JP4425743B2 - Method for producing fluidized bed catalyst for acrylonitrile synthesis - Google Patents

Method for producing fluidized bed catalyst for acrylonitrile synthesis Download PDF

Info

Publication number
JP4425743B2
JP4425743B2 JP2004239419A JP2004239419A JP4425743B2 JP 4425743 B2 JP4425743 B2 JP 4425743B2 JP 2004239419 A JP2004239419 A JP 2004239419A JP 2004239419 A JP2004239419 A JP 2004239419A JP 4425743 B2 JP4425743 B2 JP 4425743B2
Authority
JP
Japan
Prior art keywords
catalyst
aqueous
fluidized bed
acrylonitrile
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004239419A
Other languages
Japanese (ja)
Other versions
JP2006055732A (en
JP2006055732A5 (en
Inventor
聖午 渡辺
浩一 水谷
元男 柳田
健一 宮氣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dia Nitrix Co Ltd
Original Assignee
Dia Nitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dia Nitrix Co Ltd filed Critical Dia Nitrix Co Ltd
Priority to JP2004239419A priority Critical patent/JP4425743B2/en
Publication of JP2006055732A publication Critical patent/JP2006055732A/en
Publication of JP2006055732A5 publication Critical patent/JP2006055732A5/ja
Application granted granted Critical
Publication of JP4425743B2 publication Critical patent/JP4425743B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、プロピレンを気相接触アンモ酸化してアクリロニトリルを合成するための触媒の製造方法に関する。   The present invention relates to a method for producing a catalyst for synthesizing acrylonitrile by vapor phase catalytic ammoxidation of propylene.

プロピレンを分子状酸素およびアンモニアにより気相接触アンモ酸化して、アクリロニトリルを合成するための触媒に関しては、これまで数多くの提案がなされていて、例えば、特許文献1〜6等にはモリブデンおよびビスマスを主成分とする触媒が開示されている。   Many proposals have been made regarding catalysts for synthesizing acrylonitrile by vapor-phase catalytic ammoxidation of propylene with molecular oxygen and ammonia. For example, Patent Documents 1 to 6 disclose molybdenum and bismuth. A catalyst having a main component is disclosed.

ところが、これらに開示された従来の触媒では、触媒製造工程におけるスラリーの噴霧乾燥時や、得られた触媒を流動層反応器に投入して使用した際に様々なトラブルが発生することがあった。具体的には、噴霧乾燥時にスラリーが乾燥機の内壁に付着してしまい、噴霧乾燥機を安定に運転できない場合や、得られた粒子状の触媒の流動性が不十分で、工業的規模の流動層反応器でアクリロニトリルを製造した際に、触媒の流動状態悪化によるアクリロニトリル収率の低下や、反応器内装物上への触媒の堆積・固着が認められる場合があった。
また、これら特許文献には、触媒の構成元素、組成比などについては言及されているものの、噴霧乾燥時や流動層反応器での反応時に発生する上記問題を解決するような触媒の製造方法については一切示唆、記載されていない。
However, in the conventional catalysts disclosed in these, various troubles may occur when the slurry is spray-dried in the catalyst production process or when the obtained catalyst is put into a fluidized bed reactor and used. . Specifically, the slurry adheres to the inner wall of the dryer at the time of spray drying, and the spray dryer cannot be stably operated. When acrylonitrile was produced in a fluidized bed reactor, a decrease in acrylonitrile yield due to deterioration of the fluidized state of the catalyst, or deposition / fixation of the catalyst on the reactor interior was sometimes observed.
In addition, although these patent documents mention the constituent elements and composition ratios of the catalyst, the catalyst production method solves the above-mentioned problems that occur during spray drying and reaction in a fluidized bed reactor. Is not suggested or described.

特許文献7には、モリブデン、ビスマス、シリカ等を含む触媒を製造するに際し、モリブデン酸アンモニウム水溶液に対しシリカゾル(コロイダルシリカ)を段階的に加え、その後硝酸ビスマス水溶液等を添加することで水性スラリーを得る方法が記載されている。この方法によれば、該水性スラリーの安定性が向上し、その後の噴霧乾燥における上述したようなトラブルが抑制され、生産効率が向上する旨が報告されている。
特公昭61−13701号公報 特開昭59−204163号公報 特開平1−228950号公報 特開平10−43595号公報 特開平10−156185号公報 米国特許第5688739号明細書 特公昭57−49253号公報
In Patent Document 7, when producing a catalyst containing molybdenum, bismuth, silica and the like, an aqueous slurry is prepared by adding silica sol (colloidal silica) stepwise to an ammonium molybdate aqueous solution and then adding a bismuth nitrate aqueous solution and the like. The method of obtaining is described. According to this method, it has been reported that the stability of the aqueous slurry is improved, the above-described trouble in spray drying is suppressed, and the production efficiency is improved.
Japanese Patent Publication No. 61-13701 JP 59-204163 A JP-A-1-228950 JP-A-10-43595 JP-A-10-156185 US Pat. No. 5,688,739 Japanese Patent Publication No.57-49253

しかしながら、特許文献7に記載の方法によれば、触媒製造工程におけるトラブルは抑制できたとしても、得られた触媒は流動性が不十分であるので、工業的規模の流動層反応器でアクリロニトリルを合成した場合には、これに起因して、アクリロニトリル収率が低下したり、反応器内装物上へ触媒が堆積・固着したりする可能性が高い。   However, according to the method described in Patent Document 7, even though troubles in the catalyst production process can be suppressed, the obtained catalyst is insufficient in fluidity, so that acrylonitrile is used in an industrial-scale fluidized bed reactor. In the case of synthesis, there is a high possibility that the acrylonitrile yield will decrease or the catalyst will be deposited and fixed on the reactor interior due to this.

本発明は前記課題を解決するためになされたもので、触媒製造工程でトラブルが発生しないとともに、流動性が良好で、工業的規模の大型の流動層反応器で使用した場合でも長期安定運転が可能であって、しかもアクリロニトリル収率の優れたアクリロニトリル合成用触媒の製造方法を提供することを目的とする。   The present invention was made to solve the above-mentioned problems, and troubles do not occur in the catalyst production process, fluidity is good, and long-term stable operation is possible even when used in an industrial-scale large fluidized bed reactor. An object of the present invention is to provide a process for producing an acrylonitrile synthesis catalyst which is possible and has an excellent acrylonitrile yield.

本発明者らは、シリカ、モリブデン、ビスマス、鉄を含む触媒を製造するに際して、特に触媒前駆体である水性スラリーの調製方法に関して鋭意検討した結果、従来の常識からは想到し得ない新たな知見を得て、本発明を完成するに至った。
すなわち、本発明のアクリロニトリル合成用流動層触媒の製造方法は、少なくとも水性コロイダルシリカを含む液に、少なくともモリブデン酸アンモニウムを含む水溶液を添加して、pHが4〜7の水性液状物を調製する第1工程と、該水性液状物のpHを4〜7に維持したまま、10〜55℃で5〜60分間保持する第2工程と、該第2工程の後に、前記水性液状物にビスマスおよび鉄を含む強酸性水溶液を添加して水性スラリーを調製する第3工程とを有することを特徴とする。
前記少なくとも水性コロイダルシリカを含む液と、前記少なくともモリブデン酸アンモニウムを含む水溶液の温度が10〜55℃であることが好ましい。
前記アクリロニトリル合成用流動層触媒の組成が、下記一般式(1)で表されることが好ましい。
MoBiFe(SiO・・・(1)
(式(1)中、Mo、Bi、FeおよびOはそれぞれモリブデン、ビスマス、鉄および酸素を表し、Aはナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素、Bはコバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、マンガン、タングステン、銀、アルミニウム、リン、ホウ素、スズ、鉛、ガリウム、ゲルマニウム、ヒ素、アンチモン、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれた少なくとも1種の元素、SiOはシリカを表す。ただし、a、b、c、d、e、fおよびgは各元素の原子比を表し、a=12のとき、0.1≦b≦5、0.1≦c≦10、0.01≦d≦3、0≦e≦20、10≦g≦200であり、fは前記各成分の原子価を満足するのに必要な酸素の原子比である。)
As a result of intensive investigations regarding the preparation of an aqueous slurry, which is a catalyst precursor, in particular, the present inventors have discovered new knowledge that cannot be conceived from conventional common sense when producing a catalyst containing silica, molybdenum, bismuth, and iron. As a result, the present invention has been completed.
That is, the method for producing a fluidized bed catalyst for acrylonitrile synthesis according to the present invention comprises preparing an aqueous liquid having a pH of 4 to 7 by adding an aqueous solution containing at least ammonium molybdate to a solution containing at least aqueous colloidal silica. One step, a second step of maintaining the pH of the aqueous liquid at 4 to 7 while maintaining the pH at 10 to 55 ° C. for 5 to 60 minutes, and bismuth and iron in the aqueous liquid after the second step And a third step of preparing an aqueous slurry by adding a strongly acidic aqueous solution containing.
It is preferable that the temperature of the liquid containing at least aqueous colloidal silica and the aqueous solution containing at least ammonium molybdate is 10 to 55 ° C.
The composition of the acrylonitrile synthesis fluidized bed catalyst is preferably represented by the following general formula (1).
Mo a Bi b Fe c A d B e O f (SiO 2) g ··· (1)
(In the formula (1), Mo, Bi, Fe and O represent molybdenum, bismuth, iron and oxygen, respectively, A is at least one element selected from the group consisting of sodium, potassium, rubidium, cesium and thallium, B is cobalt, nickel, copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, manganese, tungsten, silver, aluminum, phosphorus, boron, tin, lead, gallium, germanium, arsenic, antimony, niobium, At least one element selected from the group consisting of tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium, SiO 2 represents silica, provided that a, b, c, d, e, f and g Represents the atomic ratio of each element, and when a = 12, 0.1 ≦ b ≦ 5 0.1 ≦ c ≦ 10, 0.01 ≦ d ≦ 3, 0 ≦ e ≦ 20, 10 ≦ g ≦ 200, and f is an atomic ratio of oxygen necessary to satisfy the valence of each component. .)

本発明の製造方法によれば、触媒製造工程でトラブルが発生しないとともに、流動性が良好で、工業的規模の大型の流動層反応器で使用した場合でも長期安定運転が可能であって、しかもアクリロニトリル収率の優れたアクリロニトリル合成用触媒を提供できる。   According to the production method of the present invention, troubles do not occur in the catalyst production process, fluidity is good, long-term stable operation is possible even when used in an industrial scale large fluidized bed reactor, and A catalyst for synthesizing acrylonitrile having an excellent acrylonitrile yield can be provided.

以下、本発明を詳細に説明する。
本発明では第1工程において、少なくとも水性コロイダルシリカを含む液(以下、シリカ溶液という。)に、少なくともモリブデン酸アンモニウムを含む水溶液(以下、モリブデン水溶液という。)を添加して、pHが4〜7の範囲内にある水性液状物を調製する。
Hereinafter, the present invention will be described in detail.
In the present invention, in the first step, an aqueous solution containing at least ammonium molybdate (hereinafter referred to as an aqueous molybdenum solution) is added to a liquid containing at least aqueous colloidal silica (hereinafter referred to as a silica solution), and the pH is 4-7. An aqueous liquid within the range is prepared.

ここでシリカ溶液としては、少なくとも水性コロイダルシリカを含み、水を溶媒とした液であれば制限はないが、溶媒として水が使用された市販の水性コロイダルシリカを好適に使用できる。
シリカのコロイド粒子径については特に限定はないが、平均粒子径は5〜50nmが好ましく、10〜30nmが特に好ましい。平均粒子径が5nm未満では、得られたアクリロニトリル合成用触媒(以下、触媒という。)のアクリロニトリル選択性が低下する可能性がある。一方、50nmを超えると、触媒活性の低下および触媒の機械的強度の低下を招く可能性がある。
シリカ溶液には、市販の水性コロイダルシリカをそのまま使用してもよいが、水で例えば5倍程度まで希釈して使用してもよく、シリカ濃度が10〜50質量%であることが好ましい。
また、市販の水性コロイダルシリカには、通常、安定化イオンとして陽イオンが含まれるが、陽イオンとしてアンモニウムイオンを含むものが好ましく、水性コロイダルシリカのpHは8〜11が好ましい。pHが8未満では、コロイド粒子の安定性が低下する傾向にある。
The silica solution is not particularly limited as long as it contains at least aqueous colloidal silica and uses water as a solvent, but commercially available aqueous colloidal silica in which water is used as a solvent can be suitably used.
The colloidal particle diameter of silica is not particularly limited, but the average particle diameter is preferably 5 to 50 nm, particularly preferably 10 to 30 nm. When the average particle size is less than 5 nm, the acrylonitrile selectivity of the obtained acrylonitrile synthesis catalyst (hereinafter referred to as catalyst) may be lowered. On the other hand, when it exceeds 50 nm, there is a possibility that the catalytic activity and the mechanical strength of the catalyst are reduced.
For the silica solution, commercially available aqueous colloidal silica may be used as it is, but it may be diluted with water, for example, about 5 times, and the silica concentration is preferably 10 to 50% by mass.
Commercially available aqueous colloidal silica usually contains cations as stabilizing ions, but those containing ammonium ions as cations are preferred, and the pH of aqueous colloidal silica is preferably 8-11. If the pH is less than 8, the stability of the colloidal particles tends to decrease.

なお、シリカ溶液には、少なくとも水性コロイダルシリカが含まれる限り、シリカ以外の他の成分(触媒を構成する他の成分のうち、モリブデン以外の成分の原料)が添加されてもよいが、ここで他の成分が添加されない方が、水性液状物の物性を後述の第2工程において制御しやすく、その結果、流動性の良好な触媒が安定に得られるため好ましい。   In addition, as long as at least aqueous colloidal silica is contained in the silica solution, components other than silica (raw materials of components other than molybdenum among other components constituting the catalyst) may be added. It is preferable that other components are not added because the physical properties of the aqueous liquid can be easily controlled in the second step described later, and as a result, a catalyst having good fluidity can be stably obtained.

第1工程で使用されるモリブデン水溶液としては、モリブデン酸アンモニウム、すなわち、パラモリブデン酸アンモニウムまたは二モリブデン酸アンモニウムを水に溶解したものを使用でき、パラモリブデン酸アンモニウムを水に溶解した水溶液が特に好ましい。なお、モリブデン水溶液は、モリブデン酸アンモニウムが完全に溶解していることが好ましいが、モリブデン酸アンモニウム全量の95質量%以上が溶解していれば、残りは溶解せずに懸濁していてもよい。
また、モリブデン水溶液の濃度には特に制限はないが、モリブデン濃度として、5〜30質量%に調整することが好ましい。
As the molybdenum aqueous solution used in the first step, ammonium molybdate, that is, ammonium paramolybdate or ammonium dimolybdate dissolved in water can be used, and an aqueous solution in which ammonium paramolybdate is dissolved in water is particularly preferable. . In addition, although it is preferable that ammonium molybdate melt | dissolves completely in molybdenum aqueous solution, as long as 95 mass% or more of the total amount of ammonium molybdate has melt | dissolved, the remainder may be suspended without melt | dissolving.
The concentration of the molybdenum aqueous solution is not particularly limited, but the molybdenum concentration is preferably adjusted to 5 to 30% by mass.

なお、モリブデン水溶液には、少なくともモリブデン酸アンモニウムが含まれる限り、これ以外の他の成分(触媒を構成する他の成分のうち、シリカ以外の成分の原料)が添加されてもよいが、ここで他の成分は添加されない方が、水性液状物の物性を後述の第2工程において制御しやすく、その結果、流動性の良好な触媒が安定に得られるため好ましい。   In addition, as long as at least ammonium molybdate is contained in the molybdenum aqueous solution, other components (raw materials of components other than silica among other components constituting the catalyst) may be added. It is preferable not to add other components because the physical properties of the aqueous liquid can be easily controlled in the second step described later, and as a result, a catalyst having good fluidity can be stably obtained.

第1工程においては、シリカ溶液に対してモリブデン水溶液を加えていく。ここで例えば、特許文献7にも記載されているように、モリブデン水溶液に対してシリカ溶液を加えていくと、得られた水性液状物の物性制御が後述の第2工程において困難となり、その結果、流動性の良好な触媒を安定に得られなくなる。
また、第1工程において調製される水性液状物のpHは、4〜7であることが重要である。pHがこの範囲外であると、水性液状物の物性制御が後述の第2工程において困難となり、その結果、流動性の良好な触媒を安定に得られなくなる。なお、シリカ溶液にモリブデン水溶液を添加した際に、pHが4〜7の範囲外となる場合には、これら溶液の配合比を調整するか、もしくはアンモニア水、硝酸等を添加するなどの操作をして、pHがこの範囲内になるようにする。
In the first step, an aqueous molybdenum solution is added to the silica solution. Here, for example, as described in Patent Document 7, when a silica solution is added to a molybdenum aqueous solution, it becomes difficult to control the physical properties of the obtained aqueous liquid in the second step, which will be described later. Thus, a catalyst having good fluidity cannot be obtained stably.
In addition, it is important that the pH of the aqueous liquid prepared in the first step is 4 to 7. When the pH is outside this range, it is difficult to control the physical properties of the aqueous liquid in the second step, which will be described later. In addition, when the aqueous solution of molybdenum is added to the silica solution, if the pH is out of the range of 4 to 7, an operation such as adjusting the mixing ratio of these solutions or adding ammonia water, nitric acid or the like is performed. Thus, the pH is set within this range.

シリカ溶液に対してモリブデン水溶液を加える操作は、20分以内で完了することが好ましく、10分以内で完了することがさらに好ましい。ここで加える操作に要する時間が20分を超えると、得られた水性液状物の物性制御が後述の第2工程において困難になり、その結果、流動性の良好な触媒を安定に得られなくなる。   The operation of adding the aqueous molybdenum solution to the silica solution is preferably completed within 20 minutes, and more preferably within 10 minutes. If the time required for the operation added here exceeds 20 minutes, it becomes difficult to control the physical properties of the obtained aqueous liquid in the second step described later, and as a result, a catalyst having good fluidity cannot be stably obtained.

また、後の第2工程では、第1工程で得られた水性液状物を10〜55℃に温度制御する必要があるとともに、10℃未満ではモリブデン酸アンモニウムが溶解しづらいためモリブデン水溶液を調製し難い場合がある。よって、第1工程で混合するシリカ溶液とモリブデン水溶液は、それぞれ、あらかじめ10〜55℃にしておくことが好ましい。
さらに、第1工程においては、シリカ溶液を撹拌しておき、撹拌を継続したままでこれにモリブデン水溶液を加えていくことが好ましい。
In the subsequent second step, it is necessary to control the temperature of the aqueous liquid obtained in the first step to 10 to 55 ° C., and ammonium molybdate is difficult to dissolve below 10 ° C., so an aqueous molybdenum solution is prepared. It may be difficult. Therefore, it is preferable that the silica solution and the molybdenum aqueous solution to be mixed in the first step are respectively set to 10 to 55 ° C. in advance.
Furthermore, in the first step, it is preferable to stir the silica solution and add the molybdenum aqueous solution to the silica solution while stirring is continued.

第1工程において、このようにpHが4〜7の水性液状物を調製した後、この水性液状物のpHを4〜7に維持したまま、10〜55℃で5〜60分間保持する第2工程を行う。
本発明者らは、このような条件下で水性液状物を保持する第2工程によって、シリカのコロイド粒子が適度に凝集し、結果として、流動性の良好な触媒が最終的に得られることを見出した。一般に、コロイダルシリカはpH4〜7の範囲内では非常に不安定であり、このpH領域においてこれを保持すると、ある程度の時間が経過した時点でほとんど一瞬にしてゲル化が起こり、固まってしまうと考えられていた。このようなゲル化は、触媒の調製を困難とするため、従来、コロイダルシリカを含む溶液を扱う際には、そのpHが4〜7の範囲内にならないように制御するか、やむを得ずpHが4〜7の範囲を通過する場合には、直ちに酸性またはアルカリ性の液を加えてpHをこの範囲外とする方法が採用されていた。
ところが、本発明者らが検討した結果、ゲル化が明確に起こる前の段階においても、コロイド粒子の凝集はミクロな範囲で徐々に進行していて、敢えてpH4〜7というコロイダルシリカにとっては不安定な領域で、特定温度、特定時間保持することによって、コロイド粒子が適度に凝集し、その結果、最終的に得られる触媒の流動性が非常に優れること、また、このような特定条件の第2工程中には、コロイド粒子が固化するなどのトラブルが生じないことが判明した。
In the first step, after preparing an aqueous liquid having a pH of 4 to 7 in this manner, the second liquid is maintained at 10 to 55 ° C. for 5 to 60 minutes while maintaining the pH of the aqueous liquid at 4 to 7. Perform the process.
The inventors of the present invention have confirmed that the colloidal particles of silica are appropriately aggregated by the second step of holding the aqueous liquid under such conditions, and as a result, a catalyst having good fluidity is finally obtained. I found it. In general, colloidal silica is very unstable within a pH range of 4 to 7, and if this is maintained in this pH range, gelation occurs almost instantly after a certain amount of time has elapsed and solidifies. It was done. Since such gelation makes it difficult to prepare a catalyst, conventionally, when a solution containing colloidal silica is handled, the pH is controlled so as not to fall within the range of 4 to 7, or the pH is inevitably 4. When passing through the range of ˜7, a method of immediately adding an acidic or alkaline solution to bring the pH out of this range has been adopted.
However, as a result of the study by the present inventors, even before the gelation clearly occurs, the aggregation of colloidal particles proceeds gradually in the micro range, and is intentionally unstable for colloidal silica having a pH of 4 to 7. In such a region, the colloidal particles are appropriately aggregated by holding at a specific temperature for a specific time, and as a result, the fluidity of the finally obtained catalyst is extremely excellent. It was found that troubles such as solidification of colloidal particles did not occur during the process.

第2工程においては、水性液状物の保持時間は通常5〜60分間、好ましくは10〜30分間である。保持時間が5分間未満では、シリカのコロイド粒子の凝集が不十分であり、流動性のよい触媒が得られない。また、保持時間が60分間を超えると、シリカのコロイド粒子の凝集が進みすぎ、最終的に得られる触媒の活性およびアクリロニトリル選択性の低下を招いたり、さらには、シリカのコロイド粒子がゲル化して固まってしまい、触媒の製造が不可能となる。なお、ここで水性液状物の保持時間とは、シリカ溶液に対してモリブデン水溶液を添加し終えた時点から、後述の第3工程において、ビスマスおよび鉄を含む強酸性水溶液を添加し始める瞬間までの時間である。   In the second step, the retention time of the aqueous liquid is usually 5 to 60 minutes, preferably 10 to 30 minutes. When the holding time is less than 5 minutes, the aggregation of the silica colloidal particles is insufficient, and a catalyst having good fluidity cannot be obtained. If the retention time exceeds 60 minutes, the silica colloidal particles are excessively agglomerated, leading to a decrease in the activity and acrylonitrile selectivity of the finally obtained catalyst. Furthermore, the silica colloidal particles are gelled. It becomes hard and it becomes impossible to manufacture the catalyst. Here, the retention time of the aqueous liquid is from the time when the molybdenum aqueous solution is added to the silica solution until the moment when the strongly acidic aqueous solution containing bismuth and iron starts to be added in the third step described later. It's time.

保持温度は、通常10〜55℃、好ましくは25〜50℃である。温度が55℃を超えると、シリカのコロイド粒子のゲル化を招き、コロイド粒子の適度な凝集状態を維持できなくなる。一方、10℃未満では、水性液状物中からモリブデン由来の固体成分が析出するなどの不都合が起こる場合がある。保持温度がこのような範囲内であると、水性液状物の物性を安定に制御でき、結果として流動性の優れた好ましい触媒を安定に製造できる。   The holding temperature is usually 10 to 55 ° C, preferably 25 to 50 ° C. If the temperature exceeds 55 ° C., the colloidal particles of silica are gelled, and the proper aggregation state of the colloidal particles cannot be maintained. On the other hand, when the temperature is lower than 10 ° C., inconveniences such as precipitation of molybdenum-derived solid components from the aqueous liquid may occur. When the holding temperature is within such a range, the physical properties of the aqueous liquid can be stably controlled, and as a result, a preferable catalyst having excellent fluidity can be stably produced.

第2工程において、このような特定条件下で水性液状物を保持した後、この水性液状物にビスマスおよび鉄を含む強酸性水溶液を添加して水性スラリーを調製する第3工程を行う。
ビスマスおよび鉄を含む強酸性水溶液とは、ビスマスおよび鉄が溶解しているpHが1以下の水溶液である。このような水溶液としては、少なくとも1種のビスマス化合物および少なくとも1種の鉄化合物が溶解していて、pHが1以下に調整されたものであれば制限はないが、なかでも、硝酸水溶液に硝酸ビスマスおよび硝酸鉄(III)を溶解させた水溶液が好ましい。
In the second step, after holding the aqueous liquid under such specific conditions, a third step of preparing an aqueous slurry by adding a strongly acidic aqueous solution containing bismuth and iron to the aqueous liquid is performed.
A strongly acidic aqueous solution containing bismuth and iron is an aqueous solution having a pH of 1 or less in which bismuth and iron are dissolved. Such an aqueous solution is not limited as long as at least one bismuth compound and at least one iron compound are dissolved and the pH is adjusted to 1 or less. An aqueous solution in which bismuth and iron (III) nitrate are dissolved is preferable.

なお、モリブデン、シリカ、ビスマスおよび鉄以外の元素を触媒の構成成分とする場合であって、その元素を含む原料が硝酸水溶液に可溶なものであれば、第3工程で使用する強酸性水溶液中に、あらかじめその原料をビスマスおよび鉄とともに溶解しておくことができる。   If an element other than molybdenum, silica, bismuth and iron is used as a constituent component of the catalyst, and the raw material containing the element is soluble in an aqueous nitric acid solution, the strongly acidic aqueous solution used in the third step The raw material can be dissolved in advance together with bismuth and iron.

このようにして第3工程で調製された水性スラリーについて、必要に応じて70〜105℃の範囲内で熟成処理、濃縮処理等の加熱処理を施し、その後、通常これを乾燥する。なお、このような加熱処理が、水性スラリー中におけるシリカのコロイド粒子の凝集状態に影響を及ぼす可能性があるため、熟成、濃縮等の加熱処理を行わず、コロイド粒子の凝集状態を良好に維持したまま乾燥することが好ましい。   The aqueous slurry thus prepared in the third step is subjected to heat treatment such as aging treatment and concentration treatment within a range of 70 to 105 ° C. as necessary, and then usually dried. Since such heat treatment may affect the aggregation state of the silica colloidal particles in the aqueous slurry, heat treatment such as aging and concentration is not performed, and the aggregation state of the colloidal particles is maintained well. It is preferable to dry as it is.

水性スラリーの乾燥方法としては特に限定はないが、得られる乾燥物の形状として球形が好ましいこと、また、その外径は1〜200μmが好ましく、5〜100μmが特に好ましいことから、このような乾燥物が得られる、回転円盤型スプレー乾燥機、圧力ノズル型スプレー乾燥機、二流体ノズル型スプレー乾燥機等のスプレー乾燥機を使用することが好ましい。この際、スプレー乾燥機の乾燥室内に流通させる熱風の温度は、乾燥室内への導入口付近における温度が130〜450℃であることが好ましく、140〜400℃がさらに好ましい。また、乾燥室出口付近における温度は100〜200℃が好ましく、110〜180℃がさらに好ましい。   Although there is no particular limitation on the drying method of the aqueous slurry, the shape of the dried product obtained is preferably spherical, and the outer diameter is preferably 1 to 200 μm, and particularly preferably 5 to 100 μm. It is preferable to use a spray dryer such as a rotary disk type spray dryer, a pressure nozzle type spray dryer, or a two-fluid nozzle type spray dryer from which a product is obtained. At this time, the temperature of the hot air circulated in the drying chamber of the spray dryer is preferably 130 to 450 ° C, more preferably 140 to 400 ° C in the vicinity of the inlet to the drying chamber. Moreover, 100-200 degreeC is preferable and the temperature in the drying chamber exit vicinity has more preferable 110-180 degreeC.

ついで、得られた乾燥物を、通常500〜750℃の範囲の温度で焼成することにより、望ましい触媒活性構造を備えた触媒が得られる。焼成時間については特に限定はないが、短すぎると良好な触媒が得られない場合があるため、少なくとも1時間は焼成することが好ましい。焼成方法についても汎用の焼成炉を用いることができ制限はないが、特にロータリーキルン、流動焼成炉等が好ましい。
また、焼成に際しては、乾燥物をそのまま500〜750℃に加熱して焼成してもよいが、250〜400℃程度の温度および/または400〜500℃程度の温度で焼成する1〜2段の予備焼成を行ってから、500〜750℃で焼成する方法がより好ましい。
こうして製造された触媒の形状や大きさについては特に制限はないが、より良好な流動性を発揮するためには、球形であって、その外径が1〜200μm、さらには5〜100μmであることが好ましい。
Next, the obtained dried product is usually calcined at a temperature in the range of 500 to 750 ° C. to obtain a catalyst having a desirable catalytic activity structure. The firing time is not particularly limited, but if it is too short, a good catalyst may not be obtained. Therefore, it is preferable to fire for at least 1 hour. A general-purpose firing furnace can also be used for the firing method, and there is no limitation, but a rotary kiln, a fluidized firing furnace, and the like are particularly preferable.
In firing, the dried product may be baked by heating to 500 to 750 ° C. as it is, but it may be fired at a temperature of about 250 to 400 ° C. and / or a temperature of about 400 to 500 ° C. A method of firing at 500 to 750 ° C. after preliminary firing is more preferable.
The shape and size of the catalyst thus produced are not particularly limited, but in order to exhibit better fluidity, it is spherical and has an outer diameter of 1 to 200 μm, further 5 to 100 μm. It is preferable.

このような製造方法によれば、触媒製造工程でのトラブルが発生せず、流動性が良好で、工業的規模の大型の流動層反応器で使用した場合でも長期安定運転が可能であって、しかもアクリロニトリル収率の良好な触媒が得られ、触媒組成としてはシリカ、モリブデン、ビスマス、鉄を構成成分として含んでいる限り制限はないが、下記一般式(1)で表される組成を有するものが、アクリロニトリル収率の面などからより好ましい。
MoBiFe(SiO・・・(1)
(式(1)中、Mo、Bi、FeおよびOはそれぞれモリブデン、ビスマス、鉄および酸素を表し、Aはナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素、Bはコバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、マンガン、タングステン、銀、アルミニウム、リン、ホウ素、スズ、鉛、ガリウム、ゲルマニウム、ヒ素、アンチモン、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれた少なくとも1種の元素、SiOはシリカを表す。ただし、a、b、c、d、e、fおよびgは各元素の原子比を表し、a=12のとき、0.1≦b≦5、0.1≦c≦10、0.01≦d≦3、0≦e≦20、10≦g≦200であり、fは前記各成分の原子価を満足するのに必要な酸素の原子比である。)
According to such a production method, troubles in the catalyst production process do not occur, fluidity is good, and long-term stable operation is possible even when used in a large fluidized bed reactor on an industrial scale, Moreover, a catalyst having a good acrylonitrile yield can be obtained, and the catalyst composition is not limited as long as it contains silica, molybdenum, bismuth and iron as constituent components, but has a composition represented by the following general formula (1) Is more preferable from the viewpoint of acrylonitrile yield.
Mo a Bi b Fe c A d B e O f (SiO 2) g ··· (1)
(In the formula (1), Mo, Bi, Fe and O represent molybdenum, bismuth, iron and oxygen, respectively, A is at least one element selected from the group consisting of sodium, potassium, rubidium, cesium and thallium, B is cobalt, nickel, copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, manganese, tungsten, silver, aluminum, phosphorus, boron, tin, lead, gallium, germanium, arsenic, antimony, niobium, At least one element selected from the group consisting of tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium, SiO 2 represents silica, provided that a, b, c, d, e, f and g Represents the atomic ratio of each element, and when a = 12, 0.1 ≦ b ≦ 5 0.1 ≦ c ≦ 10, 0.01 ≦ d ≦ 3, 0 ≦ e ≦ 20, 10 ≦ g ≦ 200, and f is an atomic ratio of oxygen necessary to satisfy the valence of each component. .)

この際、触媒の流動性をより良好にするためには、触媒中に占めるSiOの割合が40〜60質量%であることが好ましく、SiOの割合がこのような範囲となるように、一般式(1)における各元素の原子比を調整することが好ましい。また、このようにシリカ、モリブデン、ビスマス、鉄以外の成分を含む触媒を製造する場合、他の成分は第3工程以前で添加され、乾燥に供する水性スラリーにすべて含まれていることが好ましい。 At this time, in order to improve the fluidity of the catalyst, the proportion of SiO 2 in the catalyst is preferably 40 to 60% by mass, and the proportion of SiO 2 is in such a range, It is preferable to adjust the atomic ratio of each element in the general formula (1). Moreover, when manufacturing the catalyst containing components other than a silica, molybdenum, bismuth, and iron in this way, it is preferable that other components are added before the 3rd process and are all contained in the aqueous slurry used for drying.

得られた触媒を用いて、プロピレンを分子状酸素およびアンモニアにより気相接触アンモ酸化してアクリロニトリルを合成する方法としては、特に制限はないが、流動層反応器を用いることが好ましく、触媒を流動層反応器に投入した後、例えば400〜500℃、常圧〜300kPaの条件下において、少なくとも分子状酸素とアンモニアとプロピレンとを含有し、必要に応じて不活性ガスや水蒸気で希釈された原料ガスを流動層反応器に流通させることにより、プロピレンが気相接触アンモ酸化されアクリロニトリルが生成する。
原料ガスに使用する酸素源としては、空気を用いることが工業的には有利であるが、必要に応じて純酸素を空気と混合し空気を富化して使用してもよい。
また、原料ガス中のプロピレン対酸素のモル比は1:1.5〜1:3、プロピレン対アンモニアのモル比は1:1〜1:1.5が好ましい。
There is no particular limitation on the method for synthesizing acrylonitrile by vapor phase catalytic ammoxidation of propylene with molecular oxygen and ammonia using the obtained catalyst, but it is preferable to use a fluidized bed reactor. After being charged into the bed reactor, the raw material contains at least molecular oxygen, ammonia and propylene under conditions of 400 to 500 ° C. and normal pressure to 300 kPa, for example, and is diluted with an inert gas or water vapor as necessary. By passing the gas through the fluidized bed reactor, propylene is vapor-phase contact ammoxidized to produce acrylonitrile.
Although it is industrially advantageous to use air as the oxygen source used for the raw material gas, pure oxygen may be mixed with air and used as enriched if necessary.
The molar ratio of propylene to oxygen in the raw material gas is preferably 1: 1.5 to 1: 3, and the molar ratio of propylene to ammonia is preferably 1: 1 to 1: 1.5.

以下、本発明ついて実施例を示して具体的に説明する。なお、下記例中の「部」は質量部を意味する。
[実施例1]
pHが9.5、コロイド平均粒子径が22nm、シリカ濃度が30質量%である水性コロイダルシリカ1661.4部を40℃に加温し、シリカ溶液として用いた(A液)。
一方、水800部に攪拌しながらパラモリブデン酸アンモニウム399.4部を溶解し、40℃に加温し、モリブデン水溶液を調製した(B液)。
また、別途、15質量%硝酸水溶液430部に、攪拌しながら硝酸鉄(III)137.1部、硝酸ニッケル274.0部、硝酸マグネシウム116.0部、硝酸クロム37.7部、硝酸セリウム57.3部、硝酸ビスマス54.9部、硝酸カリウム1.9部および硝酸ルビジウム2.8を溶解させ、40℃に加温し、これをC液とした。
Hereinafter, the present invention will be described in detail with reference to examples. In the following examples, “part” means part by mass.
[Example 1]
1661.4 parts of aqueous colloidal silica having a pH of 9.5, a colloid average particle size of 22 nm, and a silica concentration of 30% by mass were heated to 40 ° C. and used as a silica solution (solution A).
On the other hand, 399.4 parts of ammonium paramolybdate was dissolved in 800 parts of water and heated to 40 ° C. to prepare an aqueous molybdenum solution (liquid B).
Separately, 430 parts of a 15% by weight aqueous nitric acid solution were stirred with 137.1 parts of iron (III) nitrate, 274.0 parts of nickel nitrate, 116.0 parts of magnesium nitrate, 37.7 parts of chromium nitrate, 57 parts of cerium nitrate. .3 parts, bismuth nitrate 54.9 parts, potassium nitrate 1.9 parts and rubidium nitrate 2.8 were dissolved and heated to 40 ° C., and this was designated as C solution.

攪拌しながらA液にB液を2分間かけて添加し、水性液状物を得た。このときの水性液状物の温度は40℃、pHは5.8であった。該水性液状物をこのまま攪拌しながら15分間保持した。
ついで、該水性液状物に対し、C液を2分間かけて添加し、水性スラリーを得た。
ついで、該水性スラリーを回転円盤型スプレー乾燥機にて、熱風の導入口における温度を280℃、出口における温度を140℃にコントロールしながら乾燥した。
得られた乾燥物を、300℃で2時間、ついで450℃で2時間予備焼成した後、580℃で3時間流動焼成炉にて焼成することで触媒1を得た。
こうして得られた触媒1の組成は、以下の通りである。
Mo12Bi0.6Fe1.8NiMg2.4Cr0.5Ce0.70.1Rb0.1(SiO44
(ここで、xは他の各成分の原子価を満足するのに必要な酸素の原子比である。)
Liquid B was added to liquid A over 2 minutes with stirring to obtain an aqueous liquid. At this time, the temperature of the aqueous liquid was 40 ° C. and the pH was 5.8. The aqueous liquid was kept for 15 minutes with stirring.
Next, liquid C was added to the aqueous liquid over 2 minutes to obtain an aqueous slurry.
Next, the aqueous slurry was dried with a rotary disk spray dryer while controlling the temperature at the hot air inlet at 280 ° C. and the temperature at the outlet at 140 ° C.
The obtained dried product was pre-calcined at 300 ° C. for 2 hours, then at 450 ° C. for 2 hours, and then calcined at 580 ° C. for 3 hours in a fluidized calcining furnace to obtain Catalyst 1.
The composition of the catalyst 1 thus obtained is as follows.
Mo 12 Bi 0.6 Fe 1.8 Ni 5 Mg 2.4 Cr 0.5 Ce 0.7 K 0.1 Rb 0.1 O x (SiO 2) 44
(Here, x is the atomic ratio of oxygen necessary to satisfy the valences of the other components.)

このようにして得られた触媒1について以下の評価を行った。
(1)触媒の流動性の評価
触媒の流動性については、理想的には得られた触媒を工業的規模の流動層反応器に投入して、その流動状態を確認することが望まれる。しかしながら、そのような確認実験は経済的見地から非現実的であるので、ここでは触媒の安息角を測定し、流動性の指標とした。
安息角の測定には、筒井理化学器械社製の円筒回転式安息角測定器を用いた。
具体的には、外径95mm、高さ75mmのガラス製円筒容器内に触媒粉150mLを入れ、該安息角測定器の台車上に設置し、2rpmにてまず5分間回転させた後、回転を停止し、そのときの触媒粉の安息角を付属の分度器で測定する。ついで、2rpmにて1分間回転させた後、回転を停止し、そのときの触媒粉の安息角を分度器で測定する。以降この方法での測定を繰り返し、合計10点の測定値を得る。これら10点の測定値の平均値をその触媒の安息角とした。
なお、安息角が小さい触媒ほど流動性に優れていることは言うまでもないが、本発明者らのこれまでの種々の検討結果によると、工業的規模の流動層反応器にて不具合なく長期安定運転を実現するためには、安息角が29度以下であることが好ましく、さらに好ましくは27度以下である。
The following evaluation was performed on the catalyst 1 thus obtained.
(1) Evaluation of catalyst fluidity Regarding the fluidity of the catalyst, it is ideal that the obtained catalyst is introduced into an industrial-scale fluidized bed reactor and its fluid state is confirmed. However, since such a confirmation experiment is unrealistic from an economic point of view, the angle of repose of the catalyst was measured and used as an indicator of fluidity.
The angle of repose was measured using a cylindrical rotary angle of repose measuring instrument manufactured by Tsutsui Rika Instruments Co., Ltd.
Specifically, 150 mL of catalyst powder is placed in a glass cylindrical container having an outer diameter of 95 mm and a height of 75 mm, placed on the carriage of the angle of repose measuring instrument, and rotated for 5 minutes at 2 rpm, and then rotated. Stop and measure the angle of repose of the catalyst powder with the attached protractor. Next, after rotating at 2 rpm for 1 minute, the rotation is stopped, and the angle of repose of the catalyst powder at that time is measured with a protractor. Thereafter, the measurement by this method is repeated to obtain a total of 10 measurement values. The average of these 10 measured values was taken as the angle of repose of the catalyst.
Needless to say, the smaller the angle of repose, the better the fluidity, but according to the results of various studies by the present inventors, long-term stable operation without problems in an industrial-scale fluidized bed reactor. In order to realize this, the angle of repose is preferably 29 degrees or less, and more preferably 27 degrees or less.

(2)触媒の活性試験
プロピレンのアンモ酸化によるアクリロニトリル合成反応を塔径2インチの流動層反応器を用いて実施した。
この際、プロピレン/アンモニア/空気/水蒸気=1/1.2/9.5/0.5(モル比)の混合ガスを、ガス線速度18cm/秒で反応器内に導入し、反応温度は430℃、反応圧力は200KPaとした。
反応試験分析はガスクロマトグラフィーにより行った。
また、接触時間、プロピレンの転化率、アクリロニトリルの選択率およびアクリロニトリルの収率は以下のように定義される。
接触時間(秒)=かさ密度基準の触媒容積(L)/反応条件に換算した供給ガス流量(L/秒)
プロピレンの転化率(%)=Q/P×100
アクリロニトリルの選択率(%)=R/Q×100
アクリロニトリルの収率(%)=R/P×100
ここで、Pは供給したプロピレンのモル数、Qは反応したプロピレンのモル数、Rは生成したアクリロニトリルのモル数を表す。
(2) Catalyst activity test An acrylonitrile synthesis reaction by ammoxidation of propylene was carried out using a fluidized bed reactor having a tower diameter of 2 inches.
At this time, a mixed gas of propylene / ammonia / air / water vapor = 1 / 1.2 / 9.5 / 0.5 (molar ratio) was introduced into the reactor at a gas linear velocity of 18 cm / second, and the reaction temperature was The reaction pressure was 430 ° C. and 200 KPa.
Reaction test analysis was performed by gas chromatography.
The contact time, propylene conversion rate, acrylonitrile selectivity and acrylonitrile yield are defined as follows.
Contact time (seconds) = catalyst density based on bulk density (L) / feed gas flow rate converted to reaction conditions (L / second)
Propylene conversion rate (%) = Q / P × 100
Selectivity of acrylonitrile (%) = R / Q × 100
Acrylonitrile yield (%) = R / P × 100
Here, P represents the number of moles of propylene supplied, Q represents the number of moles of propylene reacted, and R represents the number of moles of acrylonitrile produced.

触媒1の上記方法により測定された安息角は、26度であった。また、触媒1の上記方法による活性試験結果は、接触時間3.0秒の条件下、プロピレンの転化率は98.6%、アクリロニトリルの選択率は85.0%、アクリロニトリルの収率は83.8%であった。   The angle of repose of the catalyst 1 measured by the above method was 26 degrees. The results of the activity test of the catalyst 1 by the above-mentioned method are as follows: propylene conversion is 98.6%, acrylonitrile selectivity is 85.0%, and acrylonitrile yield is 83. It was 8%.

[実施例2]
実施例1において、水性液状物の保持時間を40分間に変更した以外は実施例1と同様にして触媒2を得た。
触媒2について安息角を測定したところ、26度であり、触媒1と同等な流動性であった。
また、触媒2について、実施例1と同様にして活性試験したところ、プロピレンの転化率は98.4%、アクリロニトリルの選択率は85.0%、アクリロニトリルの収率は83.6%であり、触媒1よりもわずかに活性が低かったが、十分に良好な性能であった。
[Example 2]
In Example 1, a catalyst 2 was obtained in the same manner as in Example 1 except that the retention time of the aqueous liquid was changed to 40 minutes.
The repose angle of the catalyst 2 was measured and found to be 26 degrees, which was a fluidity equivalent to that of the catalyst 1.
The activity of the catalyst 2 was tested in the same manner as in Example 1. As a result, the propylene conversion was 98.4%, the acrylonitrile selectivity was 85.0%, and the acrylonitrile yield was 83.6%. The activity was slightly lower than that of catalyst 1, but the performance was sufficiently good.

[実施例3]
実施例1において、水性液状物の保持時間を8分間に変更した以外は実施例1と同様にして触媒3を得た。
触媒3について安息角を測定したところ、27度であり、触媒1よりもわずかに大きかったが、十分に良好な流動性であった。
また、触媒3について、実施例1と同様にして活性試験したところ、プロピレンの転化率は98.6%、アクリロニトリルの選択率は85.0%、アクリロニトリルの収率は83.8%であり、触媒1と同等な性能であった。
[Example 3]
In Example 1, a catalyst 3 was obtained in the same manner as in Example 1 except that the retention time of the aqueous liquid was changed to 8 minutes.
When the angle of repose of the catalyst 3 was measured, it was 27 degrees and was slightly larger than that of the catalyst 1, but it was sufficiently good fluidity.
The activity of the catalyst 3 was tested in the same manner as in Example 1. As a result, the propylene conversion was 98.6%, the acrylonitrile selectivity was 85.0%, and the acrylonitrile yield was 83.8%. The performance was equivalent to that of Catalyst 1.

[比較例1]
実施例1において、水性液状物の保持時間を2分間に変更した以外は実施例1と同様にして触媒4を得た。
触媒4について安息角を測定したところ、33度であり、触媒1よりも著しく大きく、流動性は非常に悪かった。このことから、触媒4を工業的規模の流動層反応器で使用した場合には、反応装置内装物上への触媒の堆積、固着などのトラブルを招く可能性が高いことが示唆された。
触媒4について、実施例1と同様にして活性試験したところ、プロピレンの転化率は98.0%、アクリロニトリルの選択率は84.3%、アクリロニトリルの収率は82.6%であり、触媒1に比べ小幅ではあるが明確な収率低下が見られた。流動性悪化が反応結果に反映されたものと推定される。
[Comparative Example 1]
In Example 1, a catalyst 4 was obtained in the same manner as in Example 1 except that the retention time of the aqueous liquid was changed to 2 minutes.
The angle of repose of catalyst 4 was measured and found to be 33 degrees, which was significantly greater than that of catalyst 1 and the fluidity was very poor. From this, it was suggested that when the catalyst 4 is used in an industrial scale fluidized bed reactor, there is a high possibility of causing troubles such as deposition and sticking of the catalyst on the reactor interior.
The activity of Catalyst 4 was tested in the same manner as in Example 1. As a result, the conversion of propylene was 98.0%, the selectivity of acrylonitrile was 84.3%, and the yield of acrylonitrile was 82.6%. A clear decrease in the yield was observed although it was small compared to. It is estimated that the liquidity deterioration was reflected in the reaction results.

[比較例2]
実施例1において、水性液状物の保持時間を80分間に変更した以外は実施例1と同様にして触媒5を得た。
触媒5について安息角を測定したところ、28度であり、触媒1よりもわずかに大きかったが、比較的良好な流動性であった。
触媒5について、実施例1と同様にして活性試験したところ、プロピレンの転化率は97.0%、アクリロニトリルの選択率は83.2%、アクリロニトリルの収率は80.7%であり、触媒1に比べ著しく低性能であった。
[Comparative Example 2]
In Example 1, Catalyst 5 was obtained in the same manner as in Example 1 except that the retention time of the aqueous liquid was changed to 80 minutes.
The repose angle of the catalyst 5 was measured and found to be 28 degrees, which was slightly larger than that of the catalyst 1, but was relatively good fluidity.
The activity of the catalyst 5 was tested in the same manner as in Example 1. As a result, the conversion of propylene was 97.0%, the selectivity of acrylonitrile was 83.2%, and the yield of acrylonitrile was 80.7%. The performance was significantly lower than

[比較例3]
実施例1において、水性液状物に対してアンモニア水を加えることでpHを8に調整した以外は実施例1と同様にして触媒6を得た。
触媒6について安息角を測定したところ、34度であり、触媒1よりも著しく大きく、流動性は非常に悪かった。このことから、触媒6を工業的規模の流動層反応器で使用した場合には、反応装置内装物上への触媒の堆積、固着などのトラブルを招く可能性が高いことが示唆された。
触媒6について、実施例1と同様にして活性試験したところ、プロピレンの転化率は97.9%、アクリロニトリルの選択率は84.1%、アクリロニトリルの収率は82.3%であり、触媒1に比べ小幅ではあるが明確な収率低下が見られた。流動性悪化が反応結果に反映されたものと推定される。
[Comparative Example 3]
In Example 1, a catalyst 6 was obtained in the same manner as in Example 1 except that the pH was adjusted to 8 by adding aqueous ammonia to the aqueous liquid.
The angle of repose of the catalyst 6 was measured and found to be 34 degrees, which was significantly larger than that of the catalyst 1 and the fluidity was very poor. From this, it was suggested that when the catalyst 6 is used in an industrial scale fluidized bed reactor, there is a high possibility of causing troubles such as deposition and sticking of the catalyst on the reactor interior.
The activity of Catalyst 6 was tested in the same manner as in Example 1. As a result, the conversion of propylene was 97.9%, the selectivity of acrylonitrile was 84.1%, and the yield of acrylonitrile was 82.3%. A clear decrease in the yield was observed although it was small compared to. It is estimated that the liquidity deterioration was reflected in the reaction results.

[比較例4]
実施例1において、水性液状物を得る手順として、B液に対してA液を2分間かけて添加する方法とした以外は実施例1と同様にして触媒7を得た。
触媒7について安息角を測定したところ、31度であり、触媒1よりも大きく、流動性は比較的悪かった。このことから、触媒7を工業的規模の流動層反応器で使用した場合には、反応装置内装物上への触媒の堆積、固着などのトラブルを招く可能性があることが示唆された。
触媒7について、実施例1と同様にして活性評価したところ、プロピレンの転化率は98.2%、アクリロニトリルの選択率は84.4%、アクリロニトリルの収率は82.9%であり、触媒1に比べ小幅ではあるが明確な収率低下が見られた。流動性悪化が反応結果に反映されたものと推定される。
[Comparative Example 4]
In Example 1, a catalyst 7 was obtained in the same manner as in Example 1, except that the liquid A was added to the liquid B over 2 minutes as a procedure for obtaining the aqueous liquid.
When the angle of repose of the catalyst 7 was measured, it was 31 degrees, which was larger than that of the catalyst 1, and the fluidity was relatively poor. This suggests that when the catalyst 7 is used in an industrial-scale fluidized bed reactor, troubles such as catalyst accumulation and sticking on the reactor interior may occur.
The activity of the catalyst 7 was evaluated in the same manner as in Example 1. As a result, the conversion of propylene was 98.2%, the selectivity of acrylonitrile was 84.4%, and the yield of acrylonitrile was 82.9%. A clear decrease in the yield was observed although it was small compared to. It is estimated that the liquidity deterioration was reflected in the reaction results.

[比較例5]
実施例1において、水性液状物を得た後、該水性液状物を70℃まで加温し、しばらく攪拌保持しようとしたところ、約5分間保持した時点で該水性液状物がゲル化して固まってしまった。そのため、以降の触媒製造を続けることができなかった。
[Comparative Example 5]
In Example 1, after obtaining the aqueous liquid, the aqueous liquid was heated to 70 ° C. and was stirred and held for a while. When the aqueous liquid was held for about 5 minutes, the aqueous liquid gelled and solidified. Oops. Therefore, the subsequent catalyst production could not be continued.

本発明のアクリロニトリル合成用触媒の製造方法によれば、流動層反応器でプロピレンを気相接触アンモ酸化してアクリロニトリルを合成する際に、良好な流動性および良好なアクリロニトリル収率を達成できる優れた触媒を製造できる。この触媒を使用することによって、長期間安定に、かつ、経済的にアクリロニトリルを製造できるので、その工業的価値は高い。
According to the method for producing a catalyst for acrylonitrile synthesis of the present invention, when acrylonitrile is synthesized by vapor-phase catalytic ammoxidation of propylene in a fluidized bed reactor, excellent fluidity and good acrylonitrile yield can be achieved. A catalyst can be produced. By using this catalyst, acrylonitrile can be produced stably and economically for a long period of time, and its industrial value is high.

Claims (3)

少なくとも水性コロイダルシリカを含む液に、少なくともモリブデン酸アンモニウムを含む水溶液を添加して、pHが4〜7の水性液状物を調製する第1工程と、
該水性液状物のpHを4〜7に維持したまま、10〜55℃で5〜60分間保持する第2工程と、
該第2工程の後に、前記水性液状物にビスマスおよび鉄を含む強酸性水溶液を添加して水性スラリーを調製する第3工程とを有することを特徴とするアクリロニトリル合成用流動層触媒の製造方法。
A first step of preparing an aqueous liquid having a pH of 4 to 7 by adding an aqueous solution containing at least ammonium molybdate to a liquid containing at least aqueous colloidal silica;
A second step of maintaining the aqueous liquid at 4 to 7 while maintaining the pH at 4 to 7 for 5 to 60 minutes;
After the second step, a third step in the method of manufacturing the synthesizing acrylonitrile fluidized bed catalyst, characterized in that it comprises a preparation of an aqueous slurry by adding a strongly acidic aqueous solution containing bismuth and iron in the aqueous liquid.
前記少なくとも水性コロイダルシリカを含む液と、前記少なくともモリブデン酸アンモニウムを含む水溶液の温度が10〜55℃であることを特徴とする請求項1に記載のアクリロニトリル合成用流動層触媒の製造方法。 The method for producing a fluidized bed catalyst for acrylonitrile synthesis according to claim 1, wherein the temperature of the liquid containing at least aqueous colloidal silica and the temperature of the aqueous solution containing at least ammonium molybdate is 10 to 55 ° C. 前記アクリロニトリル合成用流動層触媒の組成が、下記一般式(1)で表されることを特徴とする請求項1または2に記載のアクリロニトリル合成用流動層触媒の製造方法。
MoBiFe(SiO・・・(1)
(式(1)中、Mo、Bi、FeおよびOはそれぞれモリブデン、ビスマス、鉄および酸素を表し、Aはナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素、Bはコバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、マンガン、タングステン、銀、アルミニウム、リン、ホウ素、スズ、鉛、ガリウム、ゲルマニウム、ヒ素、アンチモン、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれた少なくとも1種の元素、SiOはシリカを表す。ただし、a、b、c、d、e、fおよびgは各元素の原子比を表し、a=12のとき、0.1≦b≦5、0.1≦c≦10、0.01≦d≦3、0≦e≦20、10≦g≦200であり、fは前記各成分の原子価を満足するのに必要な酸素の原子比である。)
The composition of synthesizing acrylonitrile fluidized bed catalyst The production method of synthesizing acrylonitrile fluidized bed catalyst according to claim 1 or 2, characterized by being represented by the following general formula (1).
Mo a Bi b Fe c A d B e O f (SiO 2) g ··· (1)
(In the formula (1), Mo, Bi, Fe and O represent molybdenum, bismuth, iron and oxygen, respectively, A is at least one element selected from the group consisting of sodium, potassium, rubidium, cesium and thallium, B is cobalt, nickel, copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, manganese, tungsten, silver, aluminum, phosphorus, boron, tin, lead, gallium, germanium, arsenic, antimony, niobium, At least one element selected from the group consisting of tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium, SiO 2 represents silica, provided that a, b, c, d, e, f and g Represents the atomic ratio of each element, and when a = 12, 0.1 ≦ b ≦ 5 0.1 ≦ c ≦ 10, 0.01 ≦ d ≦ 3, 0 ≦ e ≦ 20, 10 ≦ g ≦ 200, and f is an atomic ratio of oxygen necessary to satisfy the valence of each component. .)
JP2004239419A 2004-08-19 2004-08-19 Method for producing fluidized bed catalyst for acrylonitrile synthesis Expired - Fee Related JP4425743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004239419A JP4425743B2 (en) 2004-08-19 2004-08-19 Method for producing fluidized bed catalyst for acrylonitrile synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004239419A JP4425743B2 (en) 2004-08-19 2004-08-19 Method for producing fluidized bed catalyst for acrylonitrile synthesis

Publications (3)

Publication Number Publication Date
JP2006055732A JP2006055732A (en) 2006-03-02
JP2006055732A5 JP2006055732A5 (en) 2007-02-08
JP4425743B2 true JP4425743B2 (en) 2010-03-03

Family

ID=36103652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004239419A Expired - Fee Related JP4425743B2 (en) 2004-08-19 2004-08-19 Method for producing fluidized bed catalyst for acrylonitrile synthesis

Country Status (1)

Country Link
JP (1) JP4425743B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039998A1 (en) 2018-08-23 2020-02-27 旭化成株式会社 Method of producing ammoxidation catalyst and method of producing acrylonitrile

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4954750B2 (en) * 2007-02-28 2012-06-20 ダイヤニトリックス株式会社 Method for producing molybdenum, bismuth, iron, silica-containing composite oxide catalyst
WO2017188349A1 (en) * 2016-04-27 2017-11-02 旭化成株式会社 Production method for ammoxidation catalyst and production method for acrylonitrile
US10626082B2 (en) * 2016-10-11 2020-04-21 Ineos Europe Ag Ammoxidation catalyst with selective co-product HCN production

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166037A (en) * 1984-02-07 1985-08-29 Nitto Chem Ind Co Ltd Manufacture of oxide catalyst containing antimony deposited on silica
JP2640356B2 (en) * 1988-04-15 1997-08-13 日東化学工業株式会社 Acrylonitrile manufacturing method
JP2747920B2 (en) * 1989-02-16 1998-05-06 日東化学工業株式会社 Preparation of Molybdenum Containing Metal Oxide Fluidized Bed Catalyst Suitable for Oxidation Reaction
JP2701065B2 (en) * 1989-03-23 1998-01-21 日東化学工業株式会社 Preparation of molybdenum-bismuth-containing composite oxide catalyst
JP3534431B2 (en) * 1993-08-06 2004-06-07 旭化成ケミカルズ株式会社 Production of unsaturated nitrile
JP4280797B2 (en) * 2001-11-21 2009-06-17 三菱化学株式会社 Method for producing composite oxide catalyst
JP4098185B2 (en) * 2002-08-27 2008-06-11 ダイヤニトリックス株式会社 Catalyst for synthesizing acrylonitrile, method for producing the same, and method for producing acrylonitrile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039998A1 (en) 2018-08-23 2020-02-27 旭化成株式会社 Method of producing ammoxidation catalyst and method of producing acrylonitrile
KR20210032514A (en) 2018-08-23 2021-03-24 아사히 가세이 가부시키가이샤 Method for producing catalyst for ammoxidation and method for producing acrylonitrile
US11701648B2 (en) 2018-08-23 2023-07-18 Asahi Kasei Kabushiki Kaisha Method for producing catalyst for ammoxidation, and method for producing acrylonitrile

Also Published As

Publication number Publication date
JP2006055732A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP4242197B2 (en) Catalyst for acrylonitrile synthesis
TWI438031B (en) Mixture of catalyst
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
JP5500761B2 (en) Method for producing catalyst for synthesis of methacrylic acid
TW201124199A (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
JP5210834B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP2004105951A (en) Catalyst for synthesizing acrylonitrile and production method for the same and production method for acrylonitrile
JP4925415B2 (en) Method for producing a catalyst for methacrylic acid production
JP4588533B2 (en) Catalyst for acrylonitrile synthesis
JP5011178B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP2018521851A (en) Method for producing mixed metal oxide catalyst containing molybdenum and bismuth
JP2016168591A (en) Catalyst for manufacturing methacrylic acid and manufacturing method therefor, and manufacturing method of methacrylic acid
JP4425743B2 (en) Method for producing fluidized bed catalyst for acrylonitrile synthesis
JP4022047B2 (en) Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method
JP5210835B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP3690939B2 (en) Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid
JP3342794B2 (en) Method for producing supported catalyst for synthesis of methacrolein and methacrylic acid
TW201943456A (en) Catalyst, method for producing catalyst, and method for producing acrylonitrile
JP5344753B2 (en) Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4811977B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP4253176B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid
TWI710404B (en) Method for producing catalyst for ammoxidation and method for producing acrylonitrile
JP4809692B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP5011177B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP4875480B2 (en) Method for producing metal-containing catalyst

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091209

R150 Certificate of patent or registration of utility model

Ref document number: 4425743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees