JP4419181B2 - Method for producing aluminum alloy foil for electrolytic capacitor cathode - Google Patents

Method for producing aluminum alloy foil for electrolytic capacitor cathode Download PDF

Info

Publication number
JP4419181B2
JP4419181B2 JP2000320765A JP2000320765A JP4419181B2 JP 4419181 B2 JP4419181 B2 JP 4419181B2 JP 2000320765 A JP2000320765 A JP 2000320765A JP 2000320765 A JP2000320765 A JP 2000320765A JP 4419181 B2 JP4419181 B2 JP 4419181B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy foil
foil
cathode
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000320765A
Other languages
Japanese (ja)
Other versions
JP2002129297A (en
Inventor
寿雄 斎藤
兼滋 山本
次雄 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Original Assignee
Nippon Foil Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP2000320765A priority Critical patent/JP4419181B2/en
Publication of JP2002129297A publication Critical patent/JP2002129297A/en
Application granted granted Critical
Publication of JP4419181B2 publication Critical patent/JP4419181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高強度で且つ高静電容量の電解コンデンサ用陰極箔を作成するのに適したアルミニウム合金箔の製造方法に関するものである。
【0002】
【従来の技術】
従来より、電解コンデンサ陰極用アルミニウム合金箔としては、アルミニウムに銅を添加したものが用いられている。しかし、このアルミニウム合金箔を電解エッチングして陰極箔とすると、次のような欠点があった。即ち、電解エッチングが層状に進行し、陰極箔としたときにその表面層がくずれやすいということがあった。陰極箔の表面層がくずれると、陰極箔の静電容量が低下するという欠点を惹起する。また、陰極箔は陽極箔と重合させて巻回し、その端末を接着テープで止着し、コンデンサとして電気機器等に組み込んで使用することが多い。この際、陰極箔の表面層がくずれやすいと、表面層のくずれに伴い、接着テープによる止着が解けるという欠点があった。
【0003】
このように、従来のアルミニウムに銅を添加したアルミニウム合金箔は、電解エッチング後の表面層のくずれに起因する種々の欠点があった。一般的に言えば、表面層のくずれは、アルミニウム合金箔中の銅の添加量が多ければ多いほど、また鉄等の不純物が多ければ多いほど、顕著であった。
【0004】
この欠点を回避するため、従来より銅の添加量を0.3%程度に抑えたアルミニウム箔を使用することが提案されている。更に、中間焼鈍後の冷間圧延による圧下率を少なくすることも提案されている。これは、冷間圧延を繰り返して圧下率を大きくすると、金属組織が層状になりやすく、したがって層状にエッチングされるのを防止するためである。しかし、アルミニウム純度を上げたり、或いは中間焼鈍後の圧下率を少なくすると、得られるアルミニウム合金箔の強度低下を招き、したがってこのアルミニウム合金箔をエッチングして得られる陰極箔の強度も低下するという欠点があった。陰極箔の強度が低下すると、箔厚を薄くすることが困難になり、結局電解コンデンサの小型化が図れないという新たな欠点を惹起するに至るのである。
【0005】
このため、本発明者等は、比較的多量の銅と共に、亜鉛及び/又はマグネシウムを添加したアルミニウム板を使用して、特定の中間焼鈍条件で及び特定の圧下率で冷間圧延して電解コンデンサ陰極用アルミニウム合金箔を製造する方法を提案した(特開平4−88155号公報)。この方法で得られた電解コンデンサ陰極用アルミニウム合金箔は、電解エッチング時に層状にエッチングが進行しにくくなり、表面層がくずれにくい陰極箔が得られ、好ましいものである。
【0006】
【発明が解決しようとする課題】
本発明者等が、上記した特開平4−88155号に係る発明に基づき、更に検討した結果、適量の亜鉛及びマグネシウムと共に、マンガン及び/又はクロムを添加して、所定の条件で処理すれば、結晶粒の粗大化を防止でき、層状のエッチングがより進行しにい電解コンデンサ陰極用アルミニウム合金箔が得られることを見出した。本発明は、このような知見に基づくものである。
【0007】
【課題を解決するための手段】
即ち、本発明は、Cu:0.1〜2.0%、Si:0.01〜0.05%、Fe:0.02〜0.075%、Mg:0.002〜0.01%、Zn:0.005〜0.012%、Mn及び/又はCr:0.004〜0.02%、その他不可避不純物:0.002%以下、Al:残部よりなるアルミニウム板に冷間圧延を施した後、280〜420℃で中間焼鈍し、次いで圧下率60〜90%で仕上げ冷間圧延を施すことを特徴とする電解コンデンサ陰極用アルミニウム合金箔の製造方法に関するものである。また、上記アルミニウム板に、所望により冷間圧延及び中間焼鈍した後、仕上げ冷間圧延の圧下率を95%以上とし、280〜420℃で仕上げ焼鈍することを特徴とする電解コンデンサ陰極用アルミニウム合金箔の製造方法に関するものである。なお、本明細書において、合金組成を示す「%」は、いずれも「質量%」の意味である。
【0008】
本発明に使用するアルミニウム板の組成は、Cu:0.1〜2.0%、Si:0.01〜0.05%、Fe:0.02〜0.075%、Mg:0.002〜0.01%、Zn:0.005〜0.012%、Mn及び/又はCr:0.004〜0.02%、その他不可避不純物:0.002%以下、Al:残部よりなるものである。
【0009】
アルミニウム板中におけるCuは、Al中に固溶してエッチング特性を向上させるものである。Cuが0.1%未満になると、得られるアルミニウム合金箔のエッチング特性が向上しないため、好ましくない。また、Cuが2.0%を超えると、飽和状態になってAl中に固溶しなくなり、また得られるアルミニウム合金箔が層状にエッチングされやすくなるため、好ましくない。
【0010】
アルミニウム板中におけるSiは、得られるアルミニウム合金箔に析出物を生成させ、主としてエッチング開始点となる箇所を与えるためのものである。Siが0.01%未満になると、Si析出物の数が少なくなり、エッチング開始点が少なくなってエッチング性が不良となり、高静電容量の陰極箔が得られにくくなるので、好ましくない。Siが0.05%を超えると、エッチング開始点が多くなりすぎ、エッチング時に過溶解を起こし、いったん形成されたアルミニウム合金箔表面の微細な凹凸が脱落し、結果的に箔の表面積を増大させにくくなるので、好ましくない。
【0011】
アルミニウム板中におけるFeは、得られるアルミニウム合金箔中の再結晶粒を微細化させて、箔の強度を向上させるものである。Feが0.02%未満になると、箔の強度が向上しないため、好ましくない。また、Feが0.075%を超えると、アルミニウム合金箔が層状にエッチングされやすくなるため、好ましくない。
【0012】
アルミニウム板中におけるMg及びZnは、得られるアルミニウム合金箔を電解エッチングする際、層状にエッチングされるのを防止して、海綿状にエッチングされるようにするものである。Mgが0.002%未満であったり、Znが0.005%未満であったりすると、層状にエッチングが進行するのを防止しにくくなり、好ましくない。また、Mgが0.01%を超えたり、Znが0.012%を超えると、電解エッチング時に粗大孔が生じやすくなって、静電容量の低下を招き、好ましくない。
【0013】
アルミニウム板中におけるMn及び/又はCrは、得られるアルミニウム合金箔中における結晶粒を微細にし、結晶粒形が扁平になるのを防止するものである。Mn及び/又はCrが0.004%未満になると、結晶粒が粗大化する恐れがあり、結晶粒形が扁平になりやすくなるので、好ましくない。Mn及び/又はCrが0.02%を超えると、結晶粒の粗大化を防止する効果が飽和状態となるので、合理的ではない。Mn及びCrは、それを単独で0.004〜0.02%添加してもよいし、また各々を0.004〜0.02%の範囲内で混合して使用してもよい。
【0014】
本発明で使用するアルミニウム板には、上記した各元素の他に、不可避不純物として数種類の元素が含有されていることがある。このような場合であっても、不可避不純物の合計含有量は、0.002%以下でなければならない。不可避不純物の合計含有量が0.002%を超えると、Alと局部電池を作り、エッチング時に過溶解を生ずる恐れがあるので、好ましくない。
【0015】
以上の如き組成を持つアルミニウム板は、鋳造時に各元素を所望量添加して鋳造して鋳塊を得、その後均質化処理及び熱間圧延して得ることができる。
【0016】
このアルミニウム板を従来公知の方法によって、所望の厚さになるまで冷間圧延する。そして、所望厚のアルミニウム板に中間焼鈍を施す。中間焼鈍は、280〜420℃の温度で行われる。中間焼鈍を280℃未満で行うと、CuがAl中に十分固溶せずに析出し、電解エッチング時に粗大孔を形成しやすくなり、好ましくない。また、中間焼鈍を420℃を超える温度で行うと、再結晶粒が粗大化し、得られるアルミニウム合金箔の強度を低下させるので、好ましくない。
【0017】
なお、中間焼鈍の方法としては、バッチ焼鈍のみならず連続焼鈍であってもよい。強度の点からは、一般的には連続焼鈍の方が高い値を得ることができる。
【0018】
中間焼鈍後のアルミニウム板には、更に仕上げ冷間圧延が施され、アルミニウム合金箔が得られる。この仕上げ冷間圧延において、硬質材のアルミニウム合金箔を得る場合には、圧下率を60〜90%になるようにする。ここで、圧下率とは、〔(t0−t1)/t0〕×100(%)で表されるものである。但し、t0は仕上げ冷間圧延前のアルミニウム板の厚さを表し、t1は得られたアルミニウム合金箔の厚さを表すものである。圧下率を60%未満にすると、十分な加工硬化が発現せず、得られるアルミニウム合金箔の強度が十分向上しにくいので、好ましくない。圧下率が90%を超えると、扁平な結晶粒が多くなり、電解エッチング時に層状にエッチングが進行する恐れが生じる。
【0019】
しかしながら、仕上げ冷間圧延における圧下率を95%以上にした場合、280〜420℃で仕上げ焼鈍すれば、扁平な結晶粒が再結晶によって微細化され、上記した層状にエッチングが進行するのを防止しうる。従って、軟質材のアルミニウム合金箔を得る場合には、仕上げ冷間圧延の圧下率を95%以上とし、その後、280〜420℃で仕上げ焼鈍すればよい。なお、この場合、仕上げ冷間圧延前の中間焼鈍及び冷間圧延は、施しても施さなくても良い。圧下率が95%未満であると、仕上げ焼鈍時において再結晶粒の微細化が不十分になるので好ましくない。仕上げ焼鈍の温度が280℃未満であると、扁平な結晶粒が微細化されにくくなるので、好ましくない。また、仕上げ焼鈍の温度が420℃を超えると、再結晶粒が粗大化し、得られるアルミニウム合金箔の強度を低下させるので、好ましくない。
【0020】
以上のようにして得られたアルミニウム合金箔は、電解コンデンサ陰極用として好適に使用しうるものである。即ち、このアルミニウム合金箔に電解エッチングを施して、箔表面に微細孔を形成させ、静電容量を高めて電解コンデンサ用陰極箔とするのである。
【0021】
【実施例】
以下、実施例に基づいて本発明を説明するが、本発明は実施例に限定されるものではない。本発明は、特定の元素組成を持つアルミニウム板を、所定の条件で処理すれば、結晶粒の粗大化を防止でき、層状にエッチングが進行しにい電解コンデンサ陰極用アルミニウム合金箔が得られるとの知見に基づくものとして解釈されるべきである。
【0022】
実施例1〜3及び比較例1〜5
表1に示す元素組成を持つ鋳塊を準備した。そして、600℃で10時間の条件で均質化処理を施した後、熱間圧延を施して、厚さ3mmのアルミニウム板を得た。
【0023】
【表1】

Figure 0004419181
【0024】
このアルミニウム板を所望の厚さになるまで冷間圧延し、表2に示した温度条件で中間焼鈍を行った。なお、中間焼鈍時の昇温速度は50℃/hrとし、保持時間は5時間とし、冷却速度は50℃/hrとした。そして、中間焼鈍後に、表2に示した条件の圧下率で仕上げ冷間圧延し、最終的に0.06mm厚のアルミニウム合金箔(硬質材)を得た。
【0025】
得られた各アルミニウム合金箔(硬質材)に、次の条件でエッチング処理を施して陰極箔を得た。即ち、60℃に保持した2.5質量%塩酸+1.3質量%蓚酸の水溶液中で、40A/dm2の直流電流を用いて、80秒間電解エッチングを行った。このようにして得られた陰極箔の静電容量を、8質量%硼酸アンモニウム水溶液中にてLCRメーターを用いて測定し、その結果を表2に示した。なお、静電容量の単位はμF/cm2である。
【0026】
また、陰極箔のエッチング面の剥離性を判断するために、エッチング面にセロテープを貼着し、その後このセロテープを引き剥がす時に、エッチング面がセロテープと共に引き剥がされるか否かをテストした(表面剥離テスト)。表面剥離テストは、エッチング面が引き剥がされない場合を○とし、わずかに引き剥がされる場合を△とし、多量に引き剥がされる場合を×とし、この結果を表2に示した。
【0027】
また、上記の陰極箔から、100mm×10mmの大きさの短冊状試料を切り出し、インストロン型万能試験機にて、評点距離50mm及び引張速度10mm/minで、引張強さ(N/mm2)を測定した。その結果も表2に示した。
【0028】
【表2】
Figure 0004419181
【0029】
表2の結果から明らかなように、実施例1〜3に係る方法で得られた陰極箔(硬質材)は、比較例1〜5に係る方法で得られた陰極箔に比べて、静電容量が高く、またエッチング面の剥離も少なく、更に引張強さも優れている。即ち、実施例1〜3に係る方法で得られた陰極箔は、比較例1〜5に係る方法で得られた陰極箔に比べて、前記三つの特性がバランスよく向上しているものである。
【0030】
実施例4
実施例1で用いた鋳塊(鋳塊No.1)を準備した。そして、600℃で10時間の条件で均質化処理を施した後、熱間圧延を施して、厚さ3mmのアルミニウム板を得た。このアルミニウム板に、圧下率98%で仕上げ冷間圧延を施し、その後、350℃で仕上げ焼鈍を施して、厚さ0.06mmの電解コンデンサ陰極用アルミニウム合金箔を得た。なお、仕上げ焼鈍の昇温速度,保持時間及び冷却速度は、実施例1の中間焼鈍の場合と同様である。
【0031】
比較例6
実施例4で用いた厚さ3mmのアルミニウム板に、冷間圧延して、厚さ0.2mmのアルミニウム薄板とした。このアルミニウム薄板に、実施例1と同一の条件で中間焼鈍を施した後、圧下率70%で仕上げ冷間圧延を施し、厚さ0.06mmの電解コンデンサ陰極用アルミニウム合金箔を得た。
【0032】
比較例7
仕上げ焼鈍の温度を500℃とする他は、実施例4と同一の方法で電解コンデンサ陰極用アルミニウム合金箔を得た。
【0033】
比較例8
仕上げ焼鈍の温度を250℃とする他は、実施例4と同一の方法で電解コンデンサ陰極用アルミニウム合金箔を得た。
【0034】
実施例4及び比較例6〜8に係る方法で得られたアルミニウム合金箔を、実施例1と同様に処理して陰極箔を得た。そして、この陰極箔について、静電容量,表面剥離テスト及び引張強さを測定し、その結果を表3に示した。
【0035】
【表3】
Figure 0004419181
【0036】
表3の結果から明らかなように、実施例4に係る方法で得られた陰極箔(軟質材)は、比較例6〜8に係る方法で得られた陰極箔に比べて、静電容量が高く、またエッチング面の剥離も少なく、更に引張強さも優れている。即ち、実施例4に係る方法で得られた陰極箔は、比較例6〜8に係る方法で得られた陰極箔に比べて、前記三つの特性がバランスよく向上しているものである。
【0037】
【発明の効果】
以上説明したように、本発明に係る方法で得られた電解コンデンサ陰極用アルミニウム合金箔は、特定の組成を持ち、且つ特定の条件で製造されたものであるため、引張強さが高く、しかも、電解エッチング時において層状にエッチングされずに海綿状にエッチングされるという特性を持っている。従って、得られた陰極箔はその表面がくずれにくく、高静電容量である。また、電気機器等に陰極箔を巻回し端末を粘着テープで止着して組み込んだ場合、表面くずれに起因して粘着テープが剥がれ、陰極箔の巻回が解けることを防止しうる。更に、得られる陰極箔の引張強さが高いので、陰極箔の厚さを薄くすることができ、得られる電解コンデンサを小型化することができ、小型の電気機器に組み込むことが可能になる。
【0038】
以上のように、本発明に係る方法で得られた電解コンデンサ陰極用アルミニウム合金箔を使用して、陰極箔を作成すると、高静電容量で且つ引張強さに優れ、更にこの陰極箔を巻回して使用した場合にも、巻回が解けにくいという効果を奏するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an aluminum alloy foil suitable for producing a cathode foil for electrolytic capacitors having high strength and high capacitance.
[0002]
[Prior art]
Conventionally, as an aluminum alloy foil for an electrolytic capacitor cathode, one obtained by adding copper to aluminum has been used. However, when this aluminum alloy foil is subjected to electrolytic etching to form a cathode foil, there are the following drawbacks. That is, the electrolytic etching proceeds in layers, and when the cathode foil is formed, the surface layer may be easily broken. When the surface layer of the cathode foil is broken, there is a disadvantage that the capacitance of the cathode foil is lowered. In many cases, the cathode foil is polymerized with the anode foil and wound, the terminal is fixed with an adhesive tape, and incorporated into an electric device or the like as a capacitor. At this time, if the surface layer of the cathode foil is easily broken, there is a defect that the adhesion with the adhesive tape can be released along with the breaking of the surface layer.
[0003]
Thus, the conventional aluminum alloy foil in which copper is added to aluminum has various drawbacks due to the failure of the surface layer after electrolytic etching. Generally speaking, the deformation of the surface layer was more remarkable as the amount of copper added in the aluminum alloy foil was larger and as the amount of impurities such as iron was larger.
[0004]
In order to avoid this drawback, it has been conventionally proposed to use an aluminum foil in which the amount of copper added is suppressed to about 0.3%. Furthermore, it has been proposed to reduce the rolling reduction by cold rolling after intermediate annealing. This is because when the rolling reduction is repeated by repeating the cold rolling, the metal structure tends to be layered, and therefore is prevented from being etched into the layered state. However, if the aluminum purity is increased or the rolling reduction after intermediate annealing is reduced, the strength of the resulting aluminum alloy foil is reduced, and therefore the strength of the cathode foil obtained by etching this aluminum alloy foil is also reduced. was there. When the strength of the cathode foil is reduced, it becomes difficult to reduce the thickness of the foil, which eventually leads to a new drawback that the electrolytic capacitor cannot be reduced in size.
[0005]
For this reason, the present inventors use an aluminum plate to which zinc and / or magnesium is added together with a relatively large amount of copper, and then cold-roll the electrolytic capacitor under a specific intermediate annealing condition and at a specific reduction ratio. A method for producing an aluminum alloy foil for a cathode was proposed (Japanese Patent Laid-Open No. 4-88155). The aluminum alloy foil for an electrolytic capacitor cathode obtained by this method is preferable because it is difficult for etching to progress in layers during electrolytic etching, and a cathode foil in which the surface layer is not easily broken is obtained.
[0006]
[Problems to be solved by the invention]
As a result of further investigation based on the invention according to the above-mentioned JP-A-4-88155, the present inventors have added manganese and / or chromium together with appropriate amounts of zinc and magnesium, and processed under predetermined conditions. It has been found that an aluminum alloy foil for an electrolytic capacitor cathode can be obtained in which coarsening of crystal grains can be prevented and layered etching is more difficult to proceed. The present invention is based on such knowledge.
[0007]
[Means for Solving the Problems]
That is, the present invention is Cu: 0.1-2.0%, Si: 0.01-0.05%, Fe: 0.02-0.075%, Mg: 0.002-0.01%, Zn: 0.005 to 0.012%, Mn and / or Cr: 0.004 to 0.02%, other inevitable impurities: 0.002% or less, Al: cold rolled on an aluminum plate made of the balance Then, it is related with the manufacturing method of the aluminum alloy foil for electrolytic capacitor cathodes characterized by carrying out intermediate annealing at 280-420 degreeC, and then performing finish cold rolling with a reduction rate of 60-90%. The aluminum plate for an electrolytic capacitor cathode, wherein the aluminum plate is cold-rolled and intermediate-annealed as desired, and then the finish cold-rolling reduction is 95% or more and finish-annealed at 280 to 420 ° C. The present invention relates to a method for manufacturing a foil. In the present specification, “%” indicating the alloy composition means “mass%”.
[0008]
The composition of the aluminum plate used in the present invention is Cu: 0.1-2.0%, Si: 0.01-0.05%, Fe: 0.02-0.075%, Mg: 0.002- 0.01%, Zn: 0.005 to 0.012%, Mn and / or Cr: 0.004 to 0.02%, other inevitable impurities: 0.002% or less, Al: the balance.
[0009]
Cu in the aluminum plate is dissolved in Al to improve etching characteristics. If Cu is less than 0.1%, the etching characteristics of the resulting aluminum alloy foil are not improved, which is not preferable. Further, if Cu exceeds 2.0%, it is not preferable because it becomes saturated and does not dissolve in Al, and the resulting aluminum alloy foil is easily etched in layers.
[0010]
Si in the aluminum plate is used to generate precipitates in the obtained aluminum alloy foil, and to mainly provide a location to be an etching start point. If Si is less than 0.01%, the number of Si precipitates is reduced, the etching starting point is reduced, the etching property becomes poor, and it becomes difficult to obtain a high-capacitance cathode foil, which is not preferable. If Si exceeds 0.05%, too many etching start points will occur, causing excessive dissolution during etching, and fine irregularities on the surface of the aluminum alloy foil once formed will drop, resulting in an increase in the surface area of the foil. Since it becomes difficult, it is not preferable.
[0011]
Fe in the aluminum plate refines the recrystallized grains in the resulting aluminum alloy foil to improve the strength of the foil. If Fe is less than 0.02%, the strength of the foil is not improved, which is not preferable. On the other hand, if the Fe content exceeds 0.075%, the aluminum alloy foil is likely to be etched in layers, which is not preferable.
[0012]
Mg and Zn in the aluminum plate are prevented from being etched in layers when electrolytically etching the obtained aluminum alloy foil, so that they are etched in a spongy manner. If Mg is less than 0.002% or Zn is less than 0.005%, it is difficult to prevent the etching from progressing in layers, which is not preferable. On the other hand, if Mg exceeds 0.01% or Zn exceeds 0.012%, coarse pores are likely to occur during electrolytic etching, leading to a decrease in capacitance, which is not preferable.
[0013]
Mn and / or Cr in the aluminum plate makes the crystal grains in the obtained aluminum alloy foil fine and prevents the crystal grain shape from becoming flat. If Mn and / or Cr is less than 0.004%, the crystal grains may be coarsened, and the crystal grain shape tends to be flattened. If Mn and / or Cr exceeds 0.02%, the effect of preventing the coarsening of crystal grains becomes saturated, which is not rational. Mn and Cr may be added individually by 0.004 to 0.02%, or each may be mixed and used within a range of 0.004 to 0.02%.
[0014]
The aluminum plate used in the present invention may contain several kinds of elements as unavoidable impurities in addition to the above-described elements. Even in such a case, the total content of inevitable impurities must be 0.002% or less. If the total content of inevitable impurities exceeds 0.002%, it is not preferable because a local battery is formed with Al, and over-dissolution may occur during etching.
[0015]
The aluminum plate having the above composition can be obtained by adding a desired amount of each element during casting to obtain an ingot, and then homogenizing and hot rolling.
[0016]
This aluminum plate is cold-rolled to a desired thickness by a conventionally known method. Then, intermediate annealing is performed on an aluminum plate having a desired thickness. The intermediate annealing is performed at a temperature of 280 to 420 ° C. If the intermediate annealing is performed at a temperature lower than 280 ° C., Cu is not sufficiently dissolved in Al but is precipitated, and it becomes easy to form coarse pores during electrolytic etching, which is not preferable. Further, if the intermediate annealing is performed at a temperature exceeding 420 ° C., the recrystallized grains are coarsened and the strength of the resulting aluminum alloy foil is lowered, which is not preferable.
[0017]
In addition, as a method of intermediate annealing, not only batch annealing but continuous annealing may be used. From the viewpoint of strength, generally, continuous annealing can provide a higher value.
[0018]
The aluminum plate after the intermediate annealing is further subjected to finish cold rolling to obtain an aluminum alloy foil. In this finish cold rolling, when obtaining a hard aluminum alloy foil, the rolling reduction is set to 60 to 90%. Here, the rolling reduction is represented by [(t 0 −t 1 ) / t 0 ] × 100 (%). However, t 0 represents the thickness of the aluminum plate before finish cold rolling, t 1 is representative of the thickness of the obtained aluminum alloy foil. When the rolling reduction is less than 60%, sufficient work hardening is not exhibited, and the strength of the obtained aluminum alloy foil is not sufficiently improved, which is not preferable. When the rolling reduction exceeds 90%, the number of flat crystal grains increases, and there is a possibility that etching progresses in layers during electrolytic etching.
[0019]
However, when the reduction ratio in finish cold rolling is 95% or more, if the final annealing is performed at 280 to 420 ° C., the flat crystal grains are refined by recrystallization and prevent the etching from progressing into the above-described layer shape. Yes. Therefore, when obtaining a soft aluminum alloy foil, the reduction ratio of finish cold rolling should be 95% or more, and then finish annealing at 280 to 420 ° C. In this case, intermediate annealing and cold rolling before finish cold rolling may or may not be performed. When the rolling reduction is less than 95%, the recrystallized grains are not sufficiently refined during finish annealing, which is not preferable. If the temperature of the finish annealing is less than 280 ° C., flat crystal grains are difficult to be miniaturized, which is not preferable. Moreover, when the temperature of finish annealing exceeds 420 degreeC, since a recrystallized grain will coarsen and the intensity | strength of the aluminum alloy foil obtained will be reduced, it is unpreferable.
[0020]
The aluminum alloy foil obtained as described above can be suitably used for an electrolytic capacitor cathode. That is, this aluminum alloy foil is subjected to electrolytic etching to form fine holes on the foil surface, and the electrostatic capacity is increased to form a cathode foil for an electrolytic capacitor.
[0021]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to an Example. In the present invention, when an aluminum plate having a specific elemental composition is processed under predetermined conditions, coarsening of crystal grains can be prevented, and an aluminum alloy foil for an electrolytic capacitor cathode can be obtained in which etching does not proceed in layers. Should be construed as based on this knowledge.
[0022]
Examples 1-3 and Comparative Examples 1-5
Ingots having the elemental compositions shown in Table 1 were prepared. And after performing the homogenization process on 600 degreeC conditions for 10 hours, it hot-rolled and obtained the aluminum plate of thickness 3mm.
[0023]
[Table 1]
Figure 0004419181
[0024]
This aluminum plate was cold-rolled to a desired thickness and subjected to intermediate annealing under the temperature conditions shown in Table 2. The temperature increase rate during the intermediate annealing was 50 ° C./hr, the holding time was 5 hours, and the cooling rate was 50 ° C./hr. And after intermediate annealing, it finish-cold-rolled with the rolling reduction of the conditions shown in Table 2, and finally obtained the aluminum alloy foil (hard material) with a thickness of 0.06 mm.
[0025]
Each obtained aluminum alloy foil (hard material) was etched under the following conditions to obtain a cathode foil. That is, electrolytic etching was performed for 80 seconds using a direct current of 40 A / dm 2 in an aqueous solution of 2.5 mass% hydrochloric acid + 1.3 mass% oxalic acid kept at 60 ° C. The capacitance of the cathode foil thus obtained was measured using an LCR meter in an 8% by mass ammonium borate aqueous solution, and the results are shown in Table 2. The unit of capacitance is μF / cm 2 .
[0026]
In addition, in order to judge the peelability of the etched surface of the cathode foil, it was tested whether or not the etched surface was peeled off together with the cello tape when the cello tape was attached to the etched surface and then the cello tape was peeled off (surface peeling). test). In the surface peeling test, the case where the etched surface is not peeled off is indicated by ◯, the case where the etched surface is slightly peeled is indicated by Δ, and the case where the etching surface is peeled off is indicated by ×, and the results are shown in Table 2.
[0027]
In addition, a strip-shaped sample having a size of 100 mm × 10 mm was cut out from the cathode foil, and the tensile strength (N / mm 2 ) was measured with an Instron universal testing machine at a rating distance of 50 mm and a tensile speed of 10 mm / min. Was measured. The results are also shown in Table 2.
[0028]
[Table 2]
Figure 0004419181
[0029]
As is clear from the results in Table 2, the cathode foils (hard materials) obtained by the methods according to Examples 1 to 3 are more static than the cathode foils obtained by the methods according to Comparative Examples 1 to 5. High capacity, little peeling of the etched surface, and excellent tensile strength. In other words, the cathode foils obtained by the methods according to Examples 1 to 3 are improved in a balanced manner as compared with the cathode foils obtained by the methods according to Comparative Examples 1 to 5. .
[0030]
Example 4
The ingot (ingot No. 1) used in Example 1 was prepared. And after performing the homogenization process on 600 degreeC conditions for 10 hours, it hot-rolled and obtained the aluminum plate of thickness 3mm. This aluminum plate was subjected to finish cold rolling at a reduction rate of 98%, and then subjected to finish annealing at 350 ° C. to obtain an aluminum alloy foil for an electrolytic capacitor cathode having a thickness of 0.06 mm. The temperature raising rate, holding time, and cooling rate of finish annealing are the same as in the case of intermediate annealing in Example 1.
[0031]
Comparative Example 6
The aluminum plate having a thickness of 3 mm used in Example 4 was cold-rolled to obtain a thin aluminum plate having a thickness of 0.2 mm. This aluminum thin plate was subjected to intermediate annealing under the same conditions as in Example 1, and then subjected to finish cold rolling at a reduction rate of 70% to obtain an aluminum alloy foil for an electrolytic capacitor cathode having a thickness of 0.06 mm.
[0032]
Comparative Example 7
An aluminum alloy foil for an electrolytic capacitor cathode was obtained in the same manner as in Example 4 except that the temperature of finish annealing was 500 ° C.
[0033]
Comparative Example 8
An aluminum alloy foil for an electrolytic capacitor cathode was obtained in the same manner as in Example 4 except that the temperature of finish annealing was 250 ° C.
[0034]
The aluminum alloy foil obtained by the method according to Example 4 and Comparative Examples 6 to 8 was treated in the same manner as in Example 1 to obtain a cathode foil. And about this cathode foil, an electrostatic capacitance, a surface peeling test, and tensile strength were measured, and the result was shown in Table 3.
[0035]
[Table 3]
Figure 0004419181
[0036]
As is clear from the results in Table 3, the cathode foil (soft material) obtained by the method according to Example 4 has a capacitance higher than that of the cathode foil obtained by the methods according to Comparative Examples 6 to 8. High, less peeling of the etched surface, and excellent tensile strength. That is, the cathode foil obtained by the method according to Example 4 has the three characteristics improved in a well-balanced manner as compared with the cathode foil obtained by the methods according to Comparative Examples 6-8.
[0037]
【The invention's effect】
As described above, the aluminum alloy foil for an electrolytic capacitor cathode obtained by the method according to the present invention has a specific composition and is manufactured under specific conditions. Therefore, the tensile strength is high, and It has a characteristic that it is etched in a spongy form without being etched in a layer form during electrolytic etching. Therefore, the surface of the obtained cathode foil is not easily broken and has a high capacitance. In addition, when the cathode foil is wound around an electric device or the like and the terminal is fastened and assembled with an adhesive tape, the adhesive tape is peeled off due to surface dislocation and the winding of the cathode foil can be prevented from being unwound. Further, since the obtained cathode foil has a high tensile strength, the thickness of the cathode foil can be reduced, and the obtained electrolytic capacitor can be miniaturized and can be incorporated into a small electric device.
[0038]
As described above, when a cathode foil is prepared using the aluminum alloy foil for an electrolytic capacitor cathode obtained by the method according to the present invention, it has a high electrostatic capacity and excellent tensile strength. Even when it is used by turning it, the winding is difficult to unwind.

Claims (2)

Cu:0.1〜2.0%、Si:0.01〜0.05%、Fe:0.02〜0.075%、Mg:0.002〜0.01%、Zn:0.005〜0.012%、Mn及び/又はCr:0.004〜0.02%、その他不可避不純物:0.002%以下、Al:残部よりなるアルミニウム板に冷間圧延を施した後、280〜420℃で中間焼鈍し、次いで圧下率60〜90%で仕上げ冷間圧延を施すことを特徴とする電解コンデンサ陰極用アルミニウム合金箔の製造方法。Cu: 0.1-2.0%, Si: 0.01-0.05%, Fe: 0.02-0.075%, Mg: 0.002-0.01%, Zn: 0.005- 0.012%, Mn and / or Cr: 0.004 to 0.02%, other unavoidable impurities: 0.002% or less, Al: Cold-rolling the aluminum plate made of the balance, then 280-420 ° C A method for producing an aluminum alloy foil for an electrolytic capacitor cathode, characterized in that the intermediate annealing is performed and then finish cold rolling is performed at a rolling reduction of 60 to 90%. 請求項1記載のアルミニウム板に、所望により冷間圧延及び中間焼鈍した後、圧下率95%以上で仕上げ冷間圧延を施し、その後、280〜420℃で仕上げ焼鈍することを特徴とする電解コンデンサ陰極用アルミニウム合金箔の製造方法。2. An electrolytic capacitor characterized in that the aluminum plate according to claim 1 is cold-rolled and intermediate-annealed as desired, then finish cold-rolled at a reduction rate of 95% or more, and then finish-annealed at 280 to 420 ° C. Manufacturing method of aluminum alloy foil for cathodes.
JP2000320765A 2000-10-20 2000-10-20 Method for producing aluminum alloy foil for electrolytic capacitor cathode Expired - Fee Related JP4419181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000320765A JP4419181B2 (en) 2000-10-20 2000-10-20 Method for producing aluminum alloy foil for electrolytic capacitor cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000320765A JP4419181B2 (en) 2000-10-20 2000-10-20 Method for producing aluminum alloy foil for electrolytic capacitor cathode

Publications (2)

Publication Number Publication Date
JP2002129297A JP2002129297A (en) 2002-05-09
JP4419181B2 true JP4419181B2 (en) 2010-02-24

Family

ID=18798993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000320765A Expired - Fee Related JP4419181B2 (en) 2000-10-20 2000-10-20 Method for producing aluminum alloy foil for electrolytic capacitor cathode

Country Status (1)

Country Link
JP (1) JP4419181B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7475328B2 (en) * 2019-03-18 2024-04-26 東洋アルミニウム株式会社 Aluminum alloy foil, laminate, method for producing aluminum alloy foil, and method for producing laminate
CN110983117A (en) * 2019-12-27 2020-04-10 江门市德佑金属材料实业有限公司 Aluminum alloy for capacitor shell and preparation method of aluminum alloy plate strip of aluminum alloy

Also Published As

Publication number Publication date
JP2002129297A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
JP3480210B2 (en) Aluminum alloy for electrolytic capacitor anode
JP2007046093A (en) Aluminum foil for electrolytic capacitor electrode, and manufacturing method therefor
JP4419181B2 (en) Method for producing aluminum alloy foil for electrolytic capacitor cathode
JP2945298B2 (en) Manufacturing method of aluminum alloy foil for electrolytic capacitor cathode
JPH055145A (en) Aluminum alloy for electrolytic capacitor electrode foil
JP4060493B2 (en) Method for producing aluminum alloy foil for electrolytic capacitor cathode
JP3180956B2 (en) Method for producing aluminum alloy foil for cathode of electrolytic capacitor
JPH11199992A (en) Production of aluminum soft foil for cathode of electrolytic capacitor
JP2803762B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
JP2826590B2 (en) Manufacturing method of aluminum alloy foil for anode of electrolytic capacitor
JP2004076059A (en) Aluminum alloy foil for cathode of electrolytic capacitor, and manufacturing method therefor
JP2007169690A (en) Aluminum foil for electrolytic capacitor
JP3920306B1 (en) Aluminum foil for electrolytic capacitors
JP3348340B2 (en) Aluminum hard foil for electrolytic capacitor and method for producing the same
JP3370244B2 (en) Aluminum alloy foil for electrolytic capacitors with high mechanical strength
JP3244131B2 (en) Aluminum alloy foil for electrolytic capacitor electrode and method for producing the same
JP2774078B2 (en) Manufacturing method of aluminum alloy foil for electrolytic capacitor
JPH08333644A (en) Aluminum alloy foil and its production
JP2778661B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP4539911B2 (en) Aluminum foil for electrode capacitor anode and manufacturing method thereof
JP4582627B2 (en) Aluminum alloy foil for electrolytic capacitor cathode
JP4958464B2 (en) Aluminum foil for electrolytic capacitor electrode
JP2010013714A (en) Aluminum foil for electrolytic capacitor electrode
JP4391677B2 (en) Aluminum alloy foil for electrolytic capacitor cathode
JP3401582B2 (en) Aluminum foil for cathode of electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4419181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees