JP4423755B2 - Steel pipe with excellent pipe expansion workability - Google Patents

Steel pipe with excellent pipe expansion workability Download PDF

Info

Publication number
JP4423755B2
JP4423755B2 JP2000191144A JP2000191144A JP4423755B2 JP 4423755 B2 JP4423755 B2 JP 4423755B2 JP 2000191144 A JP2000191144 A JP 2000191144A JP 2000191144 A JP2000191144 A JP 2000191144A JP 4423755 B2 JP4423755 B2 JP 4423755B2
Authority
JP
Japan
Prior art keywords
thickness
pipe
hardness
seam
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000191144A
Other languages
Japanese (ja)
Other versions
JP2002001427A (en
Inventor
裕二 橋本
治 園部
章 依藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000191144A priority Critical patent/JP4423755B2/en
Publication of JP2002001427A publication Critical patent/JP2002001427A/en
Application granted granted Critical
Publication of JP4423755B2 publication Critical patent/JP4423755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、拡管加工性に優れた鋼管およびその製造方法に関し、とくに鋼管を金型内に装着し、管内に内圧をかけ管周方向にひずみを与えて所定の形状に加工する拡管加工用素材として好適な鋼管に関する。
本発明において、シームとは溶接された継目を指し、シーム近傍とはシームからの距離が管周長の5%以下の範囲を指す。
【0002】
【従来の技術】
サスペンションアーム等の自動車足回り部品、フレーム等の自動車構造部品等々において、鋼管を拡管加工の一種であるハイドロフォーム加工により成形した製品が採用されはじめている。ハイドロフォーム加工法は、金属管を金型に入れ、金属管内に液を導入して内圧をかけて所定の形状に加工する方法である。内圧による拡管変形時に管軸方向に軸押ししながら加工することが多い。得られた成形品は軽量で、しかも複雑な形状のものまで成形可能である。
【0003】
このようなハイドロフォーム加工においては、素管の特性として、延性(伸び)、n値(加工硬化指数)の高い材料、r値の高い材料を選択すべきことが知られている。
例えば、特開平10−175027号公報には、管軸方向のr値が管周方向のr値よりも大であることを特徴とするハイドロフォーム加工用金属管が開示されている。また、特開平10−176220号公報には、特定組織の電縫鋼管を冷間加工により薄肉管とし特定条件の熱処理を施すことを特徴とするハイドロフォーム加工性に優れた高強度鋼管の製造方法が開示されている。
【0004】
【発明が解決しようとする課題】
しかし、管軸方向のr値が管周方向のr値よりも大なる鋼管は、冷延鋼板素材を用いた電縫溶接法での連続造管が困難であり、量産できない問題がある。というのは、かかる鋼管を電縫溶接法で連続造管するには、造管軸方向に対応させるべき圧延長さ方向(L方向)のr値が圧延幅方向(C方向)のr値よりも大きくなければならないが、一般に冷延鋼板ではその逆すなわちL方向のr値がC方向のr値よりも小さいものが多いからである。
【0005】
また、冷間加工した薄肉管に熱処理を施して優れた拡管加工性を付与する方法は、熱処理工程付加を必要とするのでコストアップの問題がある。
一方、延性、n値、r値の著しく大きな材料として、極低炭素IF鋼(C:0.005 mass%以下)を素材とした電縫鋼管が考えられ、これを試作造管してその拡管特性を調査した結果、鋼管の機械的性質(伸び、n値、r値)の良さが反映されず、低炭素鋼(C:0.01〜0.1 mass%)や中炭素鋼(C:0.1 〜0.2 mass%)に比し大差のない拡管特性しか得られないことがしばしばある。とくに管軸方向に圧縮を付加せず純粋にバルジ成形するときにその傾向が強い。また、低炭素鋼、中炭素鋼においても、鋼管の引張試験から得られる機械的性質との対応がつかず、ハイドロフォーム加工性が著しく変動することがあった。
【0006】
本発明は、これら従来技術の問題を解決し、熱延または冷延鋼板素材を用いた電縫溶接法で連続造管できる拡管加工用鋼管を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、前記課題を達成するために鋭意考究を重ねた結果、鋼管周方向の肉厚分布および硬さ分布の均一性が、鋼管の機械的性質(伸び、n値、r値)の差よりも、拡管加工性に大きく影響することを知見し、本発明をなすに至った。
【0008】
すなわち、本発明は、金型内に装着され、管内に内圧をかけ管周方向にひずみを与えて所定の形状に加工される鋼管であって、シームを有し、下記式(1) で与えられる周方向肉厚・硬度分布指数Zが0.1 以下であること特徴とする拡管加工性に優れた鋼管である。
Z=(αmax −αmin )/αav (1)
αmax :母材部肉厚・硬度積の測定データの最大値
αmin :母材部肉厚・硬度積の測定データの最小値
αav:母材部肉厚・硬度積の測定データの平均値
母材部肉厚・硬度積:シーム近傍材質特異点を除く管円周方向複数個所における各個所ごとに同じ位置で測定された肉厚と硬さの積
また、本発明ではさらに、下記式(2) で与えられるシーム部肉厚・硬度指数Yが1.0 以上である鋼管がより好ましい。
【0009】
Y=βav/αav (2)
βav:シーム部肉厚・硬度積の測定データの平均値
αav:母材部肉厚・硬度積の測定データの平均値
シーム部肉厚・硬度積:シーム近傍材質特異点の管円周方向複数個所における各個所ごとに同じ位置で測定された肉厚と硬さの積
母材部肉厚・硬度積:シーム近傍材質特異点を除く管円周方向複数個所における各個所ごとに同じ位置で測定された肉厚と硬さの積
本発明では、鋼管が拡管加工用鋼管、就中、ハイドロフォーム加工用鋼管であることが好ましい。
【0010】
また、本発明は、金属管を金型に装着し、管内に内圧をかけ管周方向にひずみを与えて所定の形状に加工する拡管加工方法において、金属管として、シームを有し、前記式(1) で与えられる周方向肉厚・硬度分布指数Zが0.1 以下であり、あるいはさらに前記式(2) で与えられるシーム部肉厚・硬度指数Yが1.0 以上である鋼管を用いることを特徴とする拡管加工方法でもある。
【0011】
本発明では、前記鋼管が、C:0.001 〜0.3 mass%、Si:0.01〜1.0 mass%、Mn:0.1 〜1.5 mass%、P:0.1 mass%以下、S:0.01mass%以下、あるいはさらにTi:0.01〜0.1 mass%を含有し、残部がFeおよび不可避的不純物からなる組成を有する電縫鋼管であることが好ましい
【0012】
【発明の実施の形態】
本発明者らは、C:0.002 〜0.12%を含有し組成と熱延条件が種々異なる冷延鋼板を電縫溶接した電縫鋼管について、周方向肉厚・硬度分布指数Z(母材部肉厚・硬度積は5mmピッチで測定)、およびシーム部肉厚・硬度指数Y(シーム部肉厚・硬度積は5mmピッチで測定)を求め、一方、ハイドロフォーミングによる拡管加工試験を行って拡管加工性を評価し、Z,Yと拡管加工性の関係を調査した。
【0013】
ハイドロフォーミングによる拡管加工試験は、図4に示すように、試験材としての管1を金型2(a,bは上,下)に入れて一方のシールヘッド3の通水路をバルブ閉6とし他方の通水路4からの高圧送水4により管1内に高圧水5を圧入し、拡管加工を行うものである。拡管加工性は、内圧負荷途上で管に亀裂が発生した時点での管径D1を測定し、これと試験前の管径D0とから、100(D1/D0-1)(%) で定義される限界拡管率を求めて評価した。
【0014】
図1は、前記調査結果の第1例として、外径63.5mm×肉厚2.0mm のJIS STKM11A 相当の電縫鋼管の周方向肉厚・硬度分布指数Zと限界拡管率の関係を示すグラフである。限界拡管率はZが0.1 を超えると極端に小さくなる。すなわち、拡管加工用には、Zが0.1 以下の鋼管が好適である。
また、図2は、前記調査結果の第2例として、Z≦0.1 の電縫鋼管のシーム部肉厚・硬度指数Yと限界拡管率の関係を示すグラフである。限界拡管率はYが1.0 以上で一段と高くなる。すなわち、拡管加工用には、Z≦0.1 でかつY≧1.0 の鋼管がさらに好適である。
【0015】
本発明の鋼管は、量産性の面から、電縫鋼管が好ましい。その鋼組成の好適成分範囲を前記のように定めた理由はつぎの通りである。
Cは、鋼の組織に強く影響して機械的性質を左右する元素であり、0.001 mass%未満では電縫鋼管の要求強度に達しにくく、また、0.3 mass%超では溶接ビードが硬化しすぎてビード切削性が低下する。そのため、0.001 〜0.3 mass%とした。
【0016】
Siは、固溶強化元素であり、強度調整のためには0.01mass%以上が望ましいが、1.0 mass%超では強度が高くなりすぎ成形性が劣化するため、0.01〜1.0 mass%とした。
Mnは、固溶強化元素であり、強度調整に有効である。また、オーステナイト安定化元素であり、マルテンサイトの生成を容易にすることや、強度向上に寄与することから0.1 mass%以上が望ましいが、1.5 mass%超では強度が高くなりすぎ成形性が劣化するため、0.1 〜1.5 mass%とした。
【0017】
Pは、マルテンサイト生成にあまり大きな影響を与えずに強度調整をするために含有させるが、0.1 mass%を超えると成形性が劣化するため、0.1 mass%以下とした。
Sは、0.01mass%を超えて含有すると成形性が劣化するため、0.01mass%以下とした。
【0018】
Tiは、炭化物を形成して組織の微細化に寄与する元素であり、組織微細化のためには0.01mass%以上の添加が望ましいが、0.1 mass%を超えると成形性が劣化するため、0.01〜0.1 mass%とした。
本発明の鋼管は、例えば図3に示すような電縫管製造設備を用いて好ましく製造される。この設備は、粗成形ロール群10、クラスターロール群11、フィンパスロール群12、溶接機13、スクイズロール14、ビード切削装置15、シームアニール装置16、サイザーロール群17をこの順に配列して構成される。18、19は粗成形ロール群10入側、出側にそれぞれ設置された走査型厚み計、20は、シームアニール装置出側に設置された走査型厚み計である。
【0019】
粗成形ロール群はエッジベンドロールとブレークダウンロールを組み合わせて構成されたものが好適である。溶接機は直接通電加熱式、誘導加熱式のいずれも好適である。走査型厚み計はX線走査型、γ線走査型のいずれも好適である。
鋼帯板材料は粗成形ロール群10入側から連続的に供給され、粗成形ロール群10、クラスターロール群11、フィンパスロール群12により幅を連続的に弧状に曲げるロール成形を施されてオープン管となり、このオープン管はその突合せ部を溶接機13およびスクイズロール14により電縫溶接されて電縫管となり、この電縫管はそのシーム周辺に生成した突起部(溶接ビード)をビード切削装置15により内外両側からビード切削され、必要に応じてそのシーム近傍をシームアニール装置16により焼なまし(アニール)され、さらに、サイザーロール群17により定径圧延されて、所定の外径寸法の金属管に仕上がる。
【0020】
前記造管工程において、ロール成形前の材料幅端部の厚みを走査型厚み計18にて計測しその結果に応じて同部の曲げ圧下量を設定(エッジベンドロールの圧下位置を設定)する制御、および/または、ロール成形中の材料弧央部の厚みを走査型厚み計19にて計測しその結果が目標に合うように同部の曲げ圧下量を変更(ブレークダウンロールの圧下位置を変更)する制御を行うことにより、圧下のかけすぎによる偏肉を抑制できて周方向肉厚分布を均一化することができ、母材部の周方向硬さ分布が極端に不均一でない限り、鋼管の周方向肉厚・硬度分布指数Zを安定して0.1 以下にすることができるようになる。
【0021】
さらに、ビード切削後またはシームアニール後のシーム近傍の厚みを走査型厚み計20で計測し、同時に電縫溶接あるいはさらにシームアニールのヒートパターンからシーム近傍の硬さを推定し、該推定した硬さと前記計測した厚みの積が目標(母材部の厚みと硬さの積以上の値がよい)に合うようにビード切削量を変更する制御を行うことにより、シーム部肉厚・硬度指数Yを安定して1.0 以上にすることができるようになる。
【0022】
また、前記造管工程で使用する鋼帯板材料は、供給安定性の面から量産に適した製造法、すなわち、加熱、粗圧延、仕上圧延、圧延後冷却、巻取をこの順に行う熱間圧延、あるいはさらにその後の冷間圧延により製造することが好ましく、このとき、熱間圧延では、
a)仕上圧延前の材料幅全部を加熱してFDTを目標に合わせる制御
b)仕上圧延前の材料幅端部を加熱してFDTを目標に合わせる制御
c)圧延後冷却中の材料幅端部をマスキングしてCTを目標に合わせる制御
の1種または2種以上を行うことが、造管前の材料幅方向硬さ分布を効果的に均一化することができて好ましい。
【0023】
粗圧延後仕上圧延前の材料を加熱するには、幅全部加熱の場合、例えば高周波誘導式のシートバーヒータ、幅端部加熱の場合、例えば高周波誘導式のシートバーエッジヒータがそれぞれ好ましく用いうる。各ヒータの出力はFDTを目標に一致させるように適宜変更される。
圧延後冷却中の材料幅端部をマスキングするには、冷媒噴射手段(例えばスプレーノズル)と材料幅端部の間に、噴射された冷媒(例えば冷却水)を遮断する可動式遮蔽板を設置するのが好ましい。遮蔽板の位置はCTを目標に一致させるように、好ましくは200mm 程度以下のストロークで変更される。
【0024】
前記鋼帯板材料をなす鋼は、前述の理由から、前記好適成分範囲の組成を有する鋼が好ましい。なお、必要に応じて前記組成にさらに、Nb:0.005 〜0.040 mass%、Cr:0.02〜1.0 mass%が付加された組成の鋼としてもよい。
Nbは、未再結晶オーステナイト域での圧延歪蓄積を助長して組織の微細化に寄与する元素であり、組織微細化のためには0.005 mass%以上の添加が望ましいが、0.040 mass%を超えると成形性が劣化するため、0.005 〜0.040 mass%とした。
【0025】
Crは、鋼管の延性を損なうことなく強度を向上させるのに有効な元素であり、このためには0.02mass%以上の添加が望ましいが、1.0 mass%を超えると強度が飽和するほか鋼の熱間加工性および冷間加工性が劣化するため0.02〜1.0 mass%とした。
その場合、FDTの目標は、Ar3 〜(Ar3 +30℃)とするのが好ましい。FDTがAr3 未満ではフェライトとオーステナイトの混合組織を熱間加工することになって硬さのばらつきが大きくなり、一方、FDTが(Ar3 +30℃)を超えると、結晶粒成長により組織が粗大化し、延性が低下して成形性が劣化するためである。また、CTの目標は、幅方向偏差(幅方向ばらつき範囲)25℃以下とするのが好ましい。CTの幅方向偏差が25℃を超えると硬さの幅方向ばらつきが大きくなり、周方向肉厚・硬度分布指数Zを0.1 以下に抑えるのが難しくなるからである。
【0026】
【実施例】
表1に示す組成になる鋼を、加熱、粗圧延、仕上圧延、圧延後冷却、巻取を順次行う熱間圧延工程に供し、うち一部はさらに通常の冷間圧延工程に供して、帯板(熱延板または冷延板)となし、これらの帯板を、図3に示した電縫管製造設備を用いて、ロール成形、電縫溶接(溶接機は高周波誘導式)、ビード切削、シームアニール(シームアニール装置は中周波誘導加熱式)、定径圧延を順次行う造管工程に供して、目標寸法:外径63.5mm×肉厚2.0mm の電縫鋼管となした。このとき、熱間圧延工程および造管工程に以下に記す制御要件を表2に示すように割り振ることで、製造条件を種々変えた。
【0027】
a)仕上圧延前に高周波誘導式シートバーヒータにより板幅全部を加熱してFDTをAr3 +(0〜30)℃に制御
b)仕上圧延前に高周波誘導式シートバーエッジヒータにより板幅端部を加熱してFDTをAr3 +(0〜30)℃に制御
c)圧延後冷却中に可動式遮蔽板により板幅端部をマスキングしてCT幅方向偏差を25℃以下に制御
d)X線走査型厚み計にてロール成形前の板幅端部の厚みを計測しその結果に応じて曲げ圧下量を、予め実験により決定した板幅端部の厚みと最適曲げ圧下量(エッジベンドロール最適圧下位置)との関係式の厚みに前記計測した結果を代入して得られる最適曲げ圧下量に制御
e)X線走査型厚み計にてロール成形中の材料弧央部の厚みを計測しその結果が目標(計測データのばらつき範囲が許容値以下という目標)に合うように同部の曲げ圧下量(ブレークダウンロール圧下位置)を制御
f)X線走査型厚み計にてシームアニール後のシーム近傍の厚みを計測し、同時に電縫溶接およびシームアニールのヒートパターンからシーム近傍の硬さを推定し、該推定した硬さと前記計測した厚みの積が目標(別途推定した母材部の厚みと硬さの積以上という目標)に合うようにビード切削量を制御
これらの電縫鋼管について、管軸直交断面の肉厚と肉厚中心部のヴィッカース硬さを周方向5mmピッチで計測して母材部肉厚・硬度積αとシーム部肉厚・硬度積βを算出することにより周方向肉厚・硬度分布指数Zおよびシーム部肉厚・硬度指数Yを測定するとともに、図4に示した方法により限界拡管率を測定して拡管加工性を評価した。
【0028】
結果を表2に示す。表2より、本発明の実施例は、比較例に比べて限界拡管率が格段に高く、優れた拡管加工性を顕現した。
【0029】
【表1】

Figure 0004423755
【0030】
【表2】
Figure 0004423755
【0031】
【発明の効果】
本発明の鋼管は、肉厚と硬さの積を用いて周方向特性の均一性を規定することにより、安定して優れた拡管加工性を有することから拡管加工時の不良率が低く、また、熱間圧延工程や冷間圧延工程で製板した帯板を電縫溶接法で造管する生産性の高い製造プロセスで製造できることから拡管加工用素管の安定供給を可能にするという、産業上寄与するところ大なる効果を奏する。
【図面の簡単な説明】
【図1】電縫鋼管の周方向肉厚・硬度分布指数Zと限界拡管率の関係を示すグラフである。
【図2】Z≦0.1 の電縫鋼管のシーム部肉厚・硬度指数Yと限界拡管率の関係を示すグラフである。
【図3】本発明の鋼管の製造に用いて好適な電縫管製造設備の一例を示す配置図である。
【図4】ハイドロフォーミングによる拡管加工試験方法を示す説明図である。
【符号の説明】
1 管
2 金型
3 シールヘッド
4 高圧送水
5 高圧水
6 バルブ閉
10 粗成形ロール群
11 クラスターロール群
12 フィンパスロール群
13 溶接機
14 スクイズロール
15 ビード切削装置
16 シームアニール装置
17 サイザーロール群
18、19、20 走査型厚み計[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a steel pipe excellent in pipe expansion workability and a method for manufacturing the same, and in particular, a pipe expansion raw material for mounting a steel pipe in a mold and applying an internal pressure to the pipe to cause distortion in the pipe circumferential direction. as it relates to the preferred steel pipe.
In the present invention, the seam refers to a welded seam, and the vicinity of the seam refers to a range where the distance from the seam is 5% or less of the pipe circumference.
[0002]
[Prior art]
Products such as suspension parts such as suspension arms, automobile structural parts such as frames, and the like have begun to adopt products in which steel pipes are formed by hydroforming, which is a type of pipe expansion. The hydroforming method is a method in which a metal tube is placed in a mold, a liquid is introduced into the metal tube, and an internal pressure is applied to process the metal tube into a predetermined shape. In many cases, processing is performed while axially pushing in the direction of the pipe axis when the pipe is deformed by internal pressure. The obtained molded product is lightweight and can be molded into a complicated shape.
[0003]
In such a hydroforming process, it is known that a material having a high ductility (elongation), a high n value (work hardening index), and a high r value should be selected as the properties of the raw tube.
For example, Japanese Patent Laid-Open No. 10-175027 discloses a metal tube for hydroforming, characterized in that the r value in the tube axis direction is larger than the r value in the tube circumferential direction. Japanese Patent Laid-Open No. 10-176220 discloses a method for producing a high-strength steel pipe excellent in hydrofoam workability, characterized in that an electric resistance steel pipe having a specific structure is made into a thin-walled pipe by cold working and subjected to heat treatment under specific conditions. Is disclosed.
[0004]
[Problems to be solved by the invention]
However, a steel pipe having an r value in the pipe axis direction larger than the r value in the pipe circumferential direction has a problem that continuous pipe forming by an electric resistance welding method using a cold-rolled steel sheet material is difficult and mass production cannot be performed. This is because, in order to continuously form such a steel pipe by the electric resistance welding method, the r value in the rolling length direction (L direction) that should correspond to the pipe forming axis direction is greater than the r value in the rolling width direction (C direction). However, in general, many cold-rolled steel sheets have the opposite, that is, the r value in the L direction is smaller than the r value in the C direction.
[0005]
In addition, the method of applying a heat treatment to a cold-worked thin-walled tube to give excellent tube expansion workability has a problem of cost increase because it requires an additional heat treatment step.
On the other hand, an ERW steel pipe made of extremely low carbon IF steel (C: 0.005 mass% or less) can be considered as a material with significantly large ductility, n value, and r value. As a result of investigation, the mechanical properties (elongation, n value, r value) of the steel pipe are not reflected, and low carbon steel (C: 0.01 to 0.1 mass%) and medium carbon steel (C: 0.1 to 0.2 mass%) In many cases, tube expansion characteristics that are not much different from those obtained are obtained. This tendency is particularly strong when pure bulge molding is performed without applying compression in the tube axis direction. Further, even in the low carbon steel and the medium carbon steel, the mechanical properties obtained from the tensile test of the steel pipe cannot be dealt with, and the hydroform workability sometimes fluctuates significantly.
[0006]
The present invention solves these prior art problems, and an object thereof is to provide a pipe expanding for steel pipes that can be continuous pipe making by electric resistance welding method using a hot-rolled or cold-rolled steel sheet material.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the uniformity of the thickness distribution and hardness distribution in the circumferential direction of the steel pipe is a mechanical property (elongation, n value, r value) of the steel pipe. It has been found that it has a greater influence on the tube-expanding workability than the difference in the above, and has led to the present invention.
[0008]
That is, the present invention is a steel pipe that is mounted in a mold and is processed into a predetermined shape by applying an internal pressure to the pipe and applying strain in the pipe circumferential direction. The steel pipe has a seam and is given by the following formula (1). The steel pipe is excellent in pipe expansion workability, characterized in that the circumferential thickness / hardness distribution index Z is 0.1 or less.
Z = (α max −α min ) / α av (1)
α max : Maximum value of measurement data of base metal part thickness / hardness product α min : Minimum value of measurement data of base material part thickness / hardness product α av : Average of measurement data of base material part thickness / hardness product Value base material thickness / hardness product: product of wall thickness and hardness measured at the same position at each location in the circumferential direction of the pipe excluding the material singularity in the vicinity of the seam. A steel pipe having a seam thickness / hardness index Y given by (2) of 1.0 or more is more preferable.
[0009]
Y = β av / α av (2)
β av : Average value of measurement data of seam thickness / hardness product α av : Average value of measurement data of base metal thickness / hardness product Seam thickness / hardness product: Pipe circumference of material singularity near seam Thickness and hardness of base material part thickness / hardness product measured at the same location at each location in multiple locations in the direction: Same location at each location in multiple locations in the circumferential direction of the pipe excluding the material singularity in the vicinity of the seam In the present invention, it is preferable that the steel pipe is a steel pipe for pipe expansion processing, in particular, a steel pipe for hydrofoam processing.
[0010]
Further, the present invention provides a pipe expanding method in which a metal tube is mounted on a mold, an internal pressure is applied to the inside of the tube, and the tube is distorted in the circumferential direction to be processed into a predetermined shape. A steel pipe having a circumferential thickness / hardness distribution index Z given by (1) of 0.1 or less, or a seam thickness / hardness index Y given by formula (2) of 1.0 or more is used. It is also a pipe expansion processing method.
[0011]
In the present invention, the steel pipe has C: 0.001 to 0.3 mass%, Si: 0.01 to 1.0 mass%, Mn: 0.1 to 1.5 mass%, P: 0.1 mass% or less, S: 0.01 mass% or less, or Ti: An ERW steel pipe having a composition containing 0.01 to 0.1 mass% with the balance being Fe and inevitable impurities is preferable .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention have made a circumferential thickness / hardness distribution index Z (base metal part thickness) for an electric resistance welded steel pipe welded with cold rolled steel sheets containing C: 0.002 to 0.12% and having different compositions and hot rolling conditions. Thickness / hardness product is measured at 5mm pitch), and seam thickness / hardness index Y (seam thickness / hardness product is measured at 5mm pitch), while pipe expansion is tested by hydroforming. The relationship between Z, Y and pipe expansion workability was investigated.
[0013]
As shown in FIG. 4, in the pipe expansion test by hydroforming, a pipe 1 as a test material is placed in a mold 2 (a and b are upper and lower), and a water passage of one seal head 3 is set to a valve closing 6. The high-pressure water 5 from the other water passage 4 is pressed into the pipe 1 to perform pipe expansion processing. The pipe expansion workability is defined as 100 (D1 / D0-1) (%) from the pipe diameter D1 measured at the time when a crack occurred in the pipe in the course of internal pressure loading, and the pipe diameter D0 before the test. The critical expansion rate was determined and evaluated.
[0014]
Fig. 1 is a graph showing the relationship between the circumferential wall thickness / hardness distribution index Z and the critical tube expansion ratio of an electric resistance welded steel pipe equivalent to JIS STKM11A with an outer diameter of 63.5 mm and a wall thickness of 2.0 mm, as a first example of the survey results. is there. The limit tube expansion ratio becomes extremely small when Z exceeds 0.1. That is, a steel pipe having Z of 0.1 or less is suitable for pipe expansion processing.
FIG. 2 is a graph showing the relationship between the seam thickness / hardness index Y of the ERW steel pipe with Z ≦ 0.1 and the limit pipe expansion ratio as a second example of the investigation result. The limit tube expansion rate becomes higher when Y is 1.0 or more. That is, a steel pipe with Z ≦ 0.1 and Y ≧ 1.0 is more suitable for pipe expansion processing.
[0015]
The steel pipe of the present invention is preferably an electric resistance welded steel pipe from the viewpoint of mass productivity. The reason why the preferred component range of the steel composition is determined as described above is as follows.
C is an element that strongly influences the structure of the steel and affects the mechanical properties. If it is less than 0.001 mass%, it is difficult to reach the required strength of an ERW steel pipe, and if it exceeds 0.3 mass%, the weld bead is hardened too much. Bead machinability is reduced. Therefore, it was set to 0.001 to 0.3 mass%.
[0016]
Si is a solid solution strengthening element, and 0.01 mass% or more is desirable for strength adjustment. However, if it exceeds 1.0 mass%, the strength becomes too high and the formability deteriorates, so the content was set to 0.01 to 1.0 mass%.
Mn is a solid solution strengthening element and is effective in adjusting the strength. In addition, it is an austenite stabilizing element, and it is preferable to be 0.1 mass% or more because it facilitates the formation of martensite and contributes to strength improvement. However, if it exceeds 1.5 mass%, the strength becomes too high and the formability deteriorates. Therefore, the content is set to 0.1 to 1.5 mass%.
[0017]
P is included for adjusting the strength without significantly affecting the martensite formation. However, if it exceeds 0.1 mass%, the formability deteriorates, so the content was made 0.1 mass% or less.
If S is contained in excess of 0.01 mass%, the moldability deteriorates, so it was set to 0.01 mass% or less.
[0018]
Ti is an element that contributes to the refinement of the structure by forming carbides. Addition of 0.01 mass% or more is desirable for refinement of the structure, but if it exceeds 0.1 mass%, the formability deteriorates. -0.1 mass%.
The steel pipe of the present invention is preferably manufactured using, for example, an electric sewing tube manufacturing facility as shown in FIG. This equipment consists of roughly forming roll group 10, cluster roll group 11, fin pass roll group 12, welding machine 13, squeeze roll 14, bead cutting device 15, seam annealing device 16, and sizer roll group 17 in this order. Is done. Reference numerals 18 and 19 denote scanning thickness meters installed on the inlet side and the outlet side of the rough forming roll group 10, respectively, and 20 denotes a scanning thickness gauge installed on the outlet side of the seam annealing apparatus.
[0019]
The rough forming roll group is preferably configured by combining an edge bend roll and a breakdown roll. As the welding machine, either a direct current heating type or an induction heating type is suitable. As the scanning thickness gauge, both an X-ray scanning type and a γ-ray scanning type are suitable.
The steel strip material is continuously supplied from the inlet side of the coarse forming roll group 10 and is subjected to roll forming in which the width is continuously bent into an arc shape by the rough forming roll group 10, the cluster roll group 11, and the fin pass roll group 12. This open pipe is welded by the welding machine 13 and squeeze roll 14 to form an electric welded pipe, and this electric welded pipe bead-cuts the protrusion (welded bead) generated around the seam. The bead cutting is performed from both the inner and outer sides by the device 15, and the vicinity of the seam is annealed (annealed) by the seam annealing device 16 as necessary. Finished in a metal tube.
[0020]
In the pipe making step, the thickness of the material width end portion before roll forming is measured by the scanning thickness gauge 18, and the bending reduction amount of the same portion is set according to the measurement result (the reduction position of the edge bend roll is set). Control and / or the thickness of the material arc central part during roll forming is measured with the scanning thickness gauge 19, and the bending reduction amount of the part is changed so that the result meets the target. By changing the control), uneven thickness due to excessive reduction can be suppressed, the circumferential thickness distribution can be made uniform, and unless the circumferential hardness distribution of the base material part is extremely uneven, The circumferential thickness / hardness distribution index Z of the steel pipe can be stably reduced to 0.1 or less.
[0021]
Furthermore, the thickness in the vicinity of the seam after bead cutting or after seam annealing is measured with a scanning thickness meter 20, and at the same time, the hardness in the vicinity of the seam is estimated from the heat pattern of electro-welding or seam annealing, and the estimated hardness and By controlling the bead cutting amount so that the product of the measured thickness meets the target (a value equal to or greater than the product of the thickness and hardness of the base material), the seam thickness / hardness index Y is It will be possible to stabilize to 1.0 or more.
[0022]
The steel strip material used in the pipe making process is a manufacturing method suitable for mass production from the viewpoint of supply stability, that is, hot, rough rolling, finish rolling, cooling after rolling, and coiling in this order. It is preferable to produce by rolling or further cold rolling, and at this time, in hot rolling,
a) Control to adjust the FDT to the target by heating the entire material width before finish rolling b) Control to adjust the FDT to the target by heating the material width end before finishing rolling c) End of the material width during cooling after rolling It is preferable to perform one type or two or more types of control for adjusting the CT to the target by masking the thickness in order to effectively uniformize the hardness distribution in the material width direction before pipe forming.
[0023]
In order to heat the material before roughing and before finishing rolling, in the case of full width heating, for example, a high frequency induction type sheet bar heater, for example, in the case of width end heating, for example, a high frequency induction type sheet bar edge heater can be preferably used. . The output of each heater is appropriately changed so that the FDT matches the target.
To mask the material width edge during cooling after rolling, a movable shielding plate is installed between the refrigerant injection means (for example, spray nozzle) and the material width edge to block the injected refrigerant (for example, cooling water). It is preferable to do this. The position of the shielding plate is preferably changed with a stroke of about 200 mm or less so that the CT matches the target.
[0024]
The steel constituting the steel strip material is preferably a steel having a composition in the preferred component range for the reasons described above. In addition, it is good also as steel of the composition which added Nb: 0.005-0.040 mass% and Cr: 0.02-1.0 mass% further to the said composition as needed.
Nb is an element that contributes to the refinement of the structure by promoting the accumulation of rolling strain in the non-recrystallized austenite region. Addition of 0.005 mass% or more is desirable for the refinement of the structure, but it exceeds 0.040 mass%. And formability deteriorated, so 0.005 to 0.040 mass% was set.
[0025]
Cr is an element effective for improving the strength without impairing the ductility of the steel pipe. For this purpose, addition of 0.02 mass% or more is desirable, but when it exceeds 1.0 mass%, the strength is saturated and the heat of the steel Since the hot workability and the cold workability deteriorated, it was set to 0.02 to 1.0 mass%.
In that case, the target of FDT is preferably Ar 3 to (Ar 3 + 30 ° C.). If the FDT is less than Ar 3 , the mixed structure of ferrite and austenite is hot-worked, resulting in a large variation in hardness. On the other hand, if the FDT exceeds (Ar 3 + 30 ° C), the structure is coarse due to grain growth. This is because ductility is lowered and moldability is deteriorated. Further, it is preferable that the CT target is a width direction deviation (width direction variation range) of 25 ° C. or less. This is because, when the CT width direction deviation exceeds 25 ° C., the hardness width direction variation increases, and it becomes difficult to suppress the circumferential thickness / hardness distribution index Z to 0.1 or less.
[0026]
【Example】
The steel having the composition shown in Table 1 is subjected to a hot rolling process in which heating, rough rolling, finish rolling, cooling after rolling, and winding are sequentially performed, part of which is further subjected to a normal cold rolling process. These strips are formed into rolls (hot-rolled sheets or cold-rolled sheets) using the ERW pipe manufacturing equipment shown in Fig. 3, roll forming, ERW welding (welding machine is high frequency induction type), bead cutting , Seam annealing (Seam annealing equipment is medium frequency induction heating type) and pipe making process of constant diameter rolling in order to make ERW steel pipe with target dimension: outer diameter 63.5mm x wall thickness 2.0mm. At this time, the production conditions were variously changed by assigning the control requirements described below to the hot rolling process and the pipe making process as shown in Table 2.
[0027]
a) The entire width of the sheet is heated by a high frequency induction type sheet bar heater before finish rolling and the FDT is controlled to Ar 3 + (0-30) ° C. b) The end of the sheet width by a high frequency induction type sheet bar edge heater before finish rolling Control the FDT to Ar 3 + (0-30) ° C. by heating the part c) Control the CT width direction deviation to 25 ° C. or less by masking the end of the plate width with a movable shielding plate during cooling after rolling d) The thickness of the plate width end before roll forming is measured with an X-ray scanning thickness gauge, and the bending reduction amount according to the result is determined in advance by the thickness of the plate width end portion and the optimum bending reduction amount (edge bend). E) Measure the thickness of the material arc center during roll forming with an X-ray scanning thickness gauge. The result is the target (target that the variation range of the measurement data is below the allowable value) F) Control the bending reduction amount (breakdown roll reduction position) of the same part to fit the f. Measure the thickness near the seam after seam annealing with an X-ray scanning thickness gauge, and at the same time, heat of ERW welding and seam annealing Estimate the hardness in the vicinity of the seam from the pattern, and adjust the bead cutting amount so that the product of the estimated hardness and the measured thickness meets the target (the target of the product of the thickness and hardness of the base metal part estimated separately) Control For these ERW steel pipes, measure the thickness of the cross section perpendicular to the pipe axis and the Vickers hardness at the center of the thickness at a pitch of 5 mm in the circumferential direction. By calculating β, the circumferential thickness / hardness distribution index Z and the seam thickness / hardness index Y were measured, and the limit tube expansion ratio was measured by the method shown in FIG. 4 to evaluate the tube expansion workability.
[0028]
The results are shown in Table 2. From Table 2, the examples of the present invention have a markedly higher limit tube expansion rate than the comparative examples, and have demonstrated excellent tube expansion workability.
[0029]
[Table 1]
Figure 0004423755
[0030]
[Table 2]
Figure 0004423755
[0031]
【The invention's effect】
The steel pipe of the present invention has a stable and excellent pipe expansion workability by defining the uniformity of the circumferential characteristics by using the product of the wall thickness and the hardness. , An industry that enables the stable supply of raw pipes for pipe expansion processing because it can be manufactured by a highly productive manufacturing process in which strips made in the hot rolling process and cold rolling process are piped by the electric resistance welding method. There is a great effect where it contributes.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a circumferential thickness / hardness distribution index Z and a limit pipe expansion rate of an electric resistance welded steel pipe.
FIG. 2 is a graph showing the relationship between the seam thickness / hardness index Y and the limit expansion ratio of an ERW steel pipe with Z ≦ 0.1.
FIG. 3 is a layout view showing an example of an ERW pipe manufacturing facility suitable for use in manufacturing the steel pipe of the present invention.
FIG. 4 is an explanatory view showing a pipe expansion processing test method by hydroforming.
[Explanation of symbols]
1 Tube 2 Mold 3 Seal head 4 High pressure water supply 5 High pressure water 6 Valve closed
10 Coarse forming rolls
11 Cluster roll group
12 Fin pass rolls
13 Welding machine
14 Squeeze Roll
15 Bead cutting machine
16 Seam annealing equipment
17 sizer rolls
18, 19, 20 Scanning thickness gauge

Claims (2)

金型内に装着され、管内に内圧をかけ管周方向にひずみを与えて所定の形状に加工される鋼管であって、シームを有し、下記式(1) で与えられる周方向肉厚・硬度分布指数Zが0.1 以下であること特徴とする拡管加工性に優れた鋼管。
Z=(αmax −αmin )/αav (1)
αmax :母材部肉厚・硬度積の測定データの最大値
αmin :母材部肉厚・硬度積の測定データの最小値
αav:母材部肉厚・硬度積の測定データの平均値
母材部肉厚・硬度積:シーム近傍材質特異点を除く管円周方向複数個所における各個所ごとに同じ位置で測定された肉厚と硬さの積
A steel pipe that is mounted in a mold and is processed into a predetermined shape by applying internal pressure to the pipe and straining it in the pipe circumferential direction.It has a seam and has a circumferential wall thickness and thickness given by the following formula (1). A steel pipe excellent in pipe workability characterized by a hardness distribution index Z of 0.1 or less.
Z = (α max −α min ) / α av (1)
α max : Maximum value of measurement data of base metal part thickness / hardness product α min : Minimum value of measurement data of base metal part thickness / hardness product α av : Average of measurement data of base material part thickness / hardness product Value Thickness / hardness product of base metal part: Product of thickness and hardness measured at the same position at each of multiple locations in the pipe circumferential direction excluding the material singularity near the seam
下記式(2) で与えられるシーム部肉厚・硬度指数Yが1.0 以上である請求項1記載の鋼管。
Y=βav/αav (2)
βav:シーム部肉厚・硬度積の測定データの平均値
αav:母材部肉厚・硬度積の測定データの平均値
シーム部肉厚・硬度積:シーム近傍材質特異点の管円周方向複数個所における各個所ごとに同じ位置で測定された肉厚と硬さの積
母材部肉厚・硬度積:シーム近傍材質特異点を除く管円周方向複数個所における各個所ごとに同じ位置で測定された肉厚と硬さの
The steel pipe according to claim 1, wherein a seam thickness / hardness index Y given by the following formula (2) is 1.0 or more.
Y = β av / α av (2)
β av : Average value of measurement data of seam thickness / hardness product α av : Average value of measurement data of thickness / hardness product of base metal Seam thickness / hardness product: Pipe circumference of material singularity near seam Thickness and hardness product measured at the same position at multiple locations in the direction of the base material Thickness and hardness product of the base material part: Same position at each location in the circumferential direction of the pipe excluding the material singularity in the vicinity of the seam Product of wall thickness and hardness measured by
JP2000191144A 2000-06-26 2000-06-26 Steel pipe with excellent pipe expansion workability Expired - Fee Related JP4423755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000191144A JP4423755B2 (en) 2000-06-26 2000-06-26 Steel pipe with excellent pipe expansion workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000191144A JP4423755B2 (en) 2000-06-26 2000-06-26 Steel pipe with excellent pipe expansion workability

Publications (2)

Publication Number Publication Date
JP2002001427A JP2002001427A (en) 2002-01-08
JP4423755B2 true JP4423755B2 (en) 2010-03-03

Family

ID=18690492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000191144A Expired - Fee Related JP4423755B2 (en) 2000-06-26 2000-06-26 Steel pipe with excellent pipe expansion workability

Country Status (1)

Country Link
JP (1) JP4423755B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104148440A (en) * 2014-08-11 2014-11-19 天津润德中天钢管有限公司 Process for manufacturing cold-drawing seamless tube for large-volume gas cylinder
CN108517398B (en) * 2018-06-26 2023-10-27 安徽马钢设备检修有限公司 Post-welding heat treatment device for large-pipe-diameter thin-wall pipe and use method thereof
CN115461484B (en) * 2020-08-07 2023-12-01 日本制铁株式会社 steel plate
CN114888531B (en) * 2022-05-20 2023-04-14 宁树武 Preparation method of mechanical bulging axle housing and mechanical bulging axle housing

Also Published As

Publication number Publication date
JP2002001427A (en) 2002-01-08

Similar Documents

Publication Publication Date Title
EP2184373B1 (en) Thick hot-rolled steel sheet having excellent processability and excellent strength/toughness after thermal treatment, and method for production of the steel sheet
JP4442541B2 (en) Manufacturing method of low YR ERW steel pipe for line pipe
CN113677448B (en) Square steel pipe, method for producing same, and building structure
EP1889938B1 (en) Ferrite stainless steel sheet for bellows stock pipe
WO2019176979A1 (en) Method for manufacturing square steel tube, and square steel tube
CN114599812B (en) Electric resistance welded steel pipe, method for producing same, line pipe, and building structure
JP2001181798A (en) Hot rolled ferritic stainless steel sheet excellent in bendability, its manufacturing method, and method of manufacturing for cold rolled steel sheet
JP5142606B2 (en) Truck frame and manufacturing method thereof
JP5211843B2 (en) Welded steel pipe with excellent crush resistance and method for producing the same
CN113453817A (en) Square steel pipe, method for producing same, and building structure
JP4423755B2 (en) Steel pipe with excellent pipe expansion workability
KR20140140614A (en) Low-yield-ratio high-strength electric resistance welded steel pipe, steel strip for said electric resistance welded steel pipe, and methods for manufacturing same
JP6332432B2 (en) Method for manufacturing ERW steel pipe with small pipe-forming distortion
JP6658385B2 (en) Manufacturing method of steel pipe
JP3713804B2 (en) Thin hot-rolled steel sheet with excellent formability
CN116323065A (en) Square steel pipe, method for manufacturing same, and building structure
JP2003041345A (en) Steel pipe of welded thin sheet and manufacturing method therefor
JP2003266123A (en) Method of forming high tensile strength steel sheet
CN107974624A (en) A kind of high-tensile bilayer welded tube strip and its manufacture method and double-deck welded tube
JP6222126B2 (en) ERW steel pipe and manufacturing method thereof
CN115243808A (en) Electric resistance welded steel pipe, method for producing same, and structural member for automobile
JP2003286544A (en) Thin-walled steel pipe showing excellent hydroforming property and its manufacturing process
JP2018047506A (en) Electroseamed steel pipe and manufacturing method thereof
JP3118623B2 (en) Method for producing non-heat treated electric resistance welded oil well pipe having tensile strength of 800 MPa or more
JP2001162305A (en) Manufacturing method of steel tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4423755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees