JP4421210B2 - Propulsion transmission device - Google Patents

Propulsion transmission device Download PDF

Info

Publication number
JP4421210B2
JP4421210B2 JP2003113084A JP2003113084A JP4421210B2 JP 4421210 B2 JP4421210 B2 JP 4421210B2 JP 2003113084 A JP2003113084 A JP 2003113084A JP 2003113084 A JP2003113084 A JP 2003113084A JP 4421210 B2 JP4421210 B2 JP 4421210B2
Authority
JP
Japan
Prior art keywords
tube
pipe
joint
thrust transmission
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003113084A
Other languages
Japanese (ja)
Other versions
JP2004316810A (en
Inventor
晃 川瀬
利之 米津
浩司 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chutetsukan KK
Original Assignee
Nippon Chutetsukan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chutetsukan KK filed Critical Nippon Chutetsukan KK
Priority to JP2003113084A priority Critical patent/JP4421210B2/en
Publication of JP2004316810A publication Critical patent/JP2004316810A/en
Application granted granted Critical
Publication of JP4421210B2 publication Critical patent/JP4421210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Joints Allowing Movement (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、推進力伝達装置、特に、スペーサー撤去工具を使用する必要がなく、しかも、管径によらず耐震管の性能を十分に発揮させることができ、また、管塗装面を傷付けることなく、さらに、管の押し込みおよび引き込みによる管推進敷設工法の何れにも適用可能な耐震管推進敷設工法に使用される推進力伝達装置に関するものである。
【0002】
【従来の技術】
近年、道路工事による交通障害や掘削残土の処理等の問題が少なく、しかも、軌道下等の開削工事が行えない場所であっても管の敷設が可能なさや管式管推進敷設工法が実施されている。
【0003】
以下に、さや管式管推進敷設工法を耐震管に適用した場合を、図面を参照しながら説明する。
【0004】
図5は、さや管式管推進敷設工法を示す一部省略断面図である。
【0005】
図5に示すように、さや管式管推進敷設工法は、発進側立坑21と到達側立坑22と間に予めさや管23を敷設し、発進側立坑21内に、新設管24を推進する支圧壁25、推進用油圧ジャッキ26、推進用台27等を設置し、推進用油圧ジャッキ26によりさや管23内に新設管24を順次、接合し、挿入する。最先端の新設管24の先端には、挿入抵抗を小さくするための先導ソリ28が取り付けられている。なお、さや管23は、既設の配管を使用しても良い。
【0006】
図6に示すように、新設管24は、先行管24Aの受け口24B内に後行管24Cの挿し口24Dを嵌め込むことによって互いに接合される。受け口24Bと挿し口24Dとの間には、シール用ゴム輪29とロックリング210とが設けられている。挿し口24Dを受け口24B内に挿入すると、挿し口24Dの先端と受け口24Bとは密着して、隙間は、形成されない。従って、接合部に引っ張り力が作用した場合には、挿し口24Dの先端の突起24Eがロックリング210に当接するまでの隙間(T1)分だけ接合部の伸びが可能となる。しかし、接合部に圧縮力が作用した場合には、挿し口24Dの先端と受け口24Bと間に隙間が形成されていないので、接合部の縮みは不可能となる。よって、耐震管としての機能が十分に発揮されない。
【0007】
そこで、上記問題点を解決するために、図7に示すように、挿し口24Dの先端と受け口24Bとの間にスペーサー211を介在させた状態で管の推進を行い、管敷設完了後、スペーサー211を撤去して、接合部の伸縮を可能とするさや管式耐震管推進敷設工法が知られている。すなわち、この工法によれば、接合部に圧縮力が作用した場合には、スペーサー211の長さ(隙間T2)分だけの縮みが可能となり、一方、接合部に引っ張り力が作用した場合には、挿し口24Dの先端の突起24Eがロックリング210に当接するまでの隙間(T3)分の伸びが可能となる。以下、このさや管式管推進敷設工法を従来技術1という。
【0008】
また、特開2001−99373公報(特許文献1)には、図8に示すように、挿し口24Dに推力伝達リング212を、管推進力ではスライドしない程度の力で取り付け、受け口24Bを推力伝達リング212に当接させることにより、挿し口24Dの先端と受け口24Bとの間に隙間(T2)を確保し、そして、管敷設後、接合部に推進力を超えるような過大な伸縮力が作用した場合には、推力伝達リング212を滑らせることによって、隙間(T2)分の縮み、および、隙間(T3)分の伸びを可能とするさや管式耐震管推進敷設工法が開示されている。以下、このさや管式耐震管推進敷設工法を従来技術2という。
【0009】
さらに、特開2002−295723公報(特許文献2)には、図9に示すように、先行管24A受け口24Bの後方にフランジ213を固定し、挿し口24Dとフランジ213との間に、推進力を超える力で圧壊する強度を有する推力伝達部材214を介在させて、推力伝達部材214を圧壊するような過大な圧縮力が接合部に作用した場合には、推力伝達部材214の圧壊によって、接合部の収縮を可能とするさや管式耐震管推進敷設工法が開示されている。すなわち、この工法は、接合部に圧縮力が作用した場合には、隙間(T2)分だけの縮みが可能となり、一方、接合部に引っ張り力が作用した場合には、隙間(T3)分の伸びが可能となる。以下、このさや管式耐震管推進敷設工法を従来技術3という。
【0010】
【特許文献1】
特開2001−99373公報
【特許文献2】
特開2002−295723公報
【0011】
【発明が解決しようとする課題】
上記従来技術1から3によれば、何れも、管敷設後、管接合部に過大な伸縮力が作用した場合、接合部は、隙間(T2)分の縮み、および、隙間(T3)分の伸びが可能となるので、耐震管としての機能を発揮する。
【0012】
しかしながら、従来技術1から3は、管の推進方向が発進側立坑21から到達側立坑22に向う、管押し込みによる推進工法であり、到達側立坑22からの管引き込み工法には適用できない。すなわち、何れの工法も到達側立坑22から管を引き込んだ場合、挿し口24Dの突起24Eがロックリング210に当接するまで接合部が伸びてしまい、接合部に作用する圧縮力には対応できるが、接合部に作用する伸びには対応できず、耐震管としての機能が十分に発揮されない。
【0013】
しかも、従来技術1は、管敷設後、管内に撤去工具を挿入してスペーサー211を撤去する必要があるので、管内にスペーサー211の撤去工具を導入できない、小口径管には適用することができない。また、従来技術2は、接合部に過大な伸縮力が作用した時において、推力伝達リング212が滑る際に管塗装面に傷を付けて、耐食性に悪影響を及ぼす。
【0014】
従って、この発明の目的は、スペーサー撤去工具を使用する必要がなく、しかも、管径によらず耐震管の性能を十分に発揮させることができ、また、管塗装面を傷付けることなく、さらに、管の押し込みおよび引き込みによる耐震管推進敷設工法の何れにも適用可能な耐震管推進敷設工法に使用される推進力伝達装置を提供することにある。
【0015】
【課題を解決するための手段】
請求項1に記載の発明は、先行管の受け口内に後行管の挿し口を嵌め込み、このようにして接合した管を順次さや管内に挿入して、新設管を前記さや管内に敷設する耐震管推進敷設工法に使用される推進力伝達装置において、接合部が伸縮可能な状態に維持された前記先行管および前記後行管の各々に固定される推力伝達バンドと、前記両推力伝達バンドを連結する推力伝達ステーと、破断部材とを有し、前記推力伝達ステーの何れか一方の端部は、前記破断部材を介して前記推力伝達バンドに固定され、前記破断部材は、前記接合部に前記破断部材の破断強度を超える伸縮力が作用した時に前記推力伝達ステーを介して破断し、かくして、前記接合部の伸縮を可能にすることに特徴を有するものである。
【0016】
請求項2に記載の発明は、請求項1記載の発明において、前記破断部材に予め破断箇所が形成されていることに特徴を有するものである。
【0017】
請求項3に記載の発明は、請求項1または2記載の発明において、前記破断部材は、ボルトからなることに特徴を有するものである。
【0021】
【発明の実施の形態】
次に、この発明の推進力伝達装置を使用するさや管式耐震管推進敷設工法の一実施態様を、図面を参照しながら説明する。
【0022】
図1は、この発明の推進力伝達装置を使用するさや管式耐震管推進敷設工法による管接合部を示す部分断面図、図2は、図1のA−A線断面図、図3は、縮んだ時の管接合部を示す部分断面図、図4は、伸びた時の管接合部を示す部分断面図である。
【0023】
図1から図4において、24Aは、先行管、24Bは、先行管21の受け口、24Cは、後行管、24Dは、後行管24Cの挿し口、24Eは、挿し口24Dの先端に形成された突起、29は、受け口24Bと挿し口24Dとの間に設けられたシール用ゴム輪、210は、ロックリングである。
【0024】
1は、この発明の推進力伝達装置である。推進力伝達装置1は、先行管24A側にボルト2により固定される半割りの先行管側推力伝達バンド3と、後行管24C側にボルト4により固定される半割りの後行管側推力伝達バンド5と、両推力伝達バンド3と5とを連結する複数本(この例では2本)の推力伝達ステー6と、破断部材としての破断ボルト7とを有している。
【0025】
先行管側推力伝達バンド3は、2本からなり、その内の管端側のバンドの上面には、突起8がバンド3と一体的に形成されている。後行管側推力伝達バンド5は、2本からなり、その内の管端側のバンドの上面には、突起9がバンド5と一体的に形成されている。各推力伝達ステー6の先行管24A側の端部6Aは、ボルト10により突起8に固定され、後行管24C側の端部6Bは、端部6Bを貫通し、突起9に螺合する破断ボルト7によって後行管側推力伝達バンド5に固定されている。推力伝達ステー6と突起9との境界部分の破断ボルト7には、破断箇所が溝等によって予め形成され、管敷設時の管推進力を超える過大な圧縮力あるいは引っ張り力が接合部に作用した場合に、前記破断箇所から破断するようになっている。各バンド3および5には、さや管23(図5参照)内を走行する車輪11が複数個(この例では4個)、放射状に取り付けられている。
【0026】
各推力伝達ステー6には、位置決め用ストッパー6Cが形成されていて、推進力伝達装置1を接合部に装着する際に、ストッパー6Cを先行管24Aの受け口24Bの端面に当接させることによって、推進力伝達装置1の位置決めが容易に行えるようになっている。
【0027】
以上のように構成されている、この発明の推進力伝達装置を使用して、以下のように、耐震管がさや管内に敷設される。
【0028】
図5に示すように、推進用油圧ジャッキ26によりさや管23内に新設管24を順次、接合し、押し込んで挿入する。図1に示すように、新設管24は、先行管24Aの受け口24B内に後行管24Cの挿し口24Dを嵌め込むことによって互いに接合するが、後行管24Cの挿し口24Dの先端と先行管24Aの受け口24Bとの間には、間隔(T2)をあける。これによって、接合部は、間隔(T2)だけ縮むことが可能となり、また、後行管24Cの挿し口の突起24Eがロックリング210に当接するまでの間隔(T3)だけ伸びることが可能となる。そして、接合後、管接合部に推進力伝達装置1を取り付ける。これによって、管推進力は、推進力伝達装置1を介して後行管24Cから先行管24Aに確実に伝達される。
【0029】
推進力伝達装置1を管接合部に取り付けるには、半割りの先行管側推力伝達バンド3をボルト2により先行管24Aに固定すると共に、半割りの後行管側推力伝達バンド5をボルト4により後行管24Cに固定する。推力伝達ステー6は、予め両バンド3と5との間にボルト10および7によって取り付ける。ボルト2および4によるバンド3および5の管への固定強度は、管推進力を伝達可能な強度とする。
【0030】
このようにして、さや管23内への新設管24の敷設が完了後、地震等により管接合部に過大な圧縮力が作用した場合には、図3に示すように、推力伝達ステー6を固定している破断ボルト7がその破断箇所から破断する結果、接合部は、間隔(T2)だけ縮む。一方、管接合部に過大な引っ張り力が作用した場合には、図4に示すように、推力伝達ステー6を固定している破断ボルト7が破断し、接合部が間隔(T3)だけ伸びる。
【0031】
以上の例は、新設管24を発進側立坑21側からさや管内に押し込みにより挿入する場合であるが、この発明は、接合部に推進力伝達装置1を取り付けて推進力を隣接管に伝達するものであることから、新設管24を到達側立坑22側から引っ張ることによりからさや管内に引き込む工法にも適用できることは勿論である。
【0032】
また、推力伝達ステー6の後行管側端部6Bをボルト10により突起9に固定し、先行管側端部6Aを破断ボルト7によって突起8に取り付けても良い。
【0033】
【発明の効果】
以上説明したように、この発明によれば、管敷設時に接合部に作用する圧縮力あるいは引っ張り力は、推進力伝達装置により隣接管に確実に伝達され、地震等により過大な圧縮力あるいは引っ張り力が接合部に作用した時には、推力伝達ステーを固定している破断ボルトが破断して接合部の伸縮が可能となる。従って、管の押し込みおよび引き込みによるさや管式耐震管推進敷設工法の何れにも適用可能である。しかも、スペーサー撤去工具を使用する必要がなく、また、管径によらず耐震管の性能を十分に発揮させることができ、さらに、管塗装面を傷付けることもない等の効果がもたらされる。
【図面の簡単な説明】
【図1】 この発明の推進力伝達装置を使用するさや管式耐震管推進敷設工法による管接合部を示す部分断面図である。
【図2】図1のA−A線断面図である。
【図3】縮んだ時の管接合部を示す部分断面図である。
【図4】伸びた時の管接合部を示す部分断面図である。
【図5】さや管式管推進敷設工法を示す一部省略断面図である。
【図6】管推進力により挿し口の先端と受け口とが密着した接合部を示す部分断面図である。
【図7】従来技術1の管接合部を示す部分断面図である。
【図8】従来技術2の管接合部を示す部分断面図である。
【図9】従来技術3の管接合部を示す部分断面図である。
【符号の説明】
1:推進力伝達装置
2:ボルト
3:先行管側推力伝達バンド
4:ボルト
5:後行管側推力伝達バンド
6:推力伝達ステー
6A:先行管側端部
6B:後行管側端部
6C:位置決め用ストッパー
7:破断ボルト
8:突起
9:突起
10:ボルト
11:車輪
21:発進側立坑
22:到達側立坑
23:さや管
24:新設管
24A:先行管
24B:受け口
24C:後行管
24D:挿し口
24E:突起
25:支圧壁
26:油圧ジャッキ
27:推進台
28:先導ソリ
29:ゴム輪
210:ロックリング
211:スペーサー
212:推力伝達リング
213:フランジ
214:推力伝達部材
[0001]
BACKGROUND OF THE INVENTION
The present invention, estimated Susumuryoku transmission device, in particular, it is not necessary to use a spacer removal tool, moreover, it is possible to sufficiently exhibit the performance of seismic pipe irrespective of the pipe diameter, also damaging the tube painted surfaces without further relates propulsion force transmitting apparatus in any of the tube propulsion laying method according to the pushing and pulling of the tube is used in applicable seismic pipe propulsion laying construction method.
[0002]
[Prior art]
In recent years, there has been a sheath-pipe-promoting laying method in which pipes can be laid even in places where there are few problems such as traffic obstacles due to road construction and disposal of excavated residual soil, and where excavation work such as under track is not possible. ing.
[0003]
In the following, the case where the sheath type pipe propulsion laying method is applied to the earthquake resistant pipe will be described with reference to the drawings.
[0004]
FIG. 5 is a partially omitted cross-sectional view showing a sheath tube type pipe laying construction method.
[0005]
As shown in FIG. 5, in the sheath tube type pipe laying method, a sheath pipe 23 is previously laid between the start side shaft 21 and the arrival side shaft 22, and the new tube 24 is propelled in the start side shaft 21. The pressure wall 25, the propulsion hydraulic jack 26, the propulsion stand 27, and the like are installed, and the new pipe 24 is sequentially joined and inserted into the sheath pipe 23 by the propulsion hydraulic jack 26. A leading sled 28 for reducing the insertion resistance is attached to the tip of the state-of-the-art new pipe 24. The sheath pipe 23 may be an existing pipe.
[0006]
As shown in FIG. 6, the new pipes 24 are joined to each other by fitting an insertion port 24D of the trailing tube 24C into the receiving port 24B of the preceding tube 24A. A sealing rubber ring 29 and a lock ring 210 are provided between the receiving port 24B and the insertion port 24D. When the insertion port 24D is inserted into the receiving port 24B, the tip of the insertion port 24D and the receiving port 24B are in close contact with each other, and no gap is formed. Therefore, when a tensile force acts on the joint, the joint can be extended by a gap (T1) until the protrusion 24E at the tip of the insertion port 24D comes into contact with the lock ring 210. However, when a compressive force is applied to the joint, no gap is formed between the tip of the insertion port 24D and the receiving port 24B, so that the joint cannot be shrunk. Therefore, the function as a seismic tube is not fully demonstrated.
[0007]
In order to solve the above problems, as shown in FIG. 7, the tube is propelled with the spacer 211 interposed between the tip of the insertion port 24D and the receiving port 24B. A sheath type seismic tube propulsion laying method is known in which 211 is removed and the joint portion can be expanded and contracted. That is, according to this construction method, when a compressive force is applied to the joint, it is possible to shrink by the length of the spacer 211 (gap T2), while when a tensile force is applied to the joint. Further, it is possible to extend the gap (T3) until the protrusion 24E at the tip of the insertion opening 24D comes into contact with the lock ring 210. Hereinafter, this sheath pipe type pipe laying construction method is referred to as prior art 1.
[0008]
Further, as shown in FIG. 8, JP 2001-99373 A (Patent Document 1) attaches a thrust transmission ring 212 to an insertion port 24D with a force that does not slide with tube propulsion force, and transmits a thrust port 24B to a thrust port. By abutting against the ring 212, a clearance (T2) is secured between the tip of the insertion port 24D and the receiving port 24B, and after the pipe is laid, an excessive stretching force that exceeds the driving force acts on the joint. In this case, a sheath-type seismic tube propulsion laying method is disclosed that allows the thrust transmission ring 212 to slide to allow the gap (T2) to shrink and the gap (T3) to extend. Hereinafter, this sheath type seismic tube propulsion laying method will be referred to as Conventional Technology 2.
[0009]
Furthermore, in Japanese Patent Application Laid-Open No. 2002-295723 (Patent Document 2), as shown in FIG. 9, a flange 213 is fixed behind the receiving port 24B of the preceding pipe 24A , and propulsion is performed between the insertion port 24D and the flange 213. When an excessive compressive force that crushes the thrust transmission member 214 is applied to the joint portion by interposing the thrust transmission member 214 having a strength to be crushed by a force exceeding the force, the thrust transmission member 214 is crushed by A sheath type seismic tube propulsion laying method that enables contraction of the joint is disclosed. That is, in this method, when a compressive force is applied to the joint, it is possible to shrink by the gap (T2). On the other hand, when a tensile force is applied to the joint, the method is equivalent to the gap (T3). Elongation is possible. Hereinafter, this sheath type seismic tube propulsion laying method is referred to as Conventional Technology 3.
[0010]
[Patent Document 1]
JP 2001-99373 A [Patent Document 2]
Japanese Patent Laid-Open No. 2002-295723
[Problems to be solved by the invention]
According to the prior arts 1 to 3, in any case, after the pipe is laid, when an excessive stretching force is applied to the pipe joint, the joint is reduced by the gap (T2) and the gap (T3). Since it can be extended, it functions as a seismic tube.
[0012]
However, the prior arts 1 to 3 are propulsion methods by pushing the pipe in which the pipe propulsion direction is directed from the start side shaft 21 to the arrival side shaft 22, and cannot be applied to the pipe drawing method from the arrival side shaft 22. That is, in any method, when the pipe is drawn from the arrival side shaft 22, the joint extends until the projection 24E of the insertion port 24D comes into contact with the lock ring 210, and it can cope with the compressive force acting on the joint. It cannot cope with the elongation acting on the joint, and the function as a seismic tube is not fully exhibited.
[0013]
Moreover, since it is necessary for the prior art 1 to insert the removal tool into the pipe and remove the spacer 211 after laying the pipe, the removal tool for the spacer 211 cannot be introduced into the pipe and cannot be applied to a small-diameter pipe. . Further, in the related art 2, when an excessive stretching force acts on the joint portion, the pipe coating surface is damaged when the thrust transmission ring 212 slips, and the corrosion resistance is adversely affected.
[0014]
Therefore, the object of the present invention is that it is not necessary to use a spacer removal tool, and it is possible to sufficiently exert the performance of the earthquake-resistant pipe regardless of the pipe diameter, and further, without damaging the pipe coating surface, and to provide a propulsion force transmitting apparatus in any of the seismic pipe propulsion laying method according to the pushing and pulling of the tube is used in applicable seismic pipe propulsion laying construction method.
[0015]
[Means for Solving the Problems]
The invention according to claim 1 is the seismic resistance in which the insertion port of the succeeding tube is fitted into the receiving port of the preceding tube, the tubes joined in this way are sequentially inserted into the sheath tube, and the new tube is laid in the sheath tube. In the propulsive force transmission device used in the pipe propulsion laying method, a thrust transmission band fixed to each of the preceding pipe and the succeeding pipe in which the joint portion is maintained in a stretchable state, and both the thrust transmission bands A thrust transmission stay to be coupled; and a breaking member; one end of the thrust transmission stay is fixed to the thrust transmission band via the breaking member, and the breaking member is attached to the joint portion. When a stretching force exceeding the breaking strength of the rupture member is applied, the rupture member breaks through the thrust transmission stay, thus enabling the joint portion to be stretched .
[0016]
The invention according to claim 2 is characterized in that, in the invention according to claim 1, a breaking portion is previously formed in the breaking member .
[0017]
The invention described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the breaking member is formed of a bolt .
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of a sheath tube type earthquake resistant tube propulsion laying method using the propulsive force transmission device of the present invention will be described with reference to the drawings.
[0022]
FIG. 1 is a partial cross-sectional view showing a pipe joint portion by a sheath-type seismic tube propulsion laying method using the propulsive force transmission device of the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. FIG. 4 is a partial cross-sectional view showing the pipe joint when stretched, and FIG. 4 is a partial cross-sectional view showing the pipe joint when stretched.
[0023]
1 to 4, 24A is a leading tube, 24B is a receiving port for the leading tube 21, 24C is a trailing tube, 24D is an inserting port for the trailing tube 24C, and 24E is formed at the tip of the inserting port 24D. The projection 29, the sealing rubber ring provided between the receiving port 24B and the insertion port 24D, 210 is a lock ring.
[0024]
1 is a estimated Susumuryoku transmission device of the present invention. The propulsive force transmission device 1 includes a halved preceding tube side thrust transmission band 3 fixed by a bolt 2 on the leading tube 24A side and a halved trailing tube side thrust fixed by a bolt 4 on the trailing tube 24C side. It has a transmission band 5, a plurality (two in this example) of thrust transmission stays 6 connecting the thrust transmission bands 3 and 5, and a breaking bolt 7 as a breaking member.
[0025]
The leading tube side thrust transmission band 3 is composed of two, and a protrusion 8 is formed integrally with the band 3 on the upper surface of the band on the tube end side. The trailing tube side thrust transmission band 5 is composed of two, and a projection 9 is formed integrally with the band 5 on the upper surface of the tube end side band. The end portion 6A on the leading tube 24A side of each thrust transmission stay 6 is fixed to the protrusion 8 by the bolt 10, and the end portion 6B on the trailing tube 24C side penetrates the end portion 6B and is screwed into the protrusion 9. The rear pipe side thrust transmission band 5 is fixed by a bolt 7. The breaking bolt 7 at the boundary portion between the thrust transmission stay 6 and the projection 9 is preliminarily formed with a groove or the like, and an excessive compressive force or tensile force exceeding the tube propulsion force at the time of laying the tube is applied to the joint. In some cases, the rupture portion is broken. A plurality of (four in this example) wheels 11 traveling in the sheath tube 23 (see FIG. 5) are radially attached to the bands 3 and 5.
[0026]
Each thrust transmission stay 6 is formed with a positioning stopper 6C. When the propulsive force transmission device 1 is attached to the joint, the stopper 6C is brought into contact with the end surface of the receiving port 24B of the preceding pipe 24A . The propulsive force transmission device 1 can be easily positioned.
[0027]
Using the propulsive force transmission device of the present invention configured as described above, the earthquake-resistant tube is laid in the sheath as follows.
[0028]
As shown in FIG. 5, the new pipe 24 is sequentially joined into the sheath pipe 23 by the propulsion hydraulic jack 26, pushed in and inserted. As shown in FIG. 1, the new pipe 24 is joined to each other by fitting the insertion port 24D of the trailing tube 24C into the receiving port 24B of the leading tube 24A, but the leading end of the insertion port 24D of the trailing tube 24C is connected to the leading end. A space (T2) is provided between the tube 24A and the receiving port 24B. As a result, the joint portion can be reduced by the interval (T2), and can be extended by the interval (T3) until the projection 24E of the insertion opening of the trailing tube 24C comes into contact with the lock ring 210. . And after joining, the propulsive force transmission apparatus 1 is attached to a pipe joint part. As a result, the pipe propulsive force is reliably transmitted from the trailing pipe 24C to the leading pipe 24A via the propulsive force transmission device 1.
[0029]
In order to attach the propulsive force transmission device 1 to the pipe joint, the half leading pipe side thrust transmission band 3 is fixed to the leading pipe 24A by the bolt 2, and the half trailing pipe side thrust transmission band 5 is bolt 4 To the trailing tube 24C . The thrust transmission stay 6 is attached between the bands 3 and 5 by bolts 10 and 7 in advance. The fixing strength of the bands 3 and 5 to the pipes by the bolts 2 and 4 is set so that the pipe propulsion force can be transmitted.
[0030]
In this way, after the installation of the new pipe 24 in the sheath pipe 23 is completed, if an excessive compressive force acts on the pipe joint due to an earthquake or the like, the thrust transmission stay 6 is installed as shown in FIG. As a result of the breaking bolt 7 being fixed being broken from the broken portion, the joint portion is contracted by the interval (T2). On the other hand, when an excessive pulling force is applied to the pipe joint portion, as shown in FIG. 4, the break bolt 7 fixing the thrust transmission stay 6 is broken, and the joint portion is extended by the interval (T3).
[0031]
Although the above example is a case where the newly installed pipe 24 is inserted into the sheath pipe by pushing from the start side shaft 21 side, this invention attaches the propulsive force transmission device 1 to the joint and transmits the propulsive force to the adjacent pipe. Therefore, it is needless to say that the method can be applied to a construction method in which the new pipe 24 is pulled from the arrival side shaft 22 side and pulled into the sheath pipe.
[0032]
Alternatively, the trailing pipe side end portion 6B of the thrust transmission stay 6 may be fixed to the projection 9 by the bolt 10 and the leading pipe side end portion 6A may be attached to the projection 8 by the break bolt 7.
[0033]
【The invention's effect】
As described above, according to the present invention, the compressive force or tensile force acting on the joint when laying the pipe is reliably transmitted to the adjacent pipe by the propulsive force transmission device, and an excessive compressive force or tensile force due to an earthquake or the like. When this acts on the joint portion, the break bolt that fixes the thrust transmission stay breaks and the joint portion can be expanded and contracted. Therefore, the present invention can be applied to any sheath-type seismic tube propulsion laying method by pushing and retracting the tube. In addition, it is not necessary to use a spacer removal tool, and the performance of the earthquake resistant tube can be sufficiently exerted regardless of the tube diameter, and further, the effect that the tube coating surface is not damaged is brought about.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing a pipe joint portion by a sheath-type seismic tube propulsion laying method using the propulsive force transmission device of the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a partial cross-sectional view showing a pipe joint when contracted.
FIG. 4 is a partial cross-sectional view showing a pipe joint when extended.
FIG. 5 is a partially omitted cross-sectional view showing a sheath tube type pipe laying method.
FIG. 6 is a partial cross-sectional view showing a joint portion in which the distal end of the insertion opening and the receiving opening are brought into close contact with each other by a tube driving force.
FIG. 7 is a partial cross-sectional view showing a pipe joint of prior art 1;
FIG. 8 is a partial cross-sectional view showing a pipe joint of prior art 2.
FIG. 9 is a partial cross-sectional view showing a pipe joint of prior art 3.
[Explanation of symbols]
1: Propulsion transmission device 2: Bolt 3: Leading pipe side thrust transmission band 4: Bolt 5: Trailing pipe side thrust transmission band 6: Thrust transmission stay 6A: Leading pipe side end 6B: Trailing pipe side end 6C : Stopper for positioning 7: Breaking bolt 8: Protrusion 9: Protrusion 10: Bolt 11: Wheel 21: Starting side shaft 22: Arrival side shaft 23: Saddle tube 24: New tube 24A: Leader tube 24B: Receiving port 24C: Subsequent tube 24D: Insert 24E: Protrusion 25: Bearing wall 26: Hydraulic jack 27: Propulsion base 28: Leading sled 29: Rubber wheel 210: Lock ring 211: Spacer 212: Thrust transmission ring 213: Flange 214: Thrust transmission member

Claims (3)

先行管の受け口内に後行管の挿し口を嵌め込み、このようにして接合した管を順次さや管内に挿入して、新設管を前記さや管内に敷設する耐震管推進敷設工法に使用される推進力伝達装置において、Propulsion used in the seismic tube propulsion laying method in which the insertion port of the succeeding tube is fitted into the receiving port of the preceding tube, the tubes thus joined are sequentially inserted into the sheath tube, and the new tube is laid in the sheath tube. In the force transmission device,
接合部が伸縮可能な状態に維持された前記先行管および前記後行管の各々に固定される推力伝達バンドと、前記両推力伝達バンドを連結する推力伝達ステーと、破断部材とを有し、前記推力伝達ステーの何れか一方の端部は、前記破断部材を介して前記推力伝達バンドに固定され、前記破断部材は、前記接合部に前記破断部材の破断強度を超える伸縮力が作用した時に前記推力伝達ステーを介して破断し、かくして、前記接合部の伸縮を可能にすることを特徴とする推進力伝達装置。  A thrust transmission band fixed to each of the preceding pipe and the succeeding pipe maintained in a state in which a joint portion can expand and contract, a thrust transmission stay connecting the both thrust transmission bands, and a breaking member; One end portion of the thrust transmission stay is fixed to the thrust transmission band via the breaking member, and the breaking member has an elastic force exceeding the breaking strength of the breaking member acting on the joint portion. A propulsive force transmission device that breaks through the thrust transmission stay and thus enables expansion and contraction of the joint.
前記破断部材に予め破断箇所が形成されていることを特徴とする、請求項1記載の推進力伝達装置。The propulsive force transmission device according to claim 1, wherein a breaking portion is formed in advance on the breaking member. 前記破断部材は、ボルトからなることを特徴とする、請求項1または2記載の推進力伝達装置。The propulsive force transmission device according to claim 1, wherein the breaking member is a bolt.
JP2003113084A 2003-04-17 2003-04-17 Propulsion transmission device Expired - Fee Related JP4421210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113084A JP4421210B2 (en) 2003-04-17 2003-04-17 Propulsion transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113084A JP4421210B2 (en) 2003-04-17 2003-04-17 Propulsion transmission device

Publications (2)

Publication Number Publication Date
JP2004316810A JP2004316810A (en) 2004-11-11
JP4421210B2 true JP4421210B2 (en) 2010-02-24

Family

ID=33473126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113084A Expired - Fee Related JP4421210B2 (en) 2003-04-17 2003-04-17 Propulsion transmission device

Country Status (1)

Country Link
JP (1) JP4421210B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101067380B1 (en) 2009-06-04 2011-09-23 주식회사 에스제이엠 Multi-joint Expansion Pipe
CN103123025B (en) * 2011-11-21 2016-04-06 中国航空工业集团公司沈阳发动机设计研究所 A kind of high temperature conduit sealing configuration allowing axial expansion
JP6300161B2 (en) * 2015-06-29 2018-03-28 日本ヒューム株式会社 Seismic detachment prevention joint for curved pipe section and underground pipe using the same
JP7013283B2 (en) * 2018-03-07 2022-01-31 株式会社水道技術開発機構 Detachment prevention structure for pipe connection
JP7284027B2 (en) * 2019-08-01 2023-05-30 日本鋳鉄管株式会社 Propulsion power transmission device for jacking laying method

Also Published As

Publication number Publication date
JP2004316810A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP4421210B2 (en) Propulsion transmission device
JP7299042B2 (en) Propulsion force transmission device for seismic pipe propulsion installation method
JP2005106229A (en) Vibration proof pipe jacking method and hook hitching tool for thrust transmitting device
JP7144241B2 (en) Propulsion force transmission device for seismic pipe propulsion installation method
JP2011032632A (en) Jacking force transmission device for pipe jacking and laying method
JP3350681B2 (en) Tunnel lining segment and assembly method thereof
JP7397702B2 (en) Propulsion force transmission device for propulsion laying method
JP7213066B2 (en) Propulsion force transmission device for seismic pipe propulsion installation method
JP2787551B2 (en) Updating existing buried pipes
JP4510314B2 (en) Joint structure of earthquake-resistant propulsion pipe
JP3821619B2 (en) Seismic joint structure for pipe-in-pipe method
JP4679002B2 (en) New pipe replacement equipment
JP2019138449A (en) Earthquake proof pipe propulsion laying construction method and propulsive force transmission device
JP4773745B2 (en) Seismic joint device for manhole
JP2018179065A (en) Pipe propulsive force transmission device
JP3410979B2 (en) Retraction device, coupler, and retraction method using the retraction device
JPH0236758B2 (en)
JP3421793B2 (en) Propulsion device and propulsion method
JP3969957B2 (en) Propulsion pipe with earthquake resistance function
JP2000054786A (en) Special middle-jacking device for curved line
JP3519287B2 (en) Self-propelled new pipe propulsion device and underground pipe replacement method
JP3652132B2 (en) Anti-seismic propellant liner
JPS62132083A (en) Mehtod of transporting underground piping by non-drive
JPH1151249A (en) Propulsive construction method and pipe fitting structure
JP3406075B2 (en) Intermediate sleeve tube for propulsion method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151211

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees