JP4419688B2 - CVT belt element posture measuring device and measuring method - Google Patents

CVT belt element posture measuring device and measuring method Download PDF

Info

Publication number
JP4419688B2
JP4419688B2 JP2004163104A JP2004163104A JP4419688B2 JP 4419688 B2 JP4419688 B2 JP 4419688B2 JP 2004163104 A JP2004163104 A JP 2004163104A JP 2004163104 A JP2004163104 A JP 2004163104A JP 4419688 B2 JP4419688 B2 JP 4419688B2
Authority
JP
Japan
Prior art keywords
pulley
points
measured
measuring device
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004163104A
Other languages
Japanese (ja)
Other versions
JP2005345185A (en
Inventor
聡 柳葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004163104A priority Critical patent/JP4419688B2/en
Publication of JP2005345185A publication Critical patent/JP2005345185A/en
Application granted granted Critical
Publication of JP4419688B2 publication Critical patent/JP4419688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/16V-belts, i.e. belts of tapered cross-section consisting of several parts
    • F16G5/163V-belts, i.e. belts of tapered cross-section consisting of several parts with means allowing lubrication

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、板状のエレメントを板厚方向に複数積層して環状に形成してエレメント組立体とし、このエレメント組立体を、リング部材により環状に保持して組み付けて、一対のプーリ相互間に掛け渡されるCVTベルトのエレメント姿勢測定装置および測定方法に関する。   In the present invention, a plurality of plate-like elements are laminated in the plate thickness direction to form an element assembly, and the element assembly is held and assembled in an annular shape by a ring member, between a pair of pulleys. The present invention relates to an element posture measuring device and a measuring method for a CVT belt to be stretched.

自動車におけるベルト式無段変速機(CVT)では、CVTベルトが、入力軸および出力軸にそれぞれ取り付けられた一対のプーリ相互間に巻掛けられて使用される。各プーリは、それぞれ溝幅を無段階に変えられる側板を備え、溝幅を変えることでCVTベルトの各プーリに対する巻き付け半径が変わり、これにより入力軸と出力軸との間の回転数比、すなわち変速比が連続的無段階に変化することとなる。   In a belt type continuously variable transmission (CVT) in an automobile, a CVT belt is used by being wound between a pair of pulleys respectively attached to an input shaft and an output shaft. Each pulley is provided with a side plate whose groove width can be changed steplessly, and by changing the groove width, the winding radius of each pulley of the CVT belt is changed, whereby the rotational speed ratio between the input shaft and the output shaft, that is, The gear ratio changes continuously and continuously.

上記したCVTベルトは、厚さ1.8mm程度の薄板状のエレメントを板厚方向に400枚程度順次積層して環状に形成したエレメント組立体と、エレメント組立体を環状に保持する二つのリング部材とから構成されている。各エレメントの両側部に切欠を形成し、エレメント組立体とした状態でこの各切欠によって環状の溝を形成して、この溝にリング部材を嵌め込む。   The above-mentioned CVT belt includes an element assembly formed by annularly laminating about 400 thin plate elements having a thickness of about 1.8 mm in the thickness direction, and two ring members for holding the element assembly in an annular shape. It consists of and. Notches are formed on both sides of each element, and an annular groove is formed by each notch in the state of an element assembly, and a ring member is fitted into this groove.

このようにして構成するCVTベルトのメカニズムを解明することは、CVTベルトの開発を行うに際して重要な技術の一つである。   Elucidating the mechanism of the CVT belt constructed as described above is one of the important technologies in developing the CVT belt.

例えば下記特許文献1には、エレメントに追加工した切欠部に歪ゲージを貼付し、ベルト回転中のエレメントに作用する力を測定する点が記載され、また、下記特許文献2は、リング部材に作用する力を理論式に基づいたコンピュータ解析によって算出する点が記載されている。
特開平6−2743号公報 特開2002−235809号公報
For example, the following Patent Document 1 describes a point in which a strain gauge is attached to a notch portion additionally processed in an element, and the force acting on the element during belt rotation is measured, and the following Patent Document 2 describes a ring member. The point which calculates the force which acts by computer analysis based on a theoretical formula is indicated.
JP-A-6-2743 JP 2002-235809 A

ところで、CVTベルトは、その動作時に、多数積層されたエレメントがプーリに沿って移動する際に、エレメントの面方向がプーリの直径方向と一致する状態を維持することが必要であり、したがって、エレメントが上記した姿勢を確実に維持しているかを測定する必要がある。   By the way, the CVT belt needs to maintain a state in which the surface direction of the element coincides with the diameter direction of the pulley when the multi-layered elements move along the pulley during operation. It is necessary to measure whether or not the above-mentioned posture is reliably maintained.

しかしながら、特許文献1に記載のものは、上記したエレメントの姿勢を測定するには、エレメントに作用する力から推測しなければならず、充分な測定精度を得ることができない。また、特許文献2に記載のものは、すべて理論式に基づいているため、実際のエレメントの姿勢を再現できるものではない。   However, in the device described in Patent Document 1, in order to measure the attitude of the element described above, it must be estimated from the force acting on the element, and sufficient measurement accuracy cannot be obtained. In addition, since all of the devices described in Patent Document 2 are based on theoretical formulas, the actual posture of the element cannot be reproduced.

そこで、本発明は、CVTベルトの構成部材であるエレメントの姿勢を正確に測定することを目的としている。   Accordingly, an object of the present invention is to accurately measure the posture of an element that is a constituent member of a CVT belt.

本発明は、板状のエレメントを板厚方向に複数積層して環状に形成してエレメント組立体とし、このエレメント組立体を、リング部材により環状に保持して組み付けて、一対のプーリ相互間に巻掛けられるCVTベルトのエレメント姿勢測定装置において、前記複数のエレメントのうちの少なくとも一つの外周部に取り付けた被測定具と、この被測定具の外周部における3点を測定する非接触式測定器とをそれぞれ備え、前記非接触式測定器による前記被測定具の3点の被測定点は、前記プーリの回転軸方向に沿って互いに異なる位置にある2点および、この2点に対し前記プーリの直径方向にずれた位置にある1点であることを最も主要な特徴とする。   In the present invention, a plurality of plate-like elements are laminated in the plate thickness direction to form an element assembly, and the element assembly is held and assembled in an annular shape by a ring member, between a pair of pulleys. In an element posture measuring apparatus for a CVT belt to be wound, a non-contact type measuring instrument for measuring three points on the outer peripheral portion of the device to be measured attached to at least one outer peripheral portion of the plurality of elements The three measurement points of the measurement tool by the non-contact type measuring instrument include two points at different positions along the rotation axis direction of the pulley, and the pulley with respect to the two points. The most important feature is that the point is located at a position shifted in the diameter direction.

本発明によれば、非接触式測定器による、エレメント外周部に取り付けた被測定具の3点の被測定点を、プーリの回転軸方向に沿って互いに異なる位置にある2点および、この2点に対しプーリの直径方向にずれた位置にある1点としたので、この3点の測定値を適宜組み合わせることで、エレメントの姿勢を正確に測定することができる。   According to the present invention, the three measurement points of the measurement tool attached to the outer periphery of the element by the non-contact type measuring instrument are set at two points which are different from each other along the rotation axis direction of the pulley. Since one point is located at a position shifted in the diameter direction of the pulley with respect to the point, the posture of the element can be accurately measured by appropriately combining these three measured values.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係わるCVTベルトのエレメント姿勢測定装置を示す斜視図である。CVTベルトは、図2の側面断面図で示すように、板状のエレメント1を板厚方向に複数積層して環状に形成したエレメント組立体3を備えている。エレメント1は、図1に示すように、外周側の頭部5と内周側の肩部7とを首部9にて連結した形状を呈し、首部9の両側の頭部5と肩部7との間にリング挿入溝11を形成してある。   FIG. 1 is a perspective view showing a CVT belt element posture measuring apparatus according to an embodiment of the present invention. As shown in the side cross-sectional view of FIG. 2, the CVT belt includes an element assembly 3 in which a plurality of plate-like elements 1 are laminated in the plate thickness direction to form an annular shape. As shown in FIG. 1, the element 1 has a shape in which a head 5 on the outer peripheral side and a shoulder 7 on the inner peripheral side are connected by a neck 9, and the head 5 and shoulder 7 on both sides of the neck 9 are A ring insertion groove 11 is formed between them.

上記したエレメント1を複数積層した状態の各リング挿入溝11で構成される環状の溝に、図3に示すように、リング部材としての帯状のリング13を嵌め込み、これにより前記したエレメント組立体3を環状に保持して組み付けて、CVTベルトを形成する。   As shown in FIG. 3, a belt-like ring 13 as a ring member is fitted into an annular groove formed by the ring insertion grooves 11 in a state where a plurality of the elements 1 are stacked, thereby the element assembly 3 described above. Are held in an annular shape and assembled to form a CVT belt.

ここで、上記したエレメント1は、図3(a)に示すように、頭部5における矢印Fで示す回転方向前方側の面に凸部5aを設け、これと反対側の背面には、図3(b)に示すように、前記凸部5aが入り込む凹部5bを設けている。   Here, as shown in FIG. 3A, the element 1 described above is provided with a convex portion 5a on the front surface of the head 5 in the rotational direction indicated by the arrow F, and on the back surface on the opposite side, As shown in FIG. 3 (b), a concave portion 5b into which the convex portion 5a enters is provided.

このようなCVTベルトは、図2に示すように、駆動軸15に連結した駆動プーリ17と、従動軸19に連結した従動プーリ21との間に巻掛けて使用する。そして、これら各プーリ17および21は、それぞれ溝幅を無段階に変えられるよう側板相互が互いに接近離反する方向に移動可能であり、溝幅を変えることでCVTベルトの各プーリ17,21に対する巻き付け半径が変わり、これにより駆動軸15と従動軸19との間の回転数比、すなわち変速比が連続的無段階に変化することとなる。   As shown in FIG. 2, such a CVT belt is used by being wound between a drive pulley 17 connected to the drive shaft 15 and a driven pulley 21 connected to the driven shaft 19. The pulleys 17 and 21 can move in directions in which the side plates approach and separate from each other so that the groove width can be changed steplessly. By changing the groove width, each pulley 17 and 21 can be wound around the pulleys 17 and 21 of the CVT belt. The radius changes, and as a result, the rotation speed ratio between the drive shaft 15 and the driven shaft 19, that is, the gear ratio, changes continuously and continuously.

次に、エレメント姿勢測定装置について詳細に説明する。このエレメント姿勢測定装置は、図1に示すように、複数のエレメント1のうちの少なくとも一つの外周部に取り付けた被測定具23と、、この被測定具23の外周部における互いに異なる位置にある3点を測定する非接触式測定器25とをそれぞれ備えている。   Next, the element posture measuring apparatus will be described in detail. As shown in FIG. 1, this element posture measuring device is at a position different from each other on the measurement object 23 attached to at least one outer peripheral part of the plurality of elements 1 and the outer peripheral part of the measurement object 23. A non-contact type measuring instrument 25 that measures three points is provided.

図1,図3に示すように、被測定具23をエレメント1の頭部5の外周面に溶接により取り付ける。このとき、被測定具23の両側面(図1中で紙面の表裏両面)がエレメント1の前記凹部5bを形成している背面と平行となるように取り付ける。この取付方法は、溶接固定に限ることはなく、被測定具23の両側面がエレメント1の背面と平行であれば、他の固定方法でもよい。また、被測定具23は、エレメント組立体3における複数のエレメント1のうち少なくとも一つのエレメント1に取り付けるもので、図2に示すように二つ以上(図2では三つ)のエレメント1それぞれに取り付けてもよい。   As shown in FIGS. 1 and 3, the device to be measured 23 is attached to the outer peripheral surface of the head 5 of the element 1 by welding. At this time, the measurement object 23 is attached so that both side surfaces (both front and back surfaces in FIG. 1) are parallel to the back surface of the element 1 forming the concave portion 5b. This attachment method is not limited to welding fixation, and other fixation methods may be used as long as both side surfaces of the device under measurement 23 are parallel to the back surface of the element 1. Moreover, the device under test 23 is attached to at least one element 1 among the plurality of elements 1 in the element assembly 3, and each of two or more (three in FIG. 2) elements 1 as shown in FIG. It may be attached.

上記した被測定具23は、図1,図3のようにエレメント1に取り付けた状態で、プーリ17,21の回転軸方向(図1中で左右方向)に延びる軸方向被測定部27と、この軸方向被測定部27の長手方向中心部からプーリ21の直径方向(図1中で上下方向)外側に延びる径方向被測定部29とをそれぞれ備えて、全体としてほぼT字形状を呈している。   The above-mentioned measured device 23 is attached to the element 1 as shown in FIGS. 1 and 3, and the axially measured portion 27 extending in the rotation axis direction (left and right direction in FIG. 1) of the pulleys 17 and 21, Each of the axially measured portions 27 includes a radially measured portion 29 extending outward in the diameter direction (vertical direction in FIG. 1) of the pulley 21 from the longitudinal center portion, and has a substantially T-shape as a whole. Yes.

軸方向被測定部27は、エレメント1における頭部5の表面に密着して固定する固定面27aを備えるとともに、長手方向両端近傍の径方向被測定部29側に、二つの被測定点A,Cを備えている。また、径方向被測定部29の先端部には、一つの被測定点Bを備えている。したがって、被測定具23に設けた3点の被測定点は、プーリ17,21の回転軸方向に沿って互いに異なる位置にある2点(被測定点A,C)および、この2点に対しプーリ21の直径方向にずれた位置にある1点(被測定点B)となる。   The axially measured portion 27 includes a fixing surface 27a that is fixed in close contact with the surface of the head 5 in the element 1, and two measured points A and A on the radial measured portion 29 side in the vicinity of both ends in the longitudinal direction. C is provided. In addition, one point to be measured B is provided at the tip of the radially measured portion 29. Therefore, the three measurement points provided on the measurement tool 23 are two points (measurement points A and C) at different positions along the rotation axis direction of the pulleys 17 and 21, and the two measurement points. One point (measurement point B) is located at a position shifted in the diameter direction of the pulley 21.

一方、非接触式測定器25は、先端(図1中で下端)が二股状に分岐したセンサ保持具31を有し、その各分岐部31aの先端に、前記した被測定点A,Cにそれぞれ対向する変位センサA33,変位センサC35をそれぞれ設けている。変位センサA33は被測定点Aを測定し、変位センサC35は被測定点Cを測定する。   On the other hand, the non-contact type measuring instrument 25 has a sensor holder 31 having a bifurcated tip (lower end in FIG. 1), and the measured points A and C at the tip of each branch portion 31a. A displacement sensor A33 and a displacement sensor C35 that are opposed to each other are provided. The displacement sensor A33 measures the measurement point A, and the displacement sensor C35 measures the measurement point C.

また、センサ保持具31の分岐部31a相互を連結する連結部31bには、被測定点Bに対向する変位センサB37を設け、この変位センサB37は被測定点Bを測定する。   Further, a connecting part 31b that connects the branch parts 31a of the sensor holder 31 is provided with a displacement sensor B37 that faces the point to be measured B. The displacement sensor B37 measures the point to be measured B.

上記した各変位センサA33,C35,B37は、例えば渦電流式を用いることができるが、その他レーザ変位センサなど非接触で変位を測定できるものであれば何でもよい。   Each of the displacement sensors A33, C35, and B37 described above can use, for example, an eddy current type, but may be anything that can measure displacement without contact, such as a laser displacement sensor.

次に、上記したエレメント姿勢測定装置によるエレメント1の姿勢測定方法を説明する。前記した図3のようにエレメント1に取り付けた被測定具23は、図4に示すように、基本的には径方向被測定部29がプーリ21の回転円39に対する法線41方向を向きながら、プーリ回転軸43を中心として回転する。   Next, a method for measuring the attitude of the element 1 using the above-described element attitude measuring device will be described. As shown in FIG. 4, the device to be measured 23 attached to the element 1 as shown in FIG. 3 basically has the radially measured portion 29 facing the normal 41 direction with respect to the rotation circle 39 of the pulley 21. The pulley rotates around the pulley rotation shaft 43.

ここで、図4の座標系内におけるエレメント1の基準姿勢を、径方向被測定部29の延長方向が前記法線41と一致し、かつ軸方向被測定部27の延長方向がプーリ回転軸43と平行なプーリ回転軸平行線45と一致する状態とする。   Here, the reference posture of the element 1 in the coordinate system of FIG. 4 is set such that the extending direction of the radially measured portion 29 coincides with the normal 41 and the extending direction of the axial measured portion 27 is the pulley rotation shaft 43. And a state in which the pulley rotation axis parallel line 45 is in parallel.

そして、プーリ回転軸平行線45を中心としたエレメント1の回転角度をピッチ角度θpitch、プーリ回転円39の接線47を中心としたエレメント1の回転角度をロール角度θroll、法線41を中心としたエレメント1の回転角度をヨー角度θyawとして、これら3軸による回転角度をエレメント1の姿勢と定義する。すなわち、エレメント1が基準姿勢となっている状態では、ピッチ角度θpitch=0,ロール角度θroll=0,ヨー角度θyaw=0である。   The rotation angle of the element 1 around the pulley rotation axis parallel line 45 is the pitch angle θpitch, the rotation angle of the element 1 around the tangent line 47 of the pulley rotation circle 39 is the roll angle θroll, and the normal line 41 is the center. The rotation angle of the element 1 is defined as the posture of the element 1 with the rotation angle of these three axes as the yaw angle θyaw. That is, when the element 1 is in the reference posture, the pitch angle θpitch = 0, the roll angle θroll = 0, and the yaw angle θyaw = 0.

このようなエレメント1の姿勢は、プーリ回転円39上の任意の観測点ア,イ,ウ(図2参照)に存在するもので、この各観測点毎に相対座標系を設定する。   Such an attitude of the element 1 exists at arbitrary observation points a, b, and c (see FIG. 2) on the pulley rotation circle 39, and a relative coordinate system is set for each observation point.

以下、上記したピッチ角度θpitch,ロール角度θroll,ヨー角度θyawによるエレメント1の傾斜角度の算出方法について順に説明する。   Hereinafter, a method for calculating the tilt angle of the element 1 based on the pitch angle θpitch, roll angle θroll, and yaw angle θyaw will be described in order.

[ピッチ角度θpitch]
ピッチ角度は、エレメント1および被測定具23の前後傾姿勢であり、図1に示す変位センサA33,C35と変位センサB37との間の応答時間差を利用して、エレメント1の進行方向の傾斜角度を測定する。図5(a)は、図4のプーリ回転軸平行線45の軸方向から見た被測定具23と各変位センサA33,C35,B37との位置関係を示す模式的な側面図で、エレメント1は、頭部5が肩部7より回転進行方向前方となるよう前傾している状態を示す。この状態では、変位センサB37が先に反応して被測定点Bを測定し、これに遅れて変位センサA33,C35が被測定点A,Cを測定する。
[Pitch angle θpitch]
The pitch angle is a tilting posture of the element 1 and the device under test 23, and the tilt angle in the traveling direction of the element 1 is obtained using the response time difference between the displacement sensors A33, C35 and the displacement sensor B37 shown in FIG. Measure. FIG. 5A is a schematic side view showing the positional relationship between the device under measurement 23 and each of the displacement sensors A33, C35, B37 as viewed from the axial direction of the pulley rotation axis parallel line 45 in FIG. Indicates a state in which the head 5 is tilted forward so as to be ahead of the shoulder 7 in the direction of rotation. In this state, the displacement sensor B37 reacts first to measure the measurement point B, and the displacement sensors A33 and C35 measure the measurement points A and C after that.

このときの各変位センサA33,C35,B37の時系列出力を図5(b)に示す。変位センサB37の応答開始時間t1に対する、変位センサA33,C35の各応答開始時間相互の中点t2の遅れ時間から、被測定点A,Cの被測定点Bに対応する遅れ距離を求め、エレメント1の前傾角度すなわちピッチ角度θpitchを求める。具体的な算出式を以下に示す。   FIG. 5B shows time series outputs of the displacement sensors A33, C35, and B37 at this time. From the delay time at the midpoint t2 between the response start times of the displacement sensors A33 and C35 with respect to the response start time t1 of the displacement sensor B37, the delay distance corresponding to the measured point B of the measured points A and C is obtained. A forward tilt angle of 1, that is, a pitch angle θpitch is obtained. A specific calculation formula is shown below.

ピッチ角度θpitch[deg」=(180/π)×arcsin(Dac/L)
A・C中点の遅れ距離:Dac=Vac(t2−t1)
A・C中点〜B点間距離:L(被測定具23の寸法から分かる)
A・C中点の遅れ時間:t2−t1
A・C中点の速度:Vac=2π・Rac・N/60
エレメントが巻き付いているプーリの回転数:N
A・C中点の回転半径:Rac
なお、ここでは、通常エレメント1の倒れ角(前傾角度)が小さいため、プーリ回転円39に沿って回転移動する被測定点A,B,Cが各変位センサA33,C35,B37を通過する微小区間では直進しているものとみなしている。
Pitch angle θpitch [deg] = (180 / π) x arcsin (Dac / L)
A / C midpoint delay distance: Dac = Vac (t2-t1)
Distance between A and C midpoints to B points: L (determined from the dimensions of the device under test 23)
A / C midpoint delay time: t2-t1
A / C midpoint speed: Vac = 2π · Rac · N / 60
Number of revolutions of pulley around which element is wound: N
A / C midpoint turning radius: Rac
Here, since the tilt angle (forward tilt angle) of the element 1 is usually small, the measured points A, B, and C that rotate and move along the pulley rotation circle 39 pass through the displacement sensors A33, C35, and B37. It is considered that the vehicle is going straight in a minute section.

[ロール角度θRoll]
ロール角度は、エレメント1および被測定具23の進行方向軸(図4に示すプーリ回転円39の接線47)による回転姿勢であり、図1に示す変位センサA33とC35とのレベル差を用いて、エレメント1の進行方向軸による傾斜角度を測定する。図6(a)は、上記した進行方向前方側から見た被測定具23と各変位センサA33,C35との位置関係を示す模式的な正面図で、エレメント1が進行方向前方から見て右肩が左肩に比べて上部に位置する状態を示す。この状態では、被測定点Aと変位センサA33との距離が、被測定点Cと変位センサC35との距離より短くなる。
[Roll angle θRoll]
The roll angle is the rotational posture of the element 1 and the measuring tool 23 along the traveling direction axis (tangent line 47 of the pulley rotation circle 39 shown in FIG. 4), and the level difference between the displacement sensors A33 and C35 shown in FIG. The inclination angle of the element 1 with respect to the traveling direction axis is measured. FIG. 6A is a schematic front view showing the positional relationship between the device under test 23 and each of the displacement sensors A33 and C35 as viewed from the front side in the traveling direction, and the right side when the element 1 is viewed from the front in the traveling direction. The state where the shoulder is located in the upper part compared with the left shoulder is shown. In this state, the distance between the measured point A and the displacement sensor A33 is shorter than the distance between the measured point C and the displacement sensor C35.

このときの変位センサA33と変位センサC35の時系列出力を図6(b)に示す。被測定点Aと被測定点Cとの間の高さ(図6(a)中での上下方向の距離)の差に基づく変位センサA33,C35相互の出力レベル差から、エレメント1の傾斜角度すなわちロール角度θRollを求める。具体的な算出式を以下に示す。   FIG. 6B shows time series outputs of the displacement sensor A33 and the displacement sensor C35 at this time. From the difference in output level between the displacement sensors A33 and C35 based on the difference in height (distance in the vertical direction in FIG. 6A) between the measured point A and the measured point C, the inclination angle of the element 1 That is, the roll angle θRoll is obtained. A specific calculation formula is shown below.

ロール角度θRoll[deg」=(180/π)×arctan(Hac/E)
A点とC点との高さの差:Hac
変位センサA33と変位センサC35との距離:E
[ヨー角度θyaw]
ヨー角度は、エレメント1および被測定具23の図4に示すプーリ回転円39の法線41を軸とする回転姿勢であり、図1に示す変位センサA33とC35との間の応答時間差を用いて、エレメント1の上記した回転姿勢を測定する。
Roll angle θRoll [deg] = (180 / π) × arctan (Hac / E)
Difference in height between point A and point C: Hac
Distance between displacement sensor A33 and displacement sensor C35: E
[Yaw angle θyaw]
The yaw angle is a rotational attitude about the normal line 41 of the pulley rotation circle 39 shown in FIG. 4 of the element 1 and the device under test 23, and the response time difference between the displacement sensors A33 and C35 shown in FIG. 1 is used. Then, the rotational posture of the element 1 is measured.

図7(a)は、図4における法線41の軸方向外側から見た平面図で、エレメント1が図7(a)中で左回りに旋回している状態を示す。この状態では、変位センサC35が先に反応し、変位センサA33は遅れて反応することになる。   FIG. 7A is a plan view seen from the outside in the axial direction of the normal 41 in FIG. 4, and shows a state in which the element 1 is turned counterclockwise in FIG. 7A. In this state, the displacement sensor C35 reacts first, and the displacement sensor A33 reacts with a delay.

このときの各変位センサA33,C35の時系列出力を図7(b)に示す。変位センサC35の応答開始時間tcに対する変位センサA33の応答開始時間taの遅れ時間から、被測定点Cに対する被測定点Aの遅れ距離を求め、エレメント1の旋回角度すなわちヨー角度θyawを求める。具体的な算出式を以下に示す。   FIG. 7B shows time series outputs of the displacement sensors A33 and C35 at this time. From the delay time of the response start time ta of the displacement sensor A33 with respect to the response start time tc of the displacement sensor C35, the delay distance of the measured point A with respect to the measured point C is obtained, and the turning angle of the element 1, that is, the yaw angle θyaw is obtained. A specific calculation formula is shown below.

ヨール角度θyaw[deg」=(180/π)×arctan(Kac/E)
A点の遅れ距離:Kac=Va(ta−tc)
A点とC点との図7(a)中で左右方向の距離:E
A点の遅れ時間:ta−tc
A点の速度:Va=2π・Ra・N/60
エレメントが巻き付いているプーリの回転数:N
A点の回転半径:Ra
このように、上記した実施形態のエレメント姿勢測定装置を用いたエレメント姿勢測定方法によれば、エレメント1の外周部に取り付けた被測定具23の3点の被測定点A,B,Cを、プーリ回転軸43方向に沿って互いに異なる位置にある2点(A,C)および、この2点に対しプーリ21の直径方向外側にずれた位置にある1点(B)としたので、この3点の測定値を適宜組み合わせることで、エレメント1の姿勢を、ピッチ角度θpitch,ロール角度θroll,ヨー角度θyawに基づいて、正確に測定することができる。
Yaw angle θyaw [deg] = (180 / π) x arctan (Kac / E)
Delay distance of point A: Kac = Va (ta-tc)
The distance in the left-right direction in FIG. 7A between the points A and C: E
Delay time at point A: ta-tc
Speed of point A: Va = 2π · Ra · N / 60
Number of revolutions of pulley around which element is wound: N
Turning radius of point A: Ra
Thus, according to the element posture measuring method using the element posture measuring apparatus of the above-described embodiment, the three measurement points A, B, and C of the measurement tool 23 attached to the outer peripheral portion of the element 1 are Since there are two points (A, C) that are different from each other along the direction of the pulley rotation axis 43 and one point (B) that is shifted to the outside in the diameter direction of the pulley 21 with respect to these two points, By appropriately combining the measurement values of the points, the posture of the element 1 can be accurately measured based on the pitch angle θpitch, the roll angle θroll, and the yaw angle θyaw.

エレメント1の姿勢を正確に測定することで、エレメント1とプーリ17,21との接触角度によるこれら両者相互の接触面の摩擦係数の変化や、エレメント1が僅かに傾いてプーリ17,21に挟まれることによるエレメント1の損傷、さらにはエレメント1の傾きによる肩部7とリング13との接触角度に起因する摩耗によるリング13の損傷を、ベルト・プーリの設計時に上記測定データをフィードバックすることで未然に防ぐことができる。   By accurately measuring the attitude of the element 1, the friction coefficient of the contact surface between the two due to the contact angle between the element 1 and the pulleys 17 and 21 is changed, or the element 1 is slightly inclined and is sandwiched between the pulleys 17 and 21. Damage to the ring 13 due to wear, and damage to the ring 13 due to wear caused by the contact angle between the shoulder 7 and the ring 13 due to the inclination of the element 1, by feeding back the above measurement data when designing the belt and pulley. It can be prevented in advance.

また、被測定具23のT字形状をより大きくすることで、被測定点A,B,Cの3点で作られる平面が大きくなり、観測精度をより高めることができる。   Further, by increasing the T-shape of the device under measurement 23, the plane formed by the three points A, B, and C to be measured is increased, and the observation accuracy can be further increased.

なお、上記した実施形態ではプーリ21の巻き付け半径が一定の場合を想定したが、この巻き付け半径が変化する場合でも、エレメント1の姿勢を測定することができる。   In the above-described embodiment, it is assumed that the winding radius of the pulley 21 is constant. However, the posture of the element 1 can be measured even when the winding radius changes.

図8は、プーリ21の巻き付け半径が、矢印Tで示すように小から大へと変化する様子を示している。この場合、被測定具23を取り付けたエレメント1の移動軌跡は、回転角度の変化と共に回転半径が変化していくが、エレメント1を含むCVTベルト全体のプーリ21に巻き付いた部分も同時に回転半径が変化するため、被測定具23の径方向被測定部29は、法線41方向を向いたまま径方向外側へスライドする。つまり幾何学的には、常にエレメント1は法線41方向(プーリ21の直径方向)を向きながらプーリ21の直径方向に向かう昇降運動を行うことになる。   FIG. 8 shows how the winding radius of the pulley 21 changes from small to large as indicated by the arrow T. In this case, the movement locus of the element 1 to which the device under test 23 is attached changes the rotation radius with the change of the rotation angle. However, the rotation radius of the portion wound around the pulley 21 of the entire CVT belt including the element 1 also has the rotation radius. In order to change, the to-be-measured part 29 of the to-be-measured tool 23 slides radially outside, facing the normal 41 direction. That is, geometrically, the element 1 always moves up and down in the diameter direction of the pulley 21 while facing the normal 41 direction (diameter direction of the pulley 21).

以上より、CVTベルトの変速による回転径の変化は、エレメント1の幾何学的な移動軌跡には影響がないことが分かる。よって、プーリ21の巻き付け半径が変化する場合でも、先に述べた測定方法でエレメント1の姿勢を正確に測定することができる。   From the above, it can be seen that the change in the rotation diameter due to the shift of the CVT belt has no effect on the geometrical movement trajectory of the element 1. Therefore, even when the winding radius of the pulley 21 changes, the posture of the element 1 can be accurately measured by the measurement method described above.

図9(a),図10(a)は、非接触式測定器25を固定保持する固定治具49の具体例を示しており、図9(a)は測定位置をプーリ21の上部側とした場合、図10(a)は測定位置をプーリ21の下部側とした場合である。   9A and 10A show a specific example of a fixing jig 49 for fixing and holding the non-contact type measuring instrument 25. FIG. 9A shows the measurement position on the upper side of the pulley 21. FIG. In this case, FIG. 10A shows a case where the measurement position is on the lower side of the pulley 21.

プーリ21をベアリングスタンド51の一側面に回転可能に取り付け、ベアリングスタンド51の他側面に設けたベース部としてのブロック53に、支持アーム55の一端をピラー57を介して取り付ける。この支持アーム55の他端に非接触式被測定器25を取り付ける。   The pulley 21 is rotatably attached to one side of the bearing stand 51, and one end of the support arm 55 is attached via a pillar 57 to a block 53 as a base portion provided on the other side of the bearing stand 51. The non-contact type measuring device 25 is attached to the other end of the support arm 55.

支持アーム55は、軸方向アーム59と測定器保持アーム61とを備える。軸方向アーム59は、その基端部をピラー57に取付ねじ63により取り付けてプーリ回転軸(従動軸19)と平行にプーリ21側に延び、その先端部の図9(a)中で上部に切欠部59aを形成する。この切欠部59aに測定器保持アーム61の基端部を嵌め合わせ、取付ねじ65により両者相互を固定する。   The support arm 55 includes an axial arm 59 and a measuring instrument holding arm 61. The axial arm 59 is attached to the pillar 57 with a mounting screw 63 at its proximal end and extends to the pulley 21 side in parallel with the pulley rotation shaft (driven shaft 19). A notch 59a is formed. The base end portion of the measuring instrument holding arm 61 is fitted into the notch 59a, and both are fixed to each other by the mounting screw 65.

測定器保持アーム61は、プーリ21の外周側にてその回転円の接線方向に延び、その先端部に非接触式被測定器25を取付ねじ67により取り付ける。この取付状態で非接触式被測定器25は、各変位センサA33,C35,B37が被測定具23の各被測定点A,C,Bに対向して測定可能となる。   The measuring device holding arm 61 extends in the tangential direction of the rotation circle on the outer peripheral side of the pulley 21, and the non-contact type measuring device 25 is attached to the tip portion thereof with a mounting screw 67. In this attached state, the non-contact type measuring device 25 can measure each displacement sensor A33, C35, B37 facing each measured point A, C, B of the measuring tool 23.

図9(b)は、図9(a)のブロック53側のプーリ軸方向から見た支持アーム55および非接触式測定器25の位置関係を示し、図10(b)は、図10(a)のブロック53側のプーリ軸方向から見た支持アーム55および非接触式測定器25の位置関係を示している。   FIG. 9B shows the positional relationship between the support arm 55 and the non-contact type measuring instrument 25 as viewed from the pulley axis direction on the block 53 side in FIG. 9A, and FIG. ) Shows the positional relationship between the support arm 55 and the non-contact measuring instrument 25 as viewed from the pulley axial direction on the block 53 side.

上記した取付状態で、図9(b),図10(b)に示すように、軸方向アーム59と測定器保持アーム61との連結点と、測定器保持アーム61と非接触式被測定器25との連結点と、プーリ回転軸(従動軸19)の中心点とを結ぶ三角形が正三角形となる。   9 (b) and 10 (b), the connection point between the axial arm 59 and the measuring instrument holding arm 61, the measuring instrument holding arm 61, and the non-contact type device to be measured. A triangle connecting the connection point with the pulley 25 and the center point of the pulley rotation shaft (driven shaft 19) is a regular triangle.

図9と図10との間で非接触式被測定器25の取付状態を変化させる際には、まず軸方向アーム59をピラー57から外すとともに、測定器保持アーム61を軸方向アーム59から外す。次に、軸方向アーム59を図9(a)中で表裏が反転するようにして取付ねじ63によりピラー57に取り付ける。つまり、このとき軸方向アーム59は、その切欠部59aが図10(a)で示すように下部側となる。   When changing the mounting state of the non-contact type measuring device 25 between FIG. 9 and FIG. 10, first, the axial arm 59 is removed from the pillar 57 and the measuring device holding arm 61 is removed from the axial arm 59. . Next, the axial arm 59 is attached to the pillar 57 with the attachment screw 63 so that the front and back are reversed in FIG. That is, at this time, the notch 59a of the axial arm 59 is on the lower side as shown in FIG.

そして、測定器保持アーム61の基端部を軸方向アーム59の切欠部59aに嵌め合わせて取付ねじ65により固定する。このとき、非接触式被測定器25は、各変位センサA33,C35,B37が被測定具23の各被測定点A,C,Bに対向して測定可能な状態となる。   Then, the base end portion of the measuring instrument holding arm 61 is fitted into the notch 59 a of the axial arm 59 and fixed by the mounting screw 65. At this time, the non-contact type measuring device 25 is in a state where the displacement sensors A33, C35, B37 can be measured while facing the measured points A, C, B of the measuring device 23.

このように、図9および図10のそれぞれの取付状態で、非接触式被測定器25は、その各変位センサA33,C35,B37がプーリ21の直径方向を向いており、したがってこれら各取付状態でエレメント1の姿勢を正確に測定することができる。   9 and 10, the non-contact type device under measurement 25 has its displacement sensors A33, C35, B37 facing the diameter direction of the pulley 21, and therefore each of these attachment states. Thus, the posture of the element 1 can be accurately measured.

本発明によれば、前記被測定具は、前記エレメントの外周部に沿って前記プーリの回転軸方向に延びる軸方向被測定部と、この軸方向被測定部の長手方向中心部から前記プーリの直径方向外側に延びる径方向被測定部とをそれぞれ備えて、全体としてほぼT字形状を呈しているので、被測定具のT字形状をより大きくすることで、3点の被測定点で作られる平面がより大きくなり、観測精度をより高めることができる。   According to the present invention, the device to be measured includes an axially measured portion that extends in the rotation axis direction of the pulley along the outer peripheral portion of the element, and a longitudinally central portion of the axially measured portion from the longitudinal direction of the pulley. Since each of the radial direction measurement parts extending outward in the diameter direction has a substantially T-shape as a whole, the T-shape of the device to be measured is made larger so that it is made up of three measurement points. The plane to be obtained becomes larger and the observation accuracy can be further improved.

前記非接触式測定器を固定保持する固定治具を設け、この固定治具は、前記非接触式測定器による前記被測定具の3点の被測定点を、前記プーリの回転方向の互いに異なる位置にて測定可能となるようベース部に対して着脱可能な支持アームを備えているので、プーリ回転方向の異なる位置にてエレメントの姿勢を正確に測定することができる。   A fixing jig for fixing and holding the non-contact type measuring device is provided, and the fixing jig differs from the three measuring points of the measuring tool by the non-contact type measuring device in the rotation direction of the pulley. Since the support arm that can be attached to and detached from the base portion is provided so as to be measurable at the position, the posture of the element can be accurately measured at different positions in the pulley rotation direction.

前記支持アームは、前記プーリの回転軸方向に延びて一端が前記ベース部に対して着脱可能に取り付けられる軸方向アームと、この軸方向アームの他端に一端が着脱可能に取り付けられて他端に前記非接触式測定器が取り付けられる測定器保持アームとをそれぞれ備えているので、これら各アームの取付状態を変化させることで、非接触式測定器を、プーリ回転方向の異なる位置にて被測定具の3点の被測定点に対応させることができる。   The support arm includes an axial arm that extends in the rotational axis direction of the pulley and has one end detachably attached to the base portion, and one end detachably attached to the other end of the axial arm. Each of which is provided with a measuring device holding arm to which the non-contact type measuring device is attached.By changing the mounting state of each arm, the non-contact type measuring device can be mounted at a different position in the pulley rotation direction. It is possible to correspond to three measurement points of the measuring tool.

板状のエレメントを板厚方向に複数積層して環状に形成してエレメント組立体とし、このエレメント組立体を、リング部材により環状に保持して組み付けて、一対のプーリ相互間に巻掛けられるCVTベルトのエレメント姿勢測定方法において、前記複数のエレメントのうちの少なくとも一つの外周部に被測定具を取り付け、前記プーリの回転円周上に位置する前記被測定具の外周部における、前記プーリの回転軸方向に沿って互いに異なる位置にある2点および、この2点に対し前記プーリの直径方向にずれた位置にある1点の全部で3点を非接触式測定器により測定するので、この3点の測定値を適宜組み合わせることで、エレメントの姿勢を正確に測定することができる。   A plurality of plate-like elements are stacked in the plate thickness direction to form an element assembly, and this element assembly is held and assembled in an annular shape by a ring member, and is wound between a pair of pulleys. In the belt element orientation measurement method, a measurement tool is attached to at least one outer peripheral portion of the plurality of elements, and the pulley rotates at the outer peripheral portion of the measurement tool positioned on the rotation circumference of the pulley. A total of three points, i.e., two points at different positions along the axial direction and one point at a position shifted in the diameter direction of the pulley with respect to the two points, are measured by a non-contact measuring instrument. By appropriately combining the measurement values of the points, the posture of the element can be accurately measured.

前記プーリの回転軸方向に沿って互いに異なる2点の位置と、前記2点に対し前記プーリの直径方向にずれた1点の位置との前記プーリの回転方向に沿った距離の差により、前記プーリ回転軸と平行な軸線を中心としたエレメントの傾斜を測定するので、エレメントの回転方向の傾斜を正確に把握することができる。   Due to the difference in distance along the rotation direction of the pulley between the position of two points different from each other along the rotation axis direction of the pulley and the position of one point shifted in the diameter direction of the pulley with respect to the two points, Since the inclination of the element about the axis parallel to the pulley rotation axis is measured, the inclination in the rotation direction of the element can be accurately grasped.

前記プーリの回転軸方向に沿って互いに異なる位置にある2点相互間の前記プーリの直径方向の距離の差により、前記プーリ回転円の接線方向を中心とした前記エレメントの傾斜を測定するので、プーリ回転円の接線方向を中心としたエレメントの傾斜を正確に把握することができる。   Since the inclination of the element about the tangential direction of the pulley rotation circle is measured by the difference in the distance in the diameter direction of the pulley between two points at different positions along the rotation axis direction of the pulley, It is possible to accurately grasp the inclination of the element around the tangential direction of the pulley rotation circle.

前記プーリの回転軸方向に沿って互いに異なる位置にある2点相互間の前記エレメントの回転進行方向の距離の差により、前記プーリ直径方向を中心とした前記エレメントの傾斜を測定するので、プーリ直径方向を中心としたエレメントの傾斜を正確に把握することができる。   Since the inclination of the element around the pulley diameter direction is measured by the difference in the distance in the rotation direction of the element between two points at different positions along the rotation axis direction of the pulley, the pulley diameter It is possible to accurately grasp the inclination of the element centering on the direction.

本発明の一実施形態に係わるCVTベルトのエレメント姿勢測定装置を示す斜視図である。It is a perspective view which shows the element attitude | position measuring apparatus of the CVT belt concerning one Embodiment of this invention. 図1のエレメント姿勢測定装置によりCVTベルトのエレメントの姿勢を測定している状態を示す側面断面図である。It is side surface sectional drawing which shows the state which is measuring the attitude | position of the element of a CVT belt with the element attitude | position measuring apparatus of FIG. 図1のエレメント姿勢測定装置の被測定具をCVTベルトのエレメントに取り付けた状態を示す斜視図である。It is a perspective view which shows the state which attached the to-be-measured tool of the element attitude | position measuring apparatus of FIG. 1 to the element of the CVT belt. 被測定具を取り付けたエレメントの基本姿勢を示す模式図である。It is a schematic diagram which shows the basic attitude | position of the element which attached the to-be-measured tool. (a)は、エレメントのピッチ角度を示す、プーリ回転軸方向から見た変位センサおよび被測定具の側面図、(b)はそのときの変位センサの時系列出力図である。(A) is a side view of the displacement sensor and the device under test as seen from the pulley rotation axis direction, showing the pitch angle of the element, and (b) is a time-series output diagram of the displacement sensor at that time. (a)は、エレメントのロール角度を示す、進行方向前方側から見た変位センサおよび被測定具の正面図、(b)はそのときの変位センサの時系列出力図である。(A) is a front view of the displacement sensor and the device under test showing the roll angle of the element as viewed from the front side in the traveling direction, and (b) is a time-series output diagram of the displacement sensor at that time. (a)は、エレメントのヨー角度を示す、プーリ回転円の法線方向外側から見た変位センサおよび被測定具の平面図、(b)はそのときの変位センサの時系列出力図である。(A) is a plan view of the displacement sensor and the device under test as viewed from the outside in the normal direction of the pulley rotation circle, showing the yaw angle of the element, and (b) is a time-series output diagram of the displacement sensor at that time. プーリの巻き付け半径が小から大へと変化する様子を示す動作説明図である。It is operation | movement explanatory drawing which shows a mode that the winding radius of a pulley changes from small to large. (a)は、非接触式測定器を固定保持する固定治具の具体例を示す斜視図、(b)は、(a)のプーリ回転軸方向から見た支持アームおよび非接触式測定器の位置関係を示す模式図である。(A) is a perspective view which shows the specific example of the fixing jig which fixes and holds a non-contact type measuring device, (b) is a support arm and the non-contact type measuring device seen from the pulley rotation axis direction of (a). It is a schematic diagram which shows a positional relationship. (a)は、図9(a)に対し非接触式測定器の取付位置を変化させた固定治具の斜視図、(b)は、(a)のプーリ回転軸方向から見た支持アームおよび非接触式測定器の位置関係を示す模式図である。FIG. 9A is a perspective view of a fixing jig in which the mounting position of the non-contact type measuring instrument is changed with respect to FIG. 9A, and FIG. It is a schematic diagram which shows the positional relationship of a non-contact-type measuring device.

符号の説明Explanation of symbols

1 エレメント
3 エレメント組立体
13 リング(リング部材)
17,21 プーリ
23 被測定具
25 非接触式測定器
27 軸方向被測定部
29 径方向被測定部
43 プーリ回転軸
47 プーリ回転円の接線
53 ブロック(ベース部)
55 支持アーム
59 軸方向アーム
61 測定器保持アーム
A,B,C 被測定点
1 Element 3 Element Assembly 13 Ring (Ring Member)
17, 21 Pulley 23 Device to be measured 25 Non-contact type measuring device 27 Axial direction measurement portion 29 Radial direction measurement portion 43 Pulley rotation shaft 47 Tangent line of pulley rotation circle 53 Block (base portion)
55 Support arm 59 Axial arm 61 Measuring instrument holding arm A, B, C Measurement point

Claims (8)

板状のエレメントを板厚方向に複数積層して環状に形成してエレメント組立体とし、このエレメント組立体を、リング部材により環状に保持して組み付けて、一対のプーリ相互間に巻掛けられるCVTベルトのエレメント姿勢測定装置において、前記複数のエレメントのうちの少なくとも一つの外周部に取り付けた被測定具と、この被測定具の外周部における3点を測定する非接触式測定器とをそれぞれ備え、前記非接触式測定器による前記被測定具の3点の被測定点は、前記プーリの回転軸方向に沿って互いに異なる位置にある2点および、この2点に対し前記プーリの直径方向にずれた位置にある1点であることを特徴とするCVTベルトのエレメント姿勢測定装置。   A plurality of plate-like elements are stacked in the plate thickness direction to form an element assembly, and this element assembly is held and assembled in an annular shape by a ring member, and is wound between a pair of pulleys. In the belt element posture measuring apparatus, the device to be measured is attached to at least one outer peripheral portion of the plurality of elements, and a non-contact type measuring device for measuring three points on the outer peripheral portion of the device to be measured. The three measurement points of the device to be measured by the non-contact type measuring device include two points that are different from each other along the rotation axis direction of the pulley, and the two points in the diameter direction of the pulley. A CVT belt element posture measuring apparatus, characterized in that it is one point at a shifted position. 前記被測定具は、前記エレメントの外周部に沿って前記プーリの回転軸方向に延びる軸方向被測定部と、この軸方向被測定部の長手方向中心部から前記プーリの直径方向外側に延びる径方向被測定部とをそれぞれ備えて、全体としてほぼT字形状を呈していることを特徴とする請求項1に記載のCVTベルトのエレメント姿勢測定装置。   The measuring device includes an axially measured portion that extends in the rotation axis direction of the pulley along the outer peripheral portion of the element, and a diameter that extends outward in the diameter direction of the pulley from the longitudinal center portion of the axially measured portion. The element orientation measuring device for a CVT belt according to claim 1, further comprising a directional measurement portion and having a substantially T-shape as a whole. 前記非接触式測定器を固定保持する固定治具を設け、この固定治具は、前記非接触式測定器による前記被測定具の3点の被測定点を、前記プーリの回転方向の互いに異なる位置にて測定可能となるようベース部に対して着脱可能な支持アームを備えていることを特徴とする請求項1または2に記載のCVTベルトのエレメント姿勢測定装置。   A fixing jig for fixing and holding the non-contact type measuring device is provided, and the fixing jig differs from the three measuring points of the measuring tool by the non-contact type measuring device in the rotation direction of the pulley. The element posture measuring device for a CVT belt according to claim 1, further comprising a support arm that can be attached to and detached from the base portion so that measurement can be performed at a position. 前記支持アームは、前記プーリの回転軸方向に延びて一端が前記ベース部に対して着脱可能に取り付けられる軸方向アームと、この軸方向アームの他端に一端が着脱可能に取り付けられて他端に前記非接触式測定器が取り付けられる測定器保持アームとをそれぞれ備えていることを特徴とする請求項3に記載のCVTベルトのエレメント姿勢測定装置。   The support arm includes an axial arm that extends in the rotational axis direction of the pulley and has one end detachably attached to the base portion, and one end detachably attached to the other end of the axial arm. The CVT belt element attitude measuring device according to claim 3, further comprising a measuring device holding arm to which the non-contact type measuring device is attached. 板状のエレメントを板厚方向に複数積層して環状に形成してエレメント組立体とし、このエレメント組立体を、リング部材により環状に保持して組み付けて、一対のプーリ相互間に巻掛けられるCVTベルトのエレメント姿勢測定方法において、前記複数のエレメントのうちの少なくとも一つの外周部に被測定具を取り付け、前記プーリの回転円周上に位置する前記被測定具の外周部における、前記プーリの回転軸方向に沿って互いに異なる位置にある2点および、この2点に対し前記プーリの直径方向にずれた位置にある1点の全部で3点を非接触式測定器により測定することを特徴とするCVTベルトのエレメント姿勢測定方法。   A plurality of plate-like elements are stacked in the plate thickness direction to form an element assembly, and this element assembly is held and assembled in an annular shape by a ring member, and is wound between a pair of pulleys. In the belt element orientation measurement method, a measurement tool is attached to at least one outer peripheral portion of the plurality of elements, and the pulley rotates at the outer peripheral portion of the measurement tool positioned on the rotation circumference of the pulley. A total of three points are measured by a non-contact type measuring instrument with two points at different positions along the axial direction and one point at a position shifted in the diameter direction of the pulley with respect to the two points. Element attitude measurement method for CVT belt. 前記プーリの回転軸方向に沿って互いに異なる2点の位置と、前記2点に対し前記プーリの直径方向にずれた1点の位置との前記プーリの回転方向に沿った距離の差により、前記プーリ回転軸と平行な軸線を中心としたエレメントの傾斜を測定することを特徴とする請求項5に記載のCVTベルトのエレメント姿勢測定方法。   Due to the difference in distance along the rotation direction of the pulley between the position of two points different from each other along the rotation axis direction of the pulley and the position of one point shifted in the diameter direction of the pulley with respect to the two points, 6. The element posture measuring method for a CVT belt according to claim 5, wherein the inclination of the element about an axis parallel to the pulley rotation axis is measured. 前記プーリの回転軸方向に沿って互いに異なる位置にある2点相互間の前記プーリの直径方向の距離の差により、前記プーリ回転円の接線方向を中心とした前記エレメントの傾斜を測定することを特徴とする請求項5に記載のCVTベルトのエレメント姿勢測定方法。   Measuring the inclination of the element about the tangential direction of the pulley rotation circle based on the difference in the diameter direction of the pulley between two points located at different positions along the rotation axis direction of the pulley. The element attitude | position measuring method of the CVT belt of Claim 5 characterized by the above-mentioned. 前記プーリの回転軸方向に沿って互いに異なる位置にある2点相互間の前記エレメントの回転進行方向の距離の差により、前記プーリ直径方向を中心とした前記エレメントの傾斜を測定することを特徴とする請求項5に記載のCVTベルトのエレメント姿勢測定方法。   The inclination of the element about the pulley diameter direction is measured by the difference in the distance in the rotational traveling direction of the element between two points at different positions along the rotation axis direction of the pulley. The element attitude | position measuring method of the CVT belt of Claim 5.
JP2004163104A 2004-06-01 2004-06-01 CVT belt element posture measuring device and measuring method Expired - Fee Related JP4419688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004163104A JP4419688B2 (en) 2004-06-01 2004-06-01 CVT belt element posture measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004163104A JP4419688B2 (en) 2004-06-01 2004-06-01 CVT belt element posture measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2005345185A JP2005345185A (en) 2005-12-15
JP4419688B2 true JP4419688B2 (en) 2010-02-24

Family

ID=35497721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004163104A Expired - Fee Related JP4419688B2 (en) 2004-06-01 2004-06-01 CVT belt element posture measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP4419688B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593498B2 (en) * 2006-03-10 2010-12-08 ジヤトコ株式会社 V belt type continuously variable transmission
JP4826440B2 (en) * 2006-11-17 2011-11-30 トヨタ自動車株式会社 Belt type continuously variable transmission
JP2010196746A (en) * 2009-02-24 2010-09-09 Toyota Central R&D Labs Inc Belt type continuously variable transmission

Also Published As

Publication number Publication date
JP2005345185A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
CN103857493B (en) Lathe and the method being used for measuring workpiece
JP5056796B2 (en) Dynamic stiffness measuring device and dynamic stiffness measuring method of spindle in machine tool
JP4632962B2 (en) Coaxiality / perpendicularity measuring apparatus and method
KR102045094B1 (en) Systems and methods for substrate polishing end point detection using improved friction measurement
WO2017033581A1 (en) Surface shape measuring method, misalignment amount calculating method, and surface shape measuring device
EP1193464B1 (en) Measuring apparatus for pulley
JP2012159499A (en) Measuring apparatus and measuring method for ball screw
JP2009092488A (en) Three-dimensional shape measuring method
JP2007292663A (en) Device and method for measuring straightness, and application method
JP3845602B2 (en) Measuring device and measuring method of rotational phase angle at eccentric part of shaft, and spline groove phase measuring jig used for the measurement
JP4419688B2 (en) CVT belt element posture measuring device and measuring method
WO2017209026A1 (en) Shape measuring device and shape measuring method
JP2008008879A (en) Measuring instrument, measuring reference, and precision machine tool
WO2013024614A1 (en) Assembly method, determination method, diameter determination method, measurement device, and determination device for positioning member
US6553330B2 (en) Power roller for toroidal type continuously variable transmission
JP2009180700A (en) Cylindrical shape measuring device and cylindrical surface shape measuring method
JP3861992B2 (en) Optical fiber preform bending measurement method and measuring apparatus, and optical fiber preform manufacturing method
EP3264025B1 (en) Pivotable measurement wheel
JP4721790B2 (en) Lens eccentricity adjustment device
JP3722288B2 (en) Cylindrical shape measurement method
JP2003302218A (en) Roundness measuring device
EP3438599B1 (en) Surface shape measuring device and surface shape measuring method
JP4193054B2 (en) Ball groove measuring method and measuring apparatus
JP2006017510A (en) Deflection measuring apparatus and method and developing roller selecting method
JP2008051720A (en) Dynamic balance testing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees