JP4420690B2 - Fine particle production method and fine particle production apparatus - Google Patents

Fine particle production method and fine particle production apparatus Download PDF

Info

Publication number
JP4420690B2
JP4420690B2 JP2004028344A JP2004028344A JP4420690B2 JP 4420690 B2 JP4420690 B2 JP 4420690B2 JP 2004028344 A JP2004028344 A JP 2004028344A JP 2004028344 A JP2004028344 A JP 2004028344A JP 4420690 B2 JP4420690 B2 JP 4420690B2
Authority
JP
Japan
Prior art keywords
raw material
reaction
gas flow
nozzle
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004028344A
Other languages
Japanese (ja)
Other versions
JP2005218937A (en
Inventor
正佳 河原
向群 厳
晃 渡邊
武久 福井
清 野城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Original Assignee
Hosokawa Micron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp filed Critical Hosokawa Micron Corp
Priority to JP2004028344A priority Critical patent/JP4420690B2/en
Publication of JP2005218937A publication Critical patent/JP2005218937A/en
Application granted granted Critical
Publication of JP4420690B2 publication Critical patent/JP4420690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、微粒子の原料物質を高温雰囲気の反応空間に投入して微粒子を製造する微粒子製造方法、及び、その微粒子製造方法に使用する微粒子製造装置に関する。   The present invention relates to a fine particle production method for producing fine particles by introducing a raw material material for fine particles into a reaction space in a high temperature atmosphere, and a fine particle production apparatus used for the fine particle production method.

上記微粒子製造方法及び装置において、従来から、可燃バーナやプラズマ発生ノズル等の熱源ノズルで作り出した高温炎(高温雰囲気の反応空間に対応する)に、金属粉末や金属溶液等の原料物質をノズル等から噴射して微粒子を生成させることが行われている(例えば特許文献1、2、3参照)。   In the above fine particle manufacturing method and apparatus, a raw material such as a metal powder or a metal solution is conventionally used for a high-temperature flame (corresponding to a reaction space in a high-temperature atmosphere) created by a heat source nozzle such as a combustible burner or a plasma generation nozzle. The fine particles are produced by spraying from the above (see, for example, Patent Documents 1, 2, and 3).

上記特許文献のうち特許文献3には、微粒子の原料物質を含む金属塩水溶液を可燃性液体に乳濁させて作製した原料液を噴霧器でキャリアーガスと共に噴霧してバーナに吹き付け、エマルジョン粒子を覆う可燃性液体の燃焼熱により、金属塩溶液を熱処理(化学反応等による)して核を形成するとともに、冷却過程で核生成と成長を繰り返して、1μm以下の大きさの複合酸化物の微粒子を製造する方法が記載されている。   Among the above-mentioned patent documents, Patent Document 3 discloses that a raw material liquid prepared by emulsifying a metal salt aqueous solution containing a fine particle raw material into a combustible liquid is sprayed with a carrier gas with a sprayer and sprayed onto a burner to cover the emulsion particles. With the heat of combustion of the flammable liquid, the metal salt solution is heat-treated (by chemical reaction, etc.) to form nuclei, and during the cooling process, nucleation and growth are repeated to produce composite oxide particles of 1 μm or less in size. A method of manufacturing is described.

特開昭60−255602号公報JP 60-255602 A 特開平6−25717号公報JP-A-6-25717 特開平9−262470号公報JP-A-9-262470

しかし、上記特許文献3では、噴霧器によって霧化させた金属塩水溶液をバーナ炎に対して単純に吹き付ける程度のものであり、かかる技術では、製造する微粒子の大きさを所望の大きさ(例えば、粒径100nm以下)まで小さくすることが困難であった。   However, in the said patent document 3, it is a thing of the grade which sprays the metal salt aqueous solution atomized with the sprayer with respect to a burner flame simply, and in such a technique, the magnitude | size of the microparticles to manufacture is desired size (for example, It was difficult to reduce the particle size to 100 nm or less.

本発明は、上記実情に鑑みてなされたものであり、その目的は、製造する微粒子の大きさを小さくすることが可能となる微粒子製造方法、及び微粒子製造装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a fine particle production method and a fine particle production apparatus that can reduce the size of fine particles to be produced.

上記目的を達成するための本発明に係る微粒子製造方法の第一特徴構成は、
微粒子の原料を含む原料気体流と当該原料気体流を覆う反応気体流とを高温雰囲気の反応空間に流入させ、前記原料気体流の外周部で熱処理によって粒子を生成するとともに、生成した粒子を前記反応気体流で冷却して微粒子を製造する微粒子製造方法であって、
微粒子の原料物質を含む液滴流を前記反応気体流の内部に位置させた状態で前記反応空間内に噴出し、気化させて前記原料気体流を作る点にある。
In order to achieve the above object, the first characteristic configuration of the fine particle production method according to the present invention is:
A raw material gas flow containing a raw material of fine particles and a reaction gas flow covering the raw material gas flow are caused to flow into a reaction space of a high-temperature atmosphere, and particles are generated by heat treatment at the outer periphery of the raw material gas flow. A fine particle production method for producing fine particles by cooling with a reaction gas flow ,
A droplet stream containing particulate raw material is jetted into the reaction space in a state where the droplet stream is located inside the reaction gas stream, and is vaporized to create the source gas stream .

すなわち、上記原料気体流と反応気体流とを高温雰囲気の反応空間に流入させると、反応気体流で覆われた原料気体流の外周部で原料気体流が熱処理されて粒子が生成するが、生成した粒子は反応気体流と共に移動するときに反応気体流によって速やかに急冷されるため、生成した粒子同士の合体・凝集や蒸気の粒子表面への凝縮・反応等によって製造される微粒子の大きさが大きくなる現象が抑制される。
従って、製造する微粒子の大きさを小さくすることが可能となる微粒子製造方法が提供される。
That is, when the raw material gas flow and the reaction gas flow are flowed into the reaction space of the high temperature atmosphere, the raw material gas flow is heat-treated at the outer periphery of the raw material gas flow covered with the reaction gas flow, and particles are generated. When the particles move together with the reaction gas flow, they are rapidly cooled by the reaction gas flow. Therefore, the size of the fine particles produced by coalescence and aggregation of the generated particles, condensation of the vapor onto the particle surface, reaction, etc. The phenomenon of increasing is suppressed.
Accordingly, there is provided a fine particle production method capable of reducing the size of the fine particles to be produced.

尚、微粒子の原料物質を含む液滴流を前記反応気体流の内部に位置させた状態で前記反応空間内に噴出する方法が採られ、これによって、液滴流を構成する液滴が温度上昇及び蒸気圧上昇に伴い蒸発気化し、液滴流が反応気体流で覆われた原料気体流に変化するため、微粒子の原料を含む原料気体流が反応気体流によって覆われた状態が得られる。 In addition, a method is employed in which a droplet flow containing particulate raw material is ejected into the reaction space in a state of being positioned inside the reaction gas flow , whereby the temperature of the droplets constituting the droplet flow is increased. As the vapor pressure rises, the vaporization of the liquid droplets changes to a raw material gas flow covered with the reaction gas flow, so that a state in which the raw material gas flow containing the fine particle raw material is covered with the reaction gas flow is obtained.

た、液体の噴出は噴出量が安定しているので、微粒子の原料の供給量を所望の値に設定し易く、その結果、粒子生成反応を正確に制御することが可能となる。
従って、微粒子の原料物質を含む液滴流を用いて原料の供給量を適切に設定するとともに、反応気体流で覆われた原料気体流を良好な状態で作り出す微粒子製造方法の好適な実施形態が提供される。
Also, since the ejection of the liquid amount ejected is stable, easy to set the supply amount of the raw material of the fine particles to a desired value, as a result, it is possible to accurately control the particle formation reaction.
Accordingly, a preferred embodiment of a fine particle manufacturing method that appropriately sets the supply amount of a raw material using a droplet flow containing a fine particle raw material material and produces a raw material gas flow covered with a reaction gas flow in a good state. Provided.

同第特徴構成は、前記熱処理が前記原料気体流と前記反応気体流との化学反応によるものである点にある。 The second characteristic configuration is that the heat treatment is based on a chemical reaction between the raw material gas flow and the reaction gas flow.

すなわち、前記原料気体流と前記反応気体流との化学反応によって粒子が生成され、この生成した粒子を前記反応気体流で冷却して微粒子を製造する。
従って、反応気体流を構成する反応気体の種類を変更することにより、製造される微粒子の組成が異なるので、各種の微粒子を製造することが可能となる微粒子製造方法の好適な実施形態が提供される。例えば、反応気体を酸素ガスにすると酸化物の微粒子が得られ、窒素ガスにすると窒化物の微粒子が得られる。
That is, particles are generated by a chemical reaction between the raw material gas flow and the reaction gas flow, and the generated particles are cooled by the reaction gas flow to produce fine particles.
Therefore, since the composition of the fine particles to be produced is changed by changing the type of the reaction gas constituting the reaction gas flow, a preferred embodiment of a fine particle production method capable of producing various fine particles is provided. The For example, when the reaction gas is oxygen gas, oxide fine particles are obtained, and when nitrogen gas is used, nitride fine particles are obtained.

同第特徴構成は、製造する微粒子の大きさに応じて前記原料気体流の流量に対する前記反応気体流の流量の比を変更設定する点にある。 The third characteristic configuration is that the ratio of the flow rate of the reaction gas flow to the flow rate of the raw material gas flow is changed according to the size of the fine particles to be manufactured.

すなわち、前記原料気体流の流量に対する前記反応気体流の流量の比を大きくすると、微粒子の原料の量が相対的に少なくなり、反応気体の量は相対的に多くなるので、微粒子の原料が熱処理される反応領域の長さが短くなり、生成した粒子が反応領域に滞留する時間が短くなると同時に、反応気体流による冷却作用が強くなるので、粒子同士の合体・凝集や蒸気の粒子表面への凝縮・反応等がより発生し難く、製造される微粒子の大きさが小さくなる。
一方、前記原料気体流の流量に対する前記反応気体の流量の比を小さくすると、微粒子の原料の量が相対的に多くなり、反応気体の量は相対的に少なくなるので、上記反応領域の長さが長くなり、生成した粒子が反応領域に滞留する時間が長くなると同時に、反応気体流による冷却作用が弱くなるので、粒子同士の合体・凝集や蒸気の粒子表面への凝縮・反応等が発生し易く、製造される微粒子の大きさが大きくなる。
従って、原料気体流の流量に対する反応気体流の流量の比を変更することにより、所望の大きさの微粒子を製造することが可能となる微粒子製造方法の好適な実施形態が提供される。
That is, when the ratio of the flow rate of the reaction gas flow to the flow rate of the raw material gas flow is increased, the amount of the raw material of the fine particles is relatively reduced and the amount of the reaction gas is relatively increased. The length of the reaction zone is shortened, the time for the generated particles to stay in the reaction zone is shortened, and at the same time the cooling action by the reaction gas flow is strengthened, so that the coalescence / aggregation of particles and the vapor to the particle surface Condensation and reaction are less likely to occur, and the size of the produced fine particles is reduced.
On the other hand, if the ratio of the flow rate of the reaction gas to the flow rate of the raw material gas flow is reduced, the amount of the fine particle raw material is relatively increased and the amount of the reaction gas is relatively reduced. And the generated particles stay in the reaction zone for a long time. At the same time, the cooling action by the reaction gas flow is weakened, so that coalescence and aggregation of particles and condensation / reaction of vapor to the particle surface occur. It is easy to increase the size of the produced fine particles.
Therefore, a preferred embodiment of a fine particle production method that can produce fine particles of a desired size by changing the ratio of the flow rate of the reaction gas flow to the flow rate of the raw material gas flow is provided.

本発明に係る微粒子製造装置の第一特徴構成は、
内部に高温雰囲気の反応空間を備えた容器と、前記容器の内部に噴射方向を向けたノズルユニットとを有し、
前記ノズルユニットは、微粒子の原料物質を含む原料液を噴出する液体ノズルと、前記液体ノズルの周囲に位置して反応気体流を形成する気体を前記液体ノズルの軸芯方向に沿って噴出する気体ノズルとを備え
前記液体ノズルによって噴出された微粒子の原料物質を含む液滴流が、前記気体ノズルによって噴出された前記反応気体流の内部に位置した状態で前記反応空間内に噴出し、気化して、微粒子の原料を含む原料気体流が作られ、
前記原料気体流の外周部で熱処理によって生成された粒子が前記反応気体流によって冷却されることで微粒子が製造されるように構成されている点にある。
The first characteristic configuration of the fine particle production apparatus according to the present invention is:
A container having a reaction space in a high-temperature atmosphere inside, and a nozzle unit in which the injection direction is directed inside the container,
The nozzle unit includes a liquid nozzle for ejecting a raw material liquid containing the source material particles, it is located around the liquid nozzle to a gas to form a reaction gas stream ejected along the axial direction of the liquid nozzle A gas nozzle ,
A droplet stream containing the particulate material material ejected by the liquid nozzle is ejected into the reaction space in a state where the droplet stream is located inside the reaction gas stream ejected by the gas nozzle . A raw material gas stream containing the raw material is created,
There exists in the point comprised so that the particle | grains produced | generated by heat processing in the outer peripheral part of the said raw material gas flow may be manufactured by cooling with the said reaction gas flow .

すなわち、液体ノズルによって微粒子の原料物質を含む原料液を噴出するとともに、液体ノズルの周囲に位置した気体ノズルから前記反応気体流を形成する気体を前記液体ノズルの軸芯方向に沿って噴出すると、液体ノズルから噴射された原料液が気体ノズルから噴射された気体によって霧化されて液滴流になり、さらにこの液滴流が蒸発気化して原料気体流になり、原料気体流とこの原料気体流を覆う反応気体流が形成され、原料気体流の外周部で熱処理によって生成された粒子が反応気体流によって冷却されることで微粒子が製造される
従って、上記微粒子製造方法において原料気体流及び反応気体流を適切に形成することができる微粒子製造装置が提供される。
That is, when the raw material liquid containing the fine particle raw material is ejected by the liquid nozzle, and the gas forming the reaction gas flow is ejected from the gas nozzle located around the liquid nozzle along the axial direction of the liquid nozzle, The raw material liquid ejected from the liquid nozzle is atomized by the gas ejected from the gas nozzle into a droplet flow, and this droplet flow is evaporated and vaporized into a raw material gas flow. The raw material gas flow and the raw material gas A reaction gas flow covering the flow is formed, and particles generated by heat treatment at the outer periphery of the raw material gas flow are cooled by the reaction gas flow to produce fine particles .
Therefore, a fine particle production apparatus capable of appropriately forming a raw material gas flow and a reaction gas flow in the fine particle production method is provided.

同第二特徴構成は、前記気体ノズルが、前記液体ノズルの軸芯方向視において前記液体ノズルに対して同心状に形成されている点にある。   The second characteristic configuration is that the gas nozzle is formed concentrically with respect to the liquid nozzle as viewed in the axial direction of the liquid nozzle.

すなわち、液体ノズルの軸芯方向視において液体ノズルに対して同心状に形成された気体ノズルから噴射された反応気体流が液体ノズルから噴射された原料液を同心状に囲むので、原料液が霧化及び気化して生成された原料気体流を流れの中心に位置させる状態で覆う反応気体流が形成される。
従って、原料気体流の外周部の全周に亘って均一に微粒子生成反応を起こさせることが可能な微粒子製造装置の好適な実施形態が提供される。
That is, the reaction gas flow ejected from the gas nozzle formed concentrically with respect to the liquid nozzle as viewed in the axial direction of the liquid nozzle concentrically surrounds the raw material liquid ejected from the liquid nozzle. A reaction gas flow is formed that covers the raw material gas flow generated by vaporization and vaporization so as to be positioned at the center of the flow.
Therefore, a preferred embodiment of a fine particle production apparatus capable of causing the fine particle production reaction uniformly over the entire circumference of the outer peripheral portion of the raw material gas flow is provided.

同第三特徴構成は、前記液体ノズルと前記気体ノズルとを備えてノズルユニットを構成し、その噴射方向が前記反応空間内の1点に集まる当該ノズルユニットの組を少なくとも1組有している点にある。   The third characteristic configuration includes a nozzle unit including the liquid nozzle and the gas nozzle, and has at least one set of the nozzle unit in which the injection direction is gathered at one point in the reaction space. In the point.

すなわち、液体ノズルと気体ノズルとを備えた少なくとも1組のノズルユニットから噴射された前記原料気体流及び反応気体流が、前記高温雰囲気の反応空間内の1点に集まって衝突するので、上記各ノズルユニットから噴射された各気体流が上記反応空間を形成する容器壁等に達して粒子が付着し、微粒子として回収できない不都合を抑制することができ、同時に、複数のノズルユニットから同時に多量の原料を供給して多量の微粒子を製造することができる。
従って、微粒子の製造効率を高めた微粒子製造装置の好適な実施形態が提供される。
That is, since the raw material gas flow and the reaction gas flow injected from at least one set of nozzle units including a liquid nozzle and a gas nozzle gather at one point in the reaction space of the high-temperature atmosphere and collide with each other, Each gas flow ejected from the nozzle unit reaches the container wall or the like forming the reaction space, and particles can adhere to it and suppress the inconvenience that it cannot be recovered as fine particles. A large amount of fine particles can be produced by supplying.
Therefore, a preferred embodiment of a fine particle production apparatus with improved fine particle production efficiency is provided.

同第四特徴構成は、前記高温雰囲気の反応空間を作り出す熱源がプラズマ発生装置である点にある。
すなわち、プラズマ発生装置によって高温雰囲気の反応空間を容易に作り出すことができる。従って、適切な熱源を備えた微粒子製造装置の好適な実施形態が提供される。
The fourth characteristic configuration is that the heat source for creating the reaction space of the high-temperature atmosphere is a plasma generator.
That is, a reaction space having a high temperature atmosphere can be easily created by the plasma generator. Therefore, a preferred embodiment of the fine particle production apparatus having an appropriate heat source is provided.

同第五特徴構成は、前記反応空間を冷却する冷却手段を備えている点にある。
すなわち、反応空間を冷却することにより反応気体流の高温化を防止して、反応気体流による生成粒子に対する急冷効果を高め、生成粒子が成長して大きくなる現象をより一層抑制することができる。特に、融点が低い粒子に対して反応気体流だけでは急冷効果が不足するような場合に有効である。
従って、製造する微粒子の大きさを一層小さくすることが可能となる微粒子製造装置の好適な実施形態が提供される。
The fifth characteristic configuration is that a cooling means for cooling the reaction space is provided.
That is, it is possible to prevent the reaction gas flow from becoming high temperature by cooling the reaction space, enhance the rapid cooling effect on the generated particles by the reaction gas flow, and further suppress the phenomenon that the generated particles grow and become larger. This is particularly effective when the quenching effect is insufficient for the particles having a low melting point only by the reaction gas flow.
Therefore, a preferred embodiment of a fine particle production apparatus that can further reduce the size of the fine particles to be produced is provided.

本発明に係る微粒子製造方法、及び微粒子製造装置の実施形態について図面に基づいて説明する。
図1に本発明の微粒子製造方法が適用される微粒子製造システムの主要部の構成を示す。微粒子製造システムは、微粒子製造装置としての反応器10と、反応器10で生成した微粒子を冷却して回収する回収器20等で構成される。尚、図示しないが、反応器10から出た微粒子は冷却塔を通過して冷却された後、回収器20に備えたバグフィルタによって集められる。
Embodiments of a fine particle production method and a fine particle production apparatus according to the present invention will be described with reference to the drawings.
FIG. 1 shows the configuration of the main part of a fine particle production system to which the fine particle production method of the present invention is applied. The fine particle production system includes a reactor 10 as a fine particle production apparatus, a recovery device 20 that cools and collects fine particles generated in the reactor 10, and the like. Although not shown, the fine particles emitted from the reactor 10 pass through the cooling tower and are cooled, and then collected by a bag filter provided in the recovery unit 20.

また、上記反応器10内の圧力は、回収器20よりも下流側に設けた排気装置によって減圧または加圧状態にされている。ここで、図示しないが、排気装置として、具体的には排気通路に排気用ファンやダンパを設けるとともに、反応器10の内圧が一定圧に維持されるように、反応器10の内圧を測る圧力センサの計測情報に基づいて、上記排気用ファンを駆動するファンモータの回転数をインバータ制御し、あるいは、上記ダンパの開度を変更調整している。このように反応器10の内圧を一定圧に維持することで、後述の反応気体流GRの流速を安定させ、生成される微粒子の大きさ(粒度)が安定する効果が得られる。また、反応器10の内圧を一定圧に維持するためには反応器10以降の配管や冷却塔・回収器などの機器類に圧力センサを設置し、この圧力センサの計測情報に基づいて、上記ファンモータの回転数制御やダンパの開度調整を行うようにしてもよい。   The pressure in the reactor 10 is reduced or increased by an exhaust device provided on the downstream side of the recovery device 20. Here, although not shown, as an exhaust device, specifically, an exhaust fan or a damper is provided in the exhaust passage, and the internal pressure of the reactor 10 is measured so that the internal pressure of the reactor 10 is maintained at a constant pressure. Based on the sensor measurement information, the rotational speed of the fan motor that drives the exhaust fan is controlled by an inverter, or the opening degree of the damper is changed and adjusted. By maintaining the internal pressure of the reactor 10 at a constant pressure in this way, an effect of stabilizing the flow rate of the reaction gas flow GR described later and stabilizing the size (particle size) of the generated fine particles can be obtained. Further, in order to maintain the internal pressure of the reactor 10 at a constant pressure, a pressure sensor is installed in equipment such as the piping after the reactor 10 and a cooling tower / collector, and based on the measurement information of the pressure sensor, You may make it perform the rotation speed control of a fan motor, and the opening degree adjustment of a damper.

上記反応器10は、粒子出口が先細状に形成された円筒状の容器1あるいは先細状でない円筒に短管をつけた容器を備え、容器1の上部には、容器1の内部に高温雰囲気の反応空間HKを作り出す熱源としてのプラズマ発生装置2が設置されている。プラズマ発生装置2には、放電用のアルゴンガスが供給管7によって供給されている。なお、プラズマ発生装置2に供給するガスは、アルゴンガス単独ではなく、アルゴンガスに例えば20%程度ヘリウムガス、水素ガス又は窒素ガスを加えた混合ガスでもよい。つまり、ガスの種類により熱伝導率が異なるので、プラズマ発生装置2に供給するガスの組成を変更することで、プラズマの温度をコントロールすることができる。   The reactor 10 includes a cylindrical container 1 having a tapered particle outlet or a container having a short tube attached to a non-tapered cylinder. A high temperature atmosphere is provided inside the container 1 above the container 1. A plasma generator 2 is installed as a heat source for creating the reaction space HK. The plasma generator 2 is supplied with a discharge argon gas by a supply tube 7. The gas supplied to the plasma generator 2 is not limited to argon gas alone, but may be a mixed gas in which helium gas, hydrogen gas or nitrogen gas is added to argon gas, for example, about 20%. That is, since the thermal conductivity differs depending on the type of gas, the plasma temperature can be controlled by changing the composition of the gas supplied to the plasma generator 2.

容器1の入口側横壁には、容器1内に噴射方向を向けた1個のノズルユニット3が設置されている。ノズルユニット3は、図2及び図3に示すように、微粒子の原料物質を含む原料液を噴出する液体ノズル4と、液体ノズル4の周囲に位置して、反応気体流GRを形成する気体(具体的には酸素ガス)を液体ノズル4の軸芯方向に沿って噴出する気体ノズル5とを備えて構成されている。尚、上記気体ノズル5には供給管5aによって酸素ガスが供給され、液体ノズル4には供給管4aによって原料液が供給される(図1参照)。   A single nozzle unit 3 is installed on the inlet 1 side wall of the container 1 with the injection direction directed into the container 1. As shown in FIGS. 2 and 3, the nozzle unit 3 includes a liquid nozzle 4 that ejects a raw material liquid containing a fine particle raw material, and a gas that forms a reaction gas flow GR (positioned around the liquid nozzle 4). Specifically, the gas nozzle 5 is configured to eject oxygen gas) along the axial direction of the liquid nozzle 4. The gas nozzle 5 is supplied with oxygen gas through a supply pipe 5a, and the liquid nozzle 4 is supplied with a raw material liquid through a supply pipe 4a (see FIG. 1).

上記気体ノズル5は、液体ノズル4の軸芯方向視において液体ノズル4に対して同心状に形成されている。具体的には、液体ノズル4が円形に形成され、気体ノズル5が、円形の液体ノズル4を中心にした円環に形成されている。なお、図2に各ノズル4,5の構造を模式的に示すが、(イ)は気液外部混合型を示し、(ロ)は気液内部混合型を示す。   The gas nozzle 5 is formed concentrically with the liquid nozzle 4 in the axial direction of the liquid nozzle 4. Specifically, the liquid nozzle 4 is formed in a circular shape, and the gas nozzle 5 is formed in an annular shape around the circular liquid nozzle 4. FIG. 2 schematically shows the structure of each of the nozzles 4 and 5. FIG. 2A shows a gas / liquid external mixing type, and FIG. 2B shows a gas / liquid internal mixing type.

なお、ノズルユニット3の構造は、例えば円筒形等の単一の部材内に液体ノズル4及び気体ノズル5用の流路を形成した構造(図2)に限られず、例えば、1本の液体ノズルを中心に配置し、その液体ノズルの周囲に液体ノズルとは別体の複数の気体ノズルを対称に配置したノズルユニットでもよい(図12参照)。   The structure of the nozzle unit 3 is not limited to a structure (FIG. 2) in which flow paths for the liquid nozzle 4 and the gas nozzle 5 are formed in a single member such as a cylindrical shape, for example, one liquid nozzle And a nozzle unit in which a plurality of gas nozzles separate from the liquid nozzle are arranged symmetrically around the liquid nozzle (see FIG. 12).

さらに、図示はしないが、本発明の微粒子製造装置は、前記反応空間HKを冷却する冷却手段を備えている。具体的には、前記容器1の外周部に水冷用のジャケットを配置して容器外部から冷却する間接冷却手段、冷却用のガス(酸素ガス等)や液体(水等)を容器1の内部に吹き込む直接冷却手段などを用いることができる。   Further, although not shown, the fine particle production apparatus of the present invention includes a cooling means for cooling the reaction space HK. Specifically, an indirect cooling means for disposing a jacket for water cooling on the outer periphery of the container 1 to cool it from the outside of the container, and a cooling gas (oxygen gas etc.) or liquid (water etc.) inside the container 1 Direct cooling means for blowing can be used.

次に、本発明の微粒子製造方法は、図3に模式的に示すように、微粒子の原料を含む原料気体流ETと当該原料気体流ETを覆う反応気体流GRとを高温雰囲気の反応空間HKに流入させ、前記原料気体流ETの外周部で熱処理によって粒子を生成するとともに、生成した粒子を前記反応気体流GRで冷却して微粒子を製造するものである。
そして、上記熱処理は前記原料気体流ETと前記反応気体流GRとの化学反応によるものである。具体的には、反応気体として酸素ガスを用い、酸化反応(燃焼反応)によって微粒子の酸化物を製造している。
Next, in the method for producing fine particles of the present invention, as schematically shown in FIG. 3, the raw material gas flow ET containing the raw material of fine particles and the reaction gas flow GR covering the raw material gas flow ET are converted into a reaction space HK in a high temperature atmosphere. The particles are produced by heat treatment at the outer periphery of the raw material gas flow ET, and the produced particles are cooled by the reaction gas flow GR to produce fine particles.
The heat treatment is performed by a chemical reaction between the raw material gas flow ET and the reaction gas flow GR. Specifically, fine oxides are produced by an oxidation reaction (combustion reaction) using oxygen gas as a reaction gas.

本実施形態では、微粒子の原料物質を含む液滴流ETを反応気体流GRの内部に位置させた状態で高温雰囲気の反応空間HK内に噴出し、気化させて前記原料気体流ETを作っている。すなわち、噴出された液滴流ETが反応空間HK内を進むと、温度上昇に伴って蒸発気化して原料気体流ETに変化する。したがって、ETで表わした流れ部分のうち左側の基部側は液滴流の領域であり、右側の先端側では原料気体流の領域となる。図3中、3は上記液滴流(原料気体流)ET及び反応気体流GRを形成する前記ノズルユニットであり、このノズルユニット3によって、反応気体流GRの円錐の広がり角度θgが液滴流(原料気体流)ETの円錐の広がり角度θeよりも大きくなるように形成している。   In the present embodiment, a droplet stream ET containing particulate raw material is jetted into a reaction space HK in a high-temperature atmosphere in a state where the droplet stream ET is positioned inside the reaction gas stream GR, and is vaporized to create the source gas stream ET. Yes. That is, when the ejected droplet flow ET travels in the reaction space HK, it evaporates and vaporizes as the temperature rises and changes to a raw material gas flow ET. Accordingly, the left base side of the flow portion represented by ET is a droplet flow region, and the right tip side is a raw material gas flow region. In FIG. 3, reference numeral 3 denotes the nozzle unit that forms the droplet flow (raw material gas flow) ET and the reaction gas flow GR. By this nozzle unit 3, the cone spreading angle θg of the reaction gas flow GR is changed to the droplet flow. (Raw material gas flow) It is formed to be larger than the spread angle θe of the cone of ET.

以下、本発明の微粒子製造方法による微粒子製造動作について説明する。
(1)粒子は原料気体流ETの外周部(具体的には、原料気体流ETに接する反応気体流GRの界面付近)に発生する反応領域(燃焼部ゾーン)HRで生成される。
(2)反応領域HR内の生成粒子は反応気体流GRの移動速度と同等の速度で移動する。
(3)反応領域HRが長くなってノズルの位置に近づくと(図3(ハ)の状態)、生成粒子が反応領域HR内に留まる滞留時間(高温雰囲気に保持される時間)が長くなり、また、反応気体流GRによる冷却作用も小さくなるので、粒子同士の合体等が促進されて粒子径が大きくなる。
(4)逆に、反応領域HRが短くなってノズルの位置から遠くなると(図3(ロ)の状態)、生成粒子が反応領域HR内に留まる滞留時間(高温雰囲気に保持される時間)が短くなり、また、反応気体流GRによる冷却作用も強くなるので、粒子同士の合体等が抑制されて粒子径が小さくなる。
Hereinafter, the fine particle production operation by the fine particle production method of the present invention will be described.
(1) Particles are generated in the reaction region (combustion zone) HR generated in the outer peripheral portion of the raw material gas flow ET (specifically, near the interface of the reactive gas flow GR in contact with the raw material gas flow ET).
(2) The generated particles in the reaction region HR move at a speed equivalent to the moving speed of the reaction gas flow GR.
(3) When the reaction region HR becomes longer and approaches the position of the nozzle (the state shown in FIG. 3 (C)), the residence time (the time during which the generated particles remain in the high temperature atmosphere) that the generated particles stay in the reaction region HR becomes longer. Further, since the cooling action by the reaction gas flow GR is also reduced, the coalescence of the particles is promoted and the particle diameter is increased.
(4) On the contrary, when the reaction region HR is shortened and is far from the position of the nozzle (the state shown in FIG. 3B), the residence time in which the generated particles stay in the reaction region HR (the time during which the high temperature atmosphere is maintained) is increased. Since the reaction time becomes shorter and the cooling action by the reaction gas flow GR becomes stronger, the coalescence of particles is suppressed and the particle diameter is reduced.

そして、本発明の微粒子製造方法においては、製造する微粒子の大きさに応じて前記原料気体流(実際は液滴流)ETの流量に対する前記気体流GRの流量の比(以下、気液比と呼ぶ)を変更設定している。
すなわち、気液比が大きい場合は、反応の対象となる液滴流ET内の原料物質の量が少なくなるので前記反応領域HRが短くなり、生成粒子の反応領域HR内での滞留時間が短くなる場合に対応するので、製造される粒子径が小さくなる。一方、気液比が小さい場合は、反応の対象となる液滴流ET内の原料物質の量が多くなるので前記反応領域HRが長くなり、生成粒子の反応領域HR内での滞留時間が長くなる場合に対応するので、製造される粒子径が大きくなる。
In the fine particle production method of the present invention, the ratio of the flow rate of the gas flow GR to the flow rate of the raw material gas flow (actually a droplet flow) ET according to the size of the fine particles to be produced (hereinafter referred to as a gas-liquid ratio). ) Is changed.
That is, when the gas-liquid ratio is large, the amount of the raw material in the droplet stream ET to be reacted is reduced, so that the reaction region HR is shortened, and the residence time of the generated particles in the reaction region HR is shortened. Therefore, the particle diameter to be produced is reduced. On the other hand, when the gas-liquid ratio is small, the amount of the raw material in the droplet stream ET to be reacted increases, so that the reaction region HR becomes longer and the residence time of the generated particles in the reaction region HR becomes longer. Since this corresponds to the case, the particle diameter to be manufactured becomes large.

図4に、前記気液外部混合型ノズルユニットを用いて、ノズル径0.5mmの液体ノズル4から噴出する原料液の液流量(リットル/min)を変化させるとともに、一定ガス圧(0.55MPa)の条件で、液体ノズル4の外径を1.3mmに固定し、気体ノズル5の内径Rを種々変化させてガス流量を変化させたときに得られる気液比の一例を示す。ここで、液体ノズル4の外周部と気体ノズル5の内周部との間の円環開口からガス(酸素)が噴出する。図4に示すごとく、気液比は、1000から15000を超える値に設定した。なお、上記ガス圧を変化させて気液比を変更することも可能である。   In FIG. 4, the liquid flow rate (liter / min) of the raw material liquid ejected from the liquid nozzle 4 having a nozzle diameter of 0.5 mm is changed using the gas-liquid external mixing type nozzle unit, and a constant gas pressure (0.55 MPa) is used. An example of a gas-liquid ratio obtained when the outer diameter of the liquid nozzle 4 is fixed to 1.3 mm and the inner diameter R of the gas nozzle 5 is changed variously to change the gas flow rate. Here, gas (oxygen) is ejected from an annular opening between the outer peripheral portion of the liquid nozzle 4 and the inner peripheral portion of the gas nozzle 5. As shown in FIG. 4, the gas-liquid ratio was set to a value exceeding 1000 to 15000. It is also possible to change the gas-liquid ratio by changing the gas pressure.

前記ノズルユニット3から噴出した反応気体流GRはノズルからの距離が遠くなるに従い、流速[m/sec]が低下し、流速の低下に伴い滞留時間[msec]も長くなる。このガス流速と滞留時間の変化の様子を、前記気体ノズル5の内径Rを変化させて気液比を変更した場合の計算例について図5及び図6に示す。ここで、前記反応気体流GRの広がり角度θgを18度、原料気体流ETの広がり角度θeを9度にして計算している。なお、図6においてSPで表わす位置が前記容器1内でノズルユニット3から噴出した気体流がプラズマ領域の中心部に当たる位置に対応する。   The reaction gas flow GR ejected from the nozzle unit 3 decreases in flow rate [m / sec] as the distance from the nozzle increases, and the residence time [msec] increases as the flow rate decreases. FIG. 5 and FIG. 6 show how the gas flow rate and the residence time change in a calculation example when the gas-liquid ratio is changed by changing the inner diameter R of the gas nozzle 5. Here, the spread angle θg of the reaction gas flow GR is set to 18 degrees, and the spread angle θe of the raw material gas flow ET is set to 9 degrees. Note that the position represented by SP in FIG. 6 corresponds to the position where the gas flow ejected from the nozzle unit 3 in the container 1 hits the center of the plasma region.

図5及び図6より、気液比を大きくすると、流速が速くなって滞留時間が短くなり、逆に、気液比を小さくすると、流速が遅くなって滞留時間が長くなるので、粒子径の小さい微粒子を製造するためには、気液比を大きくする必要がある。   5 and 6, when the gas-liquid ratio is increased, the flow rate is increased and the residence time is shortened. Conversely, when the gas-liquid ratio is decreased, the flow rate is decreased and the residence time is increased. In order to produce small fine particles, it is necessary to increase the gas-liquid ratio.

図7〜図10に、いくつかの種類の粒子について気液比を変更して、微粒子のBET(比表面積)から換算したBET換算径(nm)の実験データを示す。例えば、粒子径50nmの微粒子を製造するには、粒子の種類によって異なるが、2000から3000程度の高い気液比に設定する必要があることが判る。   FIG. 7 to FIG. 10 show experimental data of BET converted diameter (nm) converted from BET (specific surface area) of fine particles by changing the gas-liquid ratio for several types of particles. For example, it can be seen that, in order to produce fine particles having a particle diameter of 50 nm, it is necessary to set a high gas-liquid ratio of about 2000 to 3000, depending on the kind of particles.

微粒子の原料物質としては、例えば、SiOの粒子の場合は、各種のシリコン類(シリコンオイル等)が使用でき、これを一般の溶剤で溶解(希釈混合)して原料液を作製し、前記ノズルユニット3の液体ノズル4に供給する。 As the raw material material for fine particles, for example, in the case of SiO 2 particles, various types of silicon (silicon oil, etc.) can be used, and this is dissolved (diluted and mixed) with a general solvent to prepare a raw material liquid. The liquid is supplied to the liquid nozzle 4 of the nozzle unit 3.

〔別実施形態〕
上記実施形態では、反応気体流GRを形成する気体として酸素ガスを用いて、熱処理として酸化(燃焼)化学反応を起こさせて酸化物の微粒子を製造したが、酸素ガスの代わりに窒素ガスを用いて窒化反応を起こさせて窒化物の微粒子を製造したり、あるいは、過剰のアルゴンガスと少量の酸素ガスを供給した場合には、上記酸化反応が抑制され、原料内に存在する物質との反応、例えば炭化反応により炭化物(例えば、SiC)の微粒子を製造することも可能である。なお、熱処理として、化学反応以外の反応を用いてもよい。
[Another embodiment]
In the above embodiment, oxygen gas is used as a gas for forming the reaction gas flow GR, and oxidation (combustion) chemical reaction is caused as a heat treatment to produce oxide fine particles. However, nitrogen gas is used instead of oxygen gas. In the case of producing nitride fine particles by causing a nitriding reaction or supplying an excess of argon gas and a small amount of oxygen gas, the above oxidation reaction is suppressed and reaction with a substance present in the raw material is performed. For example, fine particles of carbide (for example, SiC) can be produced by a carbonization reaction, for example. Note that a reaction other than a chemical reaction may be used as the heat treatment.

上記実施形態では、原料液を液体ノズル4から噴出して液滴流ETを生成した後、この液滴流ETを蒸発気化させて原料気体流ETを形成するようにしたが、予め作製した原料気体を気体ノズルから噴出して原料気体流ETを形成するようにしてもよい。   In the above embodiment, after the raw material liquid is ejected from the liquid nozzle 4 to generate the droplet flow ET, the droplet flow ET is evaporated and vaporized to form the raw material gas flow ET. Gas may be ejected from the gas nozzle to form the raw material gas flow ET.

上記実施形態では、ノズルユニット3を1個だけ設置する場合について説明したが、複数のノズルユニット3を設置してもよい。この場合、各ノズルユニット3の噴射方向が前記高温雰囲気の反応空間HK内の1点に集まる当該ノズルユニットの組を少なくとも1組有することが好ましい。図11に、1組を構成する2個のノズルユニット3を、各噴出方向が容器1の中心部に発生させた反応空間HK内の1点に集まるように互いに180度をなす状態で対向配置させた場合を示す。また、図12に、2個のノズルユニット3を対向させずに(斜め方向に向けて)反応空間HK内の1点に集まるように配置させた場合を示す。なお、図12では、各ノズルユニット3を、別体の液体ノズル4Aと気体ノズル5Aで構成している。ただし、噴射方向が反応空間HK内の1点に集まる1組を構成するノズルユニット3の数は3個以上でもよい。
さらに、上記噴射方向が1点に集まるノズルユニット3の組を複数組備えてもよいが、この場合に、各ノズルユニット3の組の噴射方向が全て反応空間HK内の同じ点に集まるようにしてもよいが、別な点に集まるようにしてもよい。また、噴射方向が1点に集まるノズルユニット3の組の他に、噴射方向が反応空間HK内の他の点に向いた単独のノズルユニット3を単数または複数設置してもよい。
Although the case where only one nozzle unit 3 is installed has been described in the above embodiment, a plurality of nozzle units 3 may be installed. In this case, it is preferable to have at least one set of nozzle units in which the injection directions of the nozzle units 3 are gathered at one point in the reaction space HK in the high-temperature atmosphere. In FIG. 11, the two nozzle units 3 constituting one set are opposed to each other at an angle of 180 degrees so that the ejection directions are gathered at one point in the reaction space HK generated in the center of the container 1. The case where it was made to show is shown. FIG. 12 shows a case where the two nozzle units 3 are arranged so as to gather at one point in the reaction space HK without facing each other (in an oblique direction). In FIG. 12, each nozzle unit 3 is composed of a separate liquid nozzle 4A and gas nozzle 5A. However, the number of nozzle units 3 constituting one set in which the injection direction gathers at one point in the reaction space HK may be three or more.
Furthermore, a plurality of sets of nozzle units 3 in which the injection directions are collected at one point may be provided. In this case, the injection directions of the sets of nozzle units 3 are all collected at the same point in the reaction space HK. However, you may make it gather at another point. In addition to the set of nozzle units 3 in which the injection directions are gathered at one point, a single nozzle unit 3 or a plurality of single nozzle units 3 whose injection directions are directed to other points in the reaction space HK may be installed.

本発明に係る微粒子製造装置の全体構成を示す断面図Sectional drawing which shows the whole structure of the fine particle manufacturing apparatus which concerns on this invention ノズル部の構造を模式的に示す断面図と正面図Sectional view and front view schematically showing the structure of the nozzle part 本発明に係る微粒子製造方法を模式的に説明する図The figure which illustrates typically the microparticle manufacturing method which concerns on this invention 気液比を変更するための実験条件を示すグラフGraph showing experimental conditions for changing the gas-liquid ratio 反応気体流における流速の計算例を示すグラフGraph showing calculation example of flow velocity in reaction gas flow 反応気体流における滞留時間の計算例を示すグラフGraph showing calculation example of residence time in reaction gas flow 気液比と粒子径の関係を示す実験データの一例Example of experimental data showing the relationship between gas-liquid ratio and particle size 気液比と粒子径の関係を示す実験データの一例Example of experimental data showing the relationship between gas-liquid ratio and particle size 気液比と粒子径の関係を示す実験データの一例Example of experimental data showing the relationship between gas-liquid ratio and particle size 気液比と粒子径の関係を示す実験データの一例Example of experimental data showing the relationship between gas-liquid ratio and particle size 別実施形態の微粒子製造装置の要部を示す断面図Sectional drawing which shows the principal part of the microparticle manufacturing apparatus of another embodiment 他の別実施形態の微粒子製造装置の要部を示す断面図Sectional drawing which shows the principal part of the fine particle manufacturing apparatus of other another embodiment.

符号の説明Explanation of symbols

2 熱源(プラズマ発生装置)
3 ノズルユニット
4 液体ノズル
4A 液体ノズル
5 気体ノズル
5A 気体ノズル
10 微粒子製造装置
ET 原料気体流(液滴流)
GR 反応気体流
HK 反応空間
2 Heat source (plasma generator)
3 Nozzle Unit 4 Liquid Nozzle 4A Liquid Nozzle 5 Gas Nozzle 5A Gas Nozzle 10 Fine Particle Production Equipment ET Raw Material Gas Flow (Droplet Flow)
GR reaction gas flow HK reaction space

Claims (8)

微粒子の原料を含む原料気体流と当該原料気体流を覆う反応気体流とを高温雰囲気の反応空間に流入させ、前記原料気体流の外周部で熱処理によって粒子を生成するとともに、生成した粒子を前記反応気体流で冷却して微粒子を製造する微粒子製造方法であって、
微粒子の原料物質を含む液滴流を前記反応気体流の内部に位置させた状態で前記反応空間内に噴出し、気化させて前記原料気体流を作る微粒子製造方法
A raw material gas flow containing a raw material of fine particles and a reaction gas flow covering the raw material gas flow are caused to flow into a reaction space of a high-temperature atmosphere, and particles are generated by heat treatment at the outer periphery of the raw material gas flow. A fine particle production method for producing fine particles by cooling with a reaction gas flow ,
A method for producing fine particles, in which a droplet stream containing a raw material material of fine particles is ejected into the reaction space in a state of being positioned inside the reaction gas stream, and is vaporized to produce the raw material gas stream .
前記熱処理が前記原料気体流と前記反応気体流との化学反応によるものである請求項1に記載の微粒子製造方法。 The method for producing fine particles according to claim 1, wherein the heat treatment is based on a chemical reaction between the raw material gas flow and the reaction gas flow. 製造する微粒子の大きさに応じて前記原料気体流の流量に対する前記反応気体流の流量の比を変更設定する請求項1または2に記載の微粒子製造方法。 The method for producing fine particles according to claim 1 or 2, wherein a ratio of a flow rate of the reaction gas flow to a flow rate of the raw material gas flow is changed according to a size of the fine particles to be produced. 内部に高温雰囲気の反応空間を備えた容器と、前記容器の内部に噴射方向を向けたノズルユニットとを有し、
前記ノズルユニットは、微粒子の原料物質を含む原料液を噴出する液体ノズルと、前記液体ノズルの周囲に位置して反応気体流を形成する気体を前記液体ノズルの軸芯方向に沿って噴出する気体ノズルとを備え
前記液体ノズルによって噴出された微粒子の原料物質を含む液滴流が、前記気体ノズルによって噴出された前記反応気体流の内部に位置した状態で前記反応空間内に噴出し、気化して、微粒子の原料を含む原料気体流が作られ、
前記原料気体流の外周部で熱処理によって生成された粒子が前記反応気体流によって冷却されることで微粒子が製造されるように構成されている微粒子製造装置。
A container having a reaction space in a high-temperature atmosphere inside, and a nozzle unit in which the injection direction is directed inside the container,
The nozzle unit includes a liquid nozzle for ejecting a raw material liquid containing the source material particles, it is located around the liquid nozzle to a gas to form a reaction gas stream ejected along the axial direction of the liquid nozzle A gas nozzle ,
A droplet stream containing the particulate material material ejected by the liquid nozzle is ejected into the reaction space in a state where the droplet stream is located inside the reaction gas stream ejected by the gas nozzle . A raw material gas stream containing the raw material is created,
A fine particle production apparatus configured to produce fine particles by cooling particles generated by heat treatment at an outer peripheral portion of the raw material gas flow by the reaction gas flow .
前記気体ノズルが、前記液体ノズルの軸芯方向視において前記液体ノズルに対して同心状に形成されている請求項に記載の微粒子製造装置。 The fine particle manufacturing apparatus according to claim 4 , wherein the gas nozzle is formed concentrically with the liquid nozzle as viewed in the axial direction of the liquid nozzle. 前記液体ノズルと前記気体ノズルとを備えてノズルユニットを構成し、その噴射方向が前記反応空間内の1点に集まる当該ノズルユニットの組を少なくとも1組有している請求項4または5に記載の微粒子製造装置。 Said liquid nozzle and the and a gas nozzle constitute a nozzle unit, wherein the set of the nozzle unit to which the injection direction is collected to one point of the reaction space to claim 4 or 5 has at least one pair Fine particle production equipment. 前記高温雰囲気の反応空間を作り出す熱源がプラズマ発生装置である請求項4〜6のいずれか1項に記載の微粒子製造装置。 The fine particle manufacturing apparatus according to any one of claims 4 to 6 , wherein the heat source that creates the reaction space of the high-temperature atmosphere is a plasma generator. 前記反応空間を冷却する冷却手段を備えている請求項4〜7のいずれか1項に記載の微粒子製造装置。 The fine particle manufacturing apparatus according to claim 4 , further comprising a cooling unit that cools the reaction space.
JP2004028344A 2004-02-04 2004-02-04 Fine particle production method and fine particle production apparatus Expired - Fee Related JP4420690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004028344A JP4420690B2 (en) 2004-02-04 2004-02-04 Fine particle production method and fine particle production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004028344A JP4420690B2 (en) 2004-02-04 2004-02-04 Fine particle production method and fine particle production apparatus

Publications (2)

Publication Number Publication Date
JP2005218937A JP2005218937A (en) 2005-08-18
JP4420690B2 true JP4420690B2 (en) 2010-02-24

Family

ID=34995001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028344A Expired - Fee Related JP4420690B2 (en) 2004-02-04 2004-02-04 Fine particle production method and fine particle production apparatus

Country Status (1)

Country Link
JP (1) JP4420690B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080277092A1 (en) 2005-04-19 2008-11-13 Layman Frederick P Water cooling system and heat transfer system
JP4741905B2 (en) * 2005-08-25 2011-08-10 ホソカワミクロン株式会社 Cosmetics containing composite particles for UV shielding
JP5132049B2 (en) * 2005-09-26 2013-01-30 ホソカワミクロン株式会社 Method for producing dielectric powder
US20100176524A1 (en) * 2006-03-29 2010-07-15 Northwest Mettech Corporation Method and apparatus for nanopowder and micropowder production using axial injection plasma spray
KR100875233B1 (en) * 2007-02-06 2008-12-19 (주)에스이 플라즈마 Plasma generator with suction port around protruding plasma outlet
JP2008194637A (en) * 2007-02-14 2008-08-28 Hosokawa Funtai Gijutsu Kenkyusho:Kk Fine particle producing device
CN101772521A (en) 2007-08-09 2010-07-07 柯尼卡美能达精密光学株式会社 Resin material for optical purposes, and optical element utilizing the same
JP5457627B2 (en) * 2007-09-20 2014-04-02 株式会社クレハ環境 Reaction nozzle, gas-phase hydrolysis treatment apparatus, and gas-phase hydrolysis treatment method
US8507401B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US9119309B1 (en) 2009-12-15 2015-08-25 SDCmaterials, Inc. In situ oxide removal, dispersal and drying
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
RU2014110365A (en) 2011-08-19 2015-09-27 ЭсДиСиМАТИРИАЛЗ, ИНК. COATED SUBSTRATES FOR USE IN CATALYSIS, CATALYTIC CONVERTERS AND METHODS OF COATING SUBSTRATES WITH OXIDE COATING COMPOSITIONS
NO334282B1 (en) * 2012-04-27 2014-01-27 Reactive Metal Particles As Apparatus and method for making particulate matter
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
EP3024571B1 (en) 2013-07-25 2020-05-27 Umicore AG & Co. KG Washcoats and coated substrates for catalytic converters
CN106061600A (en) 2013-10-22 2016-10-26 Sdc材料公司 Catalyst design for heavy-duty diesel combustion engines
KR20160074574A (en) 2013-10-22 2016-06-28 에스디씨머티리얼스, 인코포레이티드 COMPOSITIONS OF LEAN NOx TRAP
EP3119500A4 (en) 2014-03-21 2017-12-13 SDC Materials, Inc. Compositions for passive nox adsorption (pna) systems
JP7266361B2 (en) * 2017-07-26 2023-04-28 太平洋セメント株式会社 Manufacturing method of hollow particles
DE102020213695A1 (en) * 2019-12-04 2021-06-10 Lechler Gmbh Bundle nozzle for spraying a fluid, arrangement with a bundle nozzle and method for producing a bundle nozzle

Also Published As

Publication number Publication date
JP2005218937A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
JP4420690B2 (en) Fine particle production method and fine particle production apparatus
KR100492441B1 (en) Method for atomizing a fluid using hot gas
JP5850544B2 (en) Spray dryer
JP3806295B2 (en) How to change the length of a cohesive jet
JP2009531258A (en) Method and apparatus for producing nano and micro powders using axial injection plasma spraying
JP5718055B2 (en) Apparatus and method for changing the characteristics of a multiphase jet
JP2008526490A (en) Feed nozzle assembly and burner apparatus for gas / liquid reaction
JP2009108414A (en) Method for producing metallic ultra-fine powder and burner, and apparatus for producing metallic ultra-fine powder
WO2009155702A1 (en) Low-temperature oxy-fuel spray system and method for depositing layers using same
JP6205442B2 (en) Metal powder production equipment
JP6165771B2 (en) Reactive gas shroud or flame sheath for suspension plasma spray process
JP2015505908A (en) System and method for utilizing shrouded plasma spray or shrouded liquid suspension injection in a suspension plasma spray process
JP2008194637A (en) Fine particle producing device
CA2640854C (en) Apparatus and method of improving mixing of axial injection in thermal spray guns
JP4668751B2 (en) Powder manufacturing method
CN107186209B (en) High-frequency plasma heater for spheroidizing high-temperature metal powder
JP2013017957A (en) Apparatus and method for manufacturing fine particle
JP2005218938A (en) Fine particle manufacturing apparatus
JP7231159B2 (en) METAL POWDER MANUFACTURING DEVICE AND METHOD FOR MANUFACTURING METAL POWDER
JP5603748B2 (en) Burner for producing inorganic spheroidized particles, inorganic spheroidized particle producing apparatus, and method for producing inorganic spheroidized particles
JP3957581B2 (en) Method for producing spherical silica powder
CN105214468B (en) The ammonium hydroxide spray method and flusher of cement decomposing furnace SNCR method denitrating systems
CN206966635U (en) High frequency plasma heater for high-temperature metal powder nodularization
JP2017145495A (en) Metal powder production apparatus
JP4442869B2 (en) Composite fine particle production method and fine particle production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4420690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees