JP4417901B2 - Production equipment for coated fuel particles for HTGR - Google Patents

Production equipment for coated fuel particles for HTGR Download PDF

Info

Publication number
JP4417901B2
JP4417901B2 JP2005305572A JP2005305572A JP4417901B2 JP 4417901 B2 JP4417901 B2 JP 4417901B2 JP 2005305572 A JP2005305572 A JP 2005305572A JP 2005305572 A JP2005305572 A JP 2005305572A JP 4417901 B2 JP4417901 B2 JP 4417901B2
Authority
JP
Japan
Prior art keywords
gas
flow rate
gas supply
flow
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005305572A
Other languages
Japanese (ja)
Other versions
JP2007114037A (en
Inventor
智生 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2005305572A priority Critical patent/JP4417901B2/en
Publication of JP2007114037A publication Critical patent/JP2007114037A/en
Application granted granted Critical
Publication of JP4417901B2 publication Critical patent/JP4417901B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

本発明は、例えば、高温ガス炉に用いられる被覆燃料粒子を製造する装置に関する。具体的には、二酸化ウランなどウランの化合物からなる燃料核に多重の被覆層を形成して被覆燃料粒子とする流動床反応装置を備えた高温ガス炉用被覆燃料粒子の製造装置に関する。   The present invention relates to an apparatus for producing coated fuel particles used in, for example, a high temperature gas furnace. More specifically, the present invention relates to an apparatus for producing coated fuel particles for a high temperature gas reactor provided with a fluidized bed reactor in which multiple coating layers are formed on a fuel core made of a uranium compound such as uranium dioxide to form coated fuel particles.

高温ガス炉は、燃料を含む炉心構造を、熱容量が大きく高温健全性が良好な黒鉛で構成すると共に、冷却ガスとして高温下でも化学反応が起こらないHeガス等のガス冷却材を用いることにより、固有の安全性が高く、高い出口温度のガスを取り出すことが可能である。得られる約900℃の高温熱は、発電はもちろんのこと水素製造や化学プラント等、幅広い分野での熱利用を可能にするものである。   The high-temperature gas reactor comprises a core structure containing fuel, composed of graphite having a large heat capacity and good high-temperature soundness, and using a gas coolant such as He gas that does not cause a chemical reaction even at high temperatures as a cooling gas. The inherent safety is high and it is possible to take out a gas having a high outlet temperature. The obtained high-temperature heat of about 900 ° C. enables heat utilization in a wide range of fields such as hydrogen production and chemical plants as well as power generation.

このような高温ガス炉の燃料には、通常、酸化ウラン等のウランを含む化合物を出発原料としてこれをセラミックス状に焼結した直径約350〜650μmの燃料核が用いられる。具体的には、この燃料核の周囲に複数の被覆を施した被覆燃料粒子が用いられる。   As a fuel for such a HTGR, a fuel core having a diameter of about 350 to 650 μm, which is obtained by sintering a compound containing uranium such as uranium oxide as a starting material into a ceramic form, is usually used. Specifically, coated fuel particles having a plurality of coatings around the fuel core are used.

この被覆燃料粒子としては、燃料核を中心として計4層の被覆を施したものが一般的となっている。より詳しくは、第1被覆層は密度約1g/cm の低密度熱分解炭素層で、ガス状の核***生成物(FP)のガス溜めとしての機能及び燃料核のスウェリングを吸収するバッファとしての機能を併せ持つものである。第2被覆層は密度約1.8g/cm の高密度熱熱分解炭素層でガス状FPの保持機能を有する。第3被覆層は密度約3.2g/cm の炭化珪素(以下、SiCと称す)層で固体FPの保持機能を有すると共に、被覆層の主要な強度部材である。第4被覆層は、第2被覆層と同様の密度約1.8g/cm の高密度熱分解炭素でガス状FPの保持機能と共に第3被覆層の保護層としての機能も持っている。一般的な被覆燃料粒子の直径は500〜1000μmである。 As the coated fuel particles, those coated with a total of four layers centering on the fuel core are generally used. More specifically, the first coating layer is a low-density pyrolytic carbon layer having a density of about 1 g / cm 3 , and functions as a gas reservoir for gaseous fission products (FP) and as a buffer that absorbs fuel nuclear swelling. It has both functions. The second coating layer is a high-density pyrolytic carbon layer having a density of about 1.8 g / cm 3 and has a function of holding the gaseous FP. The third coating layer is a silicon carbide (hereinafter referred to as SiC) layer having a density of about 3.2 g / cm 3 and has a function of holding a solid FP, and is a main strength member of the coating layer. The fourth coating layer is a high-density pyrolytic carbon having a density of about 1.8 g / cm 3 similar to that of the second coating layer, and has a function as a protective layer for the third coating layer as well as a function of holding the gaseous FP. Typical coated fuel particles have a diameter of 500 to 1000 μm.

次に、被覆燃料粒子は黒鉛マトリックス中に分散させた後、一定形状を持つ燃料コンパクトと呼ばれる形に成型加工される。更に、燃料コンパクトは黒鉛でできた筒に一定数量入れられ、上下に栓をし、燃料棒となる。最終的に燃料棒は、六角柱型黒鉛ブロックの複数の挿入口に入れられ、高温ガス炉の燃料となる。また、この六角柱型黒鉛ブロックを多数個、ハニカム配列に複数段重ねて高温ガス炉の炉心を構成している。   Next, the coated fuel particles are dispersed in a graphite matrix and then molded into a shape called a fuel compact having a certain shape. In addition, a certain amount of fuel compact is put into a cylinder made of graphite, plugged up and down, and becomes a fuel rod. Finally, the fuel rod is inserted into a plurality of insertion ports of the hexagonal columnar graphite block, and becomes a fuel for the HTGR. Further, a large number of hexagonal columnar graphite blocks are stacked in a plurality of stages on the honeycomb array to constitute the core of the high temperature gas reactor.

高温ガス炉の燃料は、一般的に以下のような工程を経て製造される。先ず、酸化ウラン粉末を硝酸に溶解し、硝酸ウラニル原液とする。この硝酸ウラニル原液に純水、増粘剤を加えて撹拌することにより滴下原液とする。増粘剤は、滴下された硝酸ウラニルの液滴が落下中に自身の表面張力により真球状になるように添加される。増粘剤としては、例えばポリビニルアルコール樹脂、アルカリ条件下で凝固する性質を有する樹脂、ポリエチレングリコール、メトローズなどを挙げることができる。   The fuel for the HTGR is generally manufactured through the following processes. First, uranium oxide powder is dissolved in nitric acid to obtain a uranyl nitrate stock solution. Pure water and a thickener are added to this uranyl nitrate stock solution and stirred to obtain a dripping stock solution. The thickener is added so that the dropped uranyl nitrate droplet becomes a true sphere due to its surface tension during dropping. Examples of the thickener include polyvinyl alcohol resin, resin having a property of solidifying under alkaline conditions, polyethylene glycol, and metroses.

上記のように調整された滴下原液は所定の温度に冷却され粘度を調整した後、細径の滴下ノズルを振動させることによりアンモニア水中に滴下される。液滴は、アンモニア水溶液に着水するまでの空間でアンモニアガスを吹きつけて表面をゲル化させることにより、着水時の変形が防止される。アンモニア水中で硝酸ウラニルは重ウラン酸アンモニウムの粒子となる。重ウラン酸アンモニウム粒子は、大気中で焙焼され、三酸化ウラン粒子となり、さらに還元・焼結されることにより高密度のセラミック状二酸化ウランからなる燃料核となる。   The dropping stock solution adjusted as described above is cooled to a predetermined temperature to adjust the viscosity, and then dropped into ammonia water by vibrating a small-diameter dropping nozzle. The droplets are prevented from being deformed at the time of landing by spraying ammonia gas in a space until landing on the aqueous ammonia solution to gel the surface. In ammonia water, uranyl nitrate becomes particles of ammonium heavy uranate. The heavy ammonium uranate particles are roasted in the atmosphere to become uranium trioxide particles, and further reduced and sintered to become fuel nuclei made of high-density ceramic uranium dioxide.

この燃料核を用いた被覆燃料粒子の製造は、流動床からなる反応装置を用いて行われている。例えば、燃料核を流動床反応容器内に装荷し、種々の被覆ガスを熱分解させることにより被覆を施す(例えば、特許文献1参照)。例えば、第1被覆層の低密度炭素の場合は、約1400℃でアセチレン(C)を、第2被覆層及び第4被覆層の高密度熱分解炭素の場合は約1400℃でプロピレン(C)を、第3被覆層のSiCの場合は、約1600℃でメチルトリクロロシラン(CHSiCl)を熱分解して被覆する。 The production of the coated fuel particles using the fuel nucleus is performed using a reaction apparatus comprising a fluidized bed. For example, fuel nuclei are loaded into a fluidized bed reaction vessel, and various coating gases are thermally decomposed to perform coating (see, for example, Patent Document 1). For example, in the case of the low-density carbon of the first coating layer, acetylene (C 2 H 2 ) is used at about 1400 ° C., and in the case of the high-density pyrolytic carbon of the second and fourth coating layers, propylene is used at about 1400 ° C. In the case of SiC of the third coating layer, (C 3 H 6 ) is coated by thermally decomposing methyltrichlorosilane (CH 3 SiCl 3 ) at about 1600 ° C.

一般的な燃料コンパクトは、被覆燃料粒子を、黒鉛粉末とフェノール樹脂等の粘結剤からなる黒鉛マトリックス材と共に中空円筒形又は円筒形にプレス成型又はモールド成型した後、粘結剤のフェノール樹脂等を炭化させるために焼成して得られる。   In general fuel compacts, coated fuel particles are press-molded or molded into a hollow cylindrical shape or cylindrical shape together with a graphite matrix material composed of graphite powder and a binder such as a phenol resin, and then a binder phenol resin, etc. It is obtained by firing to carbonize.

従来、被覆燃料粒子の第3被覆層であるSiC層を形成するとき、流動床内には、流動床反応領域内の燃料粒子(この場合は、第2被覆層まで被覆された2層被覆燃料粒子又はそれに第3被覆層を形成する過程の3層被覆燃料粒子)を均一に流動させることを目的として導入される高流量の水素ガスと、原料であるメチルトリクロロシラン(以下、MTSと称す)を供給するためのキャリアーガスとして導入される低流量の水素ガスが供給される。
特開平5−273374号公報
Conventionally, when forming a SiC layer, which is a third coating layer of coated fuel particles, in the fluidized bed, the fuel particles in the fluidized bed reaction region (in this case, the two-layer coated fuel coated up to the second coated layer) High-flow hydrogen gas introduced for the purpose of uniformly flowing the particles or the three-layer coated fuel particles in the process of forming the third coating layer on the particles and the raw material methyltrichlorosilane (hereinafter referred to as MTS) A low-flow hydrogen gas introduced as a carrier gas for supplying is supplied.
JP-A-5-273374

第3被覆層であるSiC層を形成するとき、これら高流量の水素ガスと低流量の水素ガスとの流量は、流量比で100:1〜50:1と大きな差があるため、高流量の水素ガスと低流量の水素ガスとが集合する集合管では、低流量の水素ガスが高流量の水素ガスに圧迫され、原料であるMTSが流動床内に均一且つ安定に供給することができないと共に、第3被覆層被覆中における集合管内の圧力は、0.1〜0.3MPaで一定しなかった。   When the SiC layer as the third coating layer is formed, the flow rate of the high flow rate hydrogen gas and the low flow rate hydrogen gas has a large flow rate ratio of 100: 1 to 50: 1. In a collecting pipe in which hydrogen gas and a low flow rate hydrogen gas are gathered, the low flow rate hydrogen gas is pressed by the high flow rate hydrogen gas, and the raw material MTS cannot be supplied uniformly and stably into the fluidized bed. The pressure in the collecting pipe during the third coating layer coating was not constant at 0.1 to 0.3 MPa.

より詳しく説明すると、図2は従来の流動床反応装置における集合管の構成を示す説明図である。図2に示す通り、第3被覆層の形成時には、流動床反応装置内部の燃料粒子を均一に流動させるための高流量の水素ガスと、MTSを供給するための低流量の水素ガスが集合管21内部で混ざり合い、流動床反応装置への配管23に供給されるものである。   More specifically, FIG. 2 is an explanatory view showing a configuration of a collecting pipe in a conventional fluidized bed reactor. As shown in FIG. 2, when the third coating layer is formed, a high flow rate hydrogen gas for uniformly flowing the fuel particles inside the fluidized bed reactor and a low flow rate hydrogen gas for supplying MTS are collected. 21 is mixed inside and supplied to the pipe 23 to the fluidized bed reactor.

集合管21には高流量の水素ガス配管22と低流量の水素ガス配管24とが集合管21の配管表面で直角に接続されたものであった。更に、低流量の水素ガスとその成分に含まれるMTSとが集合管に供給される直前の配管24で、集合管21に入りにくかったMTSが停留し、MTSが常温で液体の物質であるためにMTSがその場で残留するという事象も確認された。   A high flow rate hydrogen gas pipe 22 and a low flow rate hydrogen gas pipe 24 were connected to the collecting pipe 21 at right angles on the pipe surface of the collecting pipe 21. Furthermore, since the MTS that did not easily enter the collecting pipe 21 is stopped in the pipe 24 immediately before the low-flow hydrogen gas and the MTS contained in the component are supplied to the collecting pipe, the MTS is a liquid substance at room temperature. It was also confirmed that MTS remained on the spot.

本発明は、被覆層を形成させるために高い流量のガスと低い流量のガスとが良好に混合され、均一尚且つ安定した混合ガスを得ることができる高温ガス炉用被覆燃料粒子の製造装置を得ることを目的とする。被覆燃料粒子のSiC層を形成するために流動床に導入される高い流量を持つ粒子流動用のガス流の中に、水素をキャリアーとした低い流量を持つMTS流を供給する集合管において、低流量のMTS及び水素を均一且つ安定して集合管に供給することができる集合管を備えた高温ガス炉用被覆燃料粒子の製造装置を得ることを目的とする。   The present invention provides an apparatus for producing coated fuel particles for a high-temperature gas reactor, in which a high flow rate gas and a low flow rate gas are well mixed to form a coating layer, and a uniform and stable mixed gas can be obtained. The purpose is to obtain. In a collecting pipe for supplying a MTS flow having a low flow rate using hydrogen as a carrier in a gas flow for flowing particles having a high flow rate introduced into a fluidized bed to form a SiC layer of coated fuel particles, It is an object of the present invention to provide an apparatus for producing coated fuel particles for a HTGR equipped with a collecting pipe that can supply MTS and hydrogen at a flow rate uniformly and stably to the collecting pipe.

請求項1に記載された発明に係る高温ガス炉用被覆燃料粒子の製造装置は、1つの被覆層を形成させるための被覆ガス及び/又は流動ガスとして同時に供給される2種以上のガスを底部のガス導入ノズルから内部に導入して二酸化ウランからなる複数の燃料核を加熱環境下で流動させて該燃料核の表面に複数層の被覆層を順次形成する流動床反応容器と、流量の相違する2種以上のガス供給管からのガスを混合して前記流動床反応容器へ供給する集合管を含むガス供給手段とを備えた高温ガス炉用被覆燃料粒子の製造装置において、
前記集合管は、2種以上のガス供給管のうち高流量側ガス供給管から前記流動床反応容器へ流入するガス流による負圧を利用して2種以上のガス供給管のうち低流量側ガス供給管からのガスを吸引するエジェクター手段を備えたことを特徴とするものである。
The apparatus for producing coated fuel particles for a HTGR according to the first aspect of the present invention includes two or more kinds of gases supplied simultaneously as a coating gas and / or a flowing gas for forming one coating layer at the bottom. The difference in flow rate from the fluidized bed reaction vessel in which a plurality of fuel nuclei made of uranium dioxide are introduced into the inside of the gas introduction nozzle and flowed in a heated environment to form a plurality of coating layers on the surface of the fuel nuclei in sequence. An apparatus for producing coated fuel particles for a high-temperature gas furnace, comprising a gas supply means including a collecting pipe that mixes and supplies gas from two or more types of gas supply pipes to the fluidized bed reaction vessel,
The collecting pipe is a low flow side of the two or more gas supply pipes using a negative pressure due to a gas flow flowing from the high flow side gas supply pipe to the fluidized bed reaction vessel among the two or more types of gas supply pipes. Ejector means for sucking gas from the gas supply pipe is provided.

請求項2に記載された発明に係る高温ガス炉用被覆燃料粒子の製造装置は、請求項1に記載のエジェクター手段が、高流量側ガス供給管から流動床反応容器へ流入する高流量側ガス流経を縮径するノズル部と、このノズル部出口に流入開口を備えた低流量側ガス供給管とを備えたことを特徴とするものである。   According to a second aspect of the present invention, there is provided an apparatus for producing coated fuel particles for a high temperature gas reactor, wherein the ejector means according to the first aspect includes a high flow side gas flowing from a high flow side gas supply pipe into a fluidized bed reaction vessel. It is characterized by comprising a nozzle part for reducing the diameter of the flow path and a low flow side gas supply pipe having an inflow opening at the outlet of the nozzle part.

請求項3に記載された発明に係る高温ガス炉用被覆燃料粒子の製造装置は、請求項2に記載の低流量側ガス供給管の流入開口が、高流量側ガス流経路に対して30〜60°傾けて形成されていることを特徴とするものである。   According to a third aspect of the present invention, there is provided an apparatus for producing coated fuel particles for a high temperature gas reactor, wherein the inflow opening of the low flow side gas supply pipe according to claim 2 is 30 to It is characterized by being formed at an angle of 60 °.

請求項4に記載された発明に係る高温ガス炉用被覆燃料粒子の製造装置は、請求項2又は3に記載のノズル部の開口径がノズル部手前の高流量ガス流経路の2/3〜1/4であることを特徴とするものである。   The apparatus for producing coated fuel particles for a HTGR according to the invention described in claim 4 has an opening diameter of the nozzle part according to claim 2 or 3 that is 2/3 to 3/3 of the high flow gas flow path before the nozzle part. It is characterized by being 1/4.

請求項5に記載された発明に係る高温ガス炉用被覆燃料粒子の製造装置は、請求項1〜4の何れか1項に記載の高流量側ガス供給管が、燃料核の表面に形成される第3被覆層のSiC層を形成する際に前記燃料核を流動床反応容器内で均一に流動させる高流量の水素ガスであり、
前記低流量側ガス供給管が、燃料核の表面に形成される第3被覆層のSiC層を形成させるMTSとキャリアーガスとしての水素ガスとを含む低流量のガスであることを特徴とするものである。
According to a fifth aspect of the present invention, there is provided a high temperature gas reactor coated fuel particle manufacturing apparatus in which the high flow rate side gas supply pipe according to any one of the first to fourth aspects is formed on a surface of a fuel core. A high flow rate hydrogen gas that uniformly flows the fuel nuclei in a fluidized bed reaction vessel when forming the SiC layer of the third coating layer.
The low flow rate side gas supply pipe is a low flow rate gas including MTS for forming a SiC layer of a third coating layer formed on the surface of the fuel core and hydrogen gas as a carrier gas It is.

本発明は、被覆層を形成させるために高い流量のガスと低い流量のガスとが良好に混合され、均一尚且つ安定した混合ガスを得ることができる。詳しくは、被覆燃料粒子のSiC層を形成するために流動床に導入される高い流量を持つ粒子流動用のガス流の中に、水素をキャリアーとした低い流量を持つMTS流を供給する集合管において、低流量のMTS及び水素を均一且つ安定して集合管に供給することができるという効果がある。   In the present invention, in order to form a coating layer, a high flow rate gas and a low flow rate gas are well mixed, and a uniform and stable mixed gas can be obtained. Specifically, a collecting pipe for supplying a MTS flow having a low flow rate using hydrogen as a carrier in a gas flow for flowing particles having a high flow rate introduced into a fluidized bed to form a SiC layer of coated fuel particles. Therefore, there is an effect that the low flow rate MTS and hydrogen can be supplied to the collecting pipe uniformly and stably.

本発明においては、1つの被覆層を形成させるための被覆ガス及び/又は流動ガスとして同時に供給される2種以上のガスを底部のガス導入ノズルから内部に導入して二酸化ウランからなる複数の燃料核を加熱環境下で流動させて該燃料核の表面に複数層の被覆層を順次形成する流動床反応容器と、流量の相違する2種以上のガス供給管からのガスを混合して前記流動床反応容器へ供給する集合管を含むガス供給手段とを備えた高温ガス炉用被覆燃料粒子の製造装置において、集合管は2種以上のガス供給管のうち高流量側ガス供給管から前記流動床反応容器へ流入するガス流による負圧を利用して2種以上のガス供給管のうち低流量側ガス供給管からのガスを吸引するエジェクター手段を備える。これにより、被覆層を形成させるために高い流量のガスと低い流量のガスとが良好に混合され、均一尚且つ安定した混合ガスを得ることができる。   In the present invention, a plurality of fuels made of uranium dioxide by introducing two or more kinds of gases supplied simultaneously as a coating gas and / or a flowing gas for forming one coating layer into the inside from a gas introduction nozzle at the bottom. A fluidized bed reaction vessel in which a nucleus is made to flow in a heating environment to sequentially form a plurality of coating layers on the surface of the fuel nucleus, and gas from two or more types of gas supply pipes having different flow rates are mixed to flow In the apparatus for producing coated fuel particles for a high temperature gas furnace, comprising a gas supply means including a collecting pipe for supplying to the bed reaction vessel, the collecting pipe flows from the high flow rate side gas supply pipe among the two or more kinds of gas supply pipes. Ejector means for sucking the gas from the low-flow-side gas supply pipe among the two or more kinds of gas supply pipes using negative pressure due to the gas flow flowing into the bed reaction vessel is provided. Thereby, in order to form a coating layer, the gas of a high flow rate and the gas of a low flow rate are mixed well, and a uniform and stable mixed gas can be obtained.

本発明のエジェクター手段としては、高流量側ガス供給管から流動床反応容器へ流入するガス流による負圧を利用して低流量側ガス供給管からのガスを吸引するものであればよい。例えば、集合管内部の高流量側ガス供給管から流動床反応容器へ流入する高流量側ガス流経路内で速い流れがあれば、その流れに対してほぼ直交する低流量側ガス供給管の開口が形成されていれば、負圧によって低流量のガスが吸引される。より好ましくは、高流量側ガス流経路を縮径して高流量ガスの流れを速くする方が負圧の発生が安定し、更に、一度縮径した後に拡径することにより、エゼクターポンプの原理により、更に高流量ガスの流量に対して大きな負圧が発生する。   As the ejector means of the present invention, any means may be used as long as the gas from the low flow side gas supply pipe is sucked using the negative pressure due to the gas flow flowing from the high flow side gas supply pipe into the fluidized bed reaction vessel. For example, if there is a fast flow in the high flow side gas flow path flowing into the fluidized bed reaction vessel from the high flow side gas supply pipe inside the collecting pipe, the opening of the low flow side gas supply pipe that is almost orthogonal to the flow Is formed, a low flow rate gas is sucked by the negative pressure. More preferably, the generation of negative pressure is more stable by reducing the diameter of the gas flow path on the high flow rate side to increase the flow rate of the high flow rate gas, and further, by reducing the diameter once and then expanding the diameter, the principle of the ejector pump As a result, a larger negative pressure is generated with respect to the flow rate of the high flow rate gas.

この高流量側ガス流経路を縮径した後に拡径して負圧を発生させることは、高流量側ガス流経路中に低流量側ガス供給管の先端部を差し込むことによっても達成することができるが、安定性に欠ける。そこで、より具体的には、本発明の好ましい態様として、エジェクター手段が、高流量側ガス供給管から流動床反応容器へ流入する高流量側ガス流経を縮径するノズル部と、このノズル部出口に流入開口を備えた低流量側ガス供給管とを備える。   The generation of the negative pressure by reducing the diameter of the high flow side gas flow path and then generating the negative pressure can also be achieved by inserting the tip of the low flow side gas supply pipe into the high flow side gas flow path. Yes, but lacks stability. Therefore, more specifically, as a preferred embodiment of the present invention, the ejector means reduces the diameter of the high flow side gas flow flowing from the high flow side gas supply pipe to the fluidized bed reaction vessel, and the nozzle unit. A low-flow-side gas supply pipe having an inflow opening at the outlet.

更に、より安定な低流量のガスを安定に供給するために、低流量側ガス供給管の流入開口が高流量側ガス流経路に対して30〜60°傾けて形成されていることや、ノズル部の開口径がノズル部手前の高流量側ガス流経路の2/3〜1/4であること等の工夫も行われる。   Further, in order to stably supply a more stable low flow rate gas, the inflow opening of the low flow rate side gas supply pipe is formed to be inclined by 30 to 60 ° with respect to the high flow rate side gas flow path, A device is also devised such that the opening diameter of the part is 2/3 to 1/4 of the high flow rate side gas flow path in front of the nozzle part.

また詳しくは、高流量側ガス供給管が燃料核の表面に形成される第3被覆層のSiC層を形成する際に前記燃料核を流動床反応容器内で均一に流動させる高流量の水素ガスであり、低流量側ガス供給管が燃料核の表面に形成される第3被覆層のSiC層を形成させるMTSとキャリアーガスとしての水素ガスとを含む低流量のガスである。これにより、被覆燃料粒子のSiC層を形成するために流動床に導入される高い流量を持つ粒子流動用のガス流の中に、水素をキャリアーとした低い流量を持つMTS流を供給する集合管において、低流量のMTS及び水素を均一且つ安定して集合管に供給することができる。   More specifically, when the high flow rate side gas supply pipe forms the SiC layer of the third coating layer formed on the surface of the fuel core, the high flow rate hydrogen gas that causes the fuel core to flow uniformly in the fluidized bed reaction vessel. The low flow side gas supply pipe is a low flow rate gas including MTS for forming the SiC layer of the third coating layer formed on the surface of the fuel core and hydrogen gas as the carrier gas. Thereby, a collecting pipe for supplying a MTS flow having a low flow rate using hydrogen as a carrier in a gas flow for flowing particles having a high flow rate introduced into a fluidized bed to form a SiC layer of coated fuel particles. , Low flow rate MTS and hydrogen can be uniformly and stably supplied to the collecting pipe.

図1は本発明の高温ガス炉用被覆燃料粒子の製造装置における集合管の一実施例の構成を示す説明図である。図に示す通り、本実施例における流動床の集合管11は、高流量水素ガスの配管12が流動床へ向かうガス配管13の対面から接続され、側面から低流量MTS水素混合ガスの配管14が接続されている。   FIG. 1 is an explanatory view showing a configuration of an embodiment of a collecting pipe in a production apparatus for coated fuel particles for a HTGR of the present invention. As shown in the figure, the fluidized bed collecting pipe 11 in this embodiment is connected to the high flow rate hydrogen gas pipe 12 from the opposite side of the gas pipe 13 toward the fluidized bed, and the low flow rate MTS hydrogen mixed gas pipe 14 from the side. It is connected.

集合管11の内部には、流れ方向先端に開口を備えた円錐状のノズル部16が設けられており、集合管11の内部の高流量水素ガスは縮径されつつノズル部16先端のノズル部出口から流速を増して排出される。低流量MTS水素混合ガスの配管14は、集合管11の内部にまで差し込まれており、その配管14の開口端はノズル部16出口に近接した位置に配されている。   A conical nozzle part 16 having an opening at the front end in the flow direction is provided inside the collecting pipe 11, and the high flow rate hydrogen gas inside the collecting pipe 11 is reduced in diameter while the nozzle part at the tip of the nozzle part 16 is provided. It is discharged from the outlet at an increased flow rate. The pipe 14 of the low flow rate MTS hydrogen mixed gas is inserted into the collecting pipe 11, and the open end of the pipe 14 is arranged at a position close to the outlet of the nozzle portion 16.

ノズル部16の開口内径a2はノズル部16より上流側の集合管11の内径a1の2/3〜1/4になっている。また、ノズル部16より下流側の集合管の内径a5は、集合前の集合管の内径a1と同一でもノズル部16出口の内径a2と同一でもよいが、ノズル部16で縮径した後に拡径することにより、ノズル部下流側の負圧が高まるため、ノズル部16出口の内径a2よりも拡径する方が好ましい。   The opening inner diameter a <b> 2 of the nozzle portion 16 is 2/3 to ¼ of the inner diameter a <b> 1 of the collecting pipe 11 upstream of the nozzle portion 16. In addition, the inner diameter a5 of the collecting pipe downstream from the nozzle portion 16 may be the same as the inner diameter a1 of the collecting pipe before collecting or the same as the inner diameter a2 of the outlet of the nozzle section 16, but the diameter is increased after being reduced by the nozzle section 16. By doing so, since the negative pressure on the downstream side of the nozzle portion increases, it is preferable to expand the diameter than the inner diameter a2 of the outlet of the nozzle portion 16.

尚、低流量MTS水素混合ガスの配管14の差し込み角度b1は、高流量水素ガスの流れ方向に直交させても充分な吸引作用が働くが、高流量水素ガスに効率の良い混合によって、より安定な低流量のガスを安定に供給することを目的として30〜60°とした。また、集合管11の材質は、水素ガスの配管として用いることができる材質であればよく、汎用のステンレス材が使用可能である。   Although the insertion angle b1 of the pipe 14 of the low flow rate MTS hydrogen mixed gas is sufficient even if it is orthogonal to the flow direction of the high flow rate hydrogen gas, a sufficient suction action works, but it is more stable by efficient mixing with the high flow rate hydrogen gas. 30 to 60 ° for the purpose of stably supplying a low flow rate gas. The material of the collecting pipe 11 may be any material that can be used as a pipe for hydrogen gas, and a general-purpose stainless steel material can be used.

具体的な集合管11は、図に示されるノズル部上流側の集合管内径a1=30mm、ノズル部開口内径a2=15mm、ノズル部縮径幅a3=a4=7.5mm、ノズル部下流側の集合管内径a5=30mmとし、集合管11の全長は、100mmとした。また、図1で示される低流量MTS水素混合ガスの配管の差し込み角度及びノズル部傾斜角度b1=b2=45°とした。   Specifically, the collecting pipe 11 has a collecting pipe inner diameter a1 = 30 mm on the upstream side of the nozzle part, a nozzle part opening inner diameter a2 = 15 mm, a nozzle part reduced diameter a3 = a4 = 7.5 mm, and a downstream side of the nozzle part. The collecting tube inner diameter a5 = 30 mm, and the total length of the collecting tube 11 was 100 mm. Further, the insertion angle of the low-flow rate MTS hydrogen mixed gas pipe shown in FIG. 1 and the nozzle portion inclination angle b1 = b2 = 45 ° were set.

また、流動床反応容器内には、約4.5kgの第2被覆層まで被覆された被覆燃料粒子を投入し、被覆燃料粒子流動用の水素ガスを流量(高流量水素ガス)1分間当たり約350Lで、MTSキャリアー用の水素ガスを流量(低流量水素ガス)1分間当たり約5Lで、流動床内に供給し、第3被覆層SiC層を被覆したところ、被覆された被覆燃料粒子の第3被覆層の厚さは30.3〜30.5μmの範囲内であり、均一な厚さを持つ第3被覆層を被覆することができた。また、集合管に圧力計を設置し、集合管内の水素ガスの圧力を計測した結果、第3被覆層被覆中約0.2MPaで一定した。   Further, the coated fuel particles coated up to about 4.5 kg of the second coating layer are put into the fluidized bed reaction vessel, and the hydrogen gas for flowing the coated fuel particles is supplied at a flow rate (high flow hydrogen gas) per minute. At 350 L, hydrogen gas for the MTS carrier was supplied into the fluidized bed at a flow rate (low flow hydrogen gas) of about 5 L per minute to coat the third coating layer SiC layer. The thickness of the three coating layers was in the range of 30.3 to 30.5 μm, and the third coating layer having a uniform thickness could be coated. In addition, a pressure gauge was installed in the collecting pipe, and the pressure of the hydrogen gas in the collecting pipe was measured.

以上のように、被覆燃料粒子の製造設備である流動床において本発明のガス集合管を使用することにより、被覆燃料粒子流動用の高流量水素ガスとMTSキャリアー用の低流量水素ガスを均一且つ安定に集合させることができ、これにより流動床内にMTSが均一且つ安定に供給され、安定した品質の第3被覆層を持つ被覆燃料粒子を製造することが可能になった。また、集合管に入る直前の配管内に残留したMTSは確認されなかった。   As described above, by using the gas collecting pipe of the present invention in a fluidized bed which is a production facility for coated fuel particles, a high flow rate hydrogen gas for flowing coated fuel particles and a low flow rate hydrogen gas for MTS carrier are uniformly and Thus, the MTS was uniformly and stably supplied into the fluidized bed, and it became possible to produce coated fuel particles having a third coating layer having a stable quality. Further, no MTS remained in the pipe immediately before entering the collecting pipe.

本発明の高温ガス炉用被覆燃料粒子の製造装置における集合管の一実施例の構成を示す説明図である。It is explanatory drawing which shows the structure of one Example of the collecting pipe in the manufacturing apparatus of the coated fuel particle for high temperature gas reactors of this invention. 従来の流動床反応装置における集合管の構成を示す説明図である。It is explanatory drawing which shows the structure of the collecting pipe in the conventional fluidized bed reaction apparatus.

符号の説明Explanation of symbols

11…集合管、
12…高流量水素ガスの配管(高流量側ガス供給管)、
13…流動床へ向かうガス配管、
14…低流量MTS水素混合ガスの配管(低流量側ガス供給管)、
16…円錐状のノズル部、
a1…ノズル部上流側の集合管内径、
a2…ノズル部開口内径、
a3…ノズル部縮径幅、
a4…ノズル部縮径幅、
a5…ノズル部下流側の集合管内径、
b1…低流量MTS水素混合ガスの配管の差し込み角度、
b2…ノズル部傾斜角度、
11 ... collecting tube,
12 ... High-flow hydrogen gas pipe (high-flow-side gas supply pipe),
13 ... Gas piping to the fluidized bed,
14 ... Pipe of low flow rate MTS hydrogen mixed gas (low flow side gas supply pipe),
16 ... Conical nozzle part,
a1 ... inner diameter of the collecting pipe upstream of the nozzle part,
a2 ... Nozzle part opening inner diameter,
a3: Nozzle portion reduced diameter width,
a4: Nozzle diameter reduction width,
a5: inner diameter of the collecting pipe on the downstream side of the nozzle part,
b1 ... Insertion angle of low flow rate MTS hydrogen mixed gas piping,
b2 ... Nozzle part inclination angle,

Claims (5)

1つの被覆層を形成させるための被覆ガス及び/又は流動ガスとして同時に供給される2種以上のガスを底部のガス導入ノズルから内部に導入して二酸化ウランからなる複数の燃料核を加熱環境下で流動させて該燃料核の表面に複数層の被覆層を順次形成する流動床反応容器と、流量の相違する2種以上のガス供給管からのガスを混合して前記流動床反応容器へ供給する集合管を含むガス供給手段とを備えた高温ガス炉用被覆燃料粒子の製造装置において、
前記集合管は、2種以上のガス供給管のうち高流量側ガス供給管から前記流動床反応容器へ流入するガス流による負圧を利用して2種以上のガス供給管のうち低流量側ガス供給管からのガスを吸引するエジェクター手段を備えたことを特徴とする高温ガス炉用被覆燃料粒子の製造装置。
Two or more kinds of gases supplied simultaneously as a coating gas and / or a flowing gas for forming one coating layer are introduced into the inside from a gas introduction nozzle at the bottom, and a plurality of fuel nuclei composed of uranium dioxide are heated in an environment. And a fluidized bed reaction vessel that sequentially forms a plurality of coating layers on the surface of the fuel core, and gas from two or more types of gas supply pipes having different flow rates are mixed and supplied to the fluidized bed reaction vessel An apparatus for producing coated fuel particles for a HTGR comprising a gas supply means including a collecting pipe that
The collecting pipe is a low flow side of the two or more gas supply pipes using a negative pressure due to a gas flow flowing from the high flow side gas supply pipe to the fluidized bed reaction vessel among the two or more types of gas supply pipes. An apparatus for producing coated fuel particles for a high temperature gas furnace, comprising an ejector means for sucking a gas from a gas supply pipe.
前記エジェクター手段が、高流量側ガス供給管から流動床反応容器へ流入する高流量側ガス流経を縮径するノズル部と、このノズル部出口に流入開口を備えた低流量側ガス供給管とを備えたことを特徴とする請求項1に記載の高温ガス炉用被覆燃料粒子の製造装置。   The ejector means has a nozzle part for reducing the diameter of the high flow side gas flow flowing from the high flow side gas supply pipe to the fluidized bed reaction vessel, and a low flow side gas supply pipe having an inflow opening at the nozzle part outlet, The apparatus for producing coated fuel particles for a high temperature gas reactor according to claim 1, comprising: 前記低流量側ガス供給管の流入開口が、高流量側ガス流経路に対して30〜60°傾けて形成されていることを特徴とする請求項2に記載の高温ガス炉用被覆燃料粒子の製造装置。   The inflow opening of the low flow rate side gas supply pipe is formed to be inclined by 30 to 60 ° with respect to the high flow rate side gas flow path. Manufacturing equipment. 前記ノズル部の開口径がノズル部手前の高流量ガス流経路の2/3〜1/4であることを特徴とする請求項2又は3に記載の高温ガス炉用被覆燃料粒子の製造装置。   4. The apparatus for producing coated fuel particles for a high temperature gas reactor according to claim 2, wherein an opening diameter of the nozzle portion is 2/3 to ¼ of a high flow rate gas flow path before the nozzle portion. 前記高流量側ガス供給管が、燃料核の表面に形成される第3被覆層のSiC層を形成する際に前記燃料核を流動床反応容器内で均一に流動させる高流量の水素ガスであり、
前記低流量側ガス供給管が、燃料核の表面に形成される第3被覆層のSiC層を形成させるメチルトリクロロシランとキャリアーガスとしての水素ガスとを含む低流量のガスであることを特徴とする請求項1〜4の何れか1項に記載の高温ガス炉用被覆燃料粒子の製造装置。

The high flow rate side gas supply pipe is a high flow rate hydrogen gas that causes the fuel nuclei to flow uniformly in the fluidized bed reaction vessel when forming the SiC layer of the third coating layer formed on the surface of the fuel nuclei. ,
The low-flow-side gas supply pipe is a low-flow gas containing methyltrichlorosilane for forming a third coating layer SiC layer formed on the surface of the fuel core and hydrogen gas as a carrier gas. The apparatus for producing coated fuel particles for a high temperature gas reactor according to any one of claims 1 to 4.

JP2005305572A 2005-10-20 2005-10-20 Production equipment for coated fuel particles for HTGR Expired - Fee Related JP4417901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005305572A JP4417901B2 (en) 2005-10-20 2005-10-20 Production equipment for coated fuel particles for HTGR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005305572A JP4417901B2 (en) 2005-10-20 2005-10-20 Production equipment for coated fuel particles for HTGR

Publications (2)

Publication Number Publication Date
JP2007114037A JP2007114037A (en) 2007-05-10
JP4417901B2 true JP4417901B2 (en) 2010-02-17

Family

ID=38096366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305572A Expired - Fee Related JP4417901B2 (en) 2005-10-20 2005-10-20 Production equipment for coated fuel particles for HTGR

Country Status (1)

Country Link
JP (1) JP4417901B2 (en)

Also Published As

Publication number Publication date
JP2007114037A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP2005308522A (en) Device for manufacturing cladding fuel particle for high-temperature gas-cooled reactor
JP4417901B2 (en) Production equipment for coated fuel particles for HTGR
JP4697938B2 (en) Method for producing coated fuel particles for HTGR
JP4409405B2 (en) Production equipment for coated fuel particles for HTGR
JP4521763B2 (en) Production equipment for coated fuel particles for HTGR
JP4583104B2 (en) Methyltrichlorosilane gas generator
JP4417867B2 (en) Production equipment for coated fuel particles for HTGR
JP4357441B2 (en) Apparatus and method for producing coated fuel particles for HTGR
JP4417879B2 (en) Production equipment for coated fuel particles for HTGR
JP4417871B2 (en) Production equipment for coated fuel particles for HTGR
JP4409460B2 (en) Production equipment for coated fuel particles for HTGR
JP2006300535A (en) Gas introduction nozzle of coated fuel particle manufacturing equipment for high-temperature gas-cooled reactor
JP4354903B2 (en) Production equipment for coated fuel particles for HTGR
JP2007107901A (en) Device for manufacturing coated fuel particle for high temperature gas furnace
JP4357437B2 (en) Production equipment for coated fuel particles for HTGR
JP4450762B2 (en) Gas introduction nozzle of coated fuel particle manufacturing equipment for HTGR
JP4155580B2 (en) Gas introduction nozzle for coated fuel particle manufacturing equipment for HTGR
JP2006242694A (en) Manufacturing device of coated fuel particle for high-temperature gas reactor
JP4415272B2 (en) Equipment for producing fuel particles for HTGR
JP2007147504A (en) Coated fuel particle for high-temperature gas-cooled reactor, and manufacturing method therefor
JP2006046998A (en) Manufacturing equipment of coated fuel particle for high-temperature gas-cooled reactor
JP4354905B2 (en) Fuel particle coating gas supply system for HTGR
JP2006038797A (en) Gas supply device for fluidized bed
JP2007003118A (en) Gas injection nozzle deposit-removing method for manufacturing device of coated fuel particle for high-temperature gas furnace and manufacturing method of coated fuel particle for high-temperature gas furnace
JP2006064442A (en) Manufacturing device of hollow fuel compact for high-temperature gas furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151204

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees