JP4430682B2 - Transmitter and transceiver - Google Patents

Transmitter and transceiver Download PDF

Info

Publication number
JP4430682B2
JP4430682B2 JP2007071172A JP2007071172A JP4430682B2 JP 4430682 B2 JP4430682 B2 JP 4430682B2 JP 2007071172 A JP2007071172 A JP 2007071172A JP 2007071172 A JP2007071172 A JP 2007071172A JP 4430682 B2 JP4430682 B2 JP 4430682B2
Authority
JP
Japan
Prior art keywords
signal
reactance
adjustment
self
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007071172A
Other languages
Japanese (ja)
Other versions
JP2008236218A (en
Inventor
直志 美濃谷
満 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007071172A priority Critical patent/JP4430682B2/en
Publication of JP2008236218A publication Critical patent/JP2008236218A/en
Application granted granted Critical
Publication of JP4430682B2 publication Critical patent/JP4430682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Near-Field Transmission Systems (AREA)

Description

本発明は、電界を電界伝達媒体に誘起し、この誘起した電界を検出して情報の送受信を行う通信システムで用いる送信器およびトランシーバに関する。   The present invention relates to a transmitter and a transceiver used in a communication system that induces an electric field in an electric field transmission medium, detects the induced electric field, and transmits and receives information.

携帯端末の小型化および高性能化により、生態に装着可能なウェアラブルコンピュータが注目されてきている。従来、このようなウェアラブルコンピュータ間の情報通信として、コンピュータに電界通信トランシーバを接続して装着し、この電界通信トランシーバが誘起する電界を、電界伝達媒体である生体を介して伝達させることによって、情報の送受信を行う方法が提案されている。   Due to the miniaturization and high performance of portable terminals, wearable computers that can be worn ecologically have been attracting attention. Conventionally, as information communication between such wearable computers, an electric field communication transceiver is connected and attached to a computer, and an electric field induced by the electric field communication transceiver is transmitted through a living body which is an electric field transmission medium, thereby There has been proposed a method for transmitting and receiving.

電界通信システムにおいては、図14に示すように送信器またはトランシーバの送信部出力に挿入した可変リアクタンスと、生体と大地グランド間および送信部回路グランドと大地グランドや生体間の浮遊容量とによる共振を利用して送信部出力よりも信号強度を増加させて生体へ効率よく電界を誘起する方法が取られる。2個のリアクタンス部を用いて浮遊容量とで共振させる方法では、図15および図16に示すような可変リアクタンス部の調整をリアクタンス制御部内の振幅モニタ部で電極に印加される電圧をモニタして帰還制御を行っていた(特許文献1参照)。
国際公開番号 WO2006/059684 A1、国際公開日 2006年6月8日
In the electric field communication system, as shown in FIG. 14, the resonance caused by the variable reactance inserted in the transmitter output of the transmitter or the transceiver and the stray capacitance between the living body and the earth ground and between the transmitting circuit ground and the earth ground or the living body. A method of efficiently inducing an electric field on a living body by increasing the signal intensity more than the output of the transmitter by using is used. In the method of resonating with stray capacitance using two reactance units, adjustment of the variable reactance unit as shown in FIGS. 15 and 16 is performed by monitoring the voltage applied to the electrode by the amplitude monitor unit in the reactance control unit. Feedback control was performed (see Patent Document 1).
International Publication Number WO2006 / 056884 A1, International Publication Date June 8, 2006

可変リアクタンス部の調整をリアクタンス制御部内の振幅モニタ部で電極に印加される電圧をモニタして帰還制御する方法では、耐圧の大きな回路やフィルタが必要であり回路規模が大きく消費電力が大きかった。   In the method of adjusting the variable reactance unit by monitoring the voltage applied to the electrode by the amplitude monitor unit in the reactance control unit and performing feedback control, a circuit and a filter having a large withstand voltage are required, and the circuit scale is large and the power consumption is large.

このような課題に鑑み、本発明は、耐圧の高い振幅モニタ部が別途必要のない振幅検出法を導入することにより、電界伝達媒体へ効率よく電界を誘起でき回路規模と消費電力の小さい送信器およびトランシーバを提供することを目的とする。   In view of such problems, the present invention introduces an amplitude detection method that does not require a separate high-withstand-voltage amplitude monitoring unit, thereby efficiently inducing an electric field in an electric field transmission medium, and having a small circuit scale and low power consumption. And to provide a transceiver.

上記の目的を達成するために、請求項1に記載の本発明は、送信すべき情報に基づく電界を電界伝達媒体に誘起し、この誘起した電界を用いて情報の送信を行う送信器であって、所定の周波数を有する交流信号を出力して前記送信すべき情報を変調し、この変調した前記送信すべき情報に係る変調信号を送信する送信手段と、前記送信すべき情報に基づく電界の誘起を行う電極と、前記電極と前記送信手段のグランド間、または前記送信手段の出力と前記送信手段のグランド間に設けられた可変リアクタンス手段と、前記送信手段の出力と前記電極の間に設けられ、前記電極、前記送信手段のグランドや前記電界伝達媒体の浮遊容量と、前記可変リアクタンス手段とによる共振を起こし、インダクタと印加された電圧に応じて静電容量が変化する可変容量ダイオードを備えた共振回路と、前記共振回路に入力された送信信号を前記可変容量ダイオードで整流して得られた直流電流に応じて電位差を生じ、この電位差を前記可変容量ダイオードのアノードとカソード間に印加する抵抗器と、を有する自己調整可変リアクタンス手段と、前記自己調整可変リアクタンス手段の抵抗器に生じた電位差に基づく自己調整モニタ信号に基づいて、前記可変リアクタンス手段のリアクタンス値を制御するリアクタンス調整信号を前記可変リアクタンス手段に出力する切替制御手段と、を備える。 In order to achieve the above object, the present invention according to claim 1 is a transmitter that induces an electric field based on information to be transmitted in an electric field transmission medium and transmits information using the induced electric field. And transmitting an alternating current signal having a predetermined frequency to modulate the information to be transmitted, transmitting a modulated signal related to the modulated information to be transmitted, and an electric field based on the information to be transmitted. An inductive electrode; a variable reactance means provided between the electrode and the ground of the transmitting means; or an output of the transmitting means and a ground of the transmitting means; and provided between the output of the transmitting means and the electrode. is, the electrode, the the stray capacitance of the ground and the electric field transmission medium transmitting means resonated by said variable reactance means, the electrostatic capacitance changes according to the inductor and the voltage applied A potential difference is generated according to a direct current obtained by rectifying the transmission signal input to the resonance circuit with the variable capacitance diode, and the potential difference is converted into an anode of the variable capacitance diode. And a resistor applied between the cathode and the cathode, and a reactance value of the variable reactance means based on a self-adjusting monitor signal based on a potential difference generated in the resistor of the self-adjusting variable reactance means. Switching control means for outputting a reactance adjustment signal to be controlled to the variable reactance means.

また、請求項2に記載の本発明は、請求項1に記載の送信器であって前記切替制御手段の代わりに前記自己調整モニタ信号に基づいて、前記電極に印加される信号振幅を最大近傍になるように前記リアクタンス調整信号を前記可変リアクタンス手段に出力するリアクタンス調整手段を、備える。   According to a second aspect of the present invention, there is provided the transmitter according to the first aspect, wherein the signal amplitude applied to the electrode is set to a maximum vicinity based on the self-adjusting monitor signal instead of the switching control means. Reactance adjustment means for outputting the reactance adjustment signal to the variable reactance means.

請求項3に記載の本発明は、請求項2に記載の送信器であって、前記リアクタンス調整手段が、前記リアクタンス調整信号を変化させたときの各自己調整モニタ信号を記憶し、記憶した前記各自己調整モニタ信号から前記電極に印加される信号振幅を最大近傍になるように前記リアクタンス調整信号を探索して設定する設定信号を出力する信号強度記憶・制御処理手段と、前記信号強度記憶・制御処理手段からの設定信号に基づいてリアクタンス調整信号を前記可変リアクタンス手段に出力する調整信号出力手段と、を備える。   The present invention according to claim 3 is the transmitter according to claim 2, wherein the reactance adjustment means stores and stores each self-adjustment monitor signal when the reactance adjustment signal is changed. A signal intensity storage / control processing means for outputting a setting signal for searching and setting the reactance adjustment signal so that the signal amplitude applied to the electrode is close to the maximum from each self-adjustment monitor signal, and the signal intensity storage Adjustment signal output means for outputting a reactance adjustment signal to the variable reactance means based on a setting signal from the control processing means.

請求項4に記載の本発明は、請求項3に記載の送信器であって前記信号強度記憶・制御処理手段が、前記リアクタンス調整信号を順次変化させたときのN番目とN−1番目の自己調整モニタ信号を記憶する記憶手段と、前記記憶手段に記憶された両自己調整モニタ信号に基づいてリアクタンス調整信号に対する自己調整モニタ信号の勾配を判別する勾配判定手段と、前記勾配判定手段で判別した結果に基づいて前記電極に印加される信号振幅を最大近傍になる前記リアクタンス調整信号を探索して設定する設定信号を出力する制御処理手段と、を備える。   According to a fourth aspect of the present invention, there is provided the transmitter according to the third aspect, wherein the signal intensity storage / control processing means sequentially changes the reactance adjustment signal to the Nth and N-1th. Discriminated by the storage unit for storing the self-adjustment monitor signal, the gradient determination unit for determining the gradient of the self-adjustment monitor signal with respect to the reactance adjustment signal based on both self-adjustment monitor signals stored in the storage unit, and the gradient determination unit Control processing means for outputting a setting signal for searching and setting the reactance adjustment signal that makes the signal amplitude applied to the electrode near the maximum based on the result.

また、請求項5に記載の本発明は、請求項1から4のいずれかに記載の送信器であって、前記可変リアクタンス手段が、前記送信手段の出力と前記電極の間に設けられ、前記自己調整可変リアクタンス手段が前記電極と前記送信手段のグランド間に設けられている。 Moreover, this invention of Claim 5 is a transmitter in any one of Claim 1 to 4, Comprising: The said variable reactance means is provided between the output of the said transmission means, and the said electrode , Self-adjusting variable reactance means is provided between the electrode and the ground of the transmitting means.

また、請求項6に記載の本発明は、請求項1から5のいずれかに記載の送信器であって、前記自己調整可変リアクタンス手段が、送信時以外のいずれかの期間では前記可変容量ダイオードに順バイアスを与えて前記自己調整可変リアクタンス手段のインピーダンスを低減させる。   Further, the present invention according to claim 6 is the transmitter according to any one of claims 1 to 5, wherein the self-adjusting variable reactance means is configured so that the variable capacitance diode is in any period other than during transmission. A forward bias is applied to reduce the impedance of the self-adjusting variable reactance means.

また、請求項7に記載の本発明は、送信すべき情報に基づく電界を電界伝達媒体に誘起し、この誘起した電界を用いて情報の送信を行う一方で、前記電界伝達媒体に誘起された受信すべき情報に基づく電界を受信することによって情報の受信を行うトランシーバであって、所定の周波数を有する交流信号を出力して前記送信すべき情報を変調し、この変調した前記送信すべき情報に係る変調信号を送信する送信手段と、前記送信すべき情報に基づく電界の誘起および前記受信すべき情報に基づく電界の受信を行う送受信電極と、前記送受信電極と前記送信手段のグランド間、または前記送信手段の出力と前記送信手段のグランド間に設けられた可変リアクタンス手段と、前記送信手段の出力と前記送受信電極の間に設けられ、前記送受信電極、前記送信手段のグランドや前記電界伝達媒体の浮遊容量と、前記可変リアクタンス手段とによる共振を起こし、インダクタと印加された電圧に応じて静電容量が変化する可変容量ダイオードを備えた共振回路と、前記共振回路に入力された送信信号を前記可変容量ダイオードで整流して得られた直流電流に応じて電位差を生じ、この電位差を前記可変容量ダイオードのアノードとカソード間に印加する抵抗器と、を有する自己調整可変リアクタンス手段と、前記自己調整可変リアクタンス手段の抵抗器に生じた電位差に基づく自己調整モニタ信号に基づいて、前記可変リアクタンス手段のリアクタンス値を制御するリアクタンス調整信号を前記可変リアクタンス手段に出力する切替制御手段と、前記受信すべき情報に基づく電界を検出して復調する受信手段と、を備える。 According to the seventh aspect of the present invention, an electric field based on information to be transmitted is induced in the electric field transmission medium, and information is transmitted using the induced electric field, while the electric field transmission medium is induced. A transceiver that receives information by receiving an electric field based on information to be received, outputs an AC signal having a predetermined frequency, modulates the information to be transmitted, and modulates the information to be transmitted Transmitting means for transmitting a modulation signal according to the above, a transmission / reception electrode for inducing an electric field based on the information to be transmitted and receiving an electric field based on the information to be received, between the transmission / reception electrode and the ground of the transmission means, or a variable reactance means provided between the ground of the transmitting means and the output of the transmitting means, provided between the output and the reception electrode of said transmitting means, said transmitting and receiving electrode A resonant circuit including a variable capacitance diode that causes resonance by the ground of the transmission unit and the stray capacitance of the electric field transmission medium and the variable reactance unit, and the capacitance changes according to an applied voltage; A resistor that generates a potential difference according to a direct current obtained by rectifying the transmission signal input to the resonance circuit with the variable capacitance diode, and that applies the potential difference between an anode and a cathode of the variable capacitance diode; A self-adjusting variable reactance means having a reactance adjustment signal for controlling a reactance value of the variable reactance means based on a self-adjustment monitor signal based on a potential difference generated in a resistor of the self-adjusting variable reactance means; Switching control means for outputting, and detecting an electric field based on the information to be received Comprising receiving means for regulating the.

また、請求項8に記載の本発明は、請求項7に記載のトランシーバであって、前記切替制御手段の代わりに前記自己調整モニタ信号に基づいて、前記送受信電極に印加される信号振幅を最大近傍になるように前記リアクタンス調整信号を前記可変リアクタンス手段に出力するリアクタンス調整手段を、備える。 Further, the present invention according to claim 8 is the transceiver according to claim 7, wherein the signal amplitude applied to the transmitting and receiving electrodes is maximized based on the self-adjusting monitor signal instead of the switching control means. Reactance adjustment means for outputting the reactance adjustment signal to the variable reactance means so as to be in the vicinity.

また、請求項9に記載の本発明は、請求項8に記載のトランシーバであって、前記リアクタンス調整手段が、前記リアクタンス調整信号を変化させたときの各自己調整モニタ信号を記憶し、記憶した前記各自己調整モニタ信号から前記送受信電極に印加される信号振幅を最大近傍になるように前記リアクタンス調整信号を探索して設定する設定信号を出力する信号強度記憶・制御処理手段と、前記信号強度記憶・制御処理手段からの設定信号に基づいてリアクタンス調整信号に前記可変リアクタンス手段に出力する調整信号出力手段と、を備える。 The present invention according to claim 9 is the transceiver according to claim 8, wherein the reactance adjustment means stores and stores each self-adjustment monitor signal when the reactance adjustment signal is changed. A signal intensity storage / control processing means for outputting a setting signal for searching for and setting the reactance adjustment signal so that the signal amplitude applied to the transmission / reception electrode from the self-adjustment monitor signals is close to a maximum; and the signal intensity Adjustment signal output means for outputting a reactance adjustment signal to the variable reactance means based on a setting signal from the storage / control processing means.

また、請求項10に記載の本発明は、請求項9に記載のトランシーバであって、前記信号強度記憶・制御処理手段が、前記リアクタンス調整信号を順次変化させたときのN番目とN−1番目の自己調整モニタ信号を記憶する記憶手段と、前記記憶手段に記憶された両自己調整モニタ信号に基づいてリアクタンス調整信号に対する自己調整モニタ信号の勾配を判別する勾配判定手段と、前記勾配判定手段で判別した結果に基づいて前記送受信電極に印加される信号振幅を最大近傍になる前記リアクタンス調整信号を探索して設定する設定信号を出力する制御処理手段と、を備える。 Further, the present invention according to claim 10 is the transceiver according to claim 9, wherein the signal strength storing / control processing means sequentially changes the reactance adjustment signal to Nth and N−1. Storage means for storing the self-adjustment monitor signal, gradient determination means for determining the gradient of the self-adjustment monitor signal with respect to the reactance adjustment signal based on both self-adjustment monitor signals stored in the storage means, and the gradient determination means Control processing means for outputting a setting signal for searching for and setting the reactance adjustment signal that makes the signal amplitude applied to the transmission / reception electrode near the maximum based on the result determined in step (b).

また、請求項11に記載の本発明は、請求項7から10のいずれかに記載のトランシーバであって前記可変リアクタンス手段が、前記送信手段の出力と前記送受信電極の間に設けられ、前記自己調整可変リアクタンス手段が前記送受信電極と前記送信手段のグランド間に設けられている。 The invention according to claim 11 is the transceiver according to any one of claims 7 to 10, wherein the variable reactance means is provided between an output of the transmission means and the transmission / reception electrode , An adjustable variable reactance means is provided between the transmission / reception electrode and the ground of the transmission means.

また、請求項12に記載の本発明は、請求項7から11のいずれかに記載のトランシーバであって、前記可変リアクタンス手段において、少なくとも受信時に前記可変リアクタンス手段の前記送信手段のグランドとの接続を切断し、送信時には接続する。   The invention according to claim 12 is the transceiver according to any one of claims 7 to 11, wherein the variable reactance means is connected to the ground of the transmission means of the variable reactance means at least during reception. Disconnect and connect when sending.

請求項13に記載の本発明は、請求項7から11のいずれかに記載のトランシーバであって、前記可変リアクタンス手段において、少なくとも受信時に前記可変リアクタンス手段のインピーダンスを高くしている。   According to a thirteenth aspect of the present invention, in the transceiver according to any one of the seventh to eleventh aspects, the variable reactance means increases the impedance of the variable reactance means at least during reception.

請求項13に記載の本発明は、請求項7から13のいずれかに記載のトランシーバであって、前記自己調整可変リアクタンス手段が、送信時以外のいずれかの期間では前記可変容量ダイオードに順バイアスを与えて前記自己調整可変リアクタンス手段のインピーダンスを低減させる。   According to a thirteenth aspect of the present invention, in the transceiver according to any one of the seventh to thirteenth aspects, the self-adjusting variable reactance means forward biases the variable capacitance diode during any period other than during transmission. To reduce the impedance of the self-adjusting variable reactance means.

本発明によれば、耐圧の高い振幅モニタ部が別途必要のない振幅検出法を導入することにより、電界伝達媒体へ効率よく電界を誘起でき回路規模と消費電力の小さい送信器およびトランシーバを提供することができる。   According to the present invention, by introducing an amplitude detection method that does not require a separate high-withstand-voltage amplitude monitoring unit, an electric field can be efficiently induced in an electric field transmission medium, and a transmitter and a transceiver with low circuit scale and low power consumption are provided. be able to.

図1に本発明の第1の実施の形態に係るブロック図を示す。この図1には、送信器1と、コンピュータ7と、I/O部8と、送信回路2と、自己調整可変リアクタンス部3と、可変リアクタンス部5と、切替制御部4と、電極6と、送信回路2を構成する変調回路10および発振器11と、が示されている。このような構成において、本実施の形態では送信回路2の出力と電極6との間に自己調整可変リアクタンス部3を接続し、電極6と回路グランド間に可変リアクタンス部5を接続している。   FIG. 1 is a block diagram according to the first embodiment of the present invention. In FIG. 1, a transmitter 1, a computer 7, an I / O unit 8, a transmission circuit 2, a self-adjusting variable reactance unit 3, a variable reactance unit 5, a switching control unit 4, an electrode 6, A modulation circuit 10 and an oscillator 11 constituting the transmission circuit 2 are shown. In such a configuration, in the present embodiment, the self-adjusting variable reactance unit 3 is connected between the output of the transmission circuit 2 and the electrode 6, and the variable reactance unit 5 is connected between the electrode 6 and the circuit ground.

また、図2に自己調整可変リアクタンス部の第1の構成例を示す。交流信号端子15を送信回路2の出力に接続し交流信号端子12を電極6に接続すると、交流信号端子15、16間に交流電圧VACが印加される。このとき可変容量ダイオード19の整流特性により生成された直流電流Iが可変容量ダイオード19と並列に接続された抵抗20に流れることにより、可変容量ダイオード19に電圧VDCがバイアスされる。直流電流Iを抵抗20に流すために図2では容量18、25を使用している。 FIG. 2 shows a first configuration example of the self-adjusting variable reactance unit. When connecting the AC signal pin 15 to the output of the transmission circuit 2 for connecting the AC signal pin 12 to the electrode 6, the AC voltage V AC is applied between the AC signal terminals 15 and 16. At this time, the direct current ID generated by the rectification characteristic of the variable capacitance diode 19 flows through the resistor 20 connected in parallel with the variable capacitance diode 19, so that the voltage V DC is biased to the variable capacitance diode 19. In order to pass the direct current ID through the resistor 20, the capacitors 18 and 25 are used in FIG. 2.

図3(a)には可変容量ダイオード19に振幅|VAC|交流電圧が印加されたときに生じる電流の直流成分Iの関係を表したものである。逆バイアス電圧VDCが可変容量ダイオード19両端に生じると可変容量ダイオード19が短絡となっている期間が短くなるため、同じVACに対してIは小さくなる。図3(b)にはIが抵抗22、21を流れたことによって生じる電位差(VDCと等価)のグラフ、同図(c)には可変容量ダイオード19の容量Cの電圧VDC依存性を示す。また、図3(d)はVの振幅|V|のC依存性である。グラフ中の点は可変リアクタンスに交流信号を入力し始めてからの各電流電圧の変化を示している。容量Cの初期値はVDC=0の時の値Cとしている。また、|VAC|は|V|に比例する。 FIG. 3A shows the relationship of the DC component ID of the current generated when the amplitude | V AC | AC voltage is applied to the variable capacitance diode 19. When the reverse bias voltage V DC is generated across the variable capacitance diode 19, the period during which the variable capacitance diode 19 is short-circuited is shortened, so that ID becomes small for the same V AC . 3B is a graph of a potential difference (equivalent to VDC ) generated when ID flows through the resistors 22 and 21, and FIG. 3C is a voltage VDC dependency of the capacitance CV of the variable capacitance diode 19. Showing gender. Further, FIG. 3 (d) the amplitude of V b | a C V dependent | V b. The points in the graph indicate changes in each current voltage after the AC signal is input to the variable reactance. The initial value of the capacitance C V is a value C 1 in the case of V DC = 0. | V AC | is proportional to | V b |.

交流信号が入力されると可変容量ダイオード19で整流され直流電流Iを生じる(図3(a)の点(1))。これが抵抗21、22を流れることにより直流電圧VDCを発生させ、これと同じ電位差が可変容量ダイオード19にも印加される。これにより容量Cは減少し(図3(c)の点(1))、共振が生じる容量値に近づき|V|は大きくなる。|VAC|は|V|に比例するため、|VAC|は大きくなるが、VDCも大きくなっているため|VAC|とIの関係は図3(a)の点(2)に移動する。 When an AC signal is input, it is rectified by the variable capacitance diode 19 to generate a DC current ID (point (1) in FIG. 3A). When this flows through the resistors 21 and 22, a DC voltage V DC is generated, and the same potential difference is also applied to the variable capacitance diode 19. As a result, the capacitance CV decreases (point (1) in FIG. 3C), approaches the capacitance value at which resonance occurs, and | Vb | increases. Since | V AC | is proportional to | V b |, | V AC | increases, but V DC also increases. Therefore , the relationship between | V AC | and I D is the point (2 in FIG. 3A). )

この後も同じようにCが減少し|VAC|は大きくなるが、VDCも大きくなるためIの変化量は徐々に小さくなりゼロに収束する。Iの変化量がゼロになると|VAC|は一定となり、初期値に比べ共振での振幅に近づいている。以上の現象を利用して外部の浮遊容量の変化に対しリアクタンス値を補正している。このとき図2の自己調整モニタ信号24を観測することによりVDCを観測可能である。自己調整モニタ信号24が切替制御部4の適正な入力範囲内となるように抵抗22を定電圧源23に接続している。この場合では定電圧源23の出力は0Vでもよい。 After this, C V similarly decreases and | V AC | increases, but V DC also increases. Therefore, the amount of change in ID gradually decreases and converges to zero. When the amount of change in ID becomes zero, | V AC | becomes constant and approaches the amplitude at resonance compared to the initial value. Using the above phenomenon, the reactance value is corrected with respect to the change in the external stray capacitance. At this time, VDC can be observed by observing the self-adjusting monitor signal 24 of FIG. The resistor 22 is connected to the constant voltage source 23 so that the self-adjustment monitor signal 24 is within an appropriate input range of the switching control unit 4. In this case, the output of the constant voltage source 23 may be 0V.

自己調整可変リアクタンスではCが図3(d)の極大値の右側にあることと、Cの減少より|VAC|の増加が大きいことで補正が可能となる。Cが|VAC|の増加量の低い箇所(例えば図3(d)の右端)である場合には、逆バイアス電圧を生じさせるために十分なIを生成できないため適切に補正できず出力振幅が小さくなる。外部の浮遊容量が大きくなると図3(d)の極大値は左に移動しCが|VAC|の増加量の低い箇所となるため、上記の現象が起き自己調整できなくなる。図1に示した実施の形態では可変リアクタンス部5を設けて等価的な外部容量を低減させることで適切に補正できる外部の浮遊容量の変化範囲を広げている。 In the self-adjusting variable reactance, correction is possible because C 1 is on the right side of the maximum value in FIG. 3D and the increase in | V AC | is larger than the decrease in C V. When C 1 is a place where the increase amount of | V AC | is low (for example, the right end in FIG. 3D), sufficient ID cannot be generated to generate the reverse bias voltage, and thus it cannot be appropriately corrected. The output amplitude is reduced. When the external stray capacitance increases, the local maximum value in FIG. 3D shifts to the left and C 1 becomes a portion where the increase amount of | V AC | is low. In the embodiment shown in FIG. 1, the variable reactance unit 5 is provided to reduce the equivalent external capacitance, thereby expanding the range of change in the external stray capacitance that can be corrected appropriately.

図4に各信号のタイミングチャートを示し、各部の動作を以下で説明する。データを出力する際には送信開始信号により発振器から所定の周波数の交流信号を出力する。送信開始信号の初期ではデータを一定にして一定の周波数の交流信号が自己調整可変リアクタンス部3に入力される。   FIG. 4 shows a timing chart of each signal, and the operation of each unit will be described below. When outputting data, an AC signal having a predetermined frequency is output from the oscillator in response to a transmission start signal. At the initial stage of the transmission start signal, the AC signal having a constant frequency is input to the self-adjusting variable reactance unit 3 with the data kept constant.

自己調整可変リアクタンス部3に交流信号が入力されるとVDCが生じて自己調整モニタ信号が変化する。交流信号の振幅が大きいと自己調整モニタ信号の変化も大きいため、自己調整モニタ信号を観測することにより出力信号振幅の大きさを観測できる。 When an AC signal is input to the self-adjusting variable reactance unit 3, VDC is generated and the self-adjusting monitor signal changes. Since the change of the self-adjusting monitor signal is large when the amplitude of the AC signal is large, the magnitude of the output signal amplitude can be observed by observing the self-adjusting monitor signal.

図5に切替制御部4の構成例を示す。切替制御部4では自己調整モニタ信号を信号強度比較器32でしきい値用定電圧源31からのしきい値と比較し、自己調整モニタ信号がこのしきい値を超えたら調整終了信号を切替信号出力部30に出力する。切替信号出力部30では送信開始信号によりリアクタンス調整信号を順次大きくしていく動作を行い、調整終了信号が入力されるとリアクタンス調整信号を一定にする。   FIG. 5 shows a configuration example of the switching control unit 4. The switching control unit 4 compares the self-adjustment monitor signal with the threshold value from the threshold voltage source 31 by the signal strength comparator 32, and switches the adjustment end signal when the self-adjustment monitor signal exceeds this threshold value. The signal is output to the signal output unit 30. The switching signal output unit 30 performs an operation of sequentially increasing the reactance adjustment signal according to the transmission start signal. When the adjustment end signal is input, the reactance adjustment signal is made constant.

図4のタイミングチャートではリアクタンス調整信号とリアクタンス値が単調増加の関係にあり、可変リアクタンス部5と並列の外部の容量が大きいと仮定している。送信開始信号の立上り直後では可変リアクタンス部5と外部の容量の合成リアクタンス値が小さく、Cが図3(d)の極大値の右側となるため、出力信号振幅が小さく自己調整モニタ信号も小さくなっている。 In the timing chart of FIG. 4, it is assumed that the reactance adjustment signal and the reactance value are monotonically increasing, and that the external capacitance in parallel with the variable reactance unit 5 is large. Immediately after the rise of the transmission start signal, the combined reactance value of the variable reactance unit 5 and the external capacitor is small, and CV is on the right side of the maximum value in FIG. 3D, so that the output signal amplitude is small and the self-adjustment monitor signal is also small. It has become.

自己調整モニタ信号がモニタしきい値よりも小さい場合では、リアクタンス調整信号を順次大きくしていく制御を切替制御部4で行う。リアクタンス調整信号が大きくなり可変リアクタンス部5と外部の容量の合成リアクタンス値が大きくなると、自己調整モニタ信号がモニタしきい値を超える。このときリアクタンス調整信号の変化を停止して、リアクタンス値を固定する。この後データを変調回路10に入力し送信する。   When the self-adjustment monitor signal is smaller than the monitor threshold value, the switching control unit 4 performs control to sequentially increase the reactance adjustment signal. When the reactance adjustment signal increases and the combined reactance value of the variable reactance unit 5 and the external capacitance increases, the self-adjustment monitor signal exceeds the monitor threshold value. At this time, the change of the reactance adjustment signal is stopped and the reactance value is fixed. Thereafter, the data is input to the modulation circuit 10 and transmitted.

以上の方法と図1の構成では自己調整可変リアクタンス部3の自己調整モニタ信号により出力信号振幅をモニタしているため、振幅モニタ部等が不要で回路規模が小さくなり消費電力が低減できる。   In the above method and the configuration of FIG. 1, since the output signal amplitude is monitored by the self-adjusting monitor signal of the self-adjusting variable reactance unit 3, the amplitude monitor unit or the like is not necessary, and the circuit scale is reduced and the power consumption can be reduced.

図2では抵抗22に定電圧源23を接続し抵抗21から自己調整モニタ信号を出力しているが、接続を逆にしても機能は同じであり、接続を逆にした場合では自己調整モニタ信号が切替制御部4の適正な入力範囲内となるように定電圧源23を設定する(例えば電源電圧とする)。   In FIG. 2, the constant voltage source 23 is connected to the resistor 22 and the self-adjustment monitor signal is output from the resistor 21, but the function is the same even if the connection is reversed, and the self-adjustment monitor signal is obtained when the connection is reversed. Is set within the proper input range of the switching control unit 4 (for example, a power supply voltage).

この場合では、図5の信号強度比較器32では自己調整モニタ信号がしきい値より低くなったときに調整終了信号を切替信号出力部30に出力する。また、直流電流Iを抵抗20に流す容量18を可変容量ダイオード19とインダクタ17の間に接続し、交流信号端子15とインダクタ17を短絡してもよい。自己調整モニタ信号が入力インピーダンスの高い回路に入力されている場合では抵抗21の抵抗値を零にしてもよい。図1では送信開始信号により発振器11と切替制御部4の動作を開始させているが、両者の立上り時間が異なる場合には発振器11と切替制御部4のそれぞれに動作を開始させる信号を入力してもよい。 In this case, the signal strength comparator 32 of FIG. 5 outputs an adjustment end signal to the switching signal output unit 30 when the self-adjustment monitor signal becomes lower than the threshold value. Further, a capacitor 18 for passing a DC current ID through the resistor 20 may be connected between the variable capacitance diode 19 and the inductor 17, and the AC signal terminal 15 and the inductor 17 may be short-circuited. When the self-adjustment monitor signal is input to a circuit having a high input impedance, the resistance value of the resistor 21 may be set to zero. In FIG. 1, the operation of the oscillator 11 and the switching control unit 4 is started by the transmission start signal. However, when the rise times of the two are different, a signal for starting the operation is input to each of the oscillator 11 and the switching control unit 4. May be.

図6に自己調整可変リアクタンス部3の第2の構成例を示す。この図6には、交流信号端子40、41と、容量43、45、46と、抵抗49、50、51、52、53、54と、可変容量ダイオード47、48と、定電圧源55と、が示され、自己調整モニタ信号42が出力される。   FIG. 6 shows a second configuration example of the self-adjusting variable reactance unit 3. In FIG. 6, AC signal terminals 40, 41, capacitors 43, 45, 46, resistors 49, 50, 51, 52, 53, 54, variable capacitance diodes 47, 48, a constant voltage source 55, And a self-adjusting monitor signal 42 is output.

この構成において、可変容量ダイオード47、48の電流電圧特性は非対称であり、アノードの電位が高いときには、半導体の特性で決まる所定の値よりアノードの電位が大きいときは短絡になり、交流信号の振幅が抑制される。これを防ぐために高周波の交流信号に対して可変容量ダイオード47、48を直列かつ逆方向にも接続している。この構成により一方の可変容量ダイオードが短絡となっても逆方向の可変容量ダイオードは短絡になっていないため交流信号の振幅が抑制されることはない。   In this configuration, the current-voltage characteristics of the variable capacitance diodes 47 and 48 are asymmetrical, and when the anode potential is high, a short circuit occurs when the anode potential is larger than a predetermined value determined by the semiconductor characteristics, and the amplitude of the AC signal Is suppressed. In order to prevent this, the variable capacitance diodes 47 and 48 are connected in series and in the reverse direction with respect to the high-frequency AC signal. With this configuration, even if one of the variable capacitance diodes is short-circuited, the reverse-direction variable capacitance diode is not short-circuited, so that the amplitude of the AC signal is not suppressed.

第1の構成例と同様に図6の容量43を可変容量ダイオード47とインダクタ44の間に接続し、交流信号端子40とインダクタ44を短絡してもよい。また、可変容量ダイオード47、48および抵抗50、49の特性ばらつきが大きくなければ自己調整モニタ信号を片方の可変容量ダイオードと抵抗から取り出してもよく、抵抗54または抵抗53が不要になる。これに加え自己調整モニタ信号が入力インピーダンスの高い回路に入力されている場合では、接続している抵抗54または抵抗53の抵抗値を零にしてもよい。さらに、抵抗54を接続しない場合では抵抗51を接続しなくてもよく、抵抗53を接続しない場合では抵抗52を接続しなくてもよい。   Similarly to the first configuration example, the capacitor 43 of FIG. 6 may be connected between the variable capacitance diode 47 and the inductor 44, and the AC signal terminal 40 and the inductor 44 may be short-circuited. Further, if the characteristic variations of the variable capacitance diodes 47 and 48 and the resistors 50 and 49 are not large, the self-adjusting monitor signal may be extracted from one variable capacitance diode and the resistor, and the resistor 54 or the resistor 53 is not necessary. In addition, when the self-adjustment monitor signal is input to a circuit having a high input impedance, the resistance value of the connected resistor 54 or resistor 53 may be set to zero. Further, when the resistor 54 is not connected, the resistor 51 may not be connected, and when the resistor 53 is not connected, the resistor 52 may not be connected.

なお、図1の構成において送信回路2の出力と電極6との間に可変リアクタンス部5を接続し、電極6と回路グランド間に自己調整可変リアクタンス部5を接続してもよい。さらに、図7に示すように送信回路61の出力と電極67の間に自己調整可変リアクタンス部63を接続し、送信回路61の出力と回路グランド間に自己調整可変リアクタンス部63を接続してもよい。   1, the variable reactance unit 5 may be connected between the output of the transmission circuit 2 and the electrode 6, and the self-adjusting variable reactance unit 5 may be connected between the electrode 6 and the circuit ground. Further, as shown in FIG. 7, a self-adjusting variable reactance unit 63 is connected between the output of the transmission circuit 61 and the electrode 67, and a self-adjusting variable reactance unit 63 is connected between the output of the transmission circuit 61 and the circuit ground. Good.

図8に本発明に係る第2の実施の形態のブロック図を示す。本実施の形態では自己調整モニタ信号に基づいて電極77への出力振幅(誘起される電界の振幅)が最大もしくは最大近傍になるようにリアクタンス調整信号を調整する自己調整モニタ信号入力リアクタンス制御部74を備えている。   FIG. 8 shows a block diagram of a second embodiment according to the present invention. In the present embodiment, a self-adjustment monitor signal input reactance control unit 74 that adjusts the reactance adjustment signal based on the self-adjustment monitor signal so that the output amplitude to the electrode 77 (the amplitude of the induced electric field) becomes maximum or close to the maximum. It has.

図9に自己調整モニタ信号入力リアクタンス制御部74の構成例を示す。はじめに信号強度記憶・制御処理部120を記憶容量等のリソースが十分なマイクロコントローラー等の処理装置とADコンバーターで構成した場合の動作を説明する。送信開始信号が入力されると信号強度記憶・制御処理部120が動作を開始する。信号強度記憶・制御処理部120からの設定信号により調整信号出力部121でリアクタンス調整信号を設定する。各リアクタンス調整信号に対する自己調整モニタ信号を前記処理部でデジタルの数値に変換して、信号強度記憶・制御処理部120で記憶する。この後、制御処理部で出力振幅が最大となる自己調整モニタ信号に対応したリアクタンス調整信号を求め、そのリアクタンス調整信号を可変リアクタンス部73に出力する。第1の実施の形態ではモニタしきい値に対応した出力振幅以上であれば処理が完了するのに対し、本実施の形態では出力振幅が最大となるリアクタンス調整信号を求めており高い出力振幅をより確実に出力できる。また、モニタしきい値を予め設定する必要もない。   FIG. 9 shows a configuration example of the self-adjusting monitor signal input reactance control unit 74. First, the operation when the signal intensity storage / control processing unit 120 is configured by a processing device such as a microcontroller having sufficient resources such as storage capacity and an AD converter will be described. When a transmission start signal is input, the signal strength storage / control processing unit 120 starts operation. The reactance adjustment signal is set by the adjustment signal output unit 121 according to the setting signal from the signal intensity storage / control processing unit 120. A self-adjustment monitor signal for each reactance adjustment signal is converted into a digital numerical value by the processing unit and stored in the signal intensity storage / control processing unit 120. Thereafter, the control processing unit obtains a reactance adjustment signal corresponding to the self-adjusting monitor signal having the maximum output amplitude, and outputs the reactance adjustment signal to the variable reactance unit 73. In the first embodiment, the process is completed if the output amplitude is greater than or equal to the monitor threshold. In the present embodiment, a reactance adjustment signal that maximizes the output amplitude is obtained, and a high output amplitude is obtained. Output more reliably. Further, it is not necessary to set the monitor threshold value in advance.

次に大きな記憶容量を必要としない処理方法での動作を説明する。図10に自己調整モニタ信号入力リアクタンス制御部74の詳細な構成例を示し、図11にタイミングチャートを示す。本構成例では自己調整モニタ信号強度の記憶に容量C、Cを使用している。容量CとCの電位差をそれぞれVCA、VCBとする。 Next, operations in a processing method that does not require a large storage capacity will be described. FIG. 10 shows a detailed configuration example of the self-adjusting monitor signal input reactance control unit 74, and FIG. 11 shows a timing chart. In this configuration example, the capacitors C A and C B are used for storing the self-adjusting monitor signal intensity. And V CA, V CB a potential difference of the capacitor C A and C B, respectively.

送信開始信号が入力されると動作信号発生源125から各回路の動作に必要な信号が出力される。リアクタンス調整信号は制御処理回路127と調整信号出力部121により順次変えられ、そのときの自己調整モニタ信号がバッファ回路122に入力される。記憶経路切替スイッチ123は切替信号によりバッファ回路122の出力からCへの経路とCへの経路を切替る。CとCには現在と1つ前のリアクタンス調整信号での自己調整モニタ信号が保持(記憶)される。 When a transmission start signal is input, a signal necessary for the operation of each circuit is output from the operation signal generation source 125. The reactance adjustment signal is sequentially changed by the control processing circuit 127 and the adjustment signal output unit 121, and the self-adjustment monitor signal at that time is input to the buffer circuit 122. The storage path switch 123 switches the path from the output of the buffer circuit 122 to C A and the path to C B by a switching signal. The C A and C B self adjustment monitor signal in the current and preceding reactance adjustment signal is held (stored).

この操作により図11のリアクタンス調整信号に対し自己調整モニタ信号が単調に増加する、すなわち勾配の符号が一定の領域では、VCA>VCBとVCA<VCBが交互に繰り替えされる。このため差動増幅器出力は切替信号(判別基準信号)と同じように反転を繰り返す。これに対し最大値近傍での勾配の符号が変わる領域ではVCA>VCBが連続するため差動増幅器出力は一定となる。この状態を検出して制御処理回路により1つ前のリアクタンス調整信号を最終的に出力する。差動増幅器出力が一定となる状態の検出には例えば図11の場合では判別基準信号とはじめに一致する箇所を検出する方法がある。本構成例でも出力振幅が最大となるリアクタンス調整信号を求めており高い出力振幅をより確実に出力でき、モニタしきい値を予め設定する必要もない。 By this operation, the self-adjustment monitor signal monotonously increases with respect to the reactance adjustment signal of FIG. 11, that is, in a region where the sign of the gradient is constant, V CA > V CB and V CA <V CB are alternately repeated. For this reason, the output of the differential amplifier is repeatedly inverted similarly to the switching signal (discrimination reference signal). On the other hand, in a region where the sign of the gradient near the maximum value changes, V CA > V CB continues, so that the differential amplifier output is constant. This state is detected, and the previous reactance adjustment signal is finally output by the control processing circuit. For example, in the case of FIG. 11, there is a method of detecting a portion that coincides with the discrimination reference signal in the case where the differential amplifier output is constant. Also in this configuration example, a reactance adjustment signal that maximizes the output amplitude is obtained, so that a high output amplitude can be output more reliably, and there is no need to set a monitor threshold value in advance.

図10では自己調整モニタ信号強度の記憶に容量C、Cを用い各部分を回路により構成したが、記憶領域を持つマイクロコントローラー等の処理装置とADコンバーターにより構成してもよい。この場合自己調整モニタ信号強度の記憶用の記憶領域は2個でよい。順次リアクタンス調整信号を変えて自己調整モニタ信号をADコンバーターでデジタルの数値に変換した後、2個の記憶領域に交互に記憶する。そのたびに勾配が反転していないかを判別し、反転していた場合はその1つ前のリアクタンス調整信号を出力する。 In FIG. 10, the capacitors C A and C B are used to store the self-adjusting monitor signal intensity, and each part is configured by a circuit. However, it may be configured by a processing device such as a microcontroller having a storage area and an AD converter. In this case, the number of storage areas for storing the self-adjusting monitor signal intensity may be two. The reactance adjustment signal is sequentially changed and the self-adjustment monitor signal is converted into a digital numerical value by the AD converter, and then stored alternately in the two storage areas. Each time, it is determined whether or not the gradient is inverted. If the gradient is inverted, the reactance adjustment signal immediately before is output.

図12に本発明にかかる第3の実施の形態のブロック図を示す。本実施の形態では受信も可能なトランシーバ80の構成を示している。送信時にはスイッチ85のa1とb1を接続して送信回路81の出力と自己調整可変リアクタンス部82を接続し、スイッチ86を閉じて可変リアクタンス部83を電極92と並列接続する。各信号の動作は図1の場合と同じである。   FIG. 12 shows a block diagram of a third embodiment according to the present invention. In the present embodiment, the configuration of the transceiver 80 that can receive signals is shown. During transmission, a1 and b1 of the switch 85 are connected to connect the output of the transmission circuit 81 and the self-adjusting variable reactance unit 82, and the switch 86 is closed and the variable reactance unit 83 is connected to the electrode 92 in parallel. The operation of each signal is the same as in FIG.

図13に第3の実施の形態で使用される自己調整可変リアクタンスの構成例を示す。本構成例では送信時以外では可変容量ダイオード102を順バイアスとして自己調整可変リアクタンス部のインピーダンスを小さくする構成とした。出力切替電圧源107は送信開始信号により高電圧値と低電圧値の2値で切替えられる。   FIG. 13 shows a configuration example of the self-adjusting variable reactance used in the third embodiment. In the present configuration example, the impedance of the self-adjusting variable reactance unit is reduced by using the variable capacitance diode 102 as a forward bias except during transmission. The output switching voltage source 107 is switched between a high voltage value and a low voltage value by a transmission start signal.

送信時では定電圧値としてスイッチ106を開き自己調整モニタ信号を出力する。送信時の上記以外の動作は図2にて説明したものと同じである。送信時以外では出力切替電圧源107の出力を高電圧値とし、スイッチ106を閉じることで可変容量ダイオード102に順バイアスVDCを与える。これにより自己調整可変リアクタンス部のインピーダンスが小さくなり、電極92と受信回路87の間の損失が小さくなる。ここでは図7の自己調整可変リアクタンス部63をトランシーバで使用したが送信器で使用してもよい。 At the time of transmission, the switch 106 is opened as a constant voltage value, and a self-adjustment monitor signal is output. Other operations at the time of transmission are the same as those described with reference to FIG. When not transmitting, the output of the output switching voltage source 107 is set to a high voltage value, and the switch 106 is closed to apply the forward bias VDC to the variable capacitance diode 102. As a result, the impedance of the self-adjusting variable reactance unit is reduced, and the loss between the electrode 92 and the receiving circuit 87 is reduced. Although the self-adjusting variable reactance unit 63 of FIG. 7 is used in the transceiver here, it may be used in the transmitter.

送信時以外ではスイッチ85のa1とc1を接続して電極92に印加された受信信号を受信回路87に入力できる状態にする。また、スイッチ86を開くことにより可変リアクタンス部83から回路グランド間に生じる損失を防ぐ。   At times other than transmission, a1 and c1 of the switch 85 are connected so that the reception signal applied to the electrode 92 can be input to the reception circuit 87. Further, the loss caused between the variable reactance unit 83 and the circuit ground is prevented by opening the switch 86.

なお、受信開始信号を設けて受信中には受信開始信号により受信回路87を動作させ、送信中を含むそれ以外の時には受信回路87の動作を停止させてトランシーバ80全体の消費電力を低減することも可能である。   It is to be noted that a reception start signal is provided and the reception circuit 87 is operated by the reception start signal during reception, and the operation of the reception circuit 87 is stopped at other times including during transmission to reduce the power consumption of the entire transceiver 80. Is also possible.

なお、図13では出力切替電圧源107を使用したが、たとえば電源電圧の半分の電圧を出力する図示しない定電圧源を代わりに接続してもよい。また、出力切替電圧源107と自己調整モニタ信号97の出力端子の出力を逆にしてもよい。   Although the output switching voltage source 107 is used in FIG. 13, for example, a constant voltage source (not shown) that outputs half the power supply voltage may be connected instead. Further, the outputs of the output switching voltage source 107 and the output terminal of the self-adjusting monitor signal 97 may be reversed.

また、図13では、スイッチ86を使用せずに送信時以外では可変リアクタンス部83のリアクタンス値を最大にしてもよい。スイッチ85と電極92間に可変リアクタンス部83を接続し、電極92と回路グランド間に自己調整可変リアクタンス部82を接続してもよい。さらに、スイッチ85と電極92間に自己調整可変リアクタンス部82を接続し、送信回路81の出力と回路グランド間に可変リアクタンス部83を接続してもよい。   In FIG. 13, the reactance value of the variable reactance unit 83 may be maximized except when transmitting without using the switch 86. The variable reactance unit 83 may be connected between the switch 85 and the electrode 92, and the self-adjusting variable reactance unit 82 may be connected between the electrode 92 and the circuit ground. Further, the self-adjusting variable reactance unit 82 may be connected between the switch 85 and the electrode 92, and the variable reactance unit 83 may be connected between the output of the transmission circuit 81 and the circuit ground.

図12の構成でも発振器91と切替制御部84の立上り時間が著しく異なる場合には発振器91と切替制御部84のそれぞれに動作を開始させる信号を入力してもよい。また、切替制御部84の代わりに図9や図10に示した自己調整モニタ信号入力リアクタンス制御部74を使用してもよい。   In the configuration of FIG. 12, if the rise times of the oscillator 91 and the switching control unit 84 are significantly different, a signal for starting the operation may be input to each of the oscillator 91 and the switching control unit 84. Further, the self-adjusting monitor signal input reactance control unit 74 shown in FIGS. 9 and 10 may be used instead of the switching control unit 84.

以上の構成では自己調整可変リアクタンス部の自己調整モニタ信号により出力信号振幅をモニタするため、振幅モニタ部等が不要で回路規模が小さくなり消費電力を低減できる。   In the above configuration, since the output signal amplitude is monitored by the self-adjusting monitor signal of the self-adjusting variable reactance unit, the amplitude monitor unit or the like is unnecessary, and the circuit scale can be reduced and the power consumption can be reduced.

また、以上説明した本発明の実施の形態によれば、耐圧の高い振幅モニタ部が別途必要のない振幅検出法を導入することにより、電界伝達媒体へ効率よく電界を誘起でき回路規模と消費電力の小さい送信器およびトランシーバを実現することができる。   Further, according to the embodiment of the present invention described above, by introducing an amplitude detection method that does not require a separate high-withstand-voltage amplitude monitoring unit, an electric field can be efficiently induced in the electric field transmission medium, and the circuit scale and power consumption Small transmitters and transceivers can be realized.

本発明に係る送信器の第1の実施の形態を示すブロック図である。It is a block diagram which shows 1st Embodiment of the transmitter which concerns on this invention. 自己調整可変リアクタンス部の構成例を示す図である。It is a figure which shows the structural example of a self-adjustment variable reactance part. 自己調整可変リアクタンス部の動作を説明するためのグラフを(a)〜(b)に示す。Graphs for explaining the operation of the self-adjusting variable reactance unit are shown in (a) to (b). 第1の実施の形態の送信器の各信号のタイミングチャートを示す。4 is a timing chart of each signal of the transmitter according to the first embodiment. 切替制御部の構成例を示すブロック図である。It is a block diagram which shows the structural example of a switching control part. 自己調整可変リアクタンス部の構成の変形例を示す構成図である。It is a block diagram which shows the modification of a structure of a self-adjustment variable reactance part. 第1の実施の形態の変形例を示すブロック図である。It is a block diagram which shows the modification of 1st Embodiment. 本発明に係るトランシーバの第2の実施の形態を示すブロック図である。It is a block diagram which shows 2nd Embodiment of the transceiver based on this invention. 自己調整モニタ信号入力リアクタンス調整部の構成例である。It is an example of a structure of a self-adjustment monitor signal input reactance adjustment part. 自己調整モニタ信号入力リアクタンス調整部の詳細な構成例である。It is a detailed example of a structure of a self-adjustment monitor signal input reactance adjustment part. 詳細な構成例の動作を説明するタイミングチャートである。It is a timing chart explaining operation | movement of a detailed structural example. 本発明に係るトランシーバの第3の実施の形態を示すブロック図である。It is a block diagram which shows 3rd Embodiment of the transceiver based on this invention. トランシーバで使用される自己調整可変リアクタンス部の構成例を示す構成図である。It is a block diagram which shows the structural example of the self-adjustment variable reactance part used with a transceiver. 従来の送信器またはトランシーバの送信部の基本構成を表す構成図である。It is a block diagram showing the basic composition of the transmission part of the conventional transmitter or a transceiver. 従来のトランシーバのブロック図である。It is a block diagram of the conventional transceiver. 従来のトランシーバ内で使用されるリアクタンス制御部のブロック図である。It is a block diagram of the reactance control part used in the conventional transceiver.

Claims (14)

送信すべき情報に基づく電界を電界伝達媒体に誘起し、この誘起した電界を用いて情報の送信を行う送信器であって、
所定の周波数を有する交流信号を出力して前記送信すべき情報を変調し、この変調した前記送信すべき情報に係る変調信号を送信する送信手段と、
前記送信すべき情報に基づく電界の誘起を行う電極と、
前記電極と前記送信手段のグランド間、または前記送信手段の出力と前記送信手段のグランド間に設けられた可変リアクタンス手段と、
前記送信手段の出力と前記電極の間に設けられ、前記電極、前記送信手段のグランドや前記電界伝達媒体の浮遊容量と、前記可変リアクタンス手段とによる共振を起こし、インダクタと印加された電圧に応じて静電容量が変化する可変容量ダイオードを備えた共振回路と、前記共振回路に入力された送信信号を前記可変容量ダイオードで整流して得られた直流電流に応じて電位差を生じ、この電位差を前記可変容量ダイオードのアノードとカソード間に印加する抵抗器と、を有する自己調整可変リアクタンス手段と、
前記自己調整可変リアクタンス手段の抵抗器に生じた電位差に基づく自己調整モニタ信号に基づいて、前記可変リアクタンス手段のリアクタンス値を制御するリアクタンス調整信号を前記可変リアクタンス手段に出力する切替制御手段と、
を備えたことを特徴とする送信器。
A transmitter that induces an electric field based on information to be transmitted in an electric field transmission medium and transmits information using the induced electric field,
Transmitting means for outputting an AC signal having a predetermined frequency to modulate the information to be transmitted, and transmitting a modulated signal related to the modulated information to be transmitted;
An electrode for inducing an electric field based on the information to be transmitted;
Variable reactance means provided between the electrode and the ground of the transmission means, or between the output of the transmission means and the ground of the transmission means,
Provided between the electrode and the output of the transmitting means, the electrode, and the stray capacitance of the ground and the electric field transmission medium of the transmission unit resonated by said variable reactance means, depending on the inductor and the voltage applied A potential difference is generated according to a direct current obtained by rectifying the transmission signal input to the resonance circuit with the variable capacitance diode, and a resonance circuit including a variable capacitance diode whose capacitance changes. A self-tuning variable reactance means having a resistor applied between an anode and a cathode of the variable capacitance diode;
Switching control means for outputting a reactance adjustment signal for controlling a reactance value of the variable reactance means to the variable reactance means based on a self-adjustment monitor signal based on a potential difference generated in a resistor of the self-adjustment variable reactance means;
A transmitter comprising:
前記切替制御手段の代わりに前記自己調整モニタ信号に基づいて、前記電極に印加される信号振幅を最大近傍になるように前記リアクタンス調整信号を前記可変リアクタンス手段に出力するリアクタンス調整手段
を備えたことを特徴とする請求項1に記載の送信器。
Reactance adjustment means for outputting the reactance adjustment signal to the variable reactance means so that the signal amplitude applied to the electrode is close to the maximum based on the self-adjustment monitor signal instead of the switching control means. The transmitter according to claim 1.
前記リアクタンス調整手段が、前記リアクタンス調整信号を変化させたときの各自己調整モニタ信号を記憶し、記憶した前記各自己調整モニタ信号から前記電極に印加される信号振幅を最大近傍になるように前記リアクタンス調整信号を探索して設定する設定信号を出力する信号強度記憶・制御処理手段と、
前記信号強度記憶・制御処理手段からの設定信号に基づいてリアクタンス調整信号を前記可変リアクタンス手段に出力する調整信号出力手段と、
を備えたことを特徴とする請求項2に記載の送信器。
The reactance adjustment means stores each self-adjustment monitor signal when the reactance adjustment signal is changed, and the signal amplitude applied to the electrode from the stored self-adjustment monitor signal is close to the maximum. A signal intensity storage / control processing means for outputting a setting signal for searching and setting the reactance adjustment signal;
An adjustment signal output means for outputting a reactance adjustment signal to the variable reactance means based on a setting signal from the signal intensity storage / control processing means;
The transmitter according to claim 2, further comprising:
前記信号強度記憶・制御処理手段が、前記リアクタンス調整信号を順次変化させたときのN番目とN−1番目の自己調整モニタ信号を記憶する記憶手段と、
前記記憶手段に記憶された両自己調整モニタ信号に基づいてリアクタンス調整信号に対する自己調整モニタ信号の勾配を判別する勾配判定手段と、
前記勾配判定手段で判別した結果に基づいて前記電極に印加される信号振幅を最大近傍になる前記リアクタンス調整信号を探索して設定する設定信号を出力する制御処理手段と、
を備えたことを特徴とする請求項3に記載の送信器。
Storage means for storing the Nth and N-1th self-adjustment monitor signals when the signal intensity storage / control processing means sequentially changes the reactance adjustment signals;
Gradient determination means for determining the gradient of the self-adjustment monitor signal with respect to the reactance adjustment signal based on both self-adjustment monitor signals stored in the storage means;
Control processing means for outputting a setting signal for searching for and setting the reactance adjustment signal that makes the signal amplitude applied to the electrode near the maximum based on the result determined by the gradient determining means;
The transmitter according to claim 3, further comprising:
前記可変リアクタンス手段が、前記送信手段の出力と前記電極の間に設けられ、前記自己調整可変リアクタンス手段が前記電極と前記送信手段のグランド間に設けられたこと
を特徴とする請求項1から4のいずれかに記載の送信器。
5. The variable reactance means is provided between the output of the transmitting means and the electrode , and the self-adjusting variable reactance means is provided between the electrode and the ground of the transmitting means. The transmitter in any one of.
前記自己調整可変リアクタンス手段が、送信時以外のいずれかの期間では前記可変容量ダイオードに順バイアスを与えて前記自己調整可変リアクタンス手段のインピーダンスを低減させること
を特徴とした請求項1から5のいずれかに記載の送信器。
6. The self-tuning variable reactance means reduces the impedance of the self-tuning variable reactance means by applying a forward bias to the variable capacitance diode in any period other than during transmission. Transmitter according to.
送信すべき情報に基づく電界を電界伝達媒体に誘起し、この誘起した電界を用いて情報の送信を行う一方で、前記電界伝達媒体に誘起された受信すべき情報に基づく電界を受信することによって情報の受信を行うトランシーバであって、
所定の周波数を有する交流信号を出力して前記送信すべき情報を変調し、この変調した前記送信すべき情報に係る変調信号を送信する送信手段と、
前記送信すべき情報に基づく電界の誘起および前記受信すべき情報に基づく電界の受信を行う送受信電極と、
前記送受信電極と前記送信手段のグランド間、または前記送信手段の出力と前記送信手段のグランド間に設けられた可変リアクタンス手段と、
前記送信手段の出力と前記送受信電極の間に設けられ、前記送受信電極、前記送信手段のグランドや前記電界伝達媒体の浮遊容量と、前記可変リアクタンス手段とによる共振を起こし、インダクタと印加された電圧に応じて静電容量が変化する可変容量ダイオードを備えた共振回路と、前記共振回路に入力された送信信号を前記可変容量ダイオードで整流して得られた直流電流に応じて電位差を生じ、この電位差を前記可変容量ダイオードのアノードとカソード間に印加する抵抗器と、を有する自己調整可変リアクタンス手段と、
前記自己調整可変リアクタンス手段の抵抗器に生じた電位差に基づく自己調整モニタ信号に基づいて、前記可変リアクタンス手段のリアクタンス値を制御するリアクタンス調整信号を前記可変リアクタンス手段に出力する切替制御手段と、
前記受信すべき情報に基づく電界を検出して復調する受信手段と、
を備えたことを特徴とするトランシーバ。
By inducing an electric field based on information to be transmitted in the electric field transmission medium and transmitting information using the induced electric field, while receiving an electric field based on the information to be received induced in the electric field transmission medium. A transceiver for receiving information,
Transmitting means for outputting an AC signal having a predetermined frequency to modulate the information to be transmitted, and transmitting a modulated signal related to the modulated information to be transmitted;
Transmitting and receiving electrodes for inducing an electric field based on the information to be transmitted and receiving an electric field based on the information to be received;
Variable reactance means provided between the transmission / reception electrode and the ground of the transmission means, or between the output of the transmission means and the ground of the transmission means;
Voltage provided between the output of the transmission means and the transmission / reception electrode , causing resonance by the transmission / reception electrodes , the ground of the transmission means and the stray capacitance of the electric field transmission medium, and the variable reactance means. A potential difference is generated according to a resonance circuit having a variable capacitance diode whose capacitance changes in accordance with the direct current obtained by rectifying the transmission signal input to the resonance circuit with the variable capacitance diode, and A self-regulating variable reactance means comprising a resistor for applying a potential difference between an anode and a cathode of the variable capacitance diode;
Switching control means for outputting a reactance adjustment signal for controlling a reactance value of the variable reactance means to the variable reactance means based on a self-adjustment monitor signal based on a potential difference generated in a resistor of the self-adjustment variable reactance means;
Receiving means for detecting and demodulating an electric field based on the information to be received;
A transceiver comprising:
前記切替制御手段の代わりに前記自己調整モニタ信号に基づいて、前記送受信電極に印加される信号振幅を最大近傍になるように前記リアクタンス調整信号を前記可変リアクタンス手段に出力するリアクタンス調整手段
を備えたことを特徴とする請求項7に記載のトランシーバ。
Reactance adjustment means for outputting the reactance adjustment signal to the variable reactance means based on the self-adjustment monitor signal instead of the switching control means so that the signal amplitude applied to the transmission / reception electrode is close to the maximum. The transceiver according to claim 7.
前記リアクタンス調整手段が、前記リアクタンス調整信号を変化させたときの各自己調整モニタ信号を記憶し、記憶した前記各自己調整モニタ信号から前記送受信電極に印加される信号振幅を最大近傍になるように前記リアクタンス調整信号を探索して設定する設定信号を出力する信号強度記憶・制御処理手段と、
前記信号強度記憶・制御処理手段からの設定信号に基づいてリアクタンス調整信号を前記可変リアクタンス手段に出力する調整信号出力手段と、
を備えたことを特徴とする請求項8に記載のトランシーバ。
As the reactance adjusting means, and storing each self adjustment monitor signal when changing the reactance adjustment signal, from the stored each self-adjustment monitor signal to a maximum near the amplitude of the signal applied to the transceiver electrode A signal intensity storage / control processing means for outputting a setting signal for searching and setting the reactance adjustment signal;
An adjustment signal output means for outputting a reactance adjustment signal to the variable reactance means based on a setting signal from the signal intensity storage / control processing means;
9. The transceiver of claim 8, comprising:
前記信号強度記憶・制御処理手段が、前記リアクタンス調整信号を順次変化させたときのN番目とN−1番目の自己調整モニタ信号を記憶する記憶手段と、
前記記憶手段に記憶された両自己調整モニタ信号に基づいてリアクタンス調整信号に対する自己調整モニタ信号の勾配を判別する勾配判定手段と、
前記勾配判定手段で判別した結果に基づいて前記送受信電極に印加される信号振幅を最大近傍になる前記リアクタンス調整信号を探索して設定する設定信号を出力する制御処理手段と、
を備えたことを特徴とする請求項9に記載のトランシーバ。
Storage means for storing the Nth and N-1th self-adjustment monitor signals when the signal intensity storage / control processing means sequentially changes the reactance adjustment signals;
Gradient determination means for determining the gradient of the self-adjustment monitor signal with respect to the reactance adjustment signal based on both self-adjustment monitor signals stored in the storage means;
Control processing means for outputting a setting signal for searching for and setting the reactance adjustment signal that makes the signal amplitude applied to the transmission / reception electrode close to the maximum based on the result determined by the gradient determination means;
The transceiver of claim 9.
前記可変リアクタンス手段が、前記送信手段の出力と前記送受信電極の間に設けられ、
前記自己調整可変リアクタンス手段が前記送受信電極と前記送信手段のグランド間に設けられたこと
を特徴とする請求項7から10のいずれかに記載のトランシーバ。
The variable reactance means is provided between the output of the transmitting means and the transmitting and receiving electrodes ;
11. The transceiver according to claim 7, wherein the self-adjusting variable reactance means is provided between the transmission / reception electrode and a ground of the transmission means.
前記可変リアクタンス手段において、少なくとも受信時に前記可変リアクタンス手段の前記送信手段のグランドとの接続を切断し、送信時には接続すること
を特徴とした請求項7から11のいずれかに記載のトランシーバ。
The transceiver according to any one of claims 7 to 11, wherein in the variable reactance means, the variable reactance means is disconnected from the ground of the transmitting means at least during reception and is connected during transmission.
前記可変リアクタンス手段において、少なくとも受信時に前記可変リアクタンス手段のインピーダンスを高くすること
を特徴とした請求項7から11のいずれかに記載のトランシーバ。
12. The transceiver according to claim 7, wherein the variable reactance means increases the impedance of the variable reactance means at least during reception.
前記自己調整可変リアクタンス手段が、送信時以外のいずれかの期間では前記可変容量ダイオードに順バイアスを与えて前記自己調整可変リアクタンス手段のインピーダンスを低減させること
を特徴とした請求項7から13のいずれかに記載のトランシーバ。
The self-tuning variable reactance means reduces the impedance of the self-tuning variable reactance means by applying a forward bias to the variable capacitance diode in any period other than during transmission. Transceiver according to
JP2007071172A 2007-03-19 2007-03-19 Transmitter and transceiver Active JP4430682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007071172A JP4430682B2 (en) 2007-03-19 2007-03-19 Transmitter and transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007071172A JP4430682B2 (en) 2007-03-19 2007-03-19 Transmitter and transceiver

Publications (2)

Publication Number Publication Date
JP2008236218A JP2008236218A (en) 2008-10-02
JP4430682B2 true JP4430682B2 (en) 2010-03-10

Family

ID=39908490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007071172A Active JP4430682B2 (en) 2007-03-19 2007-03-19 Transmitter and transceiver

Country Status (1)

Country Link
JP (1) JP4430682B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5303602B2 (en) * 2011-05-06 2013-10-02 日本電信電話株式会社 Method for measuring stray capacitance
JP5277285B2 (en) * 2011-05-20 2013-08-28 日本電信電話株式会社 Electric field communication device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664686B (en) * 2004-12-02 2014-12-24 日本电信电话株式会社 Electric field communication transceiver
JP4191702B2 (en) * 2005-05-09 2008-12-03 日本電信電話株式会社 Transmitter and transceiver

Also Published As

Publication number Publication date
JP2008236218A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
US10205488B2 (en) Low-power high-accuracy clock harvesting in inductive coupling systems
JP4478160B2 (en) Transmitter, electric field communication transceiver and electric field communication system
US9792475B2 (en) RFID tags
KR101848097B1 (en) Overvoltage protecting device for resonance wireless power transmitting apparatus and controlling method thereof
JP6568300B2 (en) Device, system and method for regulating output power using synchronous rectifier control
JP2013162709A (en) Control device and radio power transmission device
US9325205B2 (en) Method for driving power supply system
EP2490343B1 (en) Near field communication device
EP3479472A1 (en) Diode conduction sensor
US20150372494A1 (en) Wireless power supply device
JP2008259269A (en) Controller
US9991722B2 (en) Method for managing contactless power transfer from a transmitter to a receiver, and corresponding transmitter
JP4430682B2 (en) Transmitter and transceiver
JP7477347B2 (en) Wireless power transmission device and wireless power transmission system
JP4191702B2 (en) Transmitter and transceiver
JP2007020124A (en) Electric field communication system
JP6535510B2 (en) Noncontact communication device, signal generation circuit, and noncontact communication method
US20160241083A1 (en) Power receiver control circuit for wireless power receiver apparatus
US10355532B2 (en) Inductive power transfer
JP3991006B2 (en) ASK signal receiver
Abdelatty et al. Exploiting nonlinearity to design robust wireless power transfer and wideband RF energy harvesting
US11870277B2 (en) Back-data transmission circuit robust to load changes and method thereof
US20230327490A1 (en) Device and method providing feedback in wireless power transfer
CN113826304A (en) Impedance tuning apparatus and method for wireless power transmission device and rectifier circuit
EP3794737A1 (en) Low-power high-accuracy clock harvesting in inductive coupling systems

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4430682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350