JP4421755B2 - Lens adjustment device and lens adjustment method - Google Patents

Lens adjustment device and lens adjustment method Download PDF

Info

Publication number
JP4421755B2
JP4421755B2 JP2000299304A JP2000299304A JP4421755B2 JP 4421755 B2 JP4421755 B2 JP 4421755B2 JP 2000299304 A JP2000299304 A JP 2000299304A JP 2000299304 A JP2000299304 A JP 2000299304A JP 4421755 B2 JP4421755 B2 JP 4421755B2
Authority
JP
Japan
Prior art keywords
lens
light
optical axis
adjusting
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000299304A
Other languages
Japanese (ja)
Other versions
JP2002109753A (en
Inventor
厚司 福井
和政 ▲高▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000299304A priority Critical patent/JP4421755B2/en
Publication of JP2002109753A publication Critical patent/JP2002109753A/en
Application granted granted Critical
Publication of JP4421755B2 publication Critical patent/JP4421755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ディスク方式の情報記億媒体、例えばDVD(Digita1 Versatile Disk)、に情報を読み書きする光学レンズ、またはレーザ加工機、レーザ顕微鏡などにおいて光を結橡して光スポットを形成する光学レンズの調整装置及び調整方法に関する。
【0002】
【発明の背景】
光ディスク方式の高密度情報記憶媒体から情報を読み取り、またこの高密度情報記録媒体に情報を記億するためには、光源から出射された光を目的の場所に正確に照射できる光学系(光ピックアップ)が必要である。そのため、特に、光学系の対物レンズは、それ自体に厳格な光学的特性が要求されるだけでなく、目的の場所に精度良く固定されなければならない。
【0003】
そこで、対物レンズの検査又は調整の方法として、図1に示すように、対物レンズ1を介して出射した光(例えば、レーザ光)2をレンズ検査用の参照基準3(例えば、光ディスク)に照射し、この参照基準3からの反射光を検出し、この検出から得られた再生信号4を基準信号5と比較し、これら再生信号4と基準信号5との位相差6を最小にするように又はその位相差が所定の許容値に収まるように、対物レンズ1の傾き等を調整すること(ジッタ法)が考えられる。
【0004】
しかし、一般に対物レンズ1の特性は個々に異なり、対物レンズ1の傾斜量等と位相差6との間には一定した関係がなく、図2に示すように、1つの対物レンズ1Aと別の対物レンズ1Bでは、著しく異なる特性(レンズ傾斜角―位相特性)を示すことがある。また、対物レンズの傾斜調整と信号の対比とを繰り返し行なわなければならないし、どの段階で調整を完了するかの客観的判断が難しい。さらに、再生信号4から対物レンズ1の傾斜等を十分に把握できない。
【0005】
一方、近年、ノート型パソコン等の携帯用コンピュータの普及及び薄型化と共に、光ピックアップも薄型化が必要とされている。そのため、対物レンズの調整に必要な機構は光ピックアップに搭載しない構成を採用する試みがなされている。この場合、対物レンズの調整時、該対物レンズの外側に配置された調整装置によって対物レンズを支持し、調整後、接着剤によって対物レンズを光ピックアップに固定する方法が採られる。
【0006】
ところで、対物レンズがその光軸と直交する方向にずれると、この対物レンズを介して入射された光の受像位置(スポット位置)がずれ、そのためにトラッキング信号にDCオフセットが発生し、トラッキングサーボが不安定になる。したがって、対物レンズは、その傾きだけでなく、光軸と直交する方向にも調整する必要がある。
【0007】
しかし、対物レンズが傾くと受像位置もずれる。そのため、光軸と直交する方向に対する対物レンズの調整を行なうためには、その前に対物レンズの傾きを矯正しておく必要がある。
【0008】
そこで、本発明は、新たなレンズの調整装置及び調整方法を提供することを目的とする。
【0009】
【発明の概要】
本発明のレンズ調整装置は、光源とレンズと受像素子とを有する光ピックアップのレンズ調整装置において、上記光ピックアップを上記レンズ調整装置の光軸に対して固定する固定台と、上記レンズからの光を透過及び回折させて得られた異なる次数の回折光を干渉させて干渉像を形成すると共に上記レンズから出射した光を反射して上記レンズに入射させる半透過回折手段と、上記半透過回折手段を上記光軸に対して移動させる移動手段と、上記干渉像をもとに上記光軸に対する上記レンズの傾斜を求める収差計測手段と、上記収差計測手段で求めた傾斜をもとに上記光軸に対する上記レンズの傾斜を調整する傾斜調整手段と、上記受像素子が受光した上記半透過回折手段からの反射光をもとに上記光軸と直交する方向に上記レンズの位置を調整する位置調整手段とを備えたことを特徴とする。
【0010】
また、本発明、光源とレンズと受像素子とを有する光ピックアップを、レンズ調整装置を用いて調整するレンズ調整方法において、上記光ピックアップを上記レンズ調整装置の光軸に対して固定する工程と、上記レンズからの光を半透過回折格子で透過及び回折させて得られた異なる次数の回折光を干渉させて干渉像を形成すると共に、上記レンズからの光を上記半透過回折格子で反射し、上記レンズを介して上記受像素子に投射する工程と、
上記半透過回折格子を上記光軸に対して移動させる工程と、上記干渉像から上記レンズの収差を求める工程と、上記収差をもとに上記光軸に対する上記レンズの傾きを調整する工程と、上記受像素子で受像した上記半透過回折手段からの反射光をもとに上記光軸と直交する方向に上記レンズの位置を調整する工程とを備えたことを特徴とする。このレンズ調整方法はまた、傾きと位置が調整されたレンズを光ピックアップに固定する工程を含むものであってもよい。
【0011】
【発明の実施の形態】
以下、添付図面を参照して本発明の複数の形態について説明する。まず、図3は、光ディスク方式の情報記億媒体、例えばDVD(Digita1 Versatile Disk)、に情報を読み書きする光学レンズ、またはレーザ加工機、レーザ顕微鏡などにおいて光を結橡して光スポットを形成する光学レンズ調整システム10の全体を示す。
【0012】
調整システム10によって調整されるレンズ(以下、「対物レンズ」という。)12は、光ピックアップ14に収容されている。対物レンズ12は、その調整が完了するまで、光ピックアップ14に対して移動可能である。光ピックアップ14は、電荷結合素子などの撮像素子又は受像素子16と、光(例えば、レーザ光)を発生する光源18と、光源18で発生した光を対物レンズ12から出射する第1の光学系と、対物レンズ12から入射された光を受像素子16に導く第2の光学系を有する。第1の光学系には、光源18で発生した光を平行な光に加工するコリメータレンズ20と、この平行な光を反射して対物レンズ12から出射させるミラー22を有する。第2の光学系は、コリメータレンズ20とミラー22との間に配置され、対物レンズ12から入射してミラー22で反射した光を受像素子16に導くハーフミラー24を有する。このように構成された光ピックアップ14は、対物レンズ12の調整時、以下に説明する調整システム10に対して固定される。
【0013】
調整システム10は光軸(固定軸)26を有する。光軸26は、以下に説明するレンズ調整の基本となる軸である。レンズ調整時、光ピックアップ14は図示しない固定台に支持され、対物レンズ12はその光軸が光軸26とほぼ一致するように調整装置28に支持される。ただし、対物レンズ12の光軸は、この時点で光軸26に一致している必要はない。調整システム10はまた、回折手段である回折格子30を有する。回折格子30は、アクリル樹脂、ポリカーボネート樹脂、またはガラスなど透明な材料からなる板からなり、この板の一方の表面(回折面)に所定のピッチをあけて平行に並ぶ複数の溝が形成されている。また、溝が形成されている表面には、アルミニウム、クロム、銀、金など反射性材料からなる薄い反射膜が形成されている。したがって、回折格子30に入射された光は異なる次数の複数の回折光に回折されると同時に、一部の光が回折格子で反射して入射経路を逆方向に送られる。溝のピッチは、例えば、調整対象である光学レンズが光ディスクの情報読取・書込用の対物レンズの場合、この光ディスクのトラック間の距離に等しくするのが好ましい。
【0014】
回折格子30は、光軸26に対して垂直に、また回折面が対物レンズ12の焦点にほぼ一致させて配置される。回折格子30はまた、該回折格子30を光軸26に直交する方向(図3の左右方向)に移動させる移動装置32に連結されている。なお、移動装置32には、回折格子30を微小量づつ移動できる、ピエゾ素子・直流モータ・又は分解能の高いステッピングモータを有するリニアステージが好適に利用できる。回折格子30を挟んで対物レンズ12の反対側には、対物レンズ12と回折格子30を透過した光を平行な光に復調するコリメータレンズ34と、コリメータレンズ34を透過した平行光を再び結像する結像レンズ36と、結像レンズ36を透過した光を受光する撮像素子(例えば、電荷結合素子)38が配置されている。
【0015】
撮像素子38は、収差計測装置40に電気的に接続されている。収差計測装置40は、撮像素子38で受光した像を表示する表示装置42と、表示装置42に表示された像をもとに対物レンズ12の収差を計測する収差演算装置44を有する。収差計測装置40は、上述した調整装置28と移動装置32の駆動を制御する制御装置46に電気的に接続されている。
【0016】
調整システム10はまた、光軸26と対物レンズ12の光軸との位置ずれを検出する位置ずれ検出装置48を有する。この位置ずれ検出装置48は、調整システム10に対して光ピックアップ14が図示するように設定された状態で、受像素子16で受像された光スポットが該受像素子16の適正位置に受像されているか否か、すなわち光軸26に対する対物レンズ12の光軸の位置ずれを検出するために、光ピックアップ14の受像素子16と電気的に接続される。位置ずれ検出装置48はまた、制御装置46に電気的に接続されている。
【0017】
以上の構成を供えた調整システム10による対物レンズ12の調整時、光源18で発生した光は、コリメータレンズ20によって平行な光となり、ハーフミラー24を通り、ミラー22で反射し、対物レンズ12から出射する。対物レンズ12から出射した光は、回折格子30、特に溝が形成されている回折面で焦点を結ぶ。また、回折格子30を透過した光は、0次回折光、±1次回折光、・・・±n次回折光に分かれ、コリメータレンズ34、結像レンズ36を介し、撮像素子38に投射される。ここで、回折格子30は、撮像素子38の投影面で、0次回折光50と+1次回折光52が部分的に干渉し、また0次回折光50と−1次回折光54が干渉するように設計されている。したがって、撮像素子38に投射された像を再生する表示装置42には、図4(a)、(b)に示すように、0次回折光50と+1次回折光52の干渉像(干渉縞)と、0次回折光50と−1次回折光54の干渉像(干渉縞)が映し出される。
【0018】
干渉縞の形は、対物レンズ12の傾斜方向に応じて異なる。例えば、対物レンズ12が回折格子30の溝の長手方向と平行であるが、この溝と直交する方向(溝の横断方向)に傾いている場合、図4(a)に示す干渉縞が現れる。また、対物レンズ12が回折格子30の溝の横断方向に平行であるが、この溝の長手方向に傾いている場合、図4(b)に示す干渉縞が現れる。
【0019】
このとき、制御装置46からの信号に基づいて移動装置32を駆動し、回折格子30を図3の左右方向(溝の横断方向)に移動させると、0次回折光の位相の変化と+1次回折光および−1次回折光の位相の変化との間にずれを生じ、干渉縞の各点における光強度が変化する。例えば、図4(a)中の点aの光強度Iaの変化は図5に示す波形(正弦波)を描き、図4(a)中の点bの光強度Ibの変化は図5に示す波形(正弦波)を描き、両光強度波形の間に位相差φが見られる。したがって、例えば点aの位相を基準として、この点aの位相と図4(a)のX軸上における別の複数の点の位相との差をグラフにプロットすると、図6に示す2次曲線が得られ、この2次曲線の2次の係数が横断方向に関する対物レンズ12の傾きを表す。なお、X軸は、図示するように、0次回折光の中心と±1次回折光の中心とを結ぶ線(中心線)上にある干渉縞の中心点(点aに相当)を通り、その中心線に直交する線である。
【0020】
同様に、点aの位相を基準として、この点aの位相と図4(b)に示すY、Y’軸上における別の複数の点の位相との差をグラフにプロットすると、図6に示す2次曲線と同様の2次曲線が得られ、この2次曲線の2次の係数が長手方向に関する対物レンズ12の傾きを表す。なお、Y、Y’軸は、図示するように、点aを通り、中心線と例えば45°の角度を成す方向の線である。
【0021】
以上のようにして対物レンズ12の傾きを求める演算は、収差演算装置44で自動的に行なうことができる。
【0022】
収差演算装置44で演算された対物レンズ12の傾きは、制御装置46に出力される。制御装置46は、収差演算装置44から得られた対物レンズ12の傾きをもとに、調整装置28を駆動し、対物レンズ12の傾きを補正する。
【0023】
次に、対物レンズ12の位置ずれ調整が行なわれる。この位置ずれ調整は、光ピックアップ14の受像素子16に受像される光を利用して行なわれる。具体的に、光ピックアップ14において、対物レンズ12から回折格子30に投射された光の一部は、該回折格子30で反射する。この反射光は、対物レンズ12に入射し、ミラー22、ハーフミラー24で反射し、図7に示すように、受像素子16に投射される。受像素子16は、受像した光スポット56の位置に対応する信号を位置ずれ検出装置48に出力する。位置ずれ検出装置48は、受像素子16から提供された信号をもとに、光軸26に対する光スポット56の位置ずれ量を検出して制御装置46に出力する。
【0024】
位置ずれ量の検出を説明する。いま、対物レンズ12の光軸が調整システム10の光軸26に一致していれば、受像素子16に投射された光スポット56は、点線58で示された場所(基準位置)に存在する。しかし、対物レンズ12の光軸が調整システム10の光軸26に不一致の場合、光スポット56は図7に実線で示す位置に存在する。したがって、本実施形態の位置ずれ検出装置48では、図7に示すように、光スポットの基準位置の中心を通るX軸60とこれに垂直なY軸62を仮想する。また、これら2つの軸60、62によって分割された4つの領域I,II,III,IVを仮想する。そして、位置ずれ検出装置48は、各領域I,II,III,IVの中で光スポット56の示す面積又は光強度(各領域における光強度を積分した値)を求め、X軸60に平行な方向(X方向)とY軸62に平行な方向(Y方向)に関し、基準位置に対する光スポット56の位置ずれΔx、Δyを計算する。このようにして計算された位置ずれΔx、Δyは制御装置46に送られる。そして、制御装置46は、調整装置28を駆動し、光スポット56の中心が光軸26に一致するように(すなわち、位置ずれΔx、Δyを消去するように)、対物レンズ12を移動する。
【0025】
このように、光軸26に対する傾斜と位置ずれが調整された対物レンズ12は、接着剤等により光ピックアップ14に固定される。また、対物レンズ12が固定された光ピックアップ14は、その後、対応する装置に搭載される。
【0026】
なお、以上の説明では、受像素子16の受像領域をX軸とY軸を用いて4分割し、分割された各領域に投射された光スポットの面積又は光強度から対物レンズ12の位置ずれを計算したが、受像領域の分割方法及び分割数等な任意に設定可能である。
【0027】
【発明の効果】
以上のように本発明のレンズ調整装置およびレンズ調整方法によれば、1回の調整操作で、基準となる軸に対するレンズの傾きや位置ずれを調整できる。
【図面の簡単な説明】
【図1】 従来のジッター式光ピックアップのレンズ調整の概略図。
【図2】 従来例の説明図。
【図3】 本発明にかかるレンズ調整装置の概略構成図。
【図4】 回折格子で回折された回折光の干渉縞を示す図。
【図5】 回折格子の微小変位による光強度変化を示す図
【図6】 干渉縞の位相分布を示す図。
【図7】 受像素子に投射された光スポットを示す図。
【符号の説明】
10:光学レンズ調整システム
12:対物レンズ
14:光ピックアップ
16:受像素子
18:光源
28:調整装置
40:収差計測装置
44:収差演算装置
46:制御装置
48:位置ずれ検出装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical lens that reads and writes information on an information storage medium of an optical disk system, such as a DVD (Digita1 Versatile Disk), or an optical lens that combines light in a laser processing machine, a laser microscope, etc. to form a light spot. The present invention relates to an adjusting device and an adjusting method.
[0002]
BACKGROUND OF THE INVENTION
In order to read information from an optical disk type high-density information storage medium and to store information on the high-density information recording medium, an optical system (optical pickup) that can accurately irradiate the target location with light emitted from the light source )is required. Therefore, in particular, the objective lens of the optical system is not only required to have strict optical characteristics, but must be accurately fixed at a target location.
[0003]
Therefore, as a method for inspecting or adjusting the objective lens, as shown in FIG. 1, light (for example, laser light) 2 emitted through the objective lens 1 is irradiated onto a reference standard 3 (for example, an optical disk) for lens inspection. Then, the reflected light from the reference standard 3 is detected, the reproduced signal 4 obtained from this detection is compared with the reference signal 5, and the phase difference 6 between the reproduced signal 4 and the reference signal 5 is minimized. Alternatively, it is conceivable to adjust the tilt or the like of the objective lens 1 (jitter method) so that the phase difference falls within a predetermined allowable value.
[0004]
However, in general, the characteristics of the objective lens 1 are different from each other, and there is no fixed relationship between the amount of tilt of the objective lens 1 and the phase difference 6, and as shown in FIG. The objective lens 1B may exhibit remarkably different characteristics (lens tilt angle-phase characteristics). In addition, it is necessary to repeatedly perform the tilt adjustment of the objective lens and the signal comparison, and it is difficult to objectively determine at which stage the adjustment is completed. Further, the inclination of the objective lens 1 cannot be sufficiently grasped from the reproduction signal 4.
[0005]
On the other hand, in recent years, along with the popularization and thinning of portable computers such as notebook personal computers, the optical pickup is also required to be thinned. Therefore, an attempt has been made to adopt a configuration in which the mechanism necessary for adjusting the objective lens is not mounted on the optical pickup. In this case, at the time of adjustment of the objective lens, a method is adopted in which the objective lens is supported by an adjustment device arranged outside the objective lens, and after adjustment, the objective lens is fixed to the optical pickup with an adhesive.
[0006]
By the way, if the objective lens is displaced in the direction perpendicular to the optical axis, the image receiving position (spot position) of the light incident through the objective lens is displaced, and therefore a DC offset is generated in the tracking signal, and the tracking servo is activated. It becomes unstable. Therefore, the objective lens needs to be adjusted not only in its inclination but also in a direction perpendicular to the optical axis.
[0007]
However, when the objective lens is tilted, the image receiving position is also shifted. Therefore, in order to adjust the objective lens in the direction orthogonal to the optical axis, it is necessary to correct the inclination of the objective lens before that.
[0008]
Therefore, an object of the present invention is to provide a new lens adjustment device and adjustment method.
[0009]
SUMMARY OF THE INVENTION
The lens adjustment device of the present invention is a lens adjustment device for an optical pickup having a light source, a lens, and an image receiving element, and a fixing base for fixing the optical pickup to the optical axis of the lens adjustment device ; A transflective means for interfering with diffracted light of different orders obtained by transmitting and diffracting light to form an interference image and reflecting the light emitted from the lens to enter the lens, and the transflective diffraction moving means for moving relative to the optical axis means, and the aberration measuring means for determining the inclination of the lens with respect to the optical axis based on the interference image, the light based on the gradient calculated above aberration measuring means a tilt adjusting means for adjusting the inclination of the lens with respect to the axis, the position of the lens in a direction perpendicular to the optical axis based on the light reflected from the semi-transmissive diffraction means image-receiving element has received Characterized by comprising a position adjusting means for adjusting.
[0010]
According to another aspect of the present invention, there is provided a lens adjustment method for adjusting an optical pickup having a light source, a lens, and an image receiving element using a lens adjustment device, and the step of fixing the optical pickup to the optical axis of the lens adjustment device. And interference light with different orders obtained by transmitting and diffracting the light from the lens with a semi-transmissive diffraction grating to form an interference image and reflecting the light from the lens with the semi-transmissive diffraction grating. And projecting the image receiving element through the lens;
Moving the transflective grating with respect to the optical axis ; obtaining the aberration of the lens from the interference image; adjusting the inclination of the lens with respect to the optical axis based on the aberration; And a step of adjusting the position of the lens in a direction orthogonal to the optical axis based on the reflected light from the transflective means received by the image receiving element. This lens adjustment method may also include a step of fixing the lens whose tilt and position are adjusted to the optical pickup.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a plurality of embodiments of the present invention will be described with reference to the accompanying drawings. First, FIG. 3 shows a light spot formed by ligating light on an optical lens type information storage medium such as a DVD (Digita 1 Versatile Disk), an optical lens that reads and writes information, a laser processing machine, a laser microscope, or the like. 1 shows an entire optical lens adjustment system 10.
[0012]
A lens (hereinafter referred to as “objective lens”) 12 that is adjusted by the adjustment system 10 is housed in an optical pickup 14. The objective lens 12 is movable with respect to the optical pickup 14 until the adjustment is completed. The optical pickup 14 includes an imaging device or image receiving device 16 such as a charge coupled device, a light source 18 that generates light (for example, laser light), and a first optical that emits light generated by the light source 18 from the objective lens 12. And a second optical system that guides light incident from the objective lens 12 to the image receiving element 16. The first optical system includes a collimator lens 20 that processes light generated by the light source 18 into parallel light, and a mirror 22 that reflects the parallel light and emits it from the objective lens 12. The second optical system includes a half mirror 24 that is disposed between the collimator lens 20 and the mirror 22 and guides the light incident from the objective lens 12 and reflected by the mirror 22 to the image receiving element 16. The optical pickup 14 configured as described above is fixed to an adjustment system 10 described below when the objective lens 12 is adjusted.
[0013]
The adjustment system 10 has an optical axis (fixed axis) 26. The optical axis 26 is a basic axis for lens adjustment described below. At the time of lens adjustment, the optical pickup 14 is supported by a fixed base (not shown), and the objective lens 12 is supported by the adjusting device 28 so that the optical axis thereof substantially coincides with the optical axis 26. However, the optical axis of the objective lens 12 does not have to coincide with the optical axis 26 at this time. The adjustment system 10 also has a diffraction grating 30 which is a diffraction means. The diffraction grating 30 is made of a plate made of a transparent material such as acrylic resin, polycarbonate resin, or glass, and a plurality of grooves arranged in parallel with a predetermined pitch are formed on one surface (diffraction surface) of the plate. Yes. A thin reflective film made of a reflective material such as aluminum, chromium, silver, or gold is formed on the surface where the groove is formed. Therefore, the light incident on the diffraction grating 30 is diffracted into a plurality of diffracted lights of different orders, and at the same time, a part of the light is reflected by the diffraction grating and sent through the incident path in the opposite direction. For example, when the optical lens to be adjusted is an objective lens for reading / writing information on an optical disc, the pitch of the grooves is preferably equal to the distance between tracks on the optical disc.
[0014]
The diffraction grating 30 is disposed perpendicular to the optical axis 26 and the diffraction surface is substantially coincident with the focal point of the objective lens 12. The diffraction grating 30 is also connected to a moving device 32 that moves the diffraction grating 30 in a direction perpendicular to the optical axis 26 (left-right direction in FIG. 3). As the moving device 32, a linear stage having a piezo element, a direct current motor, or a stepping motor with high resolution that can move the diffraction grating 30 by a minute amount can be preferably used. On the opposite side of the objective lens 12 across the diffraction grating 30, a collimator lens 34 that demodulates the light transmitted through the objective lens 12 and the diffraction grating 30 into parallel light, and the parallel light transmitted through the collimator lens 34 is imaged again. An imaging lens 36 that receives the light that has passed through the imaging lens 36 is disposed.
[0015]
The image sensor 38 is electrically connected to the aberration measuring device 40. The aberration measurement device 40 includes a display device 42 that displays an image received by the image sensor 38 and an aberration calculation device 44 that measures the aberration of the objective lens 12 based on the image displayed on the display device 42. The aberration measuring device 40 is electrically connected to the control device 46 that controls the driving of the adjusting device 28 and the moving device 32 described above.
[0016]
The adjustment system 10 also includes a misalignment detection device 48 that detects misalignment between the optical axis 26 and the optical axis of the objective lens 12. In this misalignment detection device 48, the light spot received by the image receiving element 16 is received at an appropriate position of the image receiving element 16 in a state where the optical pickup 14 is set to the adjustment system 10 as shown in the figure. In order to detect whether or not the optical axis of the objective lens 12 is displaced with respect to the optical axis 26, it is electrically connected to the image receiving element 16 of the optical pickup 14. The misregistration detection device 48 is also electrically connected to the control device 46.
[0017]
When the objective lens 12 is adjusted by the adjustment system 10 having the above configuration, the light generated by the light source 18 becomes parallel light by the collimator lens 20, passes through the half mirror 24, is reflected by the mirror 22, and is reflected from the objective lens 12. Exit. The light emitted from the objective lens 12 is focused on the diffraction grating 30, particularly the diffraction surface on which grooves are formed. The light transmitted through the diffraction grating 30 is divided into 0th-order diffracted light, ± 1st-order diffracted light,... ± nth-order diffracted light, and is projected onto the image sensor 38 via the collimator lens 34 and the imaging lens 36. Here, the diffraction grating 30 is designed such that the 0th-order diffracted light 50 and the + 1st-order diffracted light 52 partially interfere with each other and the 0th-order diffracted light 50 and the −1st-order diffracted light 54 interfere with each other on the projection surface of the image sensor 38. ing. Therefore, the display device 42 that reproduces the image projected on the image sensor 38 has interference images (interference fringes) of the 0th-order diffracted light 50 and the + 1st-order diffracted light 52, as shown in FIGS. 4 (a) and 4 (b). An interference image (interference fringes) of the 0th-order diffracted light 50 and the −1st-order diffracted light 54 is displayed.
[0018]
The shape of the interference fringes varies depending on the tilt direction of the objective lens 12. For example, when the objective lens 12 is parallel to the longitudinal direction of the groove of the diffraction grating 30 but is inclined in a direction orthogonal to the groove (transverse direction of the groove), interference fringes shown in FIG. 4A appear. Further, when the objective lens 12 is parallel to the transverse direction of the groove of the diffraction grating 30 but is inclined in the longitudinal direction of the groove, interference fringes shown in FIG. 4B appear.
[0019]
At this time, when the moving device 32 is driven based on the signal from the control device 46 and the diffraction grating 30 is moved in the left-right direction (transverse direction of the groove) in FIG. 3, the phase change of the 0th-order diffracted light and the + 1st-order diffracted light And the phase change of the −1st order diffracted light causes a shift, and the light intensity at each point of the interference fringe changes. For example, the change in the light intensity Ia at the point a in FIG. 4A draws the waveform (sine wave) shown in FIG. 5, and the change in the light intensity Ib at the point b in FIG. 4A is shown in FIG. A waveform (sine wave) is drawn, and a phase difference φ is seen between the two light intensity waveforms. Therefore, for example, when the phase of the point a is used as a reference and the difference between the phase of the point a and the phases of a plurality of other points on the X axis in FIG. 4A is plotted on a graph, a quadratic curve shown in FIG. The quadratic coefficient of the quadratic curve represents the inclination of the objective lens 12 with respect to the transverse direction. As shown in the figure, the X axis passes through the center point (corresponding to the point a) of the interference fringe on the line (center line) connecting the center of the 0th order diffracted light and the center of the ± 1st order diffracted light. It is a line orthogonal to the line.
[0020]
Similarly, when the phase of the point a is used as a reference and the difference between the phase of the point a and the phases of other points on the Y and Y ′ axes shown in FIG. 4B is plotted on a graph, FIG. A quadratic curve similar to the quadratic curve shown is obtained, and the quadratic coefficient of the quadratic curve represents the inclination of the objective lens 12 with respect to the longitudinal direction. The Y and Y ′ axes are lines in a direction passing through the point a and forming an angle of 45 ° with the center line, for example.
[0021]
The calculation for obtaining the tilt of the objective lens 12 as described above can be automatically performed by the aberration calculation device 44.
[0022]
The inclination of the objective lens 12 calculated by the aberration calculator 44 is output to the controller 46. The control device 46 drives the adjustment device 28 based on the inclination of the objective lens 12 obtained from the aberration calculation device 44 to correct the inclination of the objective lens 12.
[0023]
Next, the positional deviation adjustment of the objective lens 12 is performed. This misalignment adjustment is performed using light received by the image receiving element 16 of the optical pickup 14. Specifically, in the optical pickup 14, a part of the light projected from the objective lens 12 to the diffraction grating 30 is reflected by the diffraction grating 30. This reflected light is incident on the objective lens 12, reflected by the mirror 22 and the half mirror 24, and projected onto the image receiving element 16 as shown in FIG. The image receiving element 16 outputs a signal corresponding to the position of the received light spot 56 to the position shift detection device 48. The positional deviation detection device 48 detects the positional deviation amount of the light spot 56 with respect to the optical axis 26 based on the signal provided from the image receiving element 16 and outputs it to the control device 46.
[0024]
The detection of the displacement amount will be described. If the optical axis of the objective lens 12 coincides with the optical axis 26 of the adjustment system 10, the light spot 56 projected on the image receiving element 16 exists at a place (reference position) indicated by a dotted line 58. . However, when the optical axis of the objective lens 12 does not coincide with the optical axis 26 of the adjustment system 10, the light spot 56 exists at a position indicated by a solid line in FIG. Therefore, in the misregistration detection device 48 of the present embodiment, as shown in FIG. 7, an X axis 60 passing through the center of the reference position of the light spot and a Y axis 62 perpendicular to the X axis 60 are assumed. Further, the four regions I, II, III, and IV divided by these two axes 60 and 62 are hypothesized. The misregistration detection device 48 obtains the area or light intensity indicated by the light spot 56 in each of the regions I, II, III, and IV (a value obtained by integrating the light intensity in each region), and is parallel to the X axis 60. With respect to the direction (X direction) and the direction parallel to the Y axis 62 (Y direction), the positional deviations Δx and Δy of the light spot 56 with respect to the reference position are calculated. The positional deviations Δx and Δy calculated in this way are sent to the control device 46. Then, the control device 46 drives the adjusting device 28 and moves the objective lens 12 so that the center of the light spot 56 coincides with the optical axis 26 (that is, so as to eliminate the positional deviations Δx and Δy).
[0025]
As described above, the objective lens 12 whose inclination and positional deviation with respect to the optical axis 26 are adjusted is fixed to the optical pickup 14 with an adhesive or the like. Further, the optical pickup 14 to which the objective lens 12 is fixed is then mounted on a corresponding device.
[0026]
In the above description, the image receiving area of the image receiving element 16 is divided into four using the X axis and the Y axis, and the positional deviation of the objective lens 12 from the area or light intensity of the light spot projected on each of the divided areas. However, it is possible to arbitrarily set the image receiving area dividing method and the number of divisions.
[0027]
【The invention's effect】
As described above, according to the lens adjustment device and the lens adjustment method of the present invention, it is possible to adjust the tilt and displacement of the lens with respect to the reference axis with a single adjustment operation.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of lens adjustment of a conventional jitter optical pickup.
FIG. 2 is an explanatory diagram of a conventional example.
FIG. 3 is a schematic configuration diagram of a lens adjustment device according to the present invention.
FIG. 4 is a diagram showing interference fringes of diffracted light diffracted by a diffraction grating.
FIG. 5 is a diagram showing a change in light intensity due to a minute displacement of a diffraction grating. FIG. 6 is a diagram showing a phase distribution of interference fringes.
FIG. 7 is a diagram showing a light spot projected on an image receiving element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10: Optical lens adjustment system 12: Objective lens 14: Optical pick-up 16: Image receiving element 18: Light source 28: Adjustment apparatus 40: Aberration measuring apparatus 44: Aberration calculation apparatus 46: Control apparatus 48: Position shift detection apparatus

Claims (3)

光源とレンズと受像素子とを有する光ピックアップのレンズ調整装置において、
上記光ピックアップを上記レンズ調整装置の光軸に対して固定する固定台と、
上記レンズからの光を透過及び回折させて得られた異なる次数の回折光を干渉させて干渉像を形成すると共に上記レンズから出射した光を反射して上記レンズに入射させる半透過回折手段と、
上記半透過回折手段を上記光軸に対して移動させる移動手段と、
上記干渉像をもとに上記光軸に対する上記レンズの傾斜を求める収差計測手段と、
上記収差計測手段で求めた傾斜をもとに上記光軸に対する上記レンズの傾斜を調整する傾斜調整手段と、
上記受像素子が受光した上記半透過回折手段からの反射光をもとに上記光軸と直交する方向に上記レンズの位置を調整する位置調整手段とを備えたこと
を特徴とするレンズ調整装置。
In a lens adjustment device for an optical pickup having a light source, a lens, and an image receiving element,
A fixing base for fixing the optical pickup to the optical axis of the lens adjusting device ;
Transflective diffraction means for forming an interference image by interfering with diffracted lights of different orders obtained by transmitting and diffracting light from the lens and reflecting the light emitted from the lens and entering the lens;
Moving means for moving the transflective means relative to the optical axis ;
Aberration measuring means for obtaining the inclination of the lens with respect to the optical axis based on the interference image;
Tilt adjusting means for adjusting the tilt of the lens with respect to the optical axis based on the tilt obtained by the aberration measuring means;
A lens adjusting device comprising: a position adjusting unit that adjusts the position of the lens in a direction orthogonal to the optical axis based on the reflected light from the transflective diffraction unit received by the image receiving element. .
光源とレンズと受像素子とを有する光ピックアップを、レンズ調整装置を用いて調整するレンズ調整方法において、
上記光ピックアップを上記レンズ調整装置の光軸に対して固定する工程と、
上記レンズからの光を半透過回折格子で透過及び回折させて得られた異なる次数の回折光を干渉させて干渉像を形成すると共に、上記レンズからの光を上記半透過回折格子で反射し、上記レンズを介して上記受像素子に投射する工程と、
上記半透過回折格子を上記光軸に対して移動させる工程と、
上記干渉像から上記レンズの収差を求める工程と、
上記収差をもとに上記光軸に対する上記レンズの傾きを調整する工程と、
上記受像素子で受像した上記半透過回折手段からの反射光をもとに上記光軸と直交する方向に上記レンズの位置を調整する工程とを備えたこと
を特徴とするレンズ調整方法。
In a lens adjustment method for adjusting an optical pickup having a light source, a lens, and an image receiving element using a lens adjustment device ,
Fixing the optical pickup to the optical axis of the lens adjusting device ;
Interfering with diffracted light of different orders obtained by transmitting and diffracting light from the lens with a semi-transmissive diffraction grating to form an interference image, and reflecting light from the lens with the semi-transmissive diffraction grating, Projecting the image receiving element through the lens;
Moving the transflective grating relative to the optical axis ;
Obtaining the aberration of the lens from the interference image;
Adjusting the tilt of the lens with respect to the optical axis based on the aberration;
And a step of adjusting the position of the lens in a direction orthogonal to the optical axis based on the reflected light from the transflective means received by the image receiving element.
上記傾きと位置が調整された上記レンズを上記光ピックアップに固定する工程を備えた請求項2に記載のレンズ調整方法。  The lens adjustment method according to claim 2, further comprising a step of fixing the lens with the tilt and position adjusted to the optical pickup.
JP2000299304A 2000-09-29 2000-09-29 Lens adjustment device and lens adjustment method Expired - Fee Related JP4421755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000299304A JP4421755B2 (en) 2000-09-29 2000-09-29 Lens adjustment device and lens adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000299304A JP4421755B2 (en) 2000-09-29 2000-09-29 Lens adjustment device and lens adjustment method

Publications (2)

Publication Number Publication Date
JP2002109753A JP2002109753A (en) 2002-04-12
JP4421755B2 true JP4421755B2 (en) 2010-02-24

Family

ID=18781134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000299304A Expired - Fee Related JP4421755B2 (en) 2000-09-29 2000-09-29 Lens adjustment device and lens adjustment method

Country Status (1)

Country Link
JP (1) JP4421755B2 (en)

Also Published As

Publication number Publication date
JP2002109753A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
US5963532A (en) Polarization rotation and phase compensation in near-field electro-optical system
US6525332B1 (en) Method for detecting and compensating disk tilt and apparatus used it
JPH11514781A (en) Optical scanning device and device comprising such device
US20050094511A1 (en) Method and device for detecting optical data and reading-writing apparatus for optical data
JPWO2006118221A1 (en) Objective lens tilt adjusting method, optical pickup manufacturing method, objective lens tilt adjusting apparatus, optical pickup component, optical pickup, and optical information recording / reproducing apparatus
JP4601231B2 (en) Method and apparatus for reading a plurality of tracks on an optical disc
JP4421755B2 (en) Lens adjustment device and lens adjustment method
JPH10228653A (en) Driving device for objective lens
EP1905024B1 (en) Optical pick-up and/or recording device
KR100798197B1 (en) Anamorphic prism, optical head and optical recording/reproducing device
US5444677A (en) Optical read/write head low angle beamsplitter and coplanar detectors
US7903524B2 (en) Optical signal recording medium and information recording/reproducing apparatus
US7136241B2 (en) Information writing device
EP0505156B1 (en) Tracking adjustment
US20050047287A1 (en) Focus control
JP2004279191A (en) Inclination sensor, inclination measurement device, optical pickup device, and optical disk device
EP0559452A2 (en) Optical read/write head and optical device for use therewith
JP2005010599A (en) Hologram reproducing apparatus and hologram reproducing method
JP2001108877A (en) Method and device for adjusting optical unit
US9190097B2 (en) Optical information recording/reproducing device and optical information recording/reproducing method
JP2790920B2 (en) Tracking method for optical disk device and tracking device using this method
JP3038750B2 (en) Evaluation device for diffracted light from hologram
JP3974274B2 (en) Measuring method of temperature characteristics of optical element
JP2002216388A (en) Optical system
JP2002182091A (en) Lens adjusting device and lens adjusting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees