly away from the position where the inlet 87 is closed. When 103 starts to open and the valve seat 82 hits the stopper 86, the bypass 103 is opened to the full open state, and the required amount of oxygen is supplied.
[0009]
[Problems to be solved by the invention]
The above-mentioned bypass for securing oxygen is an opening corresponding to the amount of movement of the valve seat, that is, the number of rotations of the valve stem, and is fully opened when the anesthetic gas begins to flow. is necessary. Therefore, it is necessary to appropriately set the opening position and size of the bypass to the chamber containing the valve seat, which is troublesome in design and processing. In addition, the O-ring for airtightness mounted on the outer peripheral surface of the valve seat slides in contact with the opening edge of the bypass each time it moves, so it is easily damaged and leaks when closed by reducing the airtightness retaining function. There is a concern that it will occur.
[0010]
In the present invention, the first fluid exemplified by oxygen and the second fluid exemplified by anesthetic gas are adjusted to a substantially constant flow rate, and the minimum flow rate of the first fluid is ensured in a small flow rate range. Solving the above-mentioned problems that the control valve device has troublesome setting and processing of the bypass for securing the first fluid, and that there is a concern that the gas / liquid tightness maintenance at the time of closing the first fluid may be impaired. It is intended to make it possible to easily secure the minimum flow rate of a single fluid and not to impair the gas and liquid tightness when closed.
[0011]
[Means for Solving the Problems]
The present invention relates to a first flow rate adjusting valve that controls the flow rates of a first fluid and a second fluid in conjunction with each other by moving a valve body provided at the tip of a valve stem while rotating with respect to a valve seat to open and close the valve body. Two flow rate control valves and a bypass attached to the flow path of the first fluid in which the first flow rate control valve is provided, and the two flow rate control valves are closed at the initial stage when operating in the valve opening direction from the closed position. The above-mentioned problem is solved by the following means for a flow control valve device for a two-type fluid in which the valve state is maintained and the bypass is opened during that time to ensure the minimum flow rate of the first fluid.
[0012]
In other words, the two flow rate control valves are opened and closed in conjunction with each other by an interlocking mechanism comprising a circular gear provided on each of the valve stems and a rack that meshes with these and reciprocates linearly. The bypass is provided with an open / close valve in which the valve element moves linearly with respect to the valve seat, and the valve element of the open / close valve is operated by a cam formed on the rack to close and open the bypass when the flow control valve is in the closed position. The bypass was opened when operation in the valve direction started.
[0013]
In this way, the bypass is opened and closed by a separate on-off valve instead of the flow rate control valve, and the amount of movement of the valve body of the control valve is increased according to the shape of the cam provided on the rack, and the valve body of the on-off valve is increased. Because it can be operated, the specified minimum flow rate can be secured promptly, the setting and processing of the bypass become extremely simple, and the concern of impairing the gas and liquid tightness when closing is eliminated It is.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the present invention will be described with reference to the drawings. The first flow rate adjusting valve 11 for controlling the flow rate of the first fluid and the second flow rate adjusting valve 31 for controlling the flow rate of the second fluid are common valve bodies. 1 are arranged in parallel with each other.
[0015]
These two flow control valves 11 and 31 are slidably fitted into the inner cylinders 13 and 33 fixed by screwing into mounting holes 12 and 32 formed in the valve body 1 and springs. The pressers 15 and 35 are screwed and fixed, and the press springs 16 and 36 made of a compression coil spring are inserted between the valve seats 14 and 34 and the spring pressers 15 and 35. Further, the valve rods 17 and 37 having the knobs 19 and 39 at the proximal end and the needle-like or conical valve bodies 20 and 40 at the distal end are provided with the screw portions 18 and 38 formed at the intermediate portion in the valve body 1. It is installed by screwing and projecting the tip portion into the mounting holes 12 and 32.
[0016]
Inward flange-shaped stoppers 21 and 41 are formed at the inner ends of the inner cylinders 13 and 33, and the valve seats 14 and 34 are pushed by the valve rods 17 and 37 to compress the push springs 16 and 36, thereby stopping the stoppers. The valve seat 14 is slightly separated from the stopper 21 from the closed position shown in FIG. 1 where the valve bodies 20 and 40 close the valve holes 22 and 42 of the valve seats 14 and 34. The valve holes 34 are opened through the unopened position shown in FIG. 3 in which the valve seat 34 is in contact with the stopper 41 and the valve holes 22 and 42 are closed by the valve bodies 20 and 40. It will be in the valve opening state shown in FIG.
[0017]
The inner cylinders 13 and 33 have annular grooves 23 and 43 formed on the outer peripheral surface and one or a plurality of communication holes 24 and 44, and the first fluid and the second fluid flow passages 2 and 3. The inlets 2a and 3a are connected to and communicated with the annular grooves 23 and 43, respectively, and the outlets 2b and 3b are connected to the valve chambers 25 and 45 formed at the rear ends of the mounting holes 12 and 32, respectively.
[0018]
1 and 3, the inlets 2a and 3a and the outlets 2b and 3b are blocked, but in the state of FIG. 4, they communicate with each other, and the first fluid and the second fluid are respectively in the inlet 2a, 3a, annular grooves 23 and 43, communication holes 24 and 44, spring chambers 26 and 46, valve holes 22 and 42, gaps between the valve bodies 20 and 40 and the stoppers 21 and 41, and the outlets through the valve chambers 25 and 45 2b and 3b, and further mixed and mixed in the mixing chamber 4 through the outflow pipes 2c and 3c provided with the flow meters 8a and 8b, and sent to the destination by the discharge pipe 5.
[0019]
The two flow control valves 11 and 31 are opened and closed in conjunction with each other, and the interlocking mechanism 51 for that purpose is fixed to the valve rod 37 and a gear 52 made up of a spur gear that is rotatably mounted on the valve rod 17. The spur gear 53 and a rack 54 meshed with the spur gear 53 are fitted into a guide groove 55 provided in the valve body 1 and reciprocate linearly. Adjustment screws 56 and 57 that act as stoppers for the rack 54 are provided at both ends of the guide groove 55. The positions of the valve seats 14 and 34 in the closed position shown in FIG. 1 and the valve holes 24 and 24 in the opened state shown in FIG. A maximum opening of 44 is defined. Further, projections 19a and 52a are provided on the knob 19 and the gear 52 of the first flow rate control valve 11, respectively.
[0020]
When the knob 39 of the second flow rate adjustment valve 31 is turned in the valve opening direction in the closing position shown in FIG. 1, the rack 54 meshed with the gear 53 is moved, and the gear 52 meshed with this is also rotated, and the projection 52a. Is engaged with the protrusion 19a of the knob 19 and pushed, the valve rod 17 of the first flow rate adjusting valve 11 also moves while rotating in the valve opening direction. However, when the knob 39 is turned in the valve closing direction during or after the valve opening, the protrusions 19a and 52a are disengaged, the valve rod 17 does not rotate, and the first flow rate adjusting valve 11 does not operate.
[0021]
When the knob 19 of the first flow rate adjustment valve 11 is turned in the valve closing direction, the projections 19a and 52a are engaged with each other and the gear 52 is rotated to close the second flow rate adjustment valve 31 via the rack 54 and the gear 53. To work. When the knob 19 is reversed from this state and turned in the valve opening direction, the protrusions 19a and 52a are disengaged and the second flow rate adjusting valve 31 does not operate.
[0022]
The region where the protrusions 19a and 52a are disengaged and any of the valve rods 17 and 37 does not rotate is about one rotation. On the other hand, in the illustrated embodiment, the diameters and pitches of the threaded portions 18 and 38 of the two valve rods 17 and 37 are made equal to each other, and the gear ratio of the gears 52 and 53 is approximately 3: 1. Therefore, the flow rate of the first fluid flowing through the bypass 6 and the first flow rate adjustment valve 11 described later and the second fluid flowing through the second flow rate adjustment valve 31 are controlled while maintaining a flow ratio of 1: 3. By operating 19 and 39 as described above, the ratio of the first fluid can be increased. Further, since the flow rate ratio can be finely adjusted, it is also possible to correct a deviation in flow rate ratio caused by a dimensional error of parts, an assembly error, a flow rate variation due to a temperature change, and the like.
[0023]
Next, the bypass 6 for ensuring the minimum flow rate of the first fluid is provided by connecting the upstream side of the inlet 2a of the flow path 2 and the outlet pipe 2c before and after the first flow rate control valve 11, It is opened and closed by the on-off valve 61.
[0024]
The on-off valve 61 is formed with a valve seat 64 at the center of an inner cylinder 63 fixed by screwing into a mounting hole 62 formed in the valve body 1 common to the two flow control valves 11, 31 and at both ends. The guide 65 and the spring retainer 66 are fitted and fixed, and a disc-like valve body 68 is fitted in the spring chamber 67 between the valve seat 64 and the spring retainer 66 and compressed between the spring retainer 66 and the valve body 68. A valve closing spring 69 made of a coil spring is inserted. A valve rod 70 to which the valve body 68 is attached passes through the valve hole 71 of the valve seat 64, the valve chamber 72 between the valve seat 64 and the valve guide 65, and the valve guide 65.
[0025]
The spring retainer 66 has a through hole 73, and the through hole 73 communicates the inlet 6 a of the bypass 6 and the spring chamber 67. The inner cylinder 63 has an annular groove 74 and one or a plurality of communication holes 75, which communicate the valve chamber 72 and the outlet 6 b of the bypass 6.
[0026]
The on-off valve 61 is disposed between the two flow control valves 11 and 31 in parallel with each other, and the tip of the valve rod 70 faces the upper surface of the rack 54. A cam 76 is formed on the upper surface of the rack 54. The cam 76 includes a recessed portion 76a and a flat surface portion 76b that is the upper surface of the rack on one side.
[0027]
In the closed position shown in FIG. 1, the rack 54 has a recess 76 a located below the valve rod 70, and the valve body 68 pushed by the valve closing spring 69 is seated on the valve seat 64 to close the bypass 6. At this time, the tip of the valve stem 70 and the indented portion 76a are slightly separated. As a result, when the two flow control valves 11 and 31 are operated in the valve opening direction, the rack 54 moves and the recessed portion 76a pushes the valve rod 70 in the valve opening direction, and the flat portion 76b contacts the valve rod 70. The valve body 68 is set to the maximum opening position.
[0028]
In FIG. 3, the valve seat 14 of the first flow rate adjustment valve 11 is not in contact with the stopper 21, but the valve seat 34 of the second flow rate adjustment valve 31 is in contact with the stopper 41 earlier than this, and the valve holes 22, 42. Is shown in a state in which the on-off valve 61 is fully opened in an unopened state in which both are closed by the valve bodies 20 and 40. When the operation of the cam 76 in the opening direction is started from the closed position shown in FIG. 1 by appropriately setting the shape of the recessed portion 76a, the opening / closing valve 61 is rapidly set to the maximum opening degree and is allowed to pass through the inlet 6a. The first fluid having the required minimum flow rate can flow through the hole 73, the spring chamber 67, the valve hole 71, the valve chamber 72, the communication hole 75, and the annular groove 74 to the outlet 6b.
[0029]
When the two flow control valves 11 and 31 are changed from the unopened state of FIG. 3 to the opened state of FIG. 4, the on-off valve 61 holds the maximum opening. On the other hand, in the state of FIG. 3, the valve seat 14 of the first flow rate control valve 11 is not in contact with the stopper 21, and when operated in this direction, the second flow rate control valve 31 starts to open. The two fluids are sent to the mixing chamber 4 according to the opening, and the valve seat 14 comes into contact with the stopper 21 and the first flow rate adjusting valve 11 starts to open after that.
[0030]
FIG. 5 shows an example of changes in the individual flow rates of the first fluid and the second fluid with respect to the rotation angle (number of rotations) when the knob 39 of the second flow rate adjustment valve 31 is rotated from the closed position shown in FIG. FIG. When the knob 39 is started to rotate, the on-off valve 61 starts to open by the cam 76 and rapidly reaches the maximum opening, and the first fluid flowing through the bypass 6 quickly maintains a predetermined minimum flow rate. When the knob 39 is further turned, the second flow rate adjustment valve 31 starts to open and the second fluid flows through the flow path 3, and then the first flow rate adjustment valve 11 starts to open and the first fluid Flows through the flow path 2 and is combined with the first fluid flowing through the bypass 6. Note that the flow rate of the fluid flowing through each of the flow paths 2 and 3 is proportional to the rotation angle of the knob 39.
[0031]
Figure 6 is a diagram showing an example of a change in the individual flow rate to the total flow rate of the first fluid and the second fluid in each rotational position of the knob 39, the first fluid as A 1 by opening operation of the opening and closing valve 61 The flow rate is rapidly increased to reach a predetermined minimum flow rate A 2 , and thereafter A 2 is maintained. When the second fluid reaches A 2 , the flow rate is increased like B 1 by the second flow rate adjusting valve 31 starting to open at the same time (or shortly thereafter). When the first flow rate adjusting valve 11 starts opening later than this, the flow rate corresponding to the opening degree of the first fluid is added to A 2 and the flow rate is increased like A 3 .
[0032]
At the time of starting the transition from A 2 to A 3 , the specifications of the on-off valve 61 and the second flow rate control valve 31 are set so that the flow rate ratio between A 2 and B 1 is 1: 3. By setting the specifications of the two flow rate control valves 11 and 31 so that the flow rate A 3 of one fluid and the flow rate B 2 of the second fluid have a flow rate ratio of 1: 3, the flow rates of the two types of fluids can be reduced. It can be adjusted while maintaining a certain ratio. Moreover, in the flow rate range of A 2 and B 1 , the minimum flow rate of the first fluid can be secured and the flow rate ratio can be made as small as 1: 2 or 1: 1. Therefore, life can be maintained like low anesthesia. It is suitable when it is necessary to reduce the amount of anesthetic gas while ensuring the necessary oxygen.
[0033]
In the illustrated embodiment, a manual adjustment valve 7 is provided at the outlet 6b of the bypass 6 as shown in FIG. 2, and the minimum flow rate secured by the bypass 6 can be adjusted.
[0034]
【The invention's effect】
As described above, the two types of fluids are controlled to have a substantially constant flow rate, and the minimum flow rate of one of the fluids is ensured. The on-off valve can be achieved very simply and appropriately, and without worrying about impairing the function of the flow control valve.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view in a closed position showing an embodiment of the present invention.
2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a longitudinal sectional view at an unopened valve position of the embodiment of FIG.
4 is a longitudinal sectional view in the valve open state of the embodiment of FIG.
FIG. 5 is a diagram showing an example of changes in individual flow rates of the first fluid and the second fluid in accordance with the opening operation of the second flow rate adjustment valve in the embodiment of FIG. 1;
6 is a diagram showing an example of a change in individual flow rate with respect to a total flow rate of the first fluid and the second fluid in accordance with the valve opening operation of the second flow rate adjustment valve in the embodiment of FIG.
FIG. 7 is a schematic vertical sectional view of a conventional example.
[Explanation of symbols]
2, 3 passages, 6 bypass, 11 first flow control valve, 14, 34 valve seat, 17, 37 valve rod, 20, 40 valve body, 31 second flow control valve, 51 interlocking mechanism, 52, 53 gear, 54 racks, 61 on-off valves, 64 valve seats, 68 valve bodies, 76 cams,

Claims (1)

弁棒の先端に設けた弁体が弁座に対し回転しながら移動して開閉動作することにより第一流体と第二流体の流量を連動して制御する第一流量調節弁および第二流量調節弁と、前記第一流量調節弁が設けられている第一流体の流路に付設したバイパスとを具え、前記二つの流量調節弁は閉止位置から開弁方向へ動作するとき初期段階で閉弁状態を保持し、その間に前記バイパスが開放されて第一流体の最小流量を確保するようにした二種流体の流量調節弁装置において、前記二つの流量調節弁は前記弁棒のそれぞれに設けた円形の歯車およびこれらに噛み合って直線往復動するラックからなる連動機構により互いに連動して開閉動作させられ、前記バイパスは弁座に対し弁体が直線移動する開閉弁が設けられていて、前記開閉弁の弁体は前記ラックに形成したカムにより動作させられて前記流量調節弁が閉止位置のとき前記バイパスを閉止し開弁方向へ動作を開始したとき前記バイパスを開放するようにした二種流体の流量調節弁装置において、前記二つの流量調節弁は閉止位置から開弁方向へ動作するとき、前記第二流量調節弁が開弁を開始した後にこれより遅れて前記第一流量調節弁が開弁を開始するようにされていることを特徴とする二種流体の流量調節弁装置。A first flow rate adjustment valve and a second flow rate adjustment that control the flow rates of the first fluid and the second fluid in conjunction with each other by moving the valve body provided at the tip of the valve stem while rotating relative to the valve seat to open and close the valve body. A valve and a bypass attached to the flow path of the first fluid in which the first flow control valve is provided, and the two flow control valves are closed at an initial stage when operating in the valve opening direction from the closed position. In the two-fluid flow control valve device that maintains the state and the bypass is opened during that time to ensure the minimum flow rate of the first fluid, the two flow control valves are provided in each of the valve stems. The bypass is operated by an interlocking mechanism comprising a circular gear and a rack that reciprocates linearly, and the bypass is provided with an on-off valve in which a valve body linearly moves with respect to a valve seat. The valve body of the valve In the flow control valve assembly of two fluid so as to open the bypass when the flow rate control valve are operated by the formed cam click starts the bypass closing the operation in the valve opening direction when the closed position When the two flow rate control valves operate in the valve opening direction from the closed position, the first flow rate control valve starts opening after the second flow rate control valve starts opening. flow control valve apparatus of two fluids, characterized in that it is.
JP31910999A 1999-11-10 1999-11-10 Two-fluid flow control valve device Expired - Fee Related JP4432007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31910999A JP4432007B2 (en) 1999-11-10 1999-11-10 Two-fluid flow control valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31910999A JP4432007B2 (en) 1999-11-10 1999-11-10 Two-fluid flow control valve device

Publications (2)

Publication Number Publication Date
JP2001129092A JP2001129092A (en) 2001-05-15
JP4432007B2 true JP4432007B2 (en) 2010-03-17

Family

ID=18106573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31910999A Expired - Fee Related JP4432007B2 (en) 1999-11-10 1999-11-10 Two-fluid flow control valve device

Country Status (1)

Country Link
JP (1) JP4432007B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005030A1 (en) * 2015-07-06 2017-01-12 北京谊安医疗***股份有限公司 Ejector rod automatic alignment concentric device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005030A1 (en) * 2015-07-06 2017-01-12 北京谊安医疗***股份有限公司 Ejector rod automatic alignment concentric device

Also Published As

Publication number Publication date
JP2001129092A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
US10150134B2 (en) Liquid dispensing applicators having backpressure control devices, and related methods
US5474595A (en) Capacity control system for pressure swing adsorption apparatus and associated method
US8066204B2 (en) Shower head with integral diverter valve
US5205313A (en) Dispensing devices with multiple-way tap
EP1735106A2 (en) Liquid dispensing valve and method with improved stroke length calibration and fluid fittings
WO1990003533A1 (en) Temperature and volume control valve assembly
US6039074A (en) Pressure-induced shut-off valve for a liquid delivery system
US4061160A (en) Control valve
CN113167439B (en) Gas pressure reducer with cam-commanded shut-off valve
JP4432007B2 (en) Two-fluid flow control valve device
CN113056635B (en) Gas pressure reducer with integrated shut-off valve
JP2873929B2 (en) Flow control valve for anesthesia machine
JP4432008B2 (en) Two-fluid flow control valve device
JP4339472B2 (en) Two-fluid flow control valve device
US8313085B2 (en) Fluid flow control apparatus
JP3270587B2 (en) Fluid mixing device and demand valve useful with the device
US20080236552A1 (en) Mixture Device for Gaseous Fuel and Air
EP0615591B1 (en) Flow rate and temperature limiting mechanism for a mixing valve
JP2565787Y2 (en) Flow control valve opening adjustment device
JPS6229062B2 (en)
JP2004069040A (en) Pressure reducing valve provided with manual closure mechanism
KR100631378B1 (en) Oxygen providing apparatus
JPH1096477A (en) Thermostat type combination faucet
JPH0744638Y2 (en) Beer dispense valve in draft beer dispenser
JPH0557030A (en) Resuscitating inhalator and flow control valve device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees