JP4426858B2 - Start-up method for hydrocarbon oil hydrotreating equipment - Google Patents

Start-up method for hydrocarbon oil hydrotreating equipment Download PDF

Info

Publication number
JP4426858B2
JP4426858B2 JP2004022362A JP2004022362A JP4426858B2 JP 4426858 B2 JP4426858 B2 JP 4426858B2 JP 2004022362 A JP2004022362 A JP 2004022362A JP 2004022362 A JP2004022362 A JP 2004022362A JP 4426858 B2 JP4426858 B2 JP 4426858B2
Authority
JP
Japan
Prior art keywords
catalyst
oil
hydrogen
hydrocarbon oil
reaction tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004022362A
Other languages
Japanese (ja)
Other versions
JP2005213384A (en
Inventor
愛光 宮内
勇樹 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ketjen Co Ltd
Original Assignee
Nippon Ketjen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ketjen Co Ltd filed Critical Nippon Ketjen Co Ltd
Priority to JP2004022362A priority Critical patent/JP4426858B2/en
Publication of JP2005213384A publication Critical patent/JP2005213384A/en
Application granted granted Critical
Publication of JP4426858B2 publication Critical patent/JP4426858B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、炭化水素油の水素化処理装置のスタートアップ方法、すなわち装置の運転開始方法に関する。   The present invention relates to a start-up method of a hydrocarbon oil hydrotreating apparatus, that is, an operation start method of the apparatus.

一般に石油精製で使用される炭化水素油の水素化処理装置の運転開始に際しては、水素化処理触媒を反応塔に充填した後、実際の操業運転を開始するまでに、水素ガスの導入による反応塔の昇温および昇圧、これに続いて触媒の予備硫化といった種々のスタートアップ工程が必要とされる。
こうしたスタートアップ工程は、高温の水素ガスを導入・循環して反応塔の昇温および昇圧操作を行なう第1段階と、触媒の予備硫化を行なう第2段階とに大別される。
At the start of operation of a hydrocarbon oil hydrotreating apparatus generally used in petroleum refining, the reaction tower is constructed by introducing hydrogen gas after the hydrotreating catalyst is charged into the reaction tower and before the actual operation starts. Various start-up steps are required, such as raising the temperature and raising the pressure followed by presulfiding the catalyst.
Such a startup process is roughly divided into a first stage in which high-temperature hydrogen gas is introduced and circulated to raise the temperature and pressure of the reaction tower, and a second stage in which the catalyst is presulfided.

第1段階の操作に関して詳述すれば以下のとおりである。
炭化水素油の水素化処理装置は、一般にステンレス鋼等を材質とする高圧容器である反応塔が用いられているが、反応塔を水素雰囲気下で使用する場合、運転開始前の水素脆性対策が不可欠である。通常、反応塔に触媒を充填した後、反応塔は常温で材質に応じて設計圧力(運転圧力)の20%程度まで水素で加圧される。次いで、反応塔内壁に吸蔵された水素を脱離させて反応塔材質の水素脆化と焼戻脆化を防止するため、反応塔表面温度(「スキン温度」と呼ばれる)を水素脆性対策温度まで上げる必要がある。この水素脆性対策を終えた後は、段階的に昇圧しながら水素漏れテスト(リークテスト)を行い、設計圧力まで昇圧される。
The operation in the first stage will be described in detail as follows.
Hydrocarbon oil hydrotreating equipment generally uses a reaction tower that is a high-pressure vessel made of stainless steel or the like. However, when the reaction tower is used in a hydrogen atmosphere, measures against hydrogen embrittlement before the start of operation can be taken. It is essential. Usually, after the catalyst is packed in the reaction tower, the reaction tower is pressurized with hydrogen to about 20% of the design pressure (operating pressure) at room temperature depending on the material. Next, in order to desorb the hydrogen occluded in the inner wall of the reaction tower and prevent hydrogen embrittlement and temper embrittlement of the reaction tower material, the reaction tower surface temperature (called “skin temperature”) is reduced to the hydrogen embrittlement countermeasure temperature. It is necessary to raise. After completing the countermeasure against hydrogen embrittlement, a hydrogen leakage test (leak test) is performed while increasing the pressure stepwise to increase the pressure to the design pressure.

水素脆性対策のためにスキン温度を上げる方法としては、高温の水素を反応塔内に循環させる方法、また、加熱した炭化水素油を反応塔に導入してスキン温度を一気に上げる方法などがある。後者の方法が適用できるのは、常圧での通油が可能でリークテストが不要な一部の装置のみであり、一般的な方法ではない。前者の方法はスキン温度を上げる確実な方法で、広く実施されている。   As a method for raising the skin temperature for measures against hydrogen embrittlement, there are a method for circulating high-temperature hydrogen in the reaction tower, a method for introducing heated hydrocarbon oil into the reaction tower and raising the skin temperature all at once. The latter method can be applied only to a part of the apparatus that can pass oil at normal pressure and does not require a leak test, and is not a general method. The former method is a reliable method for raising the skin temperature and is widely practiced.

商業装置においては、運転効率を高めるために早急な装置の立ち上げが望まれる。このためには、反応塔の温度を短期間で昇温させるために、高温の水素ガスを循環させればよい。しかしながら、水素ガス循環温度が250℃以上となった場合、充填された触媒が高温の水素ガスに暴露されることになり活性金属種の水素還元反応が問題となる。この反応が起こると、触媒は不活性化し後の予備硫化を施しても本来の触媒活性を発現しない。このため、水素ガス循環温度は触媒の還元が無視できる比較的低温(安全性を考慮して約200℃以下)まで下げるのが一般的である。   In commercial equipment, it is desired to start up the equipment quickly in order to increase the operation efficiency. For this purpose, high-temperature hydrogen gas may be circulated in order to raise the temperature of the reaction tower in a short period of time. However, when the hydrogen gas circulation temperature becomes 250 ° C. or higher, the charged catalyst is exposed to high-temperature hydrogen gas, and the hydrogen reduction reaction of the active metal species becomes a problem. When this reaction occurs, the catalyst is deactivated and does not exhibit its original catalytic activity even if it is subjected to subsequent presulfidation. Therefore, the hydrogen gas circulation temperature is generally lowered to a relatively low temperature (about 200 ° C. or less in consideration of safety) where the reduction of the catalyst can be ignored.

一方、水素脆性対策温度は処理する油種に対応した反応塔の材質にもよるが、一般に常温〜200℃程度である。反応塔の加熱水素ガスによる昇温操作は容易ではなく、反応塔容積が100〜2,000m3にもなる間接脱硫装置や重油直接脱硫装置では、スキン温度を水素脆性対策温度まで昇温させるのに、前述のような約200℃以下の水素ガスを用いると2〜3日を要する。
装置の立ち上げには、この後に充填触媒に予備硫化を施すが、反応塔の水素脆性対策に費やす時間は、装置の全スタートアップ所用時間の50〜60%にも達する。従って装置のスタートアップ時間を短縮するには、反応塔の水素脆性対策にかける時間の短縮化が有効である。しかしながら、触媒の水素還元防止の観点から反応塔内の水素ガス循環温度は低めに設定せざるを得えない。このため、触媒担持金属種の水素還元を防止しながらいかに速く水素脆性対策温度までスキン温度を昇温し、短期間で装置を立ち上げるかが長年の課題とされていた。
On the other hand, the hydrogen embrittlement countermeasure temperature is generally from about room temperature to about 200 ° C., although it depends on the material of the reaction tower corresponding to the type of oil to be treated. In the indirect desulfurization equipment and heavy oil direct desulfurization equipment with a reaction tower volume of 100 to 2,000 m 3 , the skin temperature is raised to the hydrogen embrittlement temperature. In addition, it takes 2-3 days if hydrogen gas of about 200 ° C. or less as described above is used.
To start up the apparatus, the packed catalyst is preliminarily subjected to presulfidation, and the time spent for countermeasures against hydrogen embrittlement in the reaction tower reaches 50 to 60% of the total start-up time of the apparatus. Therefore, in order to shorten the start-up time of the apparatus, it is effective to shorten the time taken for measures against hydrogen embrittlement in the reaction tower. However, from the viewpoint of preventing hydrogen reduction of the catalyst, the hydrogen gas circulation temperature in the reaction tower must be set low. For this reason, it has been a long-standing issue how to quickly raise the skin temperature to the hydrogen embrittlement countermeasure temperature and start up the apparatus in a short period of time while preventing hydrogen reduction of the catalyst-supported metal species.

水素化処理装置のスタートアップ時間を短縮する方法に関しては、これまで主としてスタートアップ工程の第2段階である触媒の予備硫化工程の簡素化や短縮化に着目した技術が開示されている(例えば、特許文献1〜4参照)。しかしながら、第1段階である水素脆性対策工程の短時間化を可能にする技術はこれまでのところ見当たらない。   With regard to a method for shortening the start-up time of the hydrotreating apparatus, there has been disclosed a technique mainly focusing on simplification and shortening of the catalyst pre-sulfurization process which is the second stage of the start-up process so far (for example, Patent Documents). 1-4). However, no technology has been found so far that can shorten the time required for the hydrogen embrittlement countermeasure process, which is the first stage.

特許文献5では、反応塔の圧力試験条件下(水素加圧下、水素ガス温度100℃以上)や硫化工程時に触媒活性が低下する有機添加物含有触媒に対して、沸点が150〜500℃の有機液体を接触させ、次いで水素と硫黄化合物を接触させることで触媒活性を低下させない触媒の予備硫化方法が開示されている。しかしながら、特許文献5には高温の循環ガスを用いた水素脆性対策工程を短縮する方法については開示されていない。
特公平4−79701号公報 特公平5-30503号公報 特公平6−24638号公報 特開平9−192505号公報 特表2003−530208号公報
In Patent Document 5, an organic compound having a boiling point of 150 to 500 ° C. with respect to an organic additive-containing catalyst whose catalytic activity is reduced during the pressure test conditions of the reaction tower (under hydrogen pressure, hydrogen gas temperature of 100 ° C. or more) or during the sulfiding step A catalyst presulfidation method is disclosed in which the liquid is contacted and then the catalytic activity is not reduced by contacting hydrogen with a sulfur compound. However, Patent Document 5 does not disclose a method for shortening the hydrogen embrittlement countermeasure process using a high-temperature circulating gas.
Japanese Patent Publication No. 4-79701 Japanese Patent Publication No. 5-30503 Japanese Patent Publication No. 6-24638 JP-A-9-192505 Special table 2003-530208 gazette

本発明の課題は、炭化水素油の水素化処理触媒の活性を損なうことなく、水素化処理装置のスタートアップ工程に要する時間の短縮を可能とするスタートアップ方法を提供することにある。   An object of the present invention is to provide a start-up method that can shorten the time required for the start-up process of the hydrotreating apparatus without impairing the activity of the hydrotreating catalyst for hydrocarbon oil.

本発明者らは、上記従来の方法における問題点に鑑みて鋭意研究を重ねた結果、水素化処理触媒に特定の炭化水素油を添加した触媒を用いることで、触媒の性能を損なうことなく装置のスタートアップに要する時間、特に水素脆性対策工程の時間を大幅に短縮できることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the problems in the conventional methods described above, the present inventors have used a catalyst obtained by adding a specific hydrocarbon oil to a hydrotreating catalyst, so that the performance of the catalyst is not impaired. It has been found that the time required for start-up, particularly the time required for the hydrogen embrittlement countermeasure process, can be greatly reduced, and the present invention has been completed.

すなわち本発明は、炭化水素油の水素化処理において、炭化水素油を添加した水素化処理触媒を充填した反応塔で、水素加圧下、300℃以下の水素ガスを循環させた後に予備硫化を行なう水素化処理装置のスタートアップ方法であり、また、水素化処理触媒に添加する炭化水素油がナフサ、灯油、軽油、減圧軽油および潤滑油から選ばれる少なくとも1種で初留点が350℃以下、終留点が570℃以下であることを特徴とし、さらに添加する炭化水素油の金属分が10重量ppm以下、臭素価が10gBr2/100g以下であることを特徴とする。 That is, according to the present invention, in hydrotreating hydrocarbon oil, presulfurization is performed after circulating hydrogen gas at 300 ° C. or less under hydrogen pressure in a reaction tower filled with a hydrotreating catalyst added with hydrocarbon oil. This is a start-up method of a hydrotreating apparatus, and the hydrocarbon oil added to the hydrotreating catalyst is at least one selected from naphtha, kerosene, light oil, vacuum gas oil and lubricating oil, and the initial boiling point is 350 ° C. or lower. boiling point is characterized in that at 570 ° C. or less, the metal content of the hydrocarbon oil further added 10 ppm by weight, a bromine number is equal to or less than 10gBr 2 / 100g.

本発明のスタートアップ方法を適用すれば、水素化処理触媒の活性を損なうことなく、水素化処理装置のスタートアップ工程に要する時間を約半分程度に短縮でき、早期に実操業を行うことが可能となり、その結果、従来よりも長時間にわたって水素化処理を効率良く行なうことができる。
また、入手が容易な炭化水素油を触媒に添加する本発明方法は簡便であり、大規模な装置の改良や機器の追加は一切必要としないので、低コストであり経済的に極めて有利である。これに対して、従来の予備硫化工程に着目したスタートアップ工程短縮方法では、予備硫化触媒の製造やそのための設備など大きな負担が伴い製品のコストアップをもたらす恐れが多い。
さらに、スタートアップ時間の短縮によりスタートアップ工程で消費されるエネルギーも大幅に減少することができる。
If the start-up method of the present invention is applied, the time required for the start-up process of the hydrotreating apparatus can be reduced to about half without impairing the activity of the hydrotreating catalyst, and it becomes possible to perform actual operation at an early stage. As a result, the hydrogenation process can be performed efficiently over a longer time than in the past.
In addition, the method of the present invention in which easily available hydrocarbon oil is added to the catalyst is simple and does not require any large-scale equipment improvement or equipment addition, so it is low cost and extremely advantageous economically. . On the other hand, the conventional start-up process shortening method focusing on the pre-sulfidation process involves a large burden such as the production of the pre-sulfurization catalyst and the equipment therefor, and there is a risk of increasing the cost of the product.
Furthermore, the energy consumed in the startup process can be greatly reduced by shortening the startup time.

以下、上記発明について詳細に説明する。
(1)水素化処理触媒
本発明の実施にあたっては、炭化水素油を添加した水素化処理触媒の調製が必要である。
本発明で使用される触媒は、石油精製業界で広く用いられている一般的な水素化処理触媒であり、通常の水素化脱硫触媒、水素化脱窒素触媒、水素化脱金属触媒、水素化分解触媒、マイルド水素化分解触媒、水素化異性化触媒等を利用できる。
これらの触媒は、アルミナ、シリカ、アルミナ−シリカ、ボリア、リン酸、マグネシア、酸化亜鉛、ジルコニア、チタニア、ゼオライト、粘土鉱物等の多孔質の無機耐熱性酸化物を担体とし、クロム、モリブデン、タングステン、鉄、コバルト、ニッケル、銅等から選択される1種以上の活性金属種が担持されているのが一般的である。
本発明で使用される触媒は、実質的に硫化されていない触媒であるが、不純物として5重量%以下の硫黄分を含んでいてもよい。
The above invention will be described in detail below.
(1) Hydrotreating catalyst In carrying out the present invention, it is necessary to prepare a hydrotreating catalyst to which hydrocarbon oil is added.
The catalyst used in the present invention is a general hydrotreating catalyst widely used in the oil refining industry, and is a normal hydrodesulfurization catalyst, hydrodenitrogen catalyst, hydrodemetallation catalyst, hydrocracking. Catalysts, mild hydrocracking catalysts, hydroisomerization catalysts, etc. can be used.
These catalysts are supported by a porous inorganic heat-resistant oxide such as alumina, silica, alumina-silica, boria, phosphoric acid, magnesia, zinc oxide, zirconia, titania, zeolite, clay minerals, chromium, molybdenum, tungsten. In general, one or more active metal species selected from iron, cobalt, nickel, copper and the like are supported.
The catalyst used in the present invention is a catalyst that is not substantially sulfided, but may contain a sulfur content of 5% by weight or less as an impurity.

(2)炭化水素油
上記の触媒に対して、特定の炭化水素油を添加する。この炭化水素油の添加によって水素化処理装置のスタートアップ時における高温循環水素ガスと触媒との接触を抑制し、触媒の活性金属種の水素還元反応を防止することができる。
この炭化水素油は、ナフサ、灯油、軽油、減圧軽油および潤滑油から選ばれる少なくとも1種であるが、蒸留性状として、初留点が350℃以下、好ましくは340℃以下、終留点が570℃以下、好ましくは560℃以下であることが必要である。
初留点、終留点がそれぞれ350℃、570℃を越える場合、炭化水素油の粘性が高すぎるため、触媒に添加してもその細孔内に浸透せず、水素加圧下で反応塔の水素脆性対策温度に曝された場合、担持された活性金属種の還元反応を防止できない。
(2) Hydrocarbon oil A specific hydrocarbon oil is added to the catalyst. By adding this hydrocarbon oil, the contact between the high-temperature circulating hydrogen gas and the catalyst at the start-up of the hydrotreating apparatus can be suppressed, and the hydrogen reduction reaction of the active metal species of the catalyst can be prevented.
This hydrocarbon oil is at least one selected from naphtha, kerosene, light oil, vacuum gas oil and lubricating oil, but has an initial boiling point of 350 ° C. or lower, preferably 340 ° C. or lower, and a final boiling point of 570 as a distillation property. It is necessary that the temperature is not higher than ° C., preferably not higher than 560 ° C.
When the initial boiling point and the final boiling point exceed 350 ° C. and 570 ° C., respectively, the viscosity of the hydrocarbon oil is too high, so even if it is added to the catalyst, it does not penetrate into the pores. When exposed to the hydrogen embrittlement countermeasure temperature, the reduction reaction of the supported active metal species cannot be prevented.

また、この炭化水素油はナトリウム、砒素、ケイ素、バナジウム、ニッケル、鉄等の金属分が10重量ppm以下、好ましくは5重量ppm以下、より好ましくは1重量ppm以下、臭素価として10gBr2/100g以下、好ましくは5gBr2/100g以下、さらに好ましくは1gBr2/100g以下であることが望ましい。
金属分が10重量ppmを越えた場合、金属分が触媒表面に沈着し、触媒は失活する。また、臭素価が10gBr2/100gを越えた場合、空気中での安定性が低下し、触媒表面上にガム質が生じる恐れがある。また後の予備硫化工程時に担持金属種上で急激な重合反応が進行し、触媒表面上にコーク分が堆積することで触媒活性の低下をもたらす。
使用する炭化水素油は、硫化剤としての硫黄化合物が添加されていないものであるが、不純物として1重量%以下の硫黄分を含むものを用いてもよい。
Sodium This hydrocarbon oil, arsenic, silicon, vanadium, nickel, metal components such as iron below 10 ppm by weight, preferably 5 ppm by weight or less, more preferably 1 ppm by weight or less, 10gBr 2 / 100g as bromine number or less, preferably 5gBr 2 / 100g or less, more preferably at 1gBr 2 / 100g or less.
When the metal content exceeds 10 ppm by weight, the metal content is deposited on the catalyst surface, and the catalyst is deactivated. Also, if the bromine number exceeds 10gBr 2 / 100g, it decreased stability in air, there is a possibility that gum on the catalyst surface may occur. In addition, a rapid polymerization reaction proceeds on the supported metal species during the subsequent presulfidation step, and coke is deposited on the catalyst surface, resulting in a decrease in catalyst activity.
The hydrocarbon oil to be used is one to which a sulfur compound as a sulfiding agent is not added, but one containing 1% by weight or less of sulfur as impurities may be used.

炭化水素油が触媒表面の一部又は全部に付着して高温循環水素ガスと触媒との直接の接触を抑制できるのであれば、炭化水素油を触媒に添加する方法に特に制限は無く、例えば、含浸法、浸漬法、噴霧法、燻蒸法など様々な方法を適用することができる。中でも、作業性や添加効率の観点から含浸法が好ましい。なお、触媒への浸透を促進させるため、必要に応じて、炭化水素油を室温〜200℃に加熱して用いてもよい。
また、炭化水素油の触媒への添加は、触媒が反応塔内に充填されたオンサイト、又は触媒が反応塔内に充填されていないオフサイトのいずれの状態でも行なうことが可能であるが、作業効率の観点からオフサイトで行なうことが好ましい。
There is no particular limitation on the method of adding the hydrocarbon oil to the catalyst as long as the hydrocarbon oil adheres to part or all of the catalyst surface and can suppress direct contact between the hot circulating hydrogen gas and the catalyst. Various methods such as an impregnation method, an immersion method, a spray method, and a fumigation method can be applied. Among these, the impregnation method is preferable from the viewpoint of workability and addition efficiency. In order to promote the penetration into the catalyst, the hydrocarbon oil may be heated to room temperature to 200 ° C. as necessary.
The addition of the hydrocarbon oil to the catalyst can be performed either on-site where the catalyst is packed in the reaction tower or off-site where the catalyst is not packed in the reaction tower. It is preferable to carry out off-site from the viewpoint of work efficiency.

炭化水素油の触媒への添加量は触媒の細孔容積に見合った量であるが、触媒細孔表面への付着を確実にするため、少なくとも触媒細孔表面の一部に単分子層で付着していることが望ましい。
このため、添加量としては、触媒細孔容積の飽和に必要な添加量の20〜500%、好ましくは30〜200%、より好ましくは50〜125%添加する。20%に満たなければ触媒表面の被覆が不十分となり、水素脆性対策温度での触媒の還元を抑制できないため、結果として、水素脆性対策工程期間を短縮できない。一方、500%を越えた場合、触媒への付着に利用されない炭化水素油が増加して経済的に不利である。なお、炭化水素油を添加された触媒は、取扱性の観点から、触媒同士が容易に付着し合わない状態であることが望ましい。
炭化水素油を添加された触媒は、必要に応じて乾燥処理を施す。乾燥条件に特に制限はなく、空気中または不活性ガス雰囲気下で、室温〜200℃で処理する。炭化水素油を添加された触媒は、そのまま反応塔に充填することができる。
The amount of hydrocarbon oil added to the catalyst is an amount commensurate with the pore volume of the catalyst, but in order to ensure adhesion to the catalyst pore surface, at least a part of the catalyst pore surface adheres as a monomolecular layer. It is desirable that
For this reason, the addition amount is 20 to 500%, preferably 30 to 200%, more preferably 50 to 125% of the addition amount necessary for saturation of the catalyst pore volume. If it is less than 20%, the coating of the catalyst surface becomes insufficient, and reduction of the catalyst at the hydrogen embrittlement countermeasure temperature cannot be suppressed. As a result, the hydrogen embrittlement countermeasure process period cannot be shortened. On the other hand, when it exceeds 500%, hydrocarbon oil that is not used for adhesion to the catalyst increases, which is economically disadvantageous. In addition, it is desirable that the catalyst to which the hydrocarbon oil is added is in a state in which the catalysts do not easily adhere to each other from the viewpoint of handleability.
The catalyst to which the hydrocarbon oil is added is subjected to a drying treatment as necessary. There is no restriction | limiting in particular in drying conditions, It processes at room temperature-200 degreeC in air or inert gas atmosphere. The catalyst to which the hydrocarbon oil has been added can be charged into the reaction tower as it is.

(3)反応塔
使用される反応塔は、石油精製業界で広く使用される高圧反応容器であり、固定床、移動床、沸騰床、流動床などの形態のものを使用することができる。
反応塔で水素化処理の対象となる炭化水素油(以下「原料油」という)は、原油、常圧留出油、減圧軽油、常圧残渣油、減圧残渣油、熱分解油、接触分解油、溶剤脱瀝油、タールサンド油、頁岩油、石炭液化油やこれらの混合油である。
(3) Reaction tower The reaction tower used is a high-pressure reaction vessel widely used in the petroleum refining industry, and can be used in the form of a fixed bed, moving bed, boiling bed, fluidized bed and the like.
Hydrocarbon oil (hereinafter referred to as “raw oil”) to be hydrotreated in the reaction tower is crude oil, atmospheric distillation oil, vacuum gas oil, atmospheric residue oil, vacuum residue oil, pyrolysis oil, catalytic cracking oil Solvent dewaxing oil, tar sand oil, shale oil, coal liquefied oil and mixed oils thereof.

(4)スタートアップ時の運転
触媒充填後、反応塔は通常、反応塔材質によって決定される運転圧力の20%程度(0.4〜5MPa)まで水素で加圧され、反応塔の水素漏れの有無が確認される。この後、水素ガス温度300℃以下、好ましくは200〜280℃、特に好ましくは200〜250℃の温度の水素ガスで反応塔内を循環させてスキン温度を水素脆性対策温度まで昇温する。水素ガス温度が300℃を越えた場合、充填した触媒の還元反応が進行し、触媒に硫化処理を施しても活性を賦活できない。また200℃に満たない場合、従来技術と同様の反応塔昇温時間が必要となり、水素脆性対策工程に要する時間を短縮できない。
なお、循環に用いる水素ガスは純粋なガスを用いてもよいし、不純物として5%程度以下のアンモニア、硫化水素を含んでいてもよい。
(4) Operation at start-up After the catalyst is charged, the reaction tower is usually pressurized with hydrogen to about 20% (0.4-5 MPa) of the operation pressure determined by the reaction tower material, and the presence or absence of hydrogen leakage in the reaction tower Is confirmed. Thereafter, the skin temperature is raised to the hydrogen embrittlement countermeasure temperature by circulating in the reaction tower with hydrogen gas at a temperature of 300 ° C. or less, preferably 200 to 280 ° C., particularly preferably 200 to 250 ° C. When the hydrogen gas temperature exceeds 300 ° C., the reduction reaction of the packed catalyst proceeds, and the activity cannot be activated even if the catalyst is subjected to sulfurization treatment. On the other hand, when the temperature is less than 200 ° C., the same reaction tower heating time as in the prior art is required, and the time required for the hydrogen embrittlement countermeasure process cannot be shortened.
The hydrogen gas used for the circulation may be a pure gas or may contain ammonia or hydrogen sulfide of about 5% or less as impurities.

反応塔温度が水素脆性対策温度に達した後、段階的に昇圧しながらリークテストを実施する。設計圧力(2〜25MPa)まで昇圧後、充填触媒の予備硫化を行なう。予備硫化は直留軽油、LGO(ライトガスオイル)やVGO(減圧軽油)で行っても良いし、これらにDMDS(ジメチルジスルフィド)やTNPS(ターシャリーノニルポリスルフィド)等の含硫黄化合物を添加したものを用いてもよい。
なお、予備硫化は水素ガスと硫化水素、二硫化炭素、DMDS等の硫黄化合物を用いて気相で行なうこともできる。予備硫化は通常150〜350℃の温度領域で行われる。
After the reaction tower temperature reaches the hydrogen embrittlement countermeasure temperature, a leak test is performed while increasing the pressure stepwise. After increasing the pressure to the design pressure (2 to 25 MPa), pre-sulfiding of the packed catalyst is performed. The preliminary sulfidation may be carried out with straight-run gas oil, LGO (light gas oil) or VGO (vacuum gas oil), and a sulfur-containing compound such as DMDS (dimethyl disulfide) or TNPS (tertiary nonyl polysulfide) added thereto. May be used.
The preliminary sulfidation can also be performed in a gas phase using hydrogen gas and a sulfur compound such as hydrogen sulfide, carbon disulfide, DMDS, or the like. The presulfurization is usually performed in a temperature range of 150 to 350 ° C.

予備硫化が終了すれば、前述の原料油に切り替え、実際の商業運転に入る。
なお、原料油水素化処理条件は特に限定はされないが、通常の水素化処理条件として例えば、水素分圧が2〜25MPa、液空間速度が0.1〜10h-1、水素/原料油比が50〜1500Nm3/kl、反応温度で300〜450℃等が一般的である。
When the preliminary sulfidation is completed, the raw material oil is switched to the above-mentioned raw oil and the actual commercial operation is started.
The feedstock oil hydrotreating conditions are not particularly limited, but the normal hydrotreating conditions are, for example, a hydrogen partial pressure of 2 to 25 MPa, a liquid space velocity of 0.1 to 10 h −1 , and a hydrogen / feedstock ratio. 50 to 1500 Nm 3 / kl and a reaction temperature of 300 to 450 ° C. are common.

以下、実施例を示し、本発明を具体的に説明するが、本発明はこれらにより限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited by these.

〔実施例1〕
(1)炭化水素油添加触媒の調製
市販の水素化処理触媒(日本ケッチェン(株)製「KF 903」(商品名);多孔質アルミナ系担体に周期表第6A族金属及び第8族金属の酸化物を担持させた触媒)1kgに対して、炭化水素油として市販潤滑油190g(触媒細孔の飽和に必要な添加量の95%)を室温で1時間かけて含浸添加して触媒Aを得た。添加した潤滑油の性状を表1に示す。
[Example 1]
(1) Preparation of hydrocarbon oil addition catalyst Commercially available hydrotreating catalyst (“KF 903” (trade name) manufactured by Nippon Ketjen Co., Ltd.); porous alumina carrier with periodic table group 6A metal and group 8 metal 1 kg of the catalyst carrying the oxide) was impregnated with 190 g of a commercial lubricating oil as hydrocarbon oil (95% of the amount required for saturation of the catalyst pores) over 1 hour at room temperature, and Catalyst A was added. Obtained. Table 1 shows the properties of the added lubricating oil.

Figure 0004426858
Figure 0004426858

(2)減圧軽油を用いた水素化処理試験
等温流通式小型試験機に、触媒Aを200ml充填し、水素分圧4.4MPa、温度250℃で24時間保持した後、硫黄分として2.5重量%相当のDMDSを添加した直留軽油で予備硫化した。次いで、330℃から表2の性状を有する原料油を表3に示す条件で通油し、生成油中の硫黄分を蛍光X線装置により定量した。
(2) Hydrogenation test using reduced pressure gas oil 200 ml of catalyst A was charged in an isothermal flow type small tester and maintained at a hydrogen partial pressure of 4.4 MPa and a temperature of 250 ° C. for 24 hours. Presulfided with straight-run gas oil to which DMDS equivalent to wt% was added. Subsequently, the raw material oil having the properties shown in Table 2 was passed from 330 ° C. under the conditions shown in Table 3, and the sulfur content in the produced oil was quantified with a fluorescent X-ray apparatus.

Figure 0004426858
Figure 0004426858

Figure 0004426858
Figure 0004426858

〔比較例1〕
実施例1で使用した市販水素化処理触媒に対して炭化水素油を添加せず、そのまま等温流通式小型試験機に200ml充填し、実際の商業装置での条件と同等の水素分圧4.4MPa、温度190℃で24時間保持した後、実施例1と同様に予備硫化後、減圧軽油の水素化処理試験を実施した。
[Comparative Example 1]
The commercial hydrotreating catalyst used in Example 1 was not added with hydrocarbon oil, but was filled as it was in an isothermal flow type small tester with 200 ml, and the hydrogen partial pressure was the same as the conditions in an actual commercial apparatus, 4.4 MPa. After maintaining at a temperature of 190 ° C. for 24 hours, after preliminary sulfidation in the same manner as in Example 1, a hydrogenation test of vacuum gas oil was performed.

〔比較例2〕
炭化水素油による触媒還元防止効果をみるため、市販水素化処理触媒をそのまま等温流通式小型試験機に200ml充填し、水素分圧4.4MPa、温度250℃で24時間保持した後、実施例1と同様の予備硫化、減圧軽油の水素化処理試験を実施した。
[Comparative Example 2]
In order to see the catalytic reduction prevention effect by hydrocarbon oil, 200 ml of a commercially available hydrotreating catalyst was filled as it was in an isothermal flow type small tester and maintained at a hydrogen partial pressure of 4.4 MPa and a temperature of 250 ° C. for 24 hours. A hydrosulfurization test of presulfurized and vacuum gas oil was conducted in the same manner as in Example 1.

実施例1、比較例1および比較例2の水素化処理試験で得られた生成油中の硫黄分に対して、反応次数1.7次として反応速度定数を求め、比較例1を基準として実施例1の相対脱硫活性(容積基準)を求めると以下の表4のようになった。   With respect to the sulfur content in the product oil obtained in the hydrotreating tests of Example 1, Comparative Example 1 and Comparative Example 2, the reaction rate constant was determined as a reaction order of 1.7 order, and the comparison example 1 was used as a reference. The relative desulfurization activity (volume basis) of Example 1 was obtained as shown in Table 4 below.

Figure 0004426858
Figure 0004426858

上記の結果から炭化水素油を添加した触媒(実施例1)は、水素加圧下で250℃の温度にさらされても、通常のスタートアップ方法に準拠した比較例1の触媒と同等の脱硫性能を示していることが分かる。また、炭化水素油を添加しない比較例2では、触媒活性は大幅に低下した。この結果から、炭化水素の添加は触媒の還元防止に有効であると考えられる。   From the above results, the catalyst added with hydrocarbon oil (Example 1) has the same desulfurization performance as the catalyst of Comparative Example 1 based on the normal start-up method even when exposed to a temperature of 250 ° C. under hydrogen pressure. You can see that Moreover, in the comparative example 2 which does not add hydrocarbon oil, the catalyst activity fell significantly. From this result, it is considered that the addition of hydrocarbon is effective in preventing reduction of the catalyst.

重質油の直接脱硫装置においては、従来、約190℃の水素ガス循環温度でスキン温度が水素脆性対策温度に達するまでに3日かかっていたが、本発明方法で循環水素ガス温度を250℃に設定できたことで、スタートアップ時間を1.5〜2日まで短縮することができた。また、間接脱硫装置においては、スタートアップに約2日要したものが本発明方法の適用により、約1日まで短縮することができた。   In a heavy oil direct desulfurization apparatus, it took 3 days for the skin temperature to reach the hydrogen embrittlement countermeasure temperature at a hydrogen gas circulation temperature of about 190 ° C. The startup time was shortened to 1.5-2 days. In addition, in the indirect desulfurization apparatus, what took about 2 days for start-up could be shortened to about 1 day by applying the method of the present invention.

Claims (3)

水素化処理触媒が充填された反応塔内に水素ガスを導入して反応塔の水素脆性対策を行なう第1段階と、次に触媒の予備硫化を行なう第2段階とからなる炭化水素油の水素化処理装置のスタートアップ方法であって、
第1段階において硫黄分が1重量%以下の炭化水素油を添加した水素化処理触媒を反応塔内に充填した後、0.4〜5MPaの水素加圧の下に300℃以下で不純物が0〜5%の水素ガスを循環させて反応塔を水素脆性対策温度の200℃以下まで昇温し、次いで
第2段階において、直留軽油、ライトガスオイルもしくは減圧軽油またはこれらに硫黄化合物を添加したものを用いる液相で前記水素化処理触媒の予備硫化を行なうことを特徴とする水素化処理装置のスタートアップ方法。
Hydrogen of hydrocarbon oil comprising a first stage in which hydrogen gas is introduced into a reaction tower packed with a hydrotreating catalyst to take measures against hydrogen embrittlement of the reaction tower, and a second stage in which preliminary catalyst sulfidation is performed next. A start-up method of a chemical processing apparatus,
In the first stage, after the hydrotreating catalyst added with hydrocarbon oil having a sulfur content of 1 wt% or less is charged into the reaction tower, impurities are reduced to 0.degree. Circulating ~ 5% hydrogen gas to raise the temperature of the reaction tower to 200 ° C. or less of the hydrogen embrittlement countermeasure temperature, and then in the second stage, straight-run gas oil, light gas oil or vacuum gas oil or sulfur compounds were added to these start-up method of hydrotreating unit, characterized in that in the liquid phase using an object performs a preliminary sulfurization of the hydrotreating catalyst.
水素化処理触媒に添加する炭化水素油が、ナフサ、灯油、軽油、減圧軽油および潤滑油から選ばれる少なくとも1種であり、初留点が350℃以下、終留点が570℃以下である請求項1記載の方法。   The hydrocarbon oil added to the hydrotreating catalyst is at least one selected from naphtha, kerosene, light oil, vacuum gas oil and lubricating oil, and has an initial boiling point of 350 ° C. or lower and an end point of 570 ° C. or lower. Item 2. The method according to Item 1. 水素化処理触媒に添加する炭化水素油の金属分が、10重量ppm以下、臭素価が10gBr2/100g以下である請求項1または2記載の方法。 Metal content of the hydrocarbon oil to be added to the hydrotreating catalyst, 10 ppm by weight or less, The method of claim 1 or 2, wherein the bromine number is 10gBr 2 / 100g or less.
JP2004022362A 2004-01-30 2004-01-30 Start-up method for hydrocarbon oil hydrotreating equipment Expired - Lifetime JP4426858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004022362A JP4426858B2 (en) 2004-01-30 2004-01-30 Start-up method for hydrocarbon oil hydrotreating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004022362A JP4426858B2 (en) 2004-01-30 2004-01-30 Start-up method for hydrocarbon oil hydrotreating equipment

Publications (2)

Publication Number Publication Date
JP2005213384A JP2005213384A (en) 2005-08-11
JP4426858B2 true JP4426858B2 (en) 2010-03-03

Family

ID=34905738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004022362A Expired - Lifetime JP4426858B2 (en) 2004-01-30 2004-01-30 Start-up method for hydrocarbon oil hydrotreating equipment

Country Status (1)

Country Link
JP (1) JP4426858B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9523048B2 (en) 2009-07-24 2016-12-20 Lummus Technology Inc. Pre-sulfiding and pre-conditioning of residuum hydroconversion catalysts for ebullated-bed hydroconversion processes

Also Published As

Publication number Publication date
JP2005213384A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
EP1718408B1 (en) A method of restoring catalytic activity to a spent hydroprocessing catalyst
CA2362466C (en) Preparation of a hydrotreating catalyst
EP1737571B1 (en) A method of restoring catalytic activity of a spent hydroprocessing catalyst
JP4538667B2 (en) In situ presulfidation in the presence of hydrocarbon molecules
JP6464189B2 (en) Method for activating hydrotreating catalyst
US5910242A (en) Process for reduction of total acid number in crude oil
JP5060044B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
CN116583351A (en) Method for rejuvenating catalyst from hydrotreating and/or hydrocracking process
US5008003A (en) Start-up of a hydrorefining process
US4485006A (en) Start-up method for a hydrorefining process
JP4773274B2 (en) Regeneration method for heavy oil hydrotreating catalyst
KR102329701B1 (en) Process for rejuvenation of a used hydrotreating catalyst
JP4426858B2 (en) Start-up method for hydrocarbon oil hydrotreating equipment
JP4800565B2 (en) Method for producing presulfided hydrotreating catalyst and method for desulfurizing light oil
EP2988870B1 (en) Preparation of a sulphided catalyst and process using said catalyst for hydrotreating a sulphur-containing hydrocarbon feedstock
EP2723494B1 (en) Method of making a hydroprocessing catalyst
JP5611750B2 (en) Sulfurization method for hydrocarbon treatment catalyst
JP4316192B2 (en) Titanium-containing support, method for producing the same, and hydrotreating catalyst for hydrocarbon oil
RU2748975C1 (en) Complex method for restoring activity of hydroprocess catalysts
JP2010069466A (en) Hydrogenation catalyst
WO2012156294A1 (en) Hydrotreating catalyst comprising a group viii and/or group vib metal silicide compound
JP2005013848A (en) Carrier for hydrogenation catalyst, hydrogenation catalyst of hydrocarbon oil and hydrogenation method using the hydrogenation catalyst
CN117946750A (en) Residuum hydrotreatment method
JP2007100019A (en) Method for starting up hydrogenation treatment apparatus of hydrocarbon oil
JP2020011235A (en) High activity hydrotreating catalysts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091211

R150 Certificate of patent or registration of utility model

Ref document number: 4426858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250