JP4422421B2 - Ultrasonic imaging device - Google Patents

Ultrasonic imaging device Download PDF

Info

Publication number
JP4422421B2
JP4422421B2 JP2003071784A JP2003071784A JP4422421B2 JP 4422421 B2 JP4422421 B2 JP 4422421B2 JP 2003071784 A JP2003071784 A JP 2003071784A JP 2003071784 A JP2003071784 A JP 2003071784A JP 4422421 B2 JP4422421 B2 JP 4422421B2
Authority
JP
Japan
Prior art keywords
transmission
signal
reception
imaging apparatus
contrast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003071784A
Other languages
Japanese (ja)
Other versions
JP2004275491A (en
JP2004275491A5 (en
Inventor
晋一郎 梅村
浩 神田
隆 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2003071784A priority Critical patent/JP4422421B2/en
Priority to CN200380109556.4A priority patent/CN1744858B/en
Priority to EP03768130.1A priority patent/EP1607044B1/en
Priority to PCT/JP2003/015559 priority patent/WO2004082483A1/en
Priority to US10/546,658 priority patent/US7604600B2/en
Publication of JP2004275491A publication Critical patent/JP2004275491A/en
Publication of JP2004275491A5 publication Critical patent/JP2004275491A5/ja
Application granted granted Critical
Publication of JP4422421B2 publication Critical patent/JP4422421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/481Diagnostic techniques involving the use of contrast agent, e.g. microbubbles introduced into the bloodstream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8959Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes
    • G01S15/8963Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using coded signals for correlation purposes using pulse inversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target
    • G01S7/52039Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target exploiting the non-linear response of a contrast enhancer, e.g. a contrast agent

Description

【0001】
【発明の属する技術分野】
本発明は、超音波を生体に対して送受信することにより、その内部を撮像する超音波技術に係り、特に、マイクロバブル系造影剤を利用して撮像する超音波撮像技術に関する。
【0002】
【従来の技術】
生体に対してパルス状超音波を送受信し、その内部を撮像する超音波撮像装置は、医療診断に広く用いられている。
【0003】
画像診断モダリティのなかでもX線やMRIの分野では、血管系の撮像などに造影剤が以前から用いられてきた。その目的は、造影剤を血中に投与することによって、血管系の構造や分布のコントラストを高めた像を得て、悪性腫瘍や梗塞のような血管系に反映される疾患を高い確度で診断することにある。
【0004】
これに対し、超音波診断では、これまで造影剤が広く用いられることはなかったが、ここ数年、ミクロン・オーダーのサイズをもつ微小気泡(マイクロバブル)を何らかの方法で安定化した製剤による造影剤が出現したことにより、広く用いられはじめている。この原理は、径1ミクロン程度の微小気泡が、超音波診断に用いられる数MHzの超音波に共振して大振幅で振動し、その結果として、この周波数域の超音波をよく散乱し、造影能が生ずることを利用するものである。
【0005】
マイクロバブル系超音波造影剤の特徴は、その強い非線形性にある。これは、マイクロバブルには、負圧を受けたときの体積増加が、同振幅の正圧を受けたときの体積減少よりはるかに大きくなる性質があることによる。このため、マイクロバブルにより散乱されたエコー信号には、送信信号の2倍の周波数をもつ第2高調波成分が多く含まれる。V. L. Newhouseらは、この第2高調波成分をもとに軟部組織に対して強調された血流ドップラ信号を得る方式を、1992年に初めて報告した(例えば、非特許文献1参照)。
【0006】
また、P. N. Burnsらは、正負を反転させた送信音圧パルス波形を用いて2回の送受信を行い、得られた2つのエコー信号を加算するPulse Inversion(パルス反転)法を提案している(例えば、特許文献1)。この加算により、動きの無視できる軟部組織からのエコー信号の基本波成分は180°位相回転された信号が加算されるため打ち消されてしまうが、第2高調波成分は、360°位相回転されたものが加算されるため、加算により2倍に成長する。必要な送信回数が2倍に増えるものの、原理的に帯域通過フィルタなしに軟部組織からの基本波成分を除くことができるので、距離分解能に優れた第2高調波エコー信号を得ることができる。また、血流中のマイクロバブル系造影剤のように、2回の送受信の間に生ずる変化が無視できない散乱体については、それからの基本波エコー信号も完全には打ち消されないが、これは、軟部組織に対して造影剤を強調したエコー像を得る今の目的に、むしろ合致している。
【0007】
また、P. J. Phillipsは、送信音圧パルス波形の正負を反転させると同時に振幅を変化させて3回の送受信を行う方法を提案している(例えば、非特許文献2参照)。これは、送信振幅を 0.5:−1:0.5と変調して、3回の送受信を行って得られたエコー信号を加算するものである。すなわち、第1回目・3回目の送信には同じパルス波形を用いるのに対し、第2回目にはそれらを位相反転し、振幅を2倍にしたパルス波形を用いる。変化の遅い線形散乱体からのエコー信号成分が打ち消され、非線形散乱や非線形伝播により生じたエコー信号の偶数倍高調波成分が強調されるのは、通常のPulse Inversion法と同様である。これに加え、非線形散乱や非線形伝播により生じたエコー信号成分のうち、基本波も含むすべての成分が、振幅変調により抽出されるのが特徴であり、この分だけ、通常のPulse Inversion法よりも非線形散乱や非線形伝播によるエコー信号に対する高い感度が期待される。これは、入射音圧振幅に対するマイクロバブルによる非線形散乱の依存性が、非線形伝播の依存性よりも遥かに大きいことを利用したものである。この高感度化により、非線形伝播の効果が比較的小さい送信音圧においても、非線形散乱の効果を検出できるので、通常のPulse Inversion法と比較すれば、造影剤の軟部組織に対する峻別が容易であるとしている。
【0008】
【非特許文献1】
1992 IEEE Ultrasonics Symposium Proceedings, pp.1175-1177
【特許文献1】
米国特許第6,095,980号
【非特許文献2】
2001 IEEE Ultrasonics Symposium Proceedings, pp.1739-1745
【0009】
【発明が解決しようとする課題】
上述したように、従来技術(非特許文献1)では、この第2高調波成分をもとに軟部組織に対して強調された血流ドップラ信号を得る方式を提案したが、この第2高調波成分をエコー信号から抽出するのに、帯域通過フィルタのみを用いたのでは、出力信号として得られる第2高調波エコー信号のパルスが長くなってしまうという問題を残した。
【0010】
これは、エコー信号に含まれる基本波成分の振幅が第2高調波成分よりも少なくとも1桁以上大きいので、鋭い帯域遮断特性または狭い帯域通過特性をもつフィルタを用いねばならないためである。この問題は、血流を2次元画像表示しようとするとき、その距離方向の分解能を劣化させてしまうので、特に重大であった。
【0011】
従来技術(特許文献1)では、この問題を解決することを目的に、正負を反転させた送信音圧パルス波形を用いて2回の送受信を行い、得られた2つのエコー信号を加算する Pulse Inversion法を提案した。
【0012】
生体軟部組織など多くの物質中の音速は、高い圧力の下では、低い圧力の下よりも大きい。この非線形性に起因し、超音波パルスが軟部組織中を伝播するとき、音圧の高い部分が低い部分よりも早く伝播し、結果として、もともと正弦波状であった音圧波形が、伝播するうちに、急に立ち上がりなだらかに下るN波状に変化すること、すなわち、第2高調波などの高調波成分を持つようになることが知られている。
【0013】
これが、軟部組織中で散乱されると、マイクロバブル系造影剤が存在しなくても、高調波成分を有するエコー信号が軟部組織から戻ってくることになる。この高調波成分をもとにエコー像を形成する方法は、Tissue Harmonic Imaging法と呼ばれ、基本波成分によるエコー像よりも音響S/N比が高いことが好まれて、最近では、一般に用いられるようになった。しかし、このことは、Pulse Inversion法を用いても、マイクロバブル系造影剤により散乱されて生ずる高調波成分と送信パルスの伝播により生ずる高調波成分とが混合したエコー信号が得られることになり、本来目的としていた造影剤を軟部組織と峻別するイメージングが困難であることを意味する。
【0014】
マイクロバブル系造影剤による非線形散乱は、軟部組織中の非線形伝播と比較すると、一般に低い音圧でも観測される傾向にある。そこで、送信音圧を低く抑えたPulse Inversion法により、Tissue Harmonic成分の生成を抑えて、主にマイクロバブル系造影剤からの非線形成分によりエコー像を形成することが広く行われているが、信号振幅が充分でないため、造影診断に期待される確定診断を行うに足るS/N比の高いエコー像が得にくいのが現状である。
【0015】
この問題をある程度解決する方法として、従来技術(非特許文献2)では、上述したように、送信音圧パルス波形の正負を反転させると同時に振幅を変化させて3回の送受信を行う方法を提案している。しかながら、この方法は、軟部組織中を送波パルスが非線形伝播することにより生ずるTissue Harmonicエコー信号を原理的に除くものではない。
【0016】
本発明は、このような現状に鑑み、マイクロバブル系造影剤により散乱されて生ずるエコー成分を、送信パルスが非線形伝播することにより生ずるTissue Harmonic成分と明確に峻別して映像化することにより、造影エコー像を基に確定診断を行うに足るS/N比の高い造影エコー像を実現する超音波撮像技術を提供することを目的とする。
【0017】
【課題を解決するための手段】
上記目的を解決するために、本発明では、Nを3以上の整数とする時、同一の送受波フォーカス条件の下で波形の異なる送信パルス波を用いてN回の送受波を行なうことにより、生体の軟部組織からの超音波エコー信号の基本波から第(N−1)次高調波までの成分に対する送受波感度を抑圧し、前記造影用マイクロバブルからの超音波エコー信号に対する送受波感度を得るように構成する。
【0018】
さらに、本発明では、Nを3以上の整数とする時、同一の送受波フォーカス条件の下で、包絡線信号を共通とする送信パルス波を用い、その搬送波の位相を360°/Nずつ回転させて、N回の送受波を行ない、前記N回の送受波により得られるN個の時系列受信エコー信号を加算し加算信号を求めることにより前記造影画像を形成するよう構成する。
【0019】
例として、Nが3である場合について述べると、送信音圧パルス波形の包絡線信号を共通とし、その搬送波の位相を、略120°ずつ回転させて、3回の送受信を行い、得られる3つのエコー信号を加算する。この加算により、変化の無視できる線形散乱体により散乱されたエコー信号の基本波成分と第2高調波成分とが、同時に打ち消される。これは、このような散乱体による3つのエコー信号の位相に着目するとき、基本波成分の位相が略120°ずつ回転するのは当然として、第2高調波成分の位相も基本波成分とは逆方向に略120°ずつ回転するためである。
【0020】
一方、非線形性共振体である造影マイクロバブルによる散乱エコー信号は、打ち消されることがない。これにより、エコー信号の中から、軟部組織中の非線形伝播などに由来する信号成分を含まず、造影用マイクロバブルにのみ由来する信号を抽出することができる。
【0021】
この原理は、レシプロ4ストローク直列エンジンの振動問題を考えると理解しやすい。クランクシャフトが一定の角速度で回転しているとき、レシプロエンジンを構成する各ピストンが振動する線速度は、この角速度の基本波成分だけでなく、無視できない振幅の高調波成分を含む。4ストローク直列4気筒エンジンは、通常、対称配置された2つの同位相ピストンからなる2つの組が180°のクランク角をなすように構成される。図1の(a)は、基本波の位相関係を示し、この構成により、それぞれの組のピストンが発生する基本波成分は打ち消されるが、図1の(b)は、第2高調波の位相関係を示し、第2高調波成分は2倍に成長することになり、結果として、クランクシャフト回転数の2倍の周波数をもつ振動が問題となる。図中、実線は、第1のピストンの組による振動の位相を、点線は、第2のピストンの組による振動の位相を示す。クランクシャフトの2倍の角速度で回転するバランサーを装備する4気筒エンジンがあるのは、この振動を打ち消すためである。
【0022】
一方、4ストローク直列6気筒エンジンは、通常、対称配置された2つの同位相ピストンからなる3つの組が120°のクランク角をなすように構成される。図2の(a)は、基本波の位相関係を示し、この構成により、それぞれの組のピストンが発生する基本波成分が、クランク角で数えて120°をなすよう発生して互いに打ち消しあう。図2の(b)は、第2高調波の位相関係を示し、第2高調波成分も、図に示すように、クランク角で数えて120°×2=240°、すなわち逆から数えて120°をなす位相をもって発生するため、互いに打ち消される。これが、直列6気筒エンジンが振動の少ない所以である。図中、一点鎖線は、第3のピストンの組による振動の位相を示す。この第2高調波振動が原理的に強調される直列4気筒エンジンの構成が、Pulse Inversion法に相当し、基本波だけでなく第2高調波の振動も原理的に打ち消される直列6気筒エンジンの構成が、本発明の方法に相当する。
【0023】
一般的に、Nを3以上の整数とするとき、直列2N気筒エンジンの振動について述べれば、基本波すなわち第1次高調波から第(N−1)次高調波までの振動が原理的に打ち消される。これを本発明の超音波イメージングの場合に置き換えれば、送信音圧パルス波形の包絡線信号を共通とし、その搬送波の位相を360°/Nずつ回転させて、N回の送受信を行い、得られるN個のエコー信号を加算することにより、短時間変化の無視できる線形散乱体により散乱されたエコー信号の基本波から第(N−1)次高調波までの成分が、同時に打ち消されるということになる。
【0024】
一方、マイクロバブル系造影剤により散乱されて生ずるエコー信号の位相は、その強い非線形共振特性のために包絡線振幅の影響を受け、送波信号搬送波の位相に対して、一定の関係にない。このため、送信パルス搬送波の位相を120°ずつ回転させて3回の送受信を行って得られる3つのエコー信号を加算しても、造影用マイクロバブルにより散乱されて生じたエコー信号の場合には、打ち消されない成分が残る。従って、この残ったエコー信号成分は、マイクロバブル系造影剤の存在のみを反映するので、これを用いて、造影剤を軟部組織と明確に峻別した超音波イメージングが可能となる。
【0025】
以下、本発明による超音波撮像方法の特徴について述べる。
【0026】
(1)造影用マイクロバブルが導入された生体に対して超音波パルスの送受波を行ない、前記造影用マイクロバブルによる前記生体内部の造影画像を形成する超音波撮像方法であって、Nを3以上の整数とする時、同一の送受波フォーカス条件の下で波形の異なる送信パルス波を用いてN回の送受波を行なう工程と、前記N回の送受波により得られるN個の時系列受信エコー信号を加算し加算信号を求めることにより、前記生体の軟部組織からの超音波エコー信号の基本波から第(N−1)次高調波までの成分に対する送受波感度を抑圧し、前記造影用マイクロバブルに由来する信号を抽出して、前記造影画像を形成する工程と、前記造影画像を表示する工程とを有することを特徴とする超音波撮像方法。
【0027】
(2)前記事項(1)に記載の超音波撮像方法において、前記N個の送信パルス波の和信号の振幅が、前記N個の送信パルス波の個々の振幅よりも小さいことを特徴とする超音波撮像方法。
【0028】
(3)前記事項(1)に記載の超音波撮像方法において、前記N個の送信パルス波は、共通の包絡線信号をもち、搬送波の位相が360°/Nずつ異なることを特徴とする超音波撮像方法。
【0029】
(4)前記事項(1)に記載の超音波撮像方法において、Nが3であり、3個の送信パルス波は、共通の包絡線信号をもち、搬送波の位相が略120°ずつ異なることを特徴とする超音波撮像方法。
【0030】
(5)前記事項(1)に記載の超音波撮像方法において、前記N回の送受波により得られるN個の時系列受信エコー信号の和信号の振幅から前記生体の画像を形成し、前記振幅を反映した輝度表示により表示することを特徴とする超音波撮像方法。
【0031】
(6)前記事項(1)に記載の超音波撮像方法において、前記N回の送受波により得られるN個の時系列受信エコー信号の複数組の重みの組み合わせによる重み付き和信号の振幅から前記生体の画像を形成し、前記振幅を反映した輝度表示により表示することを特徴とする超音波撮像方法。
【0032】
(7)前記事項(6)に記載の超音波撮像方法において、前記重み付き加算信号の前記振幅をそれぞれ異なる表示色により重畳して表示する工程を有することを特徴とする超音波撮像方法。
【0033】
(8)前記事項(6)に記載の超音波撮像方法において、前記複数組の重みの組み合わせのうち、少なくとも1組は、前記軟部組織からの前記超音波エコー信号の前記基本波成分と前記偶数次高調波成分に対する前記送受波感度を抑圧し、前記造影用マイクロバブルからの前記超音波エコー信号に対する前記送受波感度を得るように構成され、他の少なくとも1組が、前記軟部組織からの前記超音波エコー信号に対する送受波感度を得るように構成されていることを特徴とする超音波撮像方法。
【0034】
(9)造影用マイクロバブルが導入された生体に対して超音波パルスの送受波を行ない、前記造影用マイクロバブルによる前記生体内部の造影画像を形成する超音波撮像方法であって、Nを3以上の整数とする時、同一の送受波フォーカス条件の下で、包絡線信号を共通とする送信パルス波を用い、その搬送波の位相を360°/Nずつ回転させて、N回の送受波を行なう工程と、前記N回の送受波により得られるN個の時系列受信エコー信号を加算し加算信号を求めることにより前記造影画像を形成する工程とを有することを特徴とする超音波撮像方法。
【0035】
(10)前記事項(9)に記載の超音波撮像方法において、Nが3であり、3個の送信パルス波は、共通の包絡線信号をもち搬送波の位相が略120°ずつ異なることを特徴とする超音波撮像方法。
【0036】
【発明の実施の形態】
以下、本発明の実施例について、図を参照して説明する。
【0037】
図3は、本発明を実施すべく構成された超音波診断装置のブロック図の典型例である。超音波探触子1を構成する各素子は、切り替えスイッチ群2を介して、送波ビームフォーマ3と受波ビームフォーマ10に接続されている。送波ビームフォーマ3では、送受信シークエンス制御部6による制御に従って、送信波形メモリ5から送信波形選択部4により選択されて読み出された波形を用い、各素子を通じて送信されたときに指向性を持つ超音波パルスとなるような信号が生成される。この信号が、超音波探触子1の各素子により超音波パルスに変換されて生体に送信される。生体中で反射あるいは散乱されて超音波探触子1に戻ってきた超音波エコー信号は、各素子に受信されて、電気信号に変換される。
【0038】
受波ビームフォーマ10では、送受信シークエンス制御部6による制御に従って、指向性を持つ受信感度を生成すべく、各受波信号に遅延時間を与えて互いに加算する。遅延加算により得られた時系列信号は、やはり送受信シークエンス制御部6による制御に従って、受波メモリ選択部11により選択された受信波形メモリ12中の1つのバンクへ一旦書き込まれ、互いに加算すべき時系列信号がそろったのちに読み出されて、加算器13により互いに加算される。加算器出力信号は、雑音成分を除去する帯域通過フィルタ14を通過したのち包絡線信号検出器A16において包絡線信号に変換され、スキャンコンバータ18に入力される。一方、受信波形メモリ12に書き込まれた時系列信号の一部は、読み出されたまま、互いに加算されることなく、雑音成分を除去する帯域通過フィルタ15を通過し、包絡線信号検出器B17にて包絡線信号に変換され、スキャンコンバータ18に入力される。スキャンコンバータ18では、入力された複数の信号を適宜重畳して表示部19にて2ないし3次元表示すべく、信号の生成・制御を行う。
【0039】
送信波形メモリ5に、図15に示すように、共通の包絡線信号をもち、搬送波の位相が略120°ずつ異なる3つの超音波パルス波形(図中の(a)、(b)、(c))を書き込んでおき、送信波形選択部4により、そのうち1つを選択して送受信するというシークエンスを、波形を代えて3回実行した場合に、受信波形メモリ12中の各バンクに書き込まれる信号を、図4中、(a)、(b)、(c)に示した。ここでは、簡単のために、送信超音波パルスが生体軟部組織中を伝播したのち1つの点反射体により反射されて生ずる受信エコー信号を、数値計算シミュレーションにより求めて示した。搬送波周波数は、2MHzとした。図中の(d)は、(a)、(b)、(c)が加算器13に入力されたときに得られる出力信号である。送信超音波パルスが生体軟部組織中を非線形伝播するため、(a)、(b)、(c)には基本波成分だけでなく第2高調波成分も含まれているが、加算器出力結果(d)においては、本発明の原理から予測されるように、基本波成分同士が打ち消し合うだけでなく、第2高調波成分同士も打ち消し合い、信号振幅がほぼゼロとなっている。
【0040】
これと対比するため、図5にはPulse Inversion法を用いた場合の結果を示した。この場合には、送信波形メモリ5に、共通の包絡線信号をもち、搬送波の位相が180°異なる2種類の超音波パルス波形を書き込んでおき、送信波形選択部4により、そのうち1つを選択して送受信する。図中、(a)、(b)には、このシークエンスを、波形を代えて2回実行した場合に、受信波形メモリ12中の各バンクに書き込まれる信号を示した。図中(c)は、そのとき得られる加算器13の出力信号であるが、基本波成分同士は打ち消し合っているが、第2高調波成分同士はむしろ強調し合った結果の信号が得られている。この信号は、Tissue Harmonic信号と呼ばれるもので、生体軟部組織を描出するとき、高い音響S/N比が得られるという利点はあるものの、造影剤の分布や動態だけを軟部組織と峻別して描出したい場合には、それを妨害する最大要因となってしまう。
【0041】
次に、図4、図5の場合と同じ送受信シークエンスにおいて、造影マイクロバブルによる受信エコー信号を示す。図6、図8は、一例として、半径1.5μmのマイクロバブルにより散乱されて生ずる受信エコー信号を数値計算シミュレーションにより求めた結果であり、図7、図9は、そのときの帯域通過フィルタ14の入出力信号である。図6、図7、図8、図9を通じ、音圧に比例する縦軸の尺度は共通である。
【0042】
それぞれの対応関係について述べれば、図4の場合と同じく本発明を実施したときの送受信シークエンスにおいて、受信波形メモリ12中の各バンクに書き込まれる信号が、図6中の(a)、(b)、(c)であり、そのとき得られる加算器13の出力信号すなわち帯域通過フィルタ14の入力信号が、図6中の(d)および図7中の(a)である。図7中の(b)、(c)、(d)、(e)、(f)は、それぞれ、通過帯域中心周波数を基本波周波数(2MHz)、1.5倍高調波周波数(3MHz)、第2高調波周波数(4MHz)、2.5倍高調波周波数(5MHz)、第3高調波周波数(6MHz)に設定したときの帯域通過フィルタ14の出力信号である。一方、図5の場合と同じくPulse Inversion法を実施したときの送受信シークエンスにおいて、受信波形メモリ12中の各バンクに書き込まれる信号が、図8中の(a)、(b)であり、そのとき得られる加算器13の出力信号すなわち帯域通過フィルタ14の入力信号が、図8中の(c)および図9中の(a)である。図9中の(b)、(c)、(d)、(e)、(f)は、通過帯域中心周波数を図8の場合と同様に設定したときの帯域通過フィルタ14の出力信号である。
【0043】
元来、エコー信号中の第2高調波成分を強調すべく考案されたPulse Inversion法により、図9中の(c)、(d)に示されているように1.5倍高調波から第2高調波成分を多く含むマイクロバブル由来の信号が得られるのは当然として、エコー信号中の第2高調波成分のうち非線形伝播などにより生ずる成分を打ち消すべく考案された本発明の送受信シークエンスにより、図7中の(d)、(e)、(f)に示されているように、第2から第3高調波成分を多く含むマイクロバブル由来の充分な振幅の信号が得られていることは、注目すべきである。この特異かつ有用な現象の起源は、マイクロバブルが、大きな非線形性をもつ共振体であること、より一般化して言えば、遅延時間が振幅に依存する応答特性をもつことにある。すなわち、入出力音圧の間に、非線形性があっても遅延応答時間に振幅依存性がなければ、図4中の(d)に示されているように、出力信号中の第2高調波成分は打ち消されてしまう。一方、単なる線形共振体では、第2高調波成分そのものが発生しないので論外である。
【0044】
本発明による送受信シークエンスでは、以上の原理を背景に、送信パルス波形に第2高調波成分を意図的に重畳しても、それを打ち消しながら、造影用マイクロバブル由来の充分な振幅の信号が得られるという特長もある。超音波送信波形に第2高調波成分を意図的に重畳することにより、生体中または液体中におけるマイクロバブルの振動・成長・圧壊を強調したり、その反対に抑圧したりすることができる(参照:IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.43, no.6, pp.1054-1062)。この第2高調波重畳送波は、造影用マイクロバブルを用いた超音波イメージングの場合にも、有用と考えられる。
【0045】
図10、図11、図12には、送信パルス波形に第2高調波成分を意図的に重畳した場合に得られるエコー信号の例を示した。送信波形メモリ5に、共通の包絡線信号をもち、搬送波である基本波および第2高調波の位相が120°ずつ異なる3つの超音波パルス波形を書き込んでおき、送信波形選択部4により、そのうち1つを選択して送受信するというシークエンスを、波形を代えて3回実行した場合に、受信波形メモリ12中の各バンクに書き込まれる信号を、図4の場合と同様に求めて、図10中の(a)、(b)、(c)に示し、そのとき得られる加算器13の出力信号を(d)に示した。また、造影用マイクロバブルにより散乱されて生ずる受信エコー信号を図6の場合と同様に求めて、受信波形メモリ12中の各バンクに書き込まれる信号を図11中の(a)、(b)、(c)に示し、そのとき得られる加算器13の出力信号すなわち帯域通過フィルタ14の入力信号を、図11中の(d)および図12中の(a)に示した。図12中の(b)、(c)、(d)、(e)、(f)は、通過帯域中心周波数を図8の場合と同様に設定したときの帯域通過フィルタ14の出力信号である。
【0046】
図10中の(d)より明らかなように、送信パルス波形に第2高調波成分を意図的に重畳した場合でも、点反射体により散乱されて生ずる受信エコー信号については、加算器13の入力信号の第2高調波成分同士が、図4の場合の非線形伝播により生ずる第2高調波成分と同様に、打ち消し合い、加算器出力信号振幅がほぼゼロとなっている。一方、造影用マイクロバブルにより散乱されて生ずる受信エコー信号については、図6の場合と同様に、加算器13による加算によって打ち消されることなく、第2から第3高調波成分を多く含む充分な振幅の出力信号が得られている。
【0047】
さらに、送信パルス波の位相について、本発明の効果を得るために必要な誤差範囲について検討した。例として、第2送信パルス波の位相が20°ずれた場合について、加算器13の出力信号すなわち帯域通過フィルタ14の入力信号と、通過帯域中心周波数を基本波と第2高調波に合わせた場合のフィルタ出力信号を、図4の場合と同様に求めて、図13中の(b)、(c)に示した。図中(a)には、比較のために、図5の場合、すなわちPulse Inversion法を位相誤差なしで実施できた場合の信号を示した。図13中(c)は、第2送信パルス波の位相ずれ20°に対応させて、第3送信パルス波の位相を10°ずらして、3つの送信パルス波の和信号がゼロになるように調整した場合である。
【0048】
送信パルス波の包絡線信号を時間tの関数としてA(t)と書くと、本発明の実施例における第1、第2、第3の各送波パルス信号P1(t)、P2(t)、P3(t)は、位相誤差のないとき、
P1(t)=A(t) sin ωt (1)
P2(t)=A(t) sin (ωt+2π /3) (2)
P3(t)=A(t) sin (ωt−2π /3) (3)
と書くことができる。このとき、
P1(t)+P2(t)+P3(t)=0 (4)
の関係が成り立っている。第2パルスに位相誤差φ を生じたとき、第2パルスは、
P2(t)=A(t) sin (ωt+2π /3+φ ) (5)
と書くことができる。このとき、第3パルスを
P3(t)=A3(t) sin (ωt−2π /3+φ /2) (6)
A3(t)=2A(t) cos (π /3+φ /2) (7)
と書けるよう調整すれば、位相誤差φにかかわらず、(4)を成り立たせることができる。図13中の(c)は、そのような第3パルスの補正を行った結果であり、第2パルスの位相誤差にもかかわらず、加算器13の出力信号中の基本波成分を打ち消すことができている。(4)が成立していること、一般的には、送信に用いるN個のパルス波形の和信号が実質的にゼロであることにより、N個の受信エコー信号を加算して得られる信号中の基本波成分が打ち消される。
【0049】
図14には、加算器13の出力信号振幅のpeak-to-peak値を、第2パルスに与えた位相誤差の関数として示した。Pulse Inversion法を位相誤差なしで実施できた場合の値で規格化した信号振幅を、第3パルスの補正なしの場合(図中の(a))と補正を行った場合(図中の(b))について示した。位相誤差が20°に達すると、第3パルスの補正を行っても、軟部組織中の非線形伝播に由来し、造影用マイクロバブルに由来しない信号振幅が、従来のPulse Inversion法の半分以上となり、本発明の効果が充分に発揮されないことになってしまう。この結果から、本発明の効果を充分に得るには、送信パルスの位相誤差を10°程度以下とすることが望ましいといえる。
【0050】
以上説明したように、本発明を実施することにより、エコー信号の中から、軟部組織中の非線形伝播などに由来する信号成分を含まず、造影用マイクロバブルにのみ由来する信号を抽出することができる。
【0051】
そのような信号を加算器13の出力信号として得ることができ、さらにS/N比を向上された信号を帯域通過フィルタ14の出力信号として得て、その包絡線信号として包絡線信号検出器A16の出力信号を得て、これが造影用マイクロバブルの空間分布を表す信号としてスキャンコンバータ18に入力される。一方、受信波形メモリ12中の1つのバンクに書き込まれた信号を帯域通過フィルタ15に通してS/N比を向上させた信号から、包絡線信号検出器B17により包絡線信号を得て、これが軟部組織の位置と形態を表す信号としてスキャンコンバータ18に入力される。
【0052】
スキャンコンバータ18では、包絡線信号検出器B17の出力信号を背景とし、これと識別するのに便利なように異なる色調によって包絡線信号検出器A16の出力信号が重畳されて表示部19に表示される。このようにして、検査対象である患者の体の中における造影用マイクロバブルの分布を、2次元または3次元画像によりわかりやすく表示できる。
【0053】
上述した実施例では、軟部組織の位置と形態を表す信号として、受信波形メモリ12中の1つのバンクに書き込まれた信号をそのまま用いる場合について説明したが、一般的には、受信波形メモリ12中の3つのバンクに書き込まれた信号に適切な重みをつけた加算信号を用いることができる。
【0054】
また、以上の一連の説明では、3つの送信パルス波を用いる実施例について詳しく述べたが、原理説明において示したように、共通の包絡線信号をもつ3以上の整数N個の送信パルス波を用い、その搬送波の位相を360°/Nずつ回転させて、N回の送受信を行い、得られるN個のエコー信号を受信波形メモリ12中のN個のバンクに一旦書き込み、読み出した信号を加算器13に入力することによって、本発明を実施することもできる。
【0055】
【発明の効果】
以上述べたように、本発明によれば、エコー信号の中から、軟部組織中の非線形伝播などに由来する信号成分を含まず、造影用マイクロバブルにのみ由来する信号を抽出し、これにより、造影エコー像を基に確定診断を行うに足るS/N比の高い診断用画像を提供することが可能となる。このように、本発明を実施した装置の医用診断上の有用性はきわめて大きく、従って、医用診断を支える工業における本発明の意義もまた、大きい。
【図面の簡単な説明】
【図1】 Pulse Inversion法の原理を説明する図。
【図2】本発明による3パルス法の原理を説明する図。
【図3】本発明の実施例における超音波診断装置の構成を説明するブロック図。
【図4】本発明により得られる、非線形伝播特性をもつ生体軟部組織中の点反射体によるエコー信号の例を示す図。
【図5】 Pulse Inversion法により得られる、非線形伝播特性をもつ生体軟部組織中の点反射体によるエコー信号の例を示す図。
【図6】本発明により得られる、造影用マイクロバブルによる散乱エコー信号の例を示す図。
【図7】本発明により得られる、造影用マイクロバブルによる散乱エコー信号の帯域通過フィルタ通過後の波形を示す図。
【図8】 Pulse Inversion法により得られる、造影用マイクロバブルによる散乱エコー信号の例を示す図。
【図9】 Pulse Inversion法により得られる、造影用マイクロバブルによる散乱エコー信号の帯域通過フィルタ通過後の波形を示す図。
【図10】本発明において、送信パルス波に第2高調波を意図的に重畳した場合に得られる、生体軟部組織中の点反射体によるエコー信号の例を示す図。
【図11】本発明において、送信パルス波に第2高調波を意図的に重畳した場合に得られる、造影用マイクロバブルによる散乱エコー信号の例を示す図。
【図12】本発明において、送信パルス波に第2高調波を意図的に重畳した場合に得られる、造影用マイクロバブルによる散乱エコー信号の帯域通過フィルタ通過後の波形を示す図。
【図13】本発明において、送波パルスの位相に誤差があった場合に得られる、生体軟部組織中の点反射体によるエコー信号の、加算器出力信号波形の例を示す図。
【図14】本発明において、送波パルスの位相に誤差があった場合に得られる、生体軟部組織中の点反射体によるエコー信号の、加算器出力信号振幅の位相誤差依存性を示す図。
【図15】本発明における送信波形の一例を示す図。
【符号の説明】
1…超音波探触子、2…切り替えスイッチ群、3…送波ビームフォーマ、4…送信波形選択部、5…送信波形メモリ、6…送受信シークエンス制御部、10…受波ビームフォーマ、11…受波メモリ選択部、12…受信波形メモリ、13…加算器、14…帯域通過フィルタA、15…帯域通過フィルタB、16…包絡線信号検出器A、17…包絡線信号検出器B、18…スキャンコンバータ、19…表示器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic technique for imaging an inside of a living body by transmitting / receiving ultrasonic waves to / from a living body, and more particularly to an ultrasonic imaging technique for imaging using a microbubble-based contrast agent.
[0002]
[Prior art]
2. Description of the Related Art An ultrasonic imaging apparatus that transmits and receives pulsed ultrasound to and from a living body and images the inside thereof is widely used for medical diagnosis.
[0003]
Among imaging diagnostic modalities, contrast agents have been used for the imaging of blood vessels in the fields of X-rays and MRI. The purpose is to administer a contrast medium in the blood to obtain an image with enhanced contrast in the structure and distribution of the vascular system, and to diagnose diseases reflected in the vascular system such as malignant tumors and infarctions with high accuracy. There is to do.
[0004]
On the other hand, contrast agents have not been widely used in ultrasound diagnosis until now, but in recent years, contrast enhancement using a formulation that stabilized microbubbles with micron-order sizes in some way. With the emergence of agents, it has begun to be widely used. This principle is that a microbubble with a diameter of about 1 micron resonates with an ultrasonic wave of several MHz used for ultrasonic diagnosis and vibrates with a large amplitude. As a result, the ultrasonic wave in this frequency range is scattered well, and the contrast is enhanced. It uses the fact that performance occurs.
[0005]
The feature of the microbubble ultrasound contrast agent is its strong non-linearity. This is because the microbubble has a property that the volume increase when receiving a negative pressure is much larger than the volume decrease when receiving a positive pressure of the same amplitude. For this reason, the echo signal scattered by the microbubbles contains a lot of second harmonic components having a frequency twice that of the transmission signal. VL Newhouse et al. Reported for the first time in 1992 a method for obtaining a blood flow Doppler signal enhanced for soft tissue based on the second harmonic component (see, for example, Non-Patent Document 1).
[0006]
Also, PN Burns et al. Have proposed a Pulse Inversion (pulse inversion) method in which transmission / reception is performed twice using a transmission sound pressure pulse waveform in which positive and negative are inverted, and two obtained echo signals are added ( For example, Patent Document 1). By this addition, the fundamental wave component of the echo signal from the soft tissue where the motion can be ignored is canceled because the signal rotated by 180 ° is added, but the second harmonic component is rotated by 360 °. Since things are added, they grow twice as much. Although the required number of transmissions is doubled, the fundamental wave component from the soft tissue can be removed in principle without a band pass filter, so that a second harmonic echo signal with excellent distance resolution can be obtained. In addition, for a scatterer in which changes occurring between two transmissions and receptions such as a microbubble-based contrast agent in the bloodstream cannot be ignored, the fundamental wave echo signal from the scatterer is not completely canceled, This is rather in line with the current purpose of obtaining an echo image in which the contrast medium is emphasized on the soft tissue.
[0007]
PJ Phillips has proposed a method of performing transmission and reception three times by inverting the sign of the transmitted sound pressure pulse waveform and simultaneously changing the amplitude (see, for example, Non-Patent Document 2). In this method, the transmission amplitude is modulated to 0.5: -1: 0.5, and echo signals obtained by performing transmission and reception three times are added. That is, while the same pulse waveform is used for the first and third transmissions, the second waveform uses a pulse waveform whose phase is inverted and the amplitude is doubled. The echo signal component from the slow-changing linear scatterer is canceled and the even harmonic component of the echo signal generated by nonlinear scattering or nonlinear propagation is emphasized, as in the normal Pulse Inversion method. In addition to this, all the components of the echo signal generated by nonlinear scattering and nonlinear propagation, including the fundamental wave, are extracted by amplitude modulation, which is equivalent to that of the normal Pulse Inversion method. High sensitivity to echo signals due to nonlinear scattering and nonlinear propagation is expected. This utilizes the fact that the dependence of nonlinear scattering by microbubbles on the incident sound pressure amplitude is much greater than the dependence of nonlinear propagation. This high sensitivity makes it possible to detect the effect of nonlinear scattering even at transmission sound pressures where the effect of nonlinear propagation is relatively small. Therefore, it is easy to distinguish the contrast medium from soft tissue compared to the normal Pulse Inversion method. It is said.
[0008]
[Non-Patent Document 1]
1992 IEEE Ultrasonics Symposium Proceedings, pp.1175-1177
[Patent Document 1]
US Pat. No. 6,095,980
[Non-Patent Document 2]
2001 IEEE Ultrasonics Symposium Proceedings, pp.1739-1745
[0009]
[Problems to be solved by the invention]
As described above, in the prior art (Non-Patent Document 1), a method of obtaining a blood flow Doppler signal enhanced for soft tissue based on the second harmonic component has been proposed. If only the bandpass filter is used to extract the component from the echo signal, there remains a problem that the pulse of the second harmonic echo signal obtained as the output signal becomes long.
[0010]
This is because the amplitude of the fundamental wave component included in the echo signal is at least one digit greater than that of the second harmonic component, so that a filter having a sharp band cutoff characteristic or a narrow band pass characteristic must be used. This problem is particularly serious when the blood flow is displayed in a two-dimensional image because the resolution in the distance direction is deteriorated.
[0011]
In the prior art (Patent Document 1), for the purpose of solving this problem, the transmission sound pressure pulse waveform in which the sign is inverted is transmitted and received twice, and the obtained two echo signals are added. Inversion method was proposed.
[0012]
The speed of sound in many materials such as living soft tissue is greater under high pressure than under low pressure. Due to this non-linearity, when the ultrasonic pulse propagates through the soft tissue, the high sound pressure part propagates faster than the low part, and as a result, the sound pressure waveform that was originally sinusoidal is propagated. Furthermore, it is known that it suddenly rises and changes to an N-wave shape that falls gently, that is, it has harmonic components such as the second harmonic.
[0013]
When this is scattered in the soft tissue, an echo signal having a harmonic component returns from the soft tissue even if there is no microbubble-based contrast agent. The method of forming an echo image based on this harmonic component is called the Tissue Harmonic Imaging method, and it is preferred that the acoustic S / N ratio is higher than the echo image by the fundamental wave component. It came to be able to. However, this means that even if the Pulse Inversion method is used, an echo signal in which the harmonic component generated by scattering by the microbubble-based contrast agent and the harmonic component generated by the propagation of the transmission pulse is mixed is obtained. This means that it is difficult to distinguish the originally intended contrast agent from the soft tissue.
[0014]
In general, nonlinear scattering due to a microbubble-based contrast agent tends to be observed even at a low sound pressure as compared with nonlinear propagation in soft tissue. Therefore, it is widely used to suppress the generation of Tissue Harmonic component by Pulse Inversion method with low transmission sound pressure and mainly form echo image by nonlinear component from microbubble contrast agent. Since the amplitude is not sufficient, it is difficult to obtain an echo image having a high S / N ratio that is sufficient to perform a definitive diagnosis expected for contrast diagnosis.
[0015]
As a method for solving this problem to some extent, as described above, the prior art (Non-Patent Document 2) proposes a method of performing transmission and reception three times by inverting the sign of the transmission sound pressure pulse waveform and simultaneously changing the amplitude. is doing. However, this method does not remove in principle the Tissue Harmonic echo signal generated by the non-linear propagation of the transmission pulse in the soft tissue.
[0016]
In view of such a current situation, the present invention visualizes an echo component generated by being scattered by a microbubble-based contrast agent clearly and distinctly from a Tissue Harmonic component generated by nonlinear propagation of a transmission pulse. It is an object of the present invention to provide an ultrasonic imaging technique that realizes a contrast echo image having a high S / N ratio that is sufficient for performing a definitive diagnosis based on an echo image.
[0017]
[Means for Solving the Problems]
In order to solve the above-mentioned object, in the present invention, when N is an integer of 3 or more, N transmission / reception waves are performed using transmission pulse waves having different waveforms under the same transmission / reception focus condition, The transmission / reception sensitivity with respect to the component from the fundamental wave of the ultrasonic echo signal from the soft tissue of the living body to the (N-1) th harmonic is suppressed, and the transmission / reception sensitivity with respect to the ultrasonic echo signal from the contrast microbubble is reduced. Configure to get.
[0018]
Furthermore, in the present invention, when N is an integer of 3 or more, a transmission pulse wave having a common envelope signal is used under the same transmission / reception focus condition, and the phase of the carrier wave is rotated by 360 ° / N. Thus, the contrast image is formed by performing N times of transmission / reception, adding N time-series reception echo signals obtained by the N times of transmission / reception, and obtaining an addition signal.
[0019]
As an example, when N is 3, the envelope signal of the transmission sound pressure pulse waveform is made common, and the phase of the carrier wave is rotated by approximately 120 °, and transmission / reception is performed 3 times. Add two echo signals. By this addition, the fundamental wave component and the second harmonic component of the echo signal scattered by the linear scatterer whose change can be ignored are simultaneously canceled. This is because when the phase of the three echo signals by such a scatterer is focused, the phase of the fundamental component is naturally rotated by about 120 °, and the phase of the second harmonic component is also the fundamental component. This is to rotate approximately 120 ° in the reverse direction.
[0020]
On the other hand, the scattered echo signal by the contrast microbubble which is a nonlinear resonator is not canceled. As a result, it is possible to extract a signal derived only from the contrast-enhancing microbubbles from the echo signal without including a signal component derived from nonlinear propagation or the like in the soft tissue.
[0021]
This principle is easy to understand when considering the vibration problem of a reciprocating four-stroke in-line engine. When the crankshaft is rotating at a constant angular velocity, the linear velocity at which each piston constituting the reciprocating engine vibrates includes not only a fundamental wave component of this angular velocity but also a harmonic component having a non-negligible amplitude. A four-stroke in-line four-cylinder engine is usually configured such that two sets of two in-phase pistons arranged symmetrically form a crank angle of 180 °. 1A shows the phase relationship of the fundamental wave, and this configuration cancels the fundamental wave component generated by each pair of pistons, while FIG. 1B shows the phase of the second harmonic. The relationship shows that the second harmonic component grows twice, and as a result, vibration having a frequency twice the crankshaft rotation speed becomes a problem. In the figure, the solid line indicates the phase of vibration due to the first piston set, and the dotted line indicates the phase of vibration due to the second piston set. The reason why there is a 4-cylinder engine equipped with a balancer that rotates at an angular velocity twice that of the crankshaft is to counteract this vibration.
[0022]
On the other hand, a 4-stroke in-line 6-cylinder engine is usually configured such that three sets of two in-phase pistons arranged symmetrically form a crank angle of 120 °. FIG. 2A shows the phase relationship of the fundamental waves. With this configuration, the fundamental wave components generated by each pair of pistons are generated so as to form 120 ° in the crank angle and cancel each other out. (B) of FIG. 2 shows the phase relationship of the second harmonic, and the second harmonic component is also 120 ° × 2 = 240 ° counted from the crank angle as shown in the figure, that is, 120 counted from the reverse side. Since they are generated with a phase of 0 °, they cancel each other. This is why the in-line 6-cylinder engine has less vibration. In the figure, the alternate long and short dash line indicates the phase of vibration caused by the third set of pistons. The configuration of the in-line four-cylinder engine in which the second harmonic vibration is emphasized in principle corresponds to the Pulse Inversion method, and the in-line six-cylinder engine in which not only the fundamental wave but also the second harmonic vibration is canceled in principle. The configuration corresponds to the method of the present invention.
[0023]
In general, when N is an integer of 3 or more, the vibration of the in-line 2N cylinder engine is fundamentally canceled, that is, the vibration from the first harmonic to the (N-1) th harmonic is canceled in principle. It is. If this is replaced with the case of ultrasonic imaging of the present invention, the envelope signal of the transmitted sound pressure pulse waveform is made common, and the phase of the carrier wave is rotated by 360 ° / N, and transmission / reception is performed N times. By adding N echo signals, the components from the fundamental wave to the (N-1) th harmonic of the echo signal scattered by the linear scatterer whose change can be ignored for a short time are canceled simultaneously. Become.
[0024]
On the other hand, the phase of the echo signal generated by being scattered by the microbubble contrast agent is affected by the envelope amplitude due to its strong non-linear resonance characteristic, and does not have a fixed relationship with the phase of the transmitted signal carrier wave. For this reason, in the case of an echo signal generated by scattering by contrast microbubbles even if three echo signals obtained by performing transmission / reception three times by rotating the phase of the transmission pulse carrier by 120 ° are added. Ingredients that are not counteracted remain. Therefore, since the remaining echo signal component reflects only the presence of the microbubble contrast agent, it is possible to perform ultrasonic imaging in which the contrast agent is clearly distinguished from the soft tissue.
[0025]
The features of the ultrasonic imaging method according to the present invention will be described below.
[0026]
(1) An ultrasonic imaging method in which ultrasound pulses are transmitted / received to / from a living body into which a contrast microbubble is introduced, and a contrast image inside the living body is formed by the contrast microbubble. When the above integers are used, a step of performing transmission / reception N times using transmission pulse waves having different waveforms under the same transmission / reception focus condition, and N time-series receptions obtained by the N transmission / reception waves By adding echo signals and obtaining an added signal, the transmission and reception sensitivities for components from the fundamental wave to the (N-1) th harmonic of the ultrasonic echo signal from the soft tissue of the living body are suppressed, and the contrast enhancement An ultrasonic imaging method comprising: extracting a signal derived from microbubbles to form the contrast image; and displaying the contrast image.
[0027]
(2) In the ultrasonic imaging method according to (1), the amplitude of the sum signal of the N transmission pulse waves is smaller than the individual amplitude of the N transmission pulse waves. Ultrasound imaging method.
[0028]
(3) In the ultrasonic imaging method according to the item (1), the N transmission pulse waves have a common envelope signal, and the phase of the carrier wave is different by 360 ° / N. Sound imaging method.
[0029]
(4) In the ultrasonic imaging method described in the above item (1), N is 3, the three transmission pulse waves have a common envelope signal, and the phase of the carrier wave is different by approximately 120 °. A characteristic ultrasonic imaging method.
[0030]
(5) In the ultrasonic imaging method according to (1), the image of the living body is formed from the amplitude of the sum signal of N time-series received echo signals obtained by the N times of transmission and reception, and the amplitude An ultrasonic imaging method characterized by displaying by luminance display reflecting the above.
[0031]
(6) In the ultrasonic imaging method according to (1), the amplitude of the weighted sum signal obtained by combining a plurality of weights of N time-series received echo signals obtained by the N transmission / reception waves An ultrasonic imaging method, wherein an image of a living body is formed and displayed by luminance display reflecting the amplitude.
[0032]
(7) The ultrasonic imaging method according to item (6), further including a step of displaying the amplitudes of the weighted addition signals by superimposing them with different display colors.
[0033]
(8) In the ultrasonic imaging method according to (6), at least one of the plurality of combinations of weights includes the fundamental wave component of the ultrasonic echo signal from the soft tissue and the even number. It is configured to suppress the transmission / reception sensitivity with respect to the second harmonic component and obtain the transmission / reception sensitivity with respect to the ultrasonic echo signal from the contrast microbubble, and at least one other set includes the soft tissue from the soft tissue. An ultrasonic imaging method characterized by being configured to obtain transmission / reception sensitivity with respect to an ultrasonic echo signal.
[0034]
(9) An ultrasonic imaging method for transmitting and receiving ultrasonic pulses to and from a living body into which a contrasting microbubble is introduced to form a contrast image inside the living body by the contrasting microbubble, wherein N is 3 When the above integers are used, a transmission pulse wave having a common envelope signal is used under the same transmission / reception focus conditions, and the phase of the carrier wave is rotated by 360 ° / N, so that N transmissions / receptions are performed. And a step of forming the contrast image by adding N time-series received echo signals obtained by the N times of transmission and reception to obtain an added signal.
[0035]
(10) In the ultrasonic imaging method according to the item (9), N is 3, the three transmission pulse waves have a common envelope signal, and the phase of the carrier wave is different by about 120 °. And an ultrasonic imaging method.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0037]
FIG. 3 is a typical example of a block diagram of an ultrasonic diagnostic apparatus configured to carry out the present invention. Each element constituting the ultrasonic probe 1 is connected to a transmission beam former 3 and a reception beam former 10 via a changeover switch group 2. The transmission beamformer 3 uses the waveform selected and read from the transmission waveform memory 5 by the transmission waveform selection unit 4 according to the control by the transmission / reception sequence control unit 6, and has directivity when transmitted through each element. A signal that is an ultrasonic pulse is generated. This signal is converted into an ultrasonic pulse by each element of the ultrasonic probe 1 and transmitted to the living body. The ultrasonic echo signal reflected or scattered in the living body and returned to the ultrasonic probe 1 is received by each element and converted into an electric signal.
[0038]
In the receiving beamformer 10, in accordance with control by the transmission / reception sequence control unit 6, a delay time is given to each received signal and added to each other in order to generate reception sensitivity having directivity. The time series signals obtained by the delay addition are once written to one bank in the reception waveform memory 12 selected by the reception memory selection unit 11 according to the control by the transmission / reception sequence control unit 6 and are added to each other. The series signals are read out and then added together by the adder 13. The adder output signal passes through the band-pass filter 14 that removes the noise component, and is then converted into an envelope signal by the envelope signal detector A 16 and input to the scan converter 18. On the other hand, some of the time-series signals written in the reception waveform memory 12 are read and passed through the band-pass filter 15 that removes noise components without being added to each other, and the envelope signal detector B17. Is converted into an envelope signal and input to the scan converter 18. The scan converter 18 generates and controls signals so that a plurality of input signals are appropriately superimposed and displayed on the display unit 19 in two or three dimensions.
[0039]
As shown in FIG. 15, the transmission waveform memory 5 has three ultrasonic pulse waveforms (a), (b), (c )) And a signal to be written to each bank in the reception waveform memory 12 when the transmission waveform selection unit 4 executes a sequence of selecting and transmitting / receiving one of them three times while changing the waveform. Is shown in (a), (b), (c) of FIG. Here, for the sake of simplicity, the received echo signal generated by the transmission ultrasonic pulse propagating through the soft tissue of the living body and reflected by one point reflector is obtained and shown by numerical simulation. The carrier frequency was 2 MHz. (D) in the figure is an output signal obtained when (a), (b), and (c) are input to the adder 13. Since the transmitted ultrasonic pulse propagates nonlinearly in the soft tissue of the living body, (a), (b), and (c) include not only the fundamental wave component but also the second harmonic component, but the adder output result In (d), as predicted from the principle of the present invention, not only the fundamental wave components cancel each other, but also the second harmonic components cancel each other, and the signal amplitude is almost zero.
[0040]
For comparison, FIG. 5 shows the results when the Pulse Inversion method is used. In this case, two types of ultrasonic pulse waveforms having a common envelope signal and different in phase of the carrier wave by 180 ° are written in the transmission waveform memory 5, and one of them is selected by the transmission waveform selection unit 4. Send and receive. In the figure, (a) and (b) show signals to be written in each bank in the reception waveform memory 12 when this sequence is executed twice with different waveforms. (C) in the figure is the output signal of the adder 13 obtained at that time, but the fundamental wave components cancel each other, but the second harmonic components are rather emphasized each other. ing. This signal is called the Tissue Harmonic signal, and it has the advantage that a high acoustic S / N ratio can be obtained when rendering soft tissue in a living body, but only the distribution and dynamics of contrast agents are distinguished from the soft tissue. If you want to, it will be the biggest factor that hinders it.
[0041]
Next, reception echo signals by contrast microbubbles in the same transmission / reception sequence as in FIGS. 4 and 5 are shown. FIG. 6 and FIG. 8 show, as an example, the results obtained by numerical simulation of received echo signals that are scattered by microbubbles having a radius of 1.5 μm. FIGS. 7 and 9 show the bandpass filter 14 at that time. Input / output signals. Through FIG. 6, FIG. 7, FIG. 8, and FIG. 9, the scale of the vertical axis proportional to the sound pressure is common.
[0042]
Describing the corresponding relationship, in the transmission / reception sequence when the present invention is implemented as in the case of FIG. 4, the signals written in the respective banks in the reception waveform memory 12 are (a) and (b) in FIG. , (C), and the output signal of the adder 13, that is, the input signal of the bandpass filter 14 obtained at that time is (d) in FIG. 6 and (a) in FIG. (B), (c), (d), (e), and (f) in FIG. 7 respectively represent the passband center frequency as the fundamental frequency (2 MHz), the 1.5-fold harmonic frequency (3 MHz), It is an output signal of the band pass filter 14 when set to the second harmonic frequency (4 MHz), the 2.5 harmonic frequency (5 MHz), and the third harmonic frequency (6 MHz). On the other hand, in the transmission / reception sequence when the Pulse Inversion method is performed as in the case of FIG. 5, the signals to be written to the banks in the reception waveform memory 12 are (a) and (b) in FIG. The obtained output signal of the adder 13, that is, the input signal of the band pass filter 14, is (c) in FIG. 8 and (a) in FIG. (B), (c), (d), (e), and (f) in FIG. 9 are output signals of the bandpass filter 14 when the passband center frequency is set in the same manner as in FIG. .
[0043]
Originally designed to emphasize the second harmonic component in the echo signal, the Pulse Inversion method is used to increase the frequency from the 1.5th harmonic as shown in (c) and (d) of FIG. As a matter of course, a signal derived from microbubbles containing a lot of second harmonic components can be obtained. By the transmission / reception sequence of the present invention devised to cancel out components caused by nonlinear propagation among the second harmonic components in the echo signal, As shown in (d), (e), and (f) in FIG. 7, a signal having a sufficient amplitude derived from microbubbles containing a lot of second to third harmonic components is obtained. , Should be noted. The origin of this unique and useful phenomenon is that the microbubble is a resonator having a large non-linearity, more generally speaking, the delay time has a response characteristic depending on the amplitude. That is, if the delay response time does not depend on the amplitude even if there is nonlinearity between the input and output sound pressures, the second harmonic in the output signal, as shown in (d) of FIG. The ingredient will be countered. On the other hand, a simple linear resonator is out of the question because the second harmonic component itself does not occur.
[0044]
In the transmission / reception sequence according to the present invention, a signal having a sufficient amplitude derived from contrast-enhancing microbubbles can be obtained while intentionally superimposing the second harmonic component on the transmission pulse waveform against the background described above. There is also a feature that can be. By intentionally superimposing the second harmonic component on the ultrasonic transmission waveform, the vibration, growth, and collapse of the microbubbles in the living body or in the liquid can be emphasized and vice versa. : IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.43, no.6, pp.1054-1062). This second harmonic superimposed transmission is also considered useful in the case of ultrasonic imaging using contrast microbubbles.
[0045]
FIGS. 10, 11, and 12 show examples of echo signals obtained when the second harmonic component is intentionally superimposed on the transmission pulse waveform. In the transmission waveform memory 5, three ultrasonic pulse waveforms having a common envelope signal and different in phase of the fundamental wave and the second harmonic wave, which are carrier waves, by 120 ° are written. When the sequence of selecting and transmitting / receiving one is executed three times with different waveforms, the signals to be written to each bank in the received waveform memory 12 are obtained in the same manner as in FIG. (A), (b), (c), and the output signal of the adder 13 obtained at that time is shown in (d). Further, the reception echo signal generated by being scattered by the contrast microbubbles is obtained in the same manner as in FIG. 6, and the signals written in the respective banks in the reception waveform memory 12 are shown in FIGS. The output signal of the adder 13, that is, the input signal of the bandpass filter 14 obtained at that time, is shown in (d) in FIG. 11 and (a) in FIG. (B), (c), (d), (e), and (f) in FIG. 12 are output signals of the bandpass filter 14 when the passband center frequency is set in the same manner as in FIG. .
[0046]
As apparent from (d) in FIG. 10, even when the second harmonic component is intentionally superimposed on the transmission pulse waveform, the received echo signal that is scattered by the point reflector is input to the adder 13. The second harmonic components of the signals cancel each other out like the second harmonic component generated by nonlinear propagation in the case of FIG. 4, and the adder output signal amplitude is almost zero. On the other hand, the received echo signal generated by being scattered by the contrast microbubbles is not canceled by the addition by the adder 13 and is sufficiently amplified to contain a large amount of the second to third harmonic components as in the case of FIG. The output signal is obtained.
[0047]
Further, the error range necessary for obtaining the effect of the present invention was examined for the phase of the transmission pulse wave. As an example, when the phase of the second transmission pulse wave is shifted by 20 °, the output signal of the adder 13, that is, the input signal of the bandpass filter 14, and the passband center frequency are matched with the fundamental wave and the second harmonic. These filter output signals were obtained in the same manner as in FIG. 4 and shown in (b) and (c) of FIG. For comparison, FIG. 5A shows a signal in the case of FIG. 5, that is, when the Pulse Inversion method can be performed without a phase error. (C) in FIG. 13 corresponds to the phase shift of 20 ° of the second transmission pulse wave, and the phase of the third transmission pulse wave is shifted by 10 ° so that the sum signal of the three transmission pulse waves becomes zero. This is a case of adjustment.
[0048]
When the envelope signal of the transmission pulse wave is written as A (t) as a function of time t, the first, second, and third transmission pulse signals P1 (t) and P2 (t) in the embodiment of the present invention. , P3 (t) is when there is no phase error,
P1 (t) = A (t) sin ωt (1)
P2 (t) = A (t) sin (ωt + 2π / 3) (2)
P3 (t) = A (t) sin (ωt−2π / 3) (3)
Can be written. At this time,
P1 (t) + P2 (t) + P3 (t) = 0 (4)
The relationship is established. When the phase error φ 2 occurs in the second pulse, the second pulse is
P2 (t) = A (t) sin (ωt + 2π / 3 + φ) (5)
Can be written. At this time, the third pulse
P3 (t) = A3 (t) sin (ωt−2π / 3 + φ / 2) (6)
A3 (t) = 2A (t) cos (π / 3 + φ / 2) (7)
(4) can be satisfied regardless of the phase error φ. (C) in FIG. 13 shows the result of such a correction of the third pulse, and the fundamental wave component in the output signal of the adder 13 can be canceled despite the phase error of the second pulse. is made of. In the signal obtained by adding N reception echo signals because (4) is established, and in general, the sum signal of N pulse waveforms used for transmission is substantially zero. The fundamental wave component of is canceled.
[0049]
FIG. 14 shows the peak-to-peak value of the output signal amplitude of the adder 13 as a function of the phase error given to the second pulse. The signal amplitude normalized by the value obtained when the Pulse Inversion method can be performed without phase error is corrected when the third pulse is not corrected ((a) in the figure) and when the correction is performed ((b in the figure) )). When the phase error reaches 20 °, even if the third pulse is corrected, the signal amplitude derived from non-linear propagation in the soft tissue and not derived from the contrast microbubbles becomes more than half of the conventional Pulse Inversion method. The effect of the present invention will not be exhibited sufficiently. From this result, it can be said that the phase error of the transmission pulse is desirably about 10 ° or less in order to sufficiently obtain the effects of the present invention.
[0050]
As described above, by implementing the present invention, it is possible to extract a signal derived only from contrast-enhanced microbubbles from an echo signal, which does not include a signal component derived from non-linear propagation or the like in soft tissue. it can.
[0051]
Such a signal can be obtained as an output signal of the adder 13, and a signal with an improved S / N ratio is obtained as an output signal of the bandpass filter 14, and the envelope signal detector A16 is obtained as the envelope signal. Is output to the scan converter 18 as a signal representing the spatial distribution of contrast microbubbles. On the other hand, an envelope signal is obtained by an envelope signal detector B17 from a signal in which a signal written in one bank in the received waveform memory 12 is passed through a band pass filter 15 and the S / N ratio is improved. A signal representing the position and morphology of the soft tissue is input to the scan converter 18.
[0052]
In the scan converter 18, the output signal of the envelope signal detector B17 is used as a background, and the output signal of the envelope signal detector A16 is superimposed and displayed on the display unit 19 with different colors so that it can be easily distinguished from the background. The In this way, the distribution of contrast microbubbles in the body of the patient to be examined can be displayed in an easy-to-understand manner using a two-dimensional or three-dimensional image.
[0053]
In the above-described embodiment, the case where a signal written in one bank in the reception waveform memory 12 is used as it is as a signal representing the position and form of the soft tissue has been described. It is possible to use an addition signal obtained by appropriately weighting signals written in the three banks.
[0054]
In the series of explanations above, the embodiment using three transmission pulse waves has been described in detail. However, as shown in the principle explanation, three or more integer N transmission pulse waves having a common envelope signal are obtained. The carrier wave phase is rotated by 360 ° / N, N transmissions / receptions are performed, and N echo signals obtained are temporarily written in N banks in the reception waveform memory 12, and the read signals are added. The present invention can also be implemented by inputting to the device 13.
[0055]
【The invention's effect】
As described above, according to the present invention, from the echo signal, it does not include a signal component derived from non-linear propagation or the like in the soft tissue, and a signal derived only from the contrast microbubbles is extracted, It is possible to provide a diagnostic image having a high S / N ratio that is sufficient to perform a definitive diagnosis based on a contrast echo image. Thus, the medical diagnostic utility of the apparatus embodying the present invention is extremely great, and therefore the significance of the present invention in the industry supporting medical diagnosis is also great.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the principle of a pulse inversion method.
FIG. 2 is a diagram for explaining the principle of a three-pulse method according to the present invention.
FIG. 3 is a block diagram illustrating the configuration of an ultrasonic diagnostic apparatus according to an embodiment of the present invention.
FIG. 4 is a diagram showing an example of an echo signal obtained by a point reflector in a living body soft tissue having nonlinear propagation characteristics obtained by the present invention.
FIG. 5 is a view showing an example of an echo signal obtained by a point reflector in a soft tissue of a living body having nonlinear propagation characteristics obtained by the Pulse Inversion method.
FIG. 6 is a diagram showing an example of a scattered echo signal by contrast microbubbles obtained by the present invention.
FIG. 7 is a diagram showing a waveform after passing through a band-pass filter of a scattered echo signal due to contrast microbubbles obtained by the present invention.
FIG. 8 is a view showing an example of a scattered echo signal by contrast microbubbles obtained by the Pulse Inversion method.
FIG. 9 is a diagram showing a waveform of a scattered echo signal by contrast microbubbles after passing through a band-pass filter, obtained by the Pulse Inversion method.
FIG. 10 is a diagram showing an example of an echo signal by a point reflector in a living soft tissue obtained when the second harmonic wave is intentionally superimposed on a transmission pulse wave in the present invention.
FIG. 11 is a diagram showing an example of a scattered echo signal by contrast microbubbles obtained when the second harmonic wave is intentionally superimposed on a transmission pulse wave in the present invention.
FIG. 12 is a diagram showing a waveform after passing through a band-pass filter of a scattered echo signal due to contrast microbubbles, which is obtained when the second harmonic wave is intentionally superimposed on a transmission pulse wave in the present invention.
FIG. 13 is a diagram showing an example of an adder output signal waveform of an echo signal obtained by a point reflector in a living soft tissue obtained when there is an error in the phase of a transmission pulse in the present invention.
FIG. 14 is a diagram showing the phase error dependence of the adder output signal amplitude of an echo signal from a point reflector in a living soft tissue obtained when there is an error in the phase of a transmission pulse in the present invention.
FIG. 15 is a diagram showing an example of a transmission waveform in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic probe, 2 ... Changeover switch group, 3 ... Transmission beam former, 4 ... Transmission waveform selection part, 5 ... Transmission waveform memory, 6 ... Transmission / reception sequence control part, 10 ... Reception beam former, 11 ... Received memory selection unit, 12: Received waveform memory, 13 ... Adder, 14 ... Band pass filter A, 15 ... Band pass filter B, 16 ... Envelope signal detector A, 17 ... Envelope signal detector B, 18 ... scan converter, 19 ... display.

Claims (19)

造影用マイクロバブルが導入された生体に対して超音波パルスの送受波を行い、前記生体内部の画像を形成する超音波撮像装置であって、
送信パルスを生成する送波ビームフォーマと、前記生体からの超音波エコー信号の受波を行ない、各受波信号に遅延時間を与えて指向性を持つ受信感度を生成する遅延時間を与えた各受波信号を加算し、時系列受信エコー信号を生成する受波ビームフォーマと、
前記時系列受信エコー信号を加算する加算部と、
前記送波ビームフォーマと、前記受波ビームフォーマを制御する送受信シークエンス制御部とを備え、
前記送受信シークエンス制御部は、
Nを3以上の整数とする時、
同一の送受波フォーカス条件の下で、搬送波の位相が360/N度ずつ異なる共通の包絡線信号である送信パルスを用いてN回の送受波を、前記送波ビームフォーマと前記受波ビームフォーマに行わせるよう制御し、
前記加算部は、
前記N回の送受波により得られるN個の時系列受信エコー信号を加算し、加算信号を求め、前記加算信号を、前記造影用マイクロバブルの空間分布を表す信号として出力し、
前記N回の送受波により得られるN個の時系列受信エコー信号の複数組の重みの組み合わせによる重み付き和信号の振幅から前記生体の画像を形成し、前記振幅を反映した輝度表示により表示することを特徴とする超音波撮像装置。
An ultrasonic imaging device that performs transmission and reception of ultrasonic pulses on a living body into which a contrast microbubble is introduced, and forms an image inside the living body,
Each of the transmission beamformer for generating a transmission pulse, and receiving the ultrasonic echo signal from the living body, giving each delay time to generate a reception sensitivity with directivity by giving a delay time to each received signal A received beamformer that adds received signals and generates a time-series received echo signal;
An adder for adding the time-series received echo signals;
The transmission beamformer, and a transmission / reception sequence control unit for controlling the reception beamformer,
The transmission / reception sequence control unit includes:
When N is an integer greater than or equal to 3,
Under the same transmission / reception focus condition, N transmission / reception waves are transmitted using the transmission pulse, which is a common envelope signal whose carrier phase is different by 360 / N degrees, to the transmission beamformer and the reception beamformer. Control to let
The adding unit is
Adding N time-series reception echo signals obtained by the N times of transmission and reception, obtaining an addition signal, and outputting the addition signal as a signal representing a spatial distribution of the contrast microbubbles ;
An image of the living body is formed from the amplitude of the weighted sum signal obtained by combining a plurality of weights of N time-series received echo signals obtained by the N times of transmission / reception waves, and is displayed by luminance display reflecting the amplitude. An ultrasonic imaging apparatus.
請求項1に記載の超音波撮像装置において、前記加算部は、雑音成分を除去する帯域通過フィルタ部を有し、前記帯域通過フィルタ部を通過した信号が、前記造影用マイクロバブルの空間分布を表す信号であることを特徴とする超音波撮像装置。  The ultrasonic imaging apparatus according to claim 1, wherein the adding unit includes a band-pass filter unit that removes a noise component, and a signal that has passed through the band-pass filter unit represents a spatial distribution of the contrast microbubbles. An ultrasonic imaging apparatus characterized by being a signal to be expressed. 請求項1に記載の超音波撮像装置において、前記加算信号は、前記生体の軟部組織からの超音波エコー信号の基本波から高調波までの成分に対する送受波感度が抑圧され、前記造影用マイクロバブルからの超音波エコー信号に対する送受波感度が得られていることを特徴とする超音波撮像装置。  2. The ultrasonic imaging apparatus according to claim 1, wherein the addition signal is suppressed in transmission / reception sensitivity with respect to components from a fundamental wave to a harmonic wave of an ultrasonic echo signal from the soft tissue of the living body, and the contrast microbubbles An ultrasonic imaging apparatus characterized in that a transmission / reception sensitivity for an ultrasonic echo signal from is obtained. 請求項1に記載の超音波撮像装置において、送受波感度を抑圧する成分は、基本波から第(N−1)次高調波までの成分であることを特徴とする超音波撮像装置。  2. The ultrasonic imaging apparatus according to claim 1, wherein the component for suppressing the transmission / reception sensitivity is a component from the fundamental wave to the (N-1) th harmonic. 請求項1に記載の超音波撮像装置において、前記N個の送信パルス波の和信号の振幅が、前記N個の送信パルス波の個々の振幅よりも小さいことを特徴とする超音波撮像装置。  2. The ultrasonic imaging apparatus according to claim 1, wherein an amplitude of a sum signal of the N transmission pulse waves is smaller than an amplitude of each of the N transmission pulse waves. 請求項1に記載の超音波撮像装置において、前記時系列受信エコー信号の一部を、前記生体の軟部組織の位置と形態を表す信号とすることを特徴とする超音波撮像装置。  2. The ultrasonic imaging apparatus according to claim 1, wherein a part of the time-series received echo signal is a signal representing a position and a form of the soft tissue of the living body. 請求項1に記載の超音波撮像装置において、Nが3であり、3個の送信パルス波は、共通の包絡線信号をもち、搬送波の位相が略120°ずつ異なることを特徴とする超音波撮像装置。  2. The ultrasonic imaging apparatus according to claim 1, wherein N is 3, the three transmission pulse waves have a common envelope signal, and the phases of the carrier waves are different by approximately 120 degrees. Imaging device. 請求項1に記載の超音波撮像装置において、前記重み付き和信号の前記振幅をそれぞれ異なる表示色により重畳して表示することを特徴とする超音波撮像装置。  The ultrasonic imaging apparatus according to claim 1, wherein the amplitude of the weighted sum signal is superimposed and displayed with different display colors. 請求項1に記載の超音波撮像装置において、前記複数組の重みの組み合わせのうち、少なくとも1組は、前記軟部組織からの前記超音波エコー信号の前記基本波成分と前記偶数次高調波成分に対する前記送受波感度を抑圧し、前記造影用マイクロバブルからの前記超音波エコー信号に対する前記送受波感度を得るように構成され、他の少なくとも1組が、前記軟部組織からの前記超音波エコー信号に対する送受波感度を得るように構成されていることを特徴とする超音波撮像装置。  2. The ultrasonic imaging apparatus according to claim 1, wherein at least one of the plurality of sets of weights corresponds to the fundamental wave component and the even-order harmonic component of the ultrasonic echo signal from the soft tissue. The transmission / reception sensitivity is suppressed, and the transmission / reception sensitivity with respect to the ultrasonic echo signal from the contrast-enhancing microbubble is obtained, and at least one other set is configured to respond to the ultrasonic echo signal from the soft tissue. An ultrasonic imaging apparatus configured to obtain transmission / reception sensitivity. 造影用マイクロバブルが導入された生体に対して超音波パルスの送受波を行ない、前記造影用マイクロバブルによる前記生体内部の造影画像を形成する超音波撮像装置であって、Nを3以上の整数とする時、同一の送受波フォーカス条件の下で波形の異なる送信パルス波を用いてN回の送受波を行ない、前記N回の送受波により得られるN個の時系列受信エコー信号を加算し加算信号を求めることにより、前記生体の軟部組織からの超音波エコー信号の基本波から第(N−1)次高調波までの成分に対する送受波感度を抑圧し、前記造影用マイクロバブルに由来する第(N−1)次高調波を含む超音波エコー信号を抽出し、前記造影画像を形成することを特徴とする超音波撮像装置。  An ultrasound imaging apparatus that transmits and receives ultrasound pulses to and from a living body into which a contrast microbubble is introduced, and forms a contrast image inside the living body by the contrast microbubble, wherein N is an integer of 3 or more , N transmission / reception waves are performed using transmission pulse waves having different waveforms under the same transmission / reception focus condition, and N time-series reception echo signals obtained by the N transmission / reception waves are added. By obtaining the added signal, the transmission / reception sensitivity for the components from the fundamental wave to the (N-1) th harmonic of the ultrasonic echo signal from the soft tissue of the living body is suppressed, and the signal is derived from the contrast microbubbles. An ultrasonic imaging apparatus that extracts an ultrasonic echo signal including the (N-1) th harmonic and forms the contrast image. 造影用マイクロバブルが導入された生体に対して超音波パルスの送受波を行ない、前記造影用マイクロバブルによる前記生体内部の造影画像を形成する超音波撮像装置であって、Nを3以上の整数とする時、同一の送受波フォーカス条件の下で波形の異なる送信パルス波を用いてN回の送受波を行なう手段と、前記N回の送受波により得られるN個の時系列受信エコー信号を加算し加算信号を求めることにより、前記生体の軟部組織からの超音波エコー信号の基本波から第(N−1)次高調波までの成分に対する送受波感度を抑圧し、前記造影用マイクロバブルに由来する第(N−1)次高調波を含む超音波エコー信号を抽出し、前記造影画像を形成する手段を有することを特徴とする超音波撮像装置。  An ultrasound imaging apparatus that transmits and receives ultrasound pulses to and from a living body into which a contrast microbubble is introduced, and forms a contrast image inside the living body by the contrast microbubble, wherein N is an integer of 3 or more , Means for performing transmission / reception N times using transmission pulse waves having different waveforms under the same transmission / reception focus condition, and N time-series reception echo signals obtained by the N transmission / reception waves. By adding and obtaining the addition signal, the sensitivity of the transmission / reception with respect to the components from the fundamental wave to the (N-1) th harmonic of the ultrasonic echo signal from the soft tissue of the living body is suppressed, and the contrast microbubble is generated. An ultrasonic imaging apparatus comprising means for extracting an ultrasonic echo signal including the derived (N-1) th order harmonic and forming the contrast image. 請求項11に記載の超音波撮像装置において、前記N個の送信パルス波は、共通の包絡線信号をもち、搬送波の位相が360°/Nずつ異なることを特徴とする超音波撮像装置。  The ultrasonic imaging apparatus according to claim 11, wherein the N transmission pulse waves have a common envelope signal, and a phase of a carrier wave is different by 360 ° / N. 請求項11に記載の超音波撮像装置において、Nが3であり、3個の送信パルス波は、共通の包絡線信号をもち、搬送波の位相が略120°ずつ異なることを特徴とする超音波撮像装置。  The ultrasonic imaging apparatus according to claim 11, wherein N is 3, the three transmission pulse waves have a common envelope signal, and the phase of the carrier wave is different by approximately 120 °. Imaging device. 造影用マイクロバブルが導入された生体に対して超音波パルスの送受波を行ない、前記造影用マイクロバブルによる前記生体内部の造影画像を形成する超音波撮像装置であって、Nを3以上の整数とする時、同一の送受波フォーカス条件の下で、包絡線信号を共通とする送信パルス波を用い、その搬送波の位相を360°/Nずつ回転させて、N回の送受波を行ない、前記N回の送受波により得られるN個の時系列受信エコー信号を加算し加算信号を求めることにより第(N−1)次高調波を含む受信エコー信号から前記造影画像を形成することを特徴とする超音波撮像装置。  An ultrasound imaging apparatus that transmits and receives ultrasound pulses to and from a living body into which a contrast microbubble is introduced, and forms a contrast image inside the living body by the contrast microbubble, wherein N is an integer of 3 or more Then, under the same transmission / reception focus condition, a transmission pulse wave having a common envelope signal is used, and the phase of the carrier wave is rotated by 360 ° / N, N transmissions / receptions are performed, The contrast image is formed from the received echo signal including the (N-1) th harmonic by adding N time-series received echo signals obtained by N transmission / reception waves to obtain an added signal. An ultrasonic imaging apparatus. 請求項14に記載の超音波撮像装置において、Nが3であり、3個の送信パルス波は、共通の包絡線信号をもち、搬送波の位相が略120°ずつ異なることを特徴とする超音波撮像装置。  15. The ultrasonic imaging apparatus according to claim 14, wherein N is 3, the three transmission pulse waves have a common envelope signal, and the phase of the carrier wave is different by approximately 120 °. Imaging device. 造影用マイクロバブルが導入された生体に対して超音波パルスの送受波を行ない、前記造影用マイクロバブルによる前記生体内部の造影画像を形成する超音波撮像装置であって、Nを3以上の整数とする時、同一の送受波フォーカス条件の下で、包絡線信号を共通とする送信パルス波を用い、その搬送波の位相を360°/Nずつ回転させて、N回の送受波を行なう超音波探触子と、前記N回の送受波により得られるN個の時系列受信波形を加算する加算手段と、前記加算手段の出力から包絡線信号を検出する包絡線信号検出手段と、前記包絡線信号検出器の出力が入力されるスキャンコンバータと、前記スキャンコンバータの出力を表示する表示部とを有し、前記造影用マイクロバブルに由来する第(N−1)次高調波を含むエコー信号を抽出して前記造影画像を形成して表示することを特徴とする超音波撮像装置。  An ultrasound imaging apparatus that transmits and receives ultrasound pulses to and from a living body into which a contrast microbubble is introduced, and forms a contrast image inside the living body by the contrast microbubble, wherein N is an integer of 3 or more Then, under the same transmission / reception focus condition, an ultrasonic wave that transmits and receives N times by using a transmission pulse wave having a common envelope signal and rotating the phase of the carrier wave by 360 ° / N. A probe; an adding means for adding N time-series received waveforms obtained by the N transmission / reception waves; an envelope signal detecting means for detecting an envelope signal from the output of the adding means; and the envelope An echo signal including a (N-1) th harmonic derived from the contrast-enhancing microbubbles, having a scan converter to which an output of the signal detector is input and a display unit for displaying the output of the scan converter; An ultrasonic imaging apparatus and displaying forming said contrast image out. 請求項16に記載の超音波撮像装置において、Nが3であり、3個の送信パルス波は、共通の包絡線信号をもち、搬送波の位相が略120°ずつ異なることを特徴とする超音波撮像装置。  17. The ultrasonic imaging apparatus according to claim 16, wherein N is 3, the three transmission pulse waves have a common envelope signal, and the phases of the carrier waves are different by approximately 120 degrees. Imaging device. 請求項10、11、14、16のいずれか一項に記載の超音波撮像装置において、前記時系列受信エコー信号の一部を、前記生体の軟部組織の位置と形態を表す信号とすることを特徴とする超音波撮像装置。  The ultrasonic imaging apparatus according to any one of claims 10, 11, 14, and 16, wherein a part of the time-series reception echo signal is a signal representing a position and a form of a soft tissue of the living body. A characteristic ultrasonic imaging apparatus. 請求項1乃至18のいずれか一項に記載の超音波撮像装置において、送受波感度を抑圧する成分は、基本波から第(N−1)次高調波までの成分であることを特徴とする超音波撮像装置。  The ultrasonic imaging apparatus according to any one of claims 1 to 18, wherein the component for suppressing transmission / reception sensitivity is a component from the fundamental wave to the (N-1) th harmonic. Ultrasonic imaging device.
JP2003071784A 2003-03-17 2003-03-17 Ultrasonic imaging device Expired - Fee Related JP4422421B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003071784A JP4422421B2 (en) 2003-03-17 2003-03-17 Ultrasonic imaging device
CN200380109556.4A CN1744858B (en) 2003-03-17 2003-12-04 Ultrasonic imaging device
EP03768130.1A EP1607044B1 (en) 2003-03-17 2003-12-04 Ultrasonic imaging device
PCT/JP2003/015559 WO2004082483A1 (en) 2003-03-17 2003-12-04 Ultrasonic imaging device
US10/546,658 US7604600B2 (en) 2003-03-17 2003-12-04 Ultrasonic imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071784A JP4422421B2 (en) 2003-03-17 2003-03-17 Ultrasonic imaging device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009164454A Division JP2009233352A (en) 2009-07-13 2009-07-13 Ultrasonic imaging apparatus

Publications (3)

Publication Number Publication Date
JP2004275491A JP2004275491A (en) 2004-10-07
JP2004275491A5 JP2004275491A5 (en) 2005-11-17
JP4422421B2 true JP4422421B2 (en) 2010-02-24

Family

ID=33027704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071784A Expired - Fee Related JP4422421B2 (en) 2003-03-17 2003-03-17 Ultrasonic imaging device

Country Status (5)

Country Link
US (1) US7604600B2 (en)
EP (1) EP1607044B1 (en)
JP (1) JP4422421B2 (en)
CN (1) CN1744858B (en)
WO (1) WO2004082483A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7347855B2 (en) * 2001-10-29 2008-03-25 Ultrashape Ltd. Non-invasive ultrasonic body contouring
CA2490725A1 (en) * 2002-06-25 2003-12-31 Ultrashape Inc. Devices and methodologies useful in body aesthetics
CA2597116A1 (en) * 2005-02-06 2006-08-10 Ultrashape Ltd. Non-thermal acoustic tissue modification
US20060241440A1 (en) * 2005-02-07 2006-10-26 Yoram Eshel Non-thermal acoustic tissue modification
JP4717484B2 (en) * 2005-03-30 2011-07-06 株式会社日立メディコ Ultrasonic diagnostic equipment
JP4772788B2 (en) * 2005-05-27 2011-09-14 株式会社日立メディコ Ultrasonic diagnostic apparatus and ultrasonic image display method
JP4163733B2 (en) * 2006-07-18 2008-10-08 アロカ株式会社 Ultrasonic diagnostic equipment
KR100930073B1 (en) * 2007-11-13 2009-12-08 서강대학교산학협력단 Second harmonic signal detection device and method
JP5025738B2 (en) * 2008-01-10 2012-09-12 株式会社日立メディコ Ultrasonic imaging device
CN101496728B (en) * 2008-02-03 2013-03-13 深圳迈瑞生物医疗电子股份有限公司 Supersonic frequency composite imaging method and device
CN101846693B (en) * 2009-03-26 2013-08-21 深圳先进技术研究院 Speed measurement system and speed measurement method of ultrasonic particle image
CN103201600B (en) 2010-11-11 2015-05-20 Ssi技术公司 Systems and methods of determining a quality and/or depth of diesel exhaust fluid
JP5944749B2 (en) * 2012-06-05 2016-07-05 株式会社東芝 Ultrasonic diagnostic apparatus and ultrasonic imaging program
US9274215B2 (en) * 2013-03-08 2016-03-01 Chison Medical Imaging, Inc. Ultrasound fusion harmonic imaging systems and methods
KR101555264B1 (en) * 2013-11-29 2015-09-24 알피니언메디칼시스템 주식회사 Ultrasound Diagnostic Apparatus and Method
CN104224232A (en) * 2014-09-25 2014-12-24 飞依诺科技(苏州)有限公司 Ultrasonic harmonic imaging method and device
JP2017136235A (en) * 2016-02-04 2017-08-10 コニカミノルタ株式会社 Ultrasonic diagnostic equipment, and, ultrasonic signal processing method
US11596381B2 (en) * 2018-03-19 2023-03-07 Verathon Inc. Multiple frequency scanning using an ultrasound probe
CN116740265B (en) * 2023-04-25 2024-04-26 华润武钢总医院 Three-dimensional ultrasonic super-resolution rapid imaging method based on breast cancer diagnosis

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5706819A (en) * 1995-10-10 1998-01-13 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic imaging with harmonic contrast agents
US6095980A (en) 1997-10-02 2000-08-01 Sunnybrook Health Science Centre Pulse inversion doppler ultrasonic diagnostic imaging
US6108572A (en) * 1998-03-31 2000-08-22 General Electric Company Method and apparatus for harmonic imaging using multiple focal zones
US6213947B1 (en) * 1999-03-31 2001-04-10 Acuson Corporation Medical diagnostic ultrasonic imaging system using coded transmit pulses
US6450961B1 (en) * 1999-06-03 2002-09-17 Kabushiki Kaisha Toshiba Ultrasound imaging using flash echo imaging technique
JP2001212144A (en) * 2000-01-31 2001-08-07 Toshiba Corp Ultrasonic diagnostic apparatus and ultrasonic imaging method
US6361498B1 (en) * 2000-02-11 2002-03-26 George A Brock-Fisher Contrast agent imaging with suppression of nonlinear tissue response
JP4567842B2 (en) * 2000-04-10 2010-10-20 株式会社東芝 Ultrasonic diagnostic equipment
JP4232134B2 (en) * 2001-02-01 2009-03-04 株式会社日立メディコ Ultrasound contrast drawing device
US6866631B2 (en) 2001-05-31 2005-03-15 Zonare Medical Systems, Inc. System for phase inversion ultrasonic imaging
JP4744727B2 (en) * 2001-06-06 2011-08-10 株式会社東芝 Ultrasound diagnostic imaging equipment
JP3959257B2 (en) * 2001-11-08 2007-08-15 株式会社東芝 Ultrasonic diagnostic equipment

Also Published As

Publication number Publication date
CN1744858A (en) 2006-03-08
CN1744858B (en) 2011-01-12
EP1607044A4 (en) 2009-04-15
EP1607044A1 (en) 2005-12-21
EP1607044B1 (en) 2015-08-19
JP2004275491A (en) 2004-10-07
US7604600B2 (en) 2009-10-20
WO2004082483A1 (en) 2004-09-30
US20060173340A1 (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP4422421B2 (en) Ultrasonic imaging device
JP4415011B2 (en) Ultrasonic imaging device
JP4365909B2 (en) Pulse inversion Doppler ultrasonic diagnostic image processing method and apparatus
US6682482B1 (en) Medical ultrasonic imaging pulse transmission method
JP4723747B2 (en) Ultrasonic diagnostic equipment
JP4433427B2 (en) System and method for imaging ultrasound scatterers
JP4567842B2 (en) Ultrasonic diagnostic equipment
US6602195B1 (en) Medical ultrasonic imaging pulse transmission method
US20080275338A1 (en) Nonlinear Ultrasonic Diagnostic Imaging Using Intermodulation Product Signals
US20080249417A1 (en) Non-Linear Ultrasonic Diagnostic Imaging Using Intermodulation Product Signals
JPH0420141B2 (en)
JP4717484B2 (en) Ultrasonic diagnostic equipment
JPH09131344A (en) Ultrasonic image picking-up method, device, ultrasonic probe, and ultrasonic contrast medium
JP3093823B2 (en) Ultrasound Doppler diagnostic device
JP2004536655A (en) Frequency compound apparatus and method for performing contrast imaging
US20080275345A1 (en) Ultrasonic Diagnostic Contrast Imaging at Moderate Mi Levels
JPH02307436A (en) Ultrasonic blood flow imaging apparatus
JPH03155843A (en) Ultrasonic diagnostic device
JP2009233352A (en) Ultrasonic imaging apparatus
JP3519111B2 (en) Ultrasound diagnostic equipment
Løvstakken Signal processing in diagnostic ultrasound: Algorithms for real-time estimation and visualization of blood flow velocity
Guo et al. High-resolution ultrasound imaging using unified pixel-based and filtered delay multiply and sum beamforming
JPH0217044A (en) Ultrasonic doppler blood flowmeter
JPH05200024A (en) Ultrasonic wave doppler diagnosing apparatus
JPH11113893A (en) Ultrasonograph

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4422421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees