JP4422972B2 - Cyclone equipment - Google Patents

Cyclone equipment Download PDF

Info

Publication number
JP4422972B2
JP4422972B2 JP2003076803A JP2003076803A JP4422972B2 JP 4422972 B2 JP4422972 B2 JP 4422972B2 JP 2003076803 A JP2003076803 A JP 2003076803A JP 2003076803 A JP2003076803 A JP 2003076803A JP 4422972 B2 JP4422972 B2 JP 4422972B2
Authority
JP
Japan
Prior art keywords
cyclone
powder
secondary air
introduction
dispersed powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003076803A
Other languages
Japanese (ja)
Other versions
JP2004283677A (en
Inventor
聡 秋山
健三 小久保
英人 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Seifun Group Inc
Original Assignee
Nisshin Seifun Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Seifun Group Inc filed Critical Nisshin Seifun Group Inc
Priority to JP2003076803A priority Critical patent/JP4422972B2/en
Publication of JP2004283677A publication Critical patent/JP2004283677A/en
Application granted granted Critical
Publication of JP4422972B2 publication Critical patent/JP4422972B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • B04C2009/008Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks with injection or suction of gas or liquid into the cyclone

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Cyclones (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、集塵や微細粉体の分級を行うサイクロン装置に関するものである。
【0002】
【従来の技術】
従来、この種のサイクロン装置は、構造が簡単で安価に設置できるため、広く利用されている。しかし、火力発電におけるIGCC法や焼却炉の集塵装置として、サイクロンを利用する場合には、より集塵性能の高いものが望まれる。
【0003】
図9は、集塵性能を評価するための従来のサイクロンシステムの一例の構成概要を示す説明図である。
図9に示すように、集塵対象の粉体は、フィーダースクリュー1aによって連続的に、フィーダー1から下部の粉体分散機2に供給される。
粉体分散機2は、凝集状態の粉体を一次粒子の状態に分散させるためのものである。粉体分散機2を通った粉体は、粉体搬送管3を通って、空気取り入れ口4からの空気と共にサイクロン胴体部5の粉体導入部6に吸い込まれる。
【0004】
サイクロン胴体部5は、直立円筒状であり、上部の直胴部5aと、下部の漏斗状のサイクロン円錐台形部5bとからなり、下端は粗粉貯留槽8に対して開口している。また、サイクロン胴体部5の天井部からは、微粉取り出しのための排気管7が、胴体部内部の一定高さの位置まで垂下していて、ブロワー10からの負圧が与えられている。なお、7bは、微粉回収のために、微粉搬送管7aに設けられたフィルターである。
【0005】
従来のサイクロン装置は、直胴部5aの上壁付近では、内壁面の影響で流れの旋回方向の速度成分が小さく、粒子に遠心力が加わらず、粒子がサイクロンの中心方向に流れて捕集されにくくなる、という問題があった。
【0006】
この問題を解決するために、従来例1では、下側に曲率を設けた入口管路により、入口下部に粉体が集中し、大きな旋回速度が与えられ、収率が向上するとされている(例えば、特許文献1)。
【0007】
従来例2では、旋回方向に曲率を設けた曲管と整流用水平直管を用いれば、流れを乱すことなく、旋回中心から遠いところへ粉体を集中でき、十分な旋回回数で大きな遠心力が与えられ、高い捕集効率が得られるとされている(例えば、特許文献2)。
【0008】
従来例3では、粉体供給管の本体側の内側から2次空気を導入し、外筒の外側の内壁面よりに含塵空気を偏らせて流入させることにより、流れを乱すことなく、旋回中心から遠いところへ粉体を集中でき、高い捕集効率が得られるとされている(例えば、特許文献3)。
【0009】
【特許文献1】
特開平6−320055号公報
【特許文献2】
特開平10−34022号公報
【特許文献3】
特開2000−237636号公報
【0010】
【発明が解決しようとする課題】
しかし、上述した従来例1では、急激に入口管を曲げることにより、2次流れが発生し、サイクロンの入口付近の流れの乱れが多くなったり、サイクロンの高さを有効に活用できず、旋回回数が減少し、特に、遠心力のかかりにくい細かい粒子の捕集効率は、改善できないという問題があった。
【0011】
従来例2では、粉体は、直胴部の内壁近傍に集まるものの、重力の影響を受けにくい細かな粒子は、直胴部の上壁付近から投入されて、遠心力が与えられず、中心方向に流されて、捕集されないという問題があった。
また、整流用水平管により曲管で発生した2次流れによる乱れを整えているときに、流れに乗りやすい細かな粒子が内壁面から離れ、遠心力のかかりにくい箇所に導入され、捕集されにくいという問題があった。
【0012】
従来例3では、導入した2次空気は拡散によりすぐ広がってしまい、それを防ぐために、2次空気流速を上げると流れを乱してしまうという問題があった。
【0013】
本発明の課題は、細かい粒子(例えば、5μm以下)においても、捕集効率の高いサイクロン装置を提供することである。
【0014】
前記課題を解決するために、(1)の発明は、ほぼ直立円筒形のサイクロン胴体部と、分散粉体を含んだ空気流を前記サイクロン胴体部の内壁面に沿って水平方向に吹き込むために、そのサイクロン胴体部の一部を外周接線方向に延ばして設けられた粉体導入部と、前記サイクロン胴体部内の空気を上方向に排気するために設けられ、そのサイクロン胴体部の上部を覆う天部の中心部を貫通する排気部と、前記粉体導入部から45〜180°の位置で、前記サイクロン胴体部の接線方向に2次空気を導入する2次空気導入部と、を備えたサイクロン装置である。
【0015】
(2)の発明は、(1)に記載のサイクロン装置において、前記2次空気導入部の幅は、前記粉体導入部の幅の2/3以下であること、を特徴とするサイクロン装置である。
【0016】
(3)の発明は、(1)又は(2)に記載のサイクロン装置において、前記2次空気導入部の位置は、前記粉体導入部の上部の位置から、その粉体導入部の高さの3倍までの範囲であること、を特徴とするサイクロン装置である。
【0017】
【発明の実施の形態】
本発明者等は、5 μm以下の粒子の捕集効率を上げるために、鋭意研究を行った結果、サイクロン胴体部に2次空気を接線的に導入し、内壁付近の旋回速度を局所的に加速させることによって、サイクロン胴体部内の遠心力の減衰を防止でき、細かい粒子においても、遠心力が十分に与えられ、捕集効率が向上することを見出した。
【0018】
以下、図面等を参照して、本発明の実施の形態について、さらに詳しく説明する。
図1,図2は、本発明によるサイクロン装置の実施形態を示す図であって、図1は、平面図及び側面図、図2は、斜視図である。
なお、図9に示した従来例と同様な機能を果たす部分には、同一の符号又は末尾に統一した符号を付して、重複する説明や図面を適宜省略する。
本実施形態のサイクロン50は、ほぼ直立円筒形のサイクロン胴体部51と、分散粉体を含んだ空気流を、サイクロン胴体部51の内壁面に沿って水平方向に吹き込むために、そのサイクロン胴体部51の一部を外周接線方向に延ばして設けられた粉体導入管52と、サイクロン胴体部51内の空気を上方向に排気するために設けられ、そのサイクロン胴体部の上部を覆う天板51cの中心部を貫通する排気管53と、粉体導入管52から45〜180°の位置で、サイクロン胴体部51の接線方向に2次空気を導入する2次空気導入管54などとを備えている。
【0019】
サイクロンは、旋回速度を上げることによって、捕集効率が向上する。しかし、単に入口空気量を増やし、粒子の投入速度を上げようとしても、サイクロン内部の流れが乱れてしまい、かえって性能が低下してしまう。
【0020】
図3〜図5は、ナビエストークス方程式を数値解析法で解いて、サイクロン内部の粒子の軌跡を求めた図である。
投入された粒子は、図3に示すように、粉体導入管(サイクロン入口)52から約180°回転した位置に濃縮され、旋回してサイクロン胴体部51を下降する。
本実施形態では、この濃縮された粒子に、更に、2次空気導入管54からの空気を吹付けて、旋回速度を増速することによって、捕集効率を向上させるようにしたものである。
図4は、2次空気導入管54を、粉体導入管52から45°の位置に設けた場合を示した図である。
図5は、2次空気導入管54を、粉体導入管52から180°の位置に設けた場合を示した図である。
【0021】
図4は、2次空気導入管54(幅w=5mm、高さh=5mm)を、粉体導入管52からθ=45°、天井からの距離z=0mmに設けた場合の、z=2.5mmの水平平面における速度ベクトルの計算結果を示している。このとき、2次空気導入管54から導入した空気により、サイクロン内の流れの乱れを引き起こすことなく、内壁付近の流れのみを局所的に増速している。その増速された流れは、すぐには減速せず、図3に示した粉体が濃縮される場所近傍の旋回速度も増速される。
【0022】
同様に、図5は、2次空気導入管54を、粉体導入管52からθ=180°、天井からの距離z=0mmに設けた場合の、z=2.5mmの水平平面における速度ベクトル図である。この場合も、流れを乱すことなく、粉体が濃縮する位置近傍の流れを増速している。
【0023】
2次空気導入管54の位置θは、粉体導入管52から45°〜180°の範囲が好ましい。2次空気導入管54の幅wは、粉体導入管52の幅W0 の2/3以下が好ましい。2次空気導入管54の高さhは、図1に示すように、粉体導入管52の高さh0 の1〜1/10が好ましい。2次空気導入管54の位置zは、粉体導入管52の上部の位置から、粉体導入管52の高さh0 の3倍までの範囲が好ましい。2次空気導入管54における2次空気の導入速度は、粉体導入管52における入口速度の1〜5倍が好ましい。
【0024】
以下、2次空気導入管54の位置θ、幅w、高さh、位置z、2次空気の導入速度などが、上述した値で好適な理由について、さらに詳しく説明する。
(1)2次空気導入管の位置θ
2次空気導入管54の設置位置θは、2次空気により、導入された粉体が濃縮する位置近傍の内壁面付近の流れを加速する位置より選ばれる。図4で示した通り、θ=45°に設置した場合でも、θ=180°付近まで影響がおよびその近傍の流れが加速できる。
しかし、θ>180°の場合では、2次空気と粉体導入管からの空気が干渉し、流れの乱れを誘引して性能低下をもたらす。
【0025】
(2)2次空気導入管の幅w
サイクロン内部の旋回流は、図4で示すように、供給した粉体が内壁面付近へ濃縮する位置θ=90〜180°においては、壁面から中心へ、粉体導入管52の幅の約2/3の範囲で、速度が大きくなっている。
本発明においては、この旋回速度を増速させることにより、従来捕集できていなかった微粒子まで効率よく捕集できる。従って、サイクロン旋回流の旋回速度を、流れを乱さずに増速させるために、2次空気導入管54の幅wは、粉体導入管52の幅の2/3以下が好ましい。
2次空気導入管54の幅wの下限は、特に制限はないが、2次空気導入時の圧力損失(導入空気の抵抗)と粉体が濃縮される範囲を考慮して、粉体導入管52の幅の1/10以上から選ばれる。
【0026】
(3)2次空気導入管の高さh
サイクロンの内壁面付近では、高さが異なると、旋回速度の大きさも異なっている。サイクロンの気流の大きな乱れを防ぐため、2次空気導入管54の高さhは、粉体導入管52の高さh0 の1〜1/10倍の範囲から選ばれる。
【0027】
(4)2次空気導入管の位置z
投入した粒子のうち、比較的大きな粒子径のものは、遠心力の効果で内壁面近傍を旋回しながら下降する。一方、比較的小さな粒子は、遠心力が小さいために、内壁面から離れやすい。そこで、2次空気は、投入粒子が内壁面に濃縮した後に、直ちに吹込むことが好ましく、2次空気導入管54の位置zは、粉体導入管52の上部の位置から、粉体導入管52の高さh0 の3倍までの範囲が好ましい。
【0028】
(5)導入空気の流速
導入する2次空気により、内壁面近傍の粒子及び気流を加速するためには、粉体導入管52の入口風速以上の速度で、2次空気を導入する必要がある。2次空気の速度の上限は、特にないが、気流の乱れを起こさないことが性能を発揮する上で重要である。
局所的に気流及び粒子を加速するために、2次空気として50〜300kPaの圧縮空気が好ましい。
【0029】
(変形形態)
以上説明した実施形態に限定されることなく、種々の変形や変更が可能であって、それらも本発明の均等の範囲内である。
(1)2次空気導入管54A,54Bは、気流を乱すことなく内壁面付近の流れを加速できれは、図6のように、接線方向からやや中心に傾けたり、寄せたりして設置することもできる。
(2)また、図7のように、2次空気導入管54Cの内部に、開口部の断面積を自在に変更可能な隔壁54C−1を設けることもできる。
(3)サイクロンの粉体導入管の接続形式として、接線方式以外にも、図8のようなスクロール型の粉体導入管52Aを備えたサイクロンにおいても、本発明は適用可能である。
【0030】
【実施例】
次に、具体的な実施例をあげて、さらに詳しく説明する。
図9のような構成のシステムを用いて集塵試験を行った。
粉体フィーダー1で供給した原料粉体は、分散器2(日清エンジニアリング(株)製ディスパージョンノズル)で分散させ、ブロワー10で吸引している空気とともに、本実施形態のサイクロン50に導入する。粉体は、粗粉貯留槽8で回収され、投入量に対する粗粉貯留槽での回収量で捕集効率を算出した。サイクロン50で回収されなかった粉体は、フィルターで回収される。
【0031】
使用したサイクロン本体の寸法は、下記の通りである(図1、図2参照)。
サイクロン直胴部51aの直径:φ76mm
サイクロン直胴部51aの長さ:150.5mm
サイクロン円錐台形部51bの下端の直径:φ56mm
サイクロン円錐台形部51bの長さ:71.5mm
粉体導入管52の高さh0 :35mm
粉体導入管52の幅W0 :17mm
粗粉貯留槽8の直径:φ101mm
粗粉貯留槽8の高さ:215mm
【0032】
試験粉体としては、50%粒子径2.5μmのフライアッシュ(密度2300kg/m3 )を、0.2g/sの供給速度で投入した。サイクロンの入口流速が15m/sになるように、ブロワー10の風量を調節して試験を行った。
【0033】
(実施例1)
2次空気導入管54の幅w=5mm、高さh=5mm、位置θ=180°、z=0mm、風量q=0.08m3 /minで実験を行った。
そのときの捕集効率は、96.2%であった。
【0034】
(実施例2)
2次空気導入管54の幅w=5mm、高さh=10mm、位置θ=180°、z=0mm、風量q=0.08m3 /minで実験を行った。
そのときの捕集効率は、94.3%であった。
【0035】
(実施例3)
2次空気導入管54の幅w=5mm、高さh=5mm、位置θ=45°、z=0mm、風量q=0.08m3 /minで実験を行った。
そのときの捕集効率は、94.5%であった。
【0036】
(実施例4)
2次空気導入管54の幅w=5mm、高さh=5mm、位置θ=180°、z=100mm、風量q=0.08m3 /minで実験を行った。
そのときの捕集効率は、94.0%であった。
【0037】
(比較例1)
実施例1のサイクロンから、2次空気導入管54を取り除いた以外は、同一の装置、条件で試験を行った。
そのときの捕集効率は、93.2%であった。
【0038】
これらの実施例1〜3と、比較例から、角度θが45〜180°、設置位置z=0〜100mmで3h=35×3=105mmの範囲内が好ましいことが分かった。
以上のように、上記各実施例によれば、サイクロン胴体部51に2次空気導入管54を設けるだけで、5μm以下の粒子においても、効率よく捕集することができる。
【0039】
【発明の効果】
以上詳しく説明したように、本発明によれば、サイクロン胴体部に2次空気を接線的に導入し、内壁付近の旋回速度を局所的に加速させることによって、サイクロン胴体部内の遠心力の減衰を防止でき、細かい粒子においても、遠心力が十分与えられ捕集効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明によるサイクロン装置の実施形態を示す平面図及び側面図である。
【図2】本発明によるサイクロン装置の実施形態を示す斜視図である。
【図3】ナビエストークス方程式を数値解析法で解いて、サイクロン内部の粒子の軌跡を求めた図である。
【図4】ナビエストークス方程式を数値解析法で解いて、2次空気導入管が、粉体導入管から45度に位置する場合の、サイクロン内部の粒子の軌跡を求めた図である。
【図5】ナビエストークス方程式を数値解析法で解いて、2次空気導入管が、粉体導入管から180度に位置する場合の、サイクロン内部の粒子の軌跡を求めた図である。
【図6】本発明によるサイクロン装置の変形形態(2次空気導入管の取り付け角度、位置)を示す図である。
【図7】本発明によるサイクロン装置の変形形態(開口部の断面積を自在に変更可能な隔壁)を示す図である。
【図8】本発明によるサイクロン装置の変形形態(スクロール型の粉体導入管)を示す図である。
【図9】集塵性能を評価するための従来のサイクロンシステムの一例の構成概要を示す説明図である。
【符号の説明】
50 サイクロン
51 サイクロン胴体部
52 粉体導入管
53 排気管
54 2次空気導入管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cyclone apparatus for collecting dust and classifying fine powder.
[0002]
[Prior art]
Conventionally, this type of cyclone device is widely used because it has a simple structure and can be installed at low cost. However, when a cyclone is used as an IGCC method in thermal power generation or a dust collector for an incinerator, one having higher dust collection performance is desired.
[0003]
FIG. 9 is an explanatory diagram showing a configuration outline of an example of a conventional cyclone system for evaluating dust collection performance.
As shown in FIG. 9, the powder to be collected is continuously supplied from the feeder 1 to the lower powder disperser 2 by the feeder screw 1a.
The powder disperser 2 is for dispersing the agglomerated powder in a primary particle state. The powder that has passed through the powder disperser 2 passes through the powder transport pipe 3 and is sucked into the powder introduction part 6 of the cyclone body part 5 together with the air from the air intake 4.
[0004]
The cyclone body portion 5 has an upright cylindrical shape, and includes an upper straight body portion 5 a and a lower funnel-shaped cyclone frustoconical portion 5 b, and the lower end is open to the coarse powder storage tank 8. An exhaust pipe 7 for taking out fine powders hangs down from the ceiling of the cyclone body 5 to a position at a certain height inside the body, and a negative pressure is applied from the blower 10. In addition, 7b is a filter provided in the fine powder conveyance tube 7a for collecting fine powder.
[0005]
In the conventional cyclone device, in the vicinity of the upper wall of the straight body portion 5a, the velocity component in the swirl direction of the flow is small due to the influence of the inner wall surface, and centrifugal force is not applied to the particles, but the particles flow toward the center of the cyclone and are collected. There was a problem that it was difficult to be done.
[0006]
In order to solve this problem, in Conventional Example 1, the powder is concentrated in the lower part of the inlet by the inlet pipe having a curvature on the lower side, giving a large swirling speed and improving the yield ( For example, Patent Document 1).
[0007]
In Conventional Example 2, if a curved pipe with a curvature in the turning direction and a horizontal straight pipe for rectification are used, the powder can be concentrated far from the turning center without disturbing the flow, and a large centrifugal force can be obtained with a sufficient number of turns. It is said that high collection efficiency is obtained (for example, Patent Document 2).
[0008]
In Conventional Example 3, secondary air is introduced from the inside of the main body side of the powder supply pipe, and dust-containing air is biased and introduced from the inner wall surface on the outer side of the outer cylinder, so that the flow is not disturbed. It is said that the powder can be concentrated in a place far from the center, and high collection efficiency can be obtained (for example, Patent Document 3).
[0009]
[Patent Document 1]
JP-A-6-320055 [Patent Document 2]
Japanese Patent Laid-Open No. 10-34022 [Patent Document 3]
Japanese Patent Laid-Open No. 2000-237636
[Problems to be solved by the invention]
However, in the above-described conventional example 1, a secondary flow is generated by suddenly bending the inlet pipe, resulting in increased turbulence in the vicinity of the cyclone inlet, and the cyclone height cannot be effectively utilized. The number of times decreases, and in particular, there is a problem that the collection efficiency of fine particles that are difficult to be subjected to centrifugal force cannot be improved.
[0011]
In Conventional Example 2, the powder gathers in the vicinity of the inner wall of the straight barrel part, but fine particles that are not easily affected by gravity are thrown in from the vicinity of the upper wall of the straight barrel part, and no centrifugal force is applied to the center. There was a problem that it was swept away and not collected.
Also, when turbulence due to the secondary flow generated in the curved pipe is adjusted by the rectifying horizontal pipe, fine particles that are easy to ride on the flow are separated from the inner wall surface and are introduced and collected at places where centrifugal force is difficult to be applied. There was a problem that it was difficult.
[0012]
In Conventional Example 3, the introduced secondary air spreads quickly due to diffusion, and in order to prevent this, there is a problem that the flow is disturbed when the secondary air flow velocity is increased.
[0013]
An object of the present invention is to provide a cyclone device having high collection efficiency even for fine particles (for example, 5 μm or less).
[0014]
In order to solve the above-mentioned problems, the invention of (1) is directed to injecting an air flow including a substantially upright cylindrical cyclone body and a dispersed powder horizontally along the inner wall surface of the cyclone body. A cyclone body part extending in the direction of the outer peripheral tangent, and a powder introduction part provided for exhausting the air in the cyclone body part upward and covering the top of the cyclone body part A cyclone comprising: an exhaust part that penetrates the center of the part; and a secondary air introduction part that introduces secondary air in a tangential direction of the cyclone body part at a position of 45 to 180 ° from the powder introduction part Device.
[0015]
The invention of (2) is the cyclone device according to (1) , wherein the width of the secondary air introduction part is 2/3 or less of the width of the powder introduction part. is there.
[0016]
The invention of (3) is the cyclone device according to (1) or (2) , wherein the position of the secondary air introduction section is higher than the position of the powder introduction section from the position above the powder introduction section. It is a cyclone device characterized by being in a range up to three times that.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
As a result of intensive research to increase the collection efficiency of particles of 5 μm or less, the present inventors introduced secondary air tangentially into the cyclone body, and locally turned the swirl velocity near the inner wall. It was found that by accelerating, the centrifugal force in the cyclone body portion can be prevented from being attenuated, and even in fine particles, the centrifugal force is sufficiently applied and the collection efficiency is improved.
[0018]
Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.
1 and 2 are views showing an embodiment of a cyclone device according to the present invention. FIG. 1 is a plan view and a side view, and FIG. 2 is a perspective view.
Note that portions having the same functions as those of the conventional example shown in FIG. 9 are denoted by the same reference numerals or unified reference numerals at the end thereof, and repeated description and drawings are appropriately omitted.
The cyclone 50 according to the present embodiment has a substantially upright cylindrical cyclone body portion 51 and an air flow containing dispersed powder in the horizontal direction along the inner wall surface of the cyclone body portion 51. 51, a powder introduction pipe 52 provided by extending a part of the outer peripheral tangential direction, and a top plate 51c provided for exhausting the air in the cyclone body 51 upward and covering the upper part of the cyclone body An exhaust pipe 53 penetrating through the central portion thereof, a secondary air introduction pipe 54 for introducing secondary air in a tangential direction of the cyclone body 51 at a position 45 to 180 ° from the powder introduction pipe 52, and the like. Yes.
[0019]
The cyclone improves the collection efficiency by increasing the turning speed. However, simply trying to increase the inlet air amount and increase the particle injection speed disturbs the flow inside the cyclone, resulting in poor performance.
[0020]
3 to 5 are diagrams in which the Navier-Stokes equations are solved by a numerical analysis method to determine the trajectory of particles inside the cyclone.
As shown in FIG. 3, the charged particles are concentrated to a position rotated by about 180 ° from the powder introduction pipe (cyclone inlet) 52, and turn to descend the cyclone body 51.
In the present embodiment, the collection efficiency is improved by further blowing air from the secondary air introduction pipe 54 to the concentrated particles to increase the turning speed.
FIG. 4 is a view showing a case where the secondary air introduction tube 54 is provided at a position of 45 ° from the powder introduction tube 52.
FIG. 5 is a view showing a case where the secondary air introduction tube 54 is provided at a position 180 ° from the powder introduction tube 52.
[0021]
FIG. 4 shows a case where a secondary air introduction tube 54 (width w = 5 mm, height h = 5 mm) is provided at θ = 45 ° from the powder introduction tube 52 and at a distance z = 0 mm from the ceiling. The calculation result of the velocity vector in the horizontal plane of 2.5 mm is shown. At this time, only the flow in the vicinity of the inner wall is locally accelerated by the air introduced from the secondary air introduction pipe 54 without causing disturbance of the flow in the cyclone. The increased flow does not decelerate immediately, and the swirl speed near the location where the powder shown in FIG. 3 is concentrated is also increased.
[0022]
Similarly, FIG. 5 shows a velocity vector in a horizontal plane of z = 2.5 mm when the secondary air introduction tube 54 is provided at θ = 180 ° from the powder introduction tube 52 and at a distance z = 0 mm from the ceiling. FIG. Also in this case, the flow near the position where the powder is concentrated is increased without disturbing the flow.
[0023]
The position θ of the secondary air introduction tube 54 is preferably in the range of 45 ° to 180 ° from the powder introduction tube 52. The width w of the secondary air introduction tube 54 is preferably 2/3 or less of the width W 0 of the powder introduction tube 52. As shown in FIG. 1, the height h of the secondary air introduction tube 54 is preferably 1 to 1/10 of the height h 0 of the powder introduction tube 52. The position z of the secondary air introduction tube 54 is preferably in a range from the position above the powder introduction tube 52 to three times the height h 0 of the powder introduction tube 52. The secondary air introduction speed in the secondary air introduction pipe 54 is preferably 1 to 5 times the inlet speed in the powder introduction pipe 52.
[0024]
Hereinafter, the reason why the position θ, the width w, the height h, the position z, the introduction speed of the secondary air, and the like of the secondary air introduction pipe 54 are preferable with the above-described values will be described in more detail.
(1) Position θ of the secondary air introduction pipe
The installation position θ of the secondary air introduction pipe 54 is selected from positions where the secondary air accelerates the flow near the inner wall surface near the position where the introduced powder is concentrated. As shown in FIG. 4, even when it is installed at θ = 45 °, the influence can be increased to the vicinity of θ = 180 ° and the flow in the vicinity thereof can be accelerated.
However, in the case of θ> 180 °, the secondary air and the air from the powder introduction tube interfere with each other, which induces flow disturbance and causes performance degradation.
[0025]
(2) Width w of secondary air introduction pipe
As shown in FIG. 4, the swirling flow inside the cyclone is about 2 times the width of the powder introduction tube 52 from the wall surface to the center at the position θ = 90 to 180 ° where the supplied powder is concentrated near the inner wall surface. In the range of / 3, the speed is increased.
In the present invention, by increasing the turning speed, it is possible to efficiently collect fine particles that could not be collected conventionally. Therefore, the width w of the secondary air introduction tube 54 is preferably 2/3 or less of the width of the powder introduction tube 52 in order to increase the swirl speed of the cyclone swirl flow without disturbing the flow.
The lower limit of the width w of the secondary air introduction pipe 54 is not particularly limited, but in consideration of the pressure loss (introduction air resistance) at the time of secondary air introduction and the range in which the powder is concentrated, It is selected from 1/10 or more of the width of 52.
[0026]
(3) Secondary air introduction pipe height h
In the vicinity of the inner wall surface of the cyclone, when the height is different, the magnitude of the turning speed is also different. The height h of the secondary air introduction pipe 54 is selected from a range of 1 to 1/10 times the height h 0 of the powder introduction pipe 52 in order to prevent a large turbulence in the cyclone airflow.
[0027]
(4) Position z of the secondary air introduction pipe
Among the charged particles, particles having a relatively large particle diameter descend while turning around the inner wall surface due to the effect of centrifugal force. On the other hand, relatively small particles are easily separated from the inner wall surface due to a small centrifugal force. Therefore, it is preferable that the secondary air be blown immediately after the charged particles are concentrated on the inner wall surface. The position z of the secondary air introduction pipe 54 is from the position above the powder introduction pipe 52 to the powder introduction pipe. A range up to 3 times the height h 0 of 52 is preferred.
[0028]
(5) Flow velocity of the introduced air In order to accelerate the particles and the air current in the vicinity of the inner wall surface by the introduced secondary air, it is necessary to introduce the secondary air at a speed higher than the inlet wind speed of the powder introduction pipe 52. . There is no particular upper limit on the speed of the secondary air, but it is important for exhibiting performance not to disturb the airflow.
In order to accelerate the airflow and particles locally, compressed air of 50 to 300 kPa is preferable as the secondary air.
[0029]
(Deformation)
The present invention is not limited to the embodiment described above, and various modifications and changes are possible, and these are also within the equivalent scope of the present invention.
(1) The secondary air introduction pipes 54A and 54B are installed so as to be inclined or slightly moved from the tangential direction to the center as shown in FIG. 6 so that the flow near the inner wall surface can be accelerated without disturbing the air flow. You can also.
(2) Further, as shown in FIG. 7, a partition wall 54 </ b> C- 1 that can freely change the cross-sectional area of the opening can be provided inside the secondary air introduction pipe 54 </ b> C.
(3) The present invention is applicable to a cyclone equipped with a scroll-type powder introduction tube 52A as shown in FIG.
[0030]
【Example】
Next, a more detailed description will be given with specific examples.
A dust collection test was performed using a system configured as shown in FIG.
The raw material powder supplied by the powder feeder 1 is dispersed by a disperser 2 (a dispersion nozzle manufactured by Nissin Engineering Co., Ltd.) and introduced into the cyclone 50 of the present embodiment together with the air sucked by the blower 10. . The powder was collected in the coarse powder storage tank 8, and the collection efficiency was calculated by the amount collected in the coarse powder storage tank relative to the input amount. The powder that has not been collected by the cyclone 50 is collected by a filter.
[0031]
The dimensions of the cyclone body used are as follows (see FIGS. 1 and 2).
Diameter of the cyclone straight body 51a: φ76mm
Cyclone straight body 51a length: 150.5mm
Diameter of lower end of cyclone frustoconical part 51b: φ56mm
Cyclone truncated cone 51b length: 71.5 mm
Height h 0 of powder introduction tube 52: 35 mm
Width W 0 of powder introduction tube 52: 17 mm
Diameter of coarse powder storage tank 8: φ101 mm
Coarse powder storage tank 8 height: 215 mm
[0032]
As the test powder, fly ash (density 2300 kg / m 3 ) with a 50% particle size of 2.5 μm was charged at a feed rate of 0.2 g / s. The test was performed by adjusting the air volume of the blower 10 so that the inlet flow velocity of the cyclone was 15 m / s.
[0033]
Example 1
The experiment was performed with the width w = 5 mm, the height h = 5 mm, the position θ = 180 °, the z = 0 mm, and the air volume q = 0.08 m 3 / min of the secondary air introduction tube 54.
The collection efficiency at that time was 96.2%.
[0034]
(Example 2)
The experiment was performed with the width w = 5 mm, the height h = 10 mm, the position θ = 180 °, the z = 0 mm, and the air volume q = 0.08 m 3 / min of the secondary air introduction tube 54.
The collection efficiency at that time was 94.3%.
[0035]
(Example 3)
The experiment was performed with the width w = 5 mm, the height h = 5 mm, the position θ = 45 °, the z = 0 mm, and the air volume q = 0.08 m 3 / min of the secondary air introduction tube 54.
The collection efficiency at that time was 94.5%.
[0036]
Example 4
The experiment was performed with the width w = 5 mm, the height h = 5 mm, the position θ = 180 °, the z = 100 mm, and the air volume q = 0.08 m 3 / min of the secondary air introduction tube 54.
The collection efficiency at that time was 94.0%.
[0037]
(Comparative Example 1)
The test was performed with the same apparatus and conditions except that the secondary air introduction pipe 54 was removed from the cyclone of Example 1.
The collection efficiency at that time was 93.2%.
[0038]
From these Examples 1 to 3 and the comparative example, it was found that the angle θ is 45 to 180 °, the installation position z = 0 to 100 mm, and the range of 3h = 35 × 3 = 105 mm is preferable.
As described above, according to each of the above embodiments, even when the secondary air introduction pipe 54 is provided in the cyclone body 51, even particles of 5 μm or less can be efficiently collected.
[0039]
【The invention's effect】
As described above in detail, according to the present invention, the secondary air is tangentially introduced into the cyclone body, and the swirling speed near the inner wall is locally accelerated, thereby reducing the centrifugal force in the cyclone body. Even in the case of fine particles, centrifugal force is sufficiently applied to improve the collection efficiency.
[Brief description of the drawings]
FIG. 1 is a plan view and a side view showing an embodiment of a cyclone device according to the present invention.
FIG. 2 is a perspective view showing an embodiment of a cyclone device according to the present invention.
FIG. 3 is a diagram in which the locus of particles inside a cyclone is obtained by solving the Navier-Stokes equation by a numerical analysis method.
FIG. 4 is a diagram in which the trajectory of particles inside a cyclone is obtained when the Navier-Stokes equation is solved by a numerical analysis method and the secondary air introduction tube is positioned at 45 degrees from the powder introduction tube.
FIG. 5 is a diagram in which the trajectory of particles inside a cyclone is obtained when the Navier-Stokes equation is solved by a numerical analysis method and the secondary air introduction tube is positioned 180 degrees from the powder introduction tube.
FIG. 6 is a view showing a modified form (attachment angle and position of the secondary air introduction pipe) of the cyclone device according to the present invention.
FIG. 7 is a view showing a modification of the cyclone device according to the present invention (a partition wall in which the cross-sectional area of the opening can be freely changed).
FIG. 8 is a view showing a modified form (scroll type powder introduction tube) of the cyclone device according to the present invention.
FIG. 9 is an explanatory diagram showing a configuration outline of an example of a conventional cyclone system for evaluating dust collection performance.
[Explanation of symbols]
50 Cyclone 51 Cyclone body 52 Powder introduction pipe 53 Exhaust pipe 54 Secondary air introduction pipe

Claims (2)

分散粉体を含んだ空気流から粒子径が5μm以下の分散粉体を連続して捕集可能なサイクロン装置であって、
上部に設けたサイクロン直胴部と下部に設けたサイクロン円錐台形部とで構成されたほぼ直立円筒形のサイクロン胴体部と、
前記分散粉体を含んだ空気流を前記サイクロン胴体部の内壁面に沿って水平方向に吹き込んで当該空気流を当該サイクロン胴体部の内部で旋回させるために、そのサイクロン胴体部の一部を外周接線方向に延ばして設けられた粉体導入部と、
前記サイクロン胴体部の内部から遠心力のかかりにくい前記5μm以下の分散粉体を含む空気を上方向に排気して当該5μm以下の分散粉体を回収するために設けられ、そのサイクロン胴体部の上部を覆う天部の中心部を貫通する排気部と、
前記サイクロン胴体部の内部に投入された前記分散粉体が前記粉体導入部から約180°回転した位置に至るまでに濃縮され、前記サイクロン胴体部の内部で旋回しながら下降する濃縮された前記分散粉体を含む前記空気流の旋回速度を増速して前記分散粉体に遠心力を付与するために、前記粉体導入部から45〜180°の位置で、前記サイクロン胴体部の接線方向に2次空気を導入する2次空気導入部と、を備え、
前記2次空気導入部の位置は、前記粉体導入部の上部の位置から、その粉体導入部の高さの3倍までの範囲で前記サイクロン直胴部に設けられることを特徴とするサイクロン装置。
A cyclone device capable of continuously collecting dispersed powder having a particle size of 5 μm or less from an air flow containing dispersed powder,
A substantially upright cylindrical cyclone body composed of a cyclone straight body provided in the upper part and a cyclone frustoconical part provided in the lower part;
A part of the cyclone fuselage portion is arranged on the outer periphery in order to blow the airflow containing the dispersed powder in the horizontal direction along the inner wall surface of the cyclone fuselage portion and swirl the airflow inside the cyclone fuselage portion. A powder introduction portion provided extending in a tangential direction;
It is provided for exhausting upward the air containing the dispersed powder of 5 μm or less from which the centrifugal force is difficult to be applied from the inside of the cyclone body part and collecting the dispersed powder of 5 μm or less, and the upper part of the cyclone body part An exhaust that penetrates the center of the top that covers
The dispersed powder charged into the cyclone body is concentrated to reach a position rotated by about 180 ° from the powder introduction part, and the concentrated powder that descends while turning inside the cyclone body. In order to increase the swirl speed of the air flow containing the dispersed powder and to apply centrifugal force to the dispersed powder, the tangential direction of the cyclone body portion at a position of 45 to 180 ° from the powder introduction portion A secondary air introduction part for introducing secondary air into
The position of the secondary air introduction part is provided in the cyclone straight body part in a range from the position of the upper part of the powder introduction part to three times the height of the powder introduction part. apparatus.
請求項1に記載のサイクロン装置において、
前記2次空気導入部の幅は、前記粉体導入部の幅の2/3以下であることを特徴とするサイクロン装置。
The cyclone device according to claim 1,
The width of the secondary air introduction part is 2/3 or less of the width of the powder introduction part.
JP2003076803A 2003-03-20 2003-03-20 Cyclone equipment Expired - Lifetime JP4422972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076803A JP4422972B2 (en) 2003-03-20 2003-03-20 Cyclone equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076803A JP4422972B2 (en) 2003-03-20 2003-03-20 Cyclone equipment

Publications (2)

Publication Number Publication Date
JP2004283677A JP2004283677A (en) 2004-10-14
JP4422972B2 true JP4422972B2 (en) 2010-03-03

Family

ID=33291727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076803A Expired - Lifetime JP4422972B2 (en) 2003-03-20 2003-03-20 Cyclone equipment

Country Status (1)

Country Link
JP (1) JP4422972B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635180B2 (en) * 2004-10-06 2011-02-16 英人 吉田 Cyclone device for powder collection
JP5076809B2 (en) * 2007-10-29 2012-11-21 トヨタ自動車株式会社 Foreign matter removing device for internal combustion engine
EP2990123B1 (en) * 2013-04-23 2018-07-04 Shizuoka Plant Co., Ltd. Cyclone device
CN104525394A (en) * 2014-12-19 2015-04-22 李中 Cyclone-shaped mass transfer component and static supergravity mass transfer separation device
JP6666206B2 (en) * 2015-07-08 2020-03-13 日清エンジニアリング株式会社 Cyclone device and classification method
CN107502692A (en) * 2017-09-26 2017-12-22 中冶南方工程技术有限公司 The tangential multi-pipeline cyclone dust collectors of blast furnace gas one-time dedusting
EP3842152B1 (en) * 2019-12-23 2023-03-08 ALD Vacuum Technologies GmbH Off gas cleaning for mox sintering plants with integrated cyclone

Also Published As

Publication number Publication date
JP2004283677A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP4422972B2 (en) Cyclone equipment
JP4402239B2 (en) Cyclone dust collector
CN106362880A (en) Bipolar charging-cyclone separation apparatus and technology used for flue gas dedusting
CN107502692A (en) The tangential multi-pipeline cyclone dust collectors of blast furnace gas one-time dedusting
CN208466198U (en) A kind of introducing-type cyclone separator
CN108479198B (en) Dust remover and dust removing equipment
TWI788729B (en) Particles capturing system
JP4383615B2 (en) Cyclone classifier
CN209156108U (en) The broken line of band large-scale metal, which is matched, applies double dust collection system
CN2925619Y (en) Square separator with internal cone and double-tangential inlet rotary channel
CN203315950U (en) Efficient pretreatment device for smoke gas of industrial silicon &#39;75 ferrosilicon&#39; ore smelting furnace
CN214516005U (en) Active carbon divides sieve equipment
CN105251751B (en) Mine dust emission and collection device and method
CN214077294U (en) Gas-phase powder grading equipment
CN201384991Y (en) Cyclone separator and nano material collecting device provided with the cyclone separator
CN108619794B (en) Dust remover and dust removing equipment
CN207786839U (en) A kind of cyclone separator for sand-blasting machine
RU89507U1 (en) ASPIRATION DEVICE
JP4290922B2 (en) Cyclone equipment
CN207081013U (en) One kind unloads grey storehouse soot blower
CN206980349U (en) A kind of grey storehouse ash-discharging device
KR20110038322A (en) Dust collector
RU89988U1 (en) Dust collector
CN203108918U (en) Dust removal blowing and sucking cover
CN220573753U (en) Vortex cyclone separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4422972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term