JP4415074B2 - Charge / discharge control system - Google Patents

Charge / discharge control system Download PDF

Info

Publication number
JP4415074B2
JP4415074B2 JP2003062613A JP2003062613A JP4415074B2 JP 4415074 B2 JP4415074 B2 JP 4415074B2 JP 2003062613 A JP2003062613 A JP 2003062613A JP 2003062613 A JP2003062613 A JP 2003062613A JP 4415074 B2 JP4415074 B2 JP 4415074B2
Authority
JP
Japan
Prior art keywords
charge
battery
discharge
internal resistance
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003062613A
Other languages
Japanese (ja)
Other versions
JP2004271342A (en
Inventor
彰彦 工藤
正樹 長岡
憲佳 笹澤
重之 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Automotive Systems Engineering Co Ltd
Shin Kobe Electric Machinery Co Ltd
Hitachi Astemo Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Hitachi Automotive Systems Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd, Hitachi Automotive Systems Ltd, Hitachi Car Engineering Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2003062613A priority Critical patent/JP4415074B2/en
Publication of JP2004271342A publication Critical patent/JP2004271342A/en
Application granted granted Critical
Publication of JP4415074B2 publication Critical patent/JP4415074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は充放電制御システムに係り、特に、二次電池の充放電電流と充放電電圧とを一定時間毎に測定し、該測定値から充電状態を推定して電池の充放電を制御する充放電制御システムに関する。
【0002】
【従来の技術】
従来、二次電池の簡易充放電制御システムでは、充電終了後状態を検出したときを満充電状態として電池の充電を終了させ、放電終止電圧を検出したときを完全放電状態として放電を終了させる方式が用いられてきた。一方、高精度充放電制御システムでは、二次電池の充放電電気量を測定して制御する方式も用いられている。この方式では、充放電電気量を測定しているので、電池の残存容量を把握できるという利点がある。また、満充電状態から放電末期状態まで放電した場合には満充電容量を実測しているので、この放電容量から電池の劣化状態を把握することができる。
【0003】
しかしながら、例えば、二次電池とモータジェネレータ及びエンジンとを用いたハイブリッド車等の、完全な充放電を繰り返さない用途では、二次電池は短時間の充放電を頻繁に繰り返して使用される。ハイブリッド車では、二次電池として鉛電池、ニッケル水素電池、リチウムイオン電池等が用いられており、最近では高エネルギー密度のリチウムイオン電池が使用されるようになってきている。この場合、電池の入出力特性を最大限に引き出し、かつ寿命を長くするためには、充放電させる残存容量乃至充電状態の値(SOC:満充電が100%、完全放電が0%)が重要であり、SOCの管理を行わないと充分な入出力特性が得られないだけでなく、寿命が短くなってしまう。
【0004】
また、ハイブリッド車用等の短時間の充放電を行うシステムでは、電池の満充電容量よりも最大入出力電力が重要であり、この最大入出力電力を決定する電池の内部抵抗が電池の状態を示すパラメータとして劣化判断に用いられている。このような劣化判断方法として、一定時間毎に電池の入出力電圧と電流とを測定し、その測定値の一定数量のデータを回帰分析して内部抵抗を算出する技術が知られている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平10−106635公報
【0006】
【発明が解決しようとする課題】
ところが、従来の方式では、回帰分析して得られた内部抵抗の値にバラツキが生ずるため、二次電池の劣化判断を誤る可能性を持っている。
【0007】
この例を図面を参照して説明する。図3は定格3.6Ah、SOC50%で内部抵抗約4mΩのリチウムイオン電池に短時間の充放電を繰り返した場合の電流推移を示し、図4はそのときの電圧推移を示している。なお、これらの電流、電圧推移は1sec毎に測定したものである。また、図5は60秒間の電流と電圧の測定値を回帰分析して内部抵抗を算出した結果を、図6は30秒間の回帰分析結果の内部抵抗値をそれぞれ示している。
【0008】
図5に示すように、内部抵抗の算出値は0から6mΩまで変化しており、バラツキが大きい。この例は回帰分析を60秒間行ったものであるが、図6に示す30秒間回帰分析を行った結果では更にバラツキが大きくなり、内部抵抗の計算値は−1から10mΩまで変化している。このリチウムイオン電池では内部抵抗が約8mΩまで上昇した場合に所定の入出力特性が得られないため寿命と判定されるが、この結果のみから劣化を判断すると充放電電流によっては寿命との判定がなされ、劣化判定を誤る可能性があることになる。
【0009】
本発明は上記事案に鑑み、二次電池の劣化判定を誤ることのない充放電制御システムを提供することを課題とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明は、二次電池の充放電電流と充放電電圧とを一定時間毎に測定し、該測定値から充電状態を推定して前記電池の充放電を制御する充放電制御システムにおいて、前記電池は短時間の充放電を頻繁に繰り返して使用されるハイブリッド車両用の二次電池であって、前記充放電電流及び充放電電圧測定値の一定数量のデータから回帰分析を行って前記電池の内部抵抗を算出すると共に、前記充放電電流の積算値から前記電池の前記ハイブリッド車両への積載時からの累積充放電電気量を算出し、前記内部抵抗及び前記累積充放電電気量の算出値に基づいて前記電池の劣化状態を判定することを特徴とする。
【0011】
本発明によれば、回帰分析で求めた内部抵抗の算出値だけでなく、累積の充放電電気量を含めて二次電池の劣化判断を行うので、バラツキの大きい回帰分析から求めた内部抵抗の算出値からの劣化判定ミスを無くすことができる。なお、二次電池にリチウムイオン電池を用いる場合には、充電効率がほぼ100%のため、充電電気量及び放電電気量のいずれを用いてもよい。
【0012】
この場合に、電池の内部抵抗が所定値以上、かつ、電池の累積充放電電気量が所定値以上となったときに、電池が劣化したと判定することが好ましい。また、電池が充放電されているときの電池温度を測定し、この測定値と充放電電流又は充放電電圧から算出した充電状態とを、電池温度と充電状態とをパラメータとするマップに当てはめて内部抵抗の算出値の補正を行い、補正後の値を内部抵抗の算出値として電池の劣化状態を判定すれば、回帰分析で求めた内部抵抗の算出値を温度とSOCとで補正しているので、真の値に近い内部抵抗値で劣化判断が可能なため、更に正確に二次電池の劣化判定を行うことができる。このとき、内部抵抗の算出値の補正は、予め定められた標準温度及び標準充電状態における内部抵抗値に補正することが望ましい。
【0014】
【発明の実施の形態】
以下、本発明が適用可能な充放電制御システムの実施の形態について説明する。
【0015】
(構成)
図1に示すように、本実施形態の充放電制御システムは、ホール素子等の電流センサを有しリチウムイオン電池が96直列に接続されたリチウムイオン電池群1に流れる充放電電流を測定する充放電電流測定回路2、リチウムイオン電池群1の総電圧を測定する総電圧測定回路3、サーミスタ等の温度センサを有しリチウムイオン電池群1のうち略中央部に配置された特定のリチウムイオン電池の電池温度を測定する温度測定回路4、及び、中央演算処理装置として機能するCPU、充放電制御システムの基本制御プログラム及び後述するテーブルデータ等を記憶したROM、CPUのワークエリアとして機能するRAM、並びにA/Dコンバータ等を有するデータ処理用のマイクロコンピュータ部5を備えている。マイクロコンピュータ部5には測定したデータを記憶する不揮発性RAM7が接続されている。従って、充放電制御システムは、電源の供給が停止しても、不揮発性RAM7に記憶されたデータは保存される構成を有している。
【0016】
リチウムイオン電池群1は、例えば、直列接続された2つの電池モジュール(不図示)で構成されており、各電池モジュールには48個のリチウムイオン電池が直列に接続されている。各電池モジュールは図示しないマイクロコンピュータ部を内蔵しており、このマイクロコンピュータ部の制御により、リチウムイオン電池群1の充放電中に、電池モジュールを構成する各リチウムイオン電池がほぼ同一の容量を維持するように容量調整が実行される。
【0017】
実際のリチウムイオン電池群1の充放電は、上位の充放電電流制御部により制御される。充放電システムは、後述するように、リチウムイオン電池群1の充電状態(SOC)やリチウムイオン電池群1の劣化判定結果等の情報を報知するために、マイクロコンピュータ部5に接続された通信インターフエイス部6を介して上位の充放電電流制御部に接続されている。
【0018】
(動作)
次に、フローチャートを参照して充放電制御システムの動作について、マイクロコンピュータ部5のCPUを主体として説明する。なお、マイクロコンピュータ部5に電源が投入されると、リチウムイオン電池群1を構成するリチウムイオン電池の劣化を判定する劣化判定ルーチンが実行される。
【0019】
図2に示すように、劣化判定ルーチンでは、まずステップ112で、総電圧測定回路3及び電流測定回路2からのアナログデータをA/Dコンバータでデジタルデータに変換してリチウムイオン電池群1の総電圧V及びリチウムイオン電池群1に流れる充放電電流Iを取り込み(測定し)、RAM7に格納する。次にステップ114で、リチウムイオン電池群1に流れる充放電電流Iの積算値Q(Q=∫Idt)を不揮発性RAM7に格納する。このような処理は、例えば、RAM7に前回格納した積算値Qを読み出して、前回の積算値Qに、今回測定した放電電流Iと前回からの今回までの時間Δtとを掛けた値、を加算してRAM7に格納すればよい。
【0020】
次にステップ116において、電池温度Tを測定するタイミングか否かを判断する。このような測定タイミングを判断するために、例えば、カウンタを用いることができる。肯定判断のときは、ステップ118で温度測定回路4からのアナログデータをA/Dコンバータでデジタルデータに変換して電池温度Tを取り込み(測定し)、否定判断のときは、次のステップ120へ進む。すなわち、電池温度Tは、総電圧V及び充放電電流Iの測定周期より長い周期で測定される。なお、ステップ112〜ステップ118で測定されるデータは、総電圧V、充放電電流I、電池温度Tの3種類であり、従来の充放電制御システムと何ら変わるところはない。
【0021】
次いでステップ120では、ステップ112で測定された総電圧Vの値と充放電電流Iの値とから電池の充電状態(以下、SOCという。)を演算し、次のステップ122において、RAM7に格納した総電圧V及び充放電電流Iの値の時系列的な変化データのうち直近の一定数量(例えば、各100個)のデータから、最小二乗法等の回帰分析により電池の内部抵抗Rを演算する。
【0022】
次にステップ124では、ステップ118で測定された電池温度Tとステップ120で演算したSOCとをパラメータとするマップにより係数αを求め、この係数αをステップ122で演算した内部抵抗Rの値に乗じることで、標準SOC、標準温度での内部抵抗の値に変換(補正)する。なお、本例では、下表1に示すように、マップにSOCが50%、電池温度Tが25°Cに変換可能なテーブルを使用した。表1は離散値のテーブルであるが、ステップ120では補完によって正確な値に変換可能である。
【0023】
【表1】

Figure 0004415074
【0024】
ステップ126ではSOC及び補正後の内部抵抗Rを上位の充放電電流制御部へ報知し、次のステップ128において、電池が劣化したか否かを判定する。電池の劣化判定は下表2に示す劣化判定テーブルに基づいて行われる。表2は補正後の内部抵抗と累積充放電電気量をパラメータとするテーブルであり、内部抵抗値がある設定値以上、かつ、累積充放電電気量がある設定値以上の場合に劣化したと判定するテーブルである。
【0025】
【表2】
Figure 0004415074
【0026】
ステップ128で肯定判定のときは、次のステップ130で上位の充放電電流制御部へ電池の劣化を報知し、否定判定のときは、ステップ112へ戻る。電池の劣化の報知を受けた上位の充放電電流制御部は、インストールメンタルパネル(インパネ)を制御する表示制御部(不図示)又はその上位の制御部(不図示)へインパネに電池の劣化を表示すべき旨を報知する。これにより、インパネに電池の劣化が表示され、ドライバは電池が劣化したことを知ることができる。
【0027】
(作用等)
本実施形態の充放電制御システムでは、表2に示したように、内部抵抗Rと累積充放電電気量との両者で電池の劣化判定を行うので(ステップ126)、回帰分析から求めた内部抵抗のバラツキが大きくても、誤ることなく電池の劣化判定を行うことができる。図7に本例での累積充放電電気量と内部抵抗との関係を示す。図7に示すように、充放電を行って累積充放電電気量が増えると内部抵抗は間違いなく増加するので、累積充放電電気量が設定値以上となった場合に、電池が劣化している可能性は大きく、劣化判定ミスを行う可能性は少ない。
【0028】
また、本実施形態の充放電制御システムでは、表1に示したように、回帰分析で求めた内部抵抗を電池温度とSOCとで補正するので(ステップ124)、真の値に近い内部抵抗値で正確に電池の劣化判定を行うことが可能である(ステップ126)。図8に本例での内部抵抗の温度依存性を、図9に内部抵抗のSOC依存性をそれぞれ示す。このように、内部抵抗は温度とSOCとによって変化するので、基準の温度と基準のSOCとを決定しておけば、より正確な内部抵抗値で劣化判定を行うことが可能である。
【0029】
更に、本実施形態の充放電制御システムは累積充放電電気量を測定できればよく、従来の充放電制御システムに不揮発性RAM7等の記憶装置を付加するだけの構成で、劣化判定を正確に行うことが可能である。
【0030】
なお、本実施形態では、内部抵抗R及び累積充放電電気量で電池の劣化判定を行う例を示したが、補正後の内部抵抗は真の内部抵抗値に近く、また、図7に示したように累積充放電電気量と内部抵抗とには相関関係が存在するので、補正後の内部抵抗及び累積充放電電気量の一方で電池の劣化判定を行うようにしてもよい。
【0031】
また、本実施形態では、表1に「正常」と「劣化」の2状態の区別を行うだけのテーブルを例示したが、本発明はこれに限定されず、要求特性に応じて「要注意」等の3段階以上の判断を行うテーブルとしてもよい。更に、本実施形態では、マップにテーブルを例示したが、数式等を用いるようにしてもよい。
【0032】
そして、本実施形態では、説明を簡単にするために、温度センサを1個とした例を示したが、電池モジュール毎に1個又は複数個でリチウムイオン電池の温度を測定し、測定した温度の平均値や体操平均値等を用いるようにしてもよい。
【0033】
【発明の効果】
以上説明したように、本発明によれば、回帰分析で求めた内部抵抗の算出値だけでなく、累積の充放電電気量を含めて二次電池の劣化判断を行うので、バラツキの大きい回帰分析から求めた内部抵抗の算出値からの劣化判定ミスを無くすことができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明が適用可能な実施形態の充放電制御システムの概略構成を示すブロック回路図である。
【図2】実施形態の充放電制御システムの劣化判定ルーチンのフローチャートである。
【図3】充放電時の充放電電流の推移を示す特性線図である。
【図4】充放電時の充放電電圧の推移を示す特性線図である。
【図5】60秒間の電圧と電流の回帰分析値から算出した内部抵抗の推移を示す特性線図である。
【図6】30秒間の電圧と電流の回帰分析値から算出した内部抵抗の推移を示す特性線図である。
【図7】累積充放電電気量と内部抵抗の関係を示す特性線図である。
【図8】内部抵抗の温度依存性を示す特性線図である。
【図9】内部抵抗のSOC依存性を示す特性線図である。
【符号の説明】
1 リチウムイオン電池群
2 充放電電流測定回路
3 総電圧測定回路
4 温度測定回路
5 マイクロコンピュータ部
6 通信インターフエイス部
7 不揮発性RAM[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charge / discharge control system, and in particular, measures the charge / discharge current and charge / discharge voltage of a secondary battery at regular intervals, estimates the state of charge from the measured value, and controls the charge / discharge of the battery. The present invention relates to a discharge control system.
[0002]
[Prior art]
Conventionally, in a simple charge / discharge control system for a secondary battery, a state where the state after the end of charging is detected is set as a fully charged state, the charging of the battery is ended, and when a discharge end voltage is detected, the discharge is ended as a complete discharged state Has been used. On the other hand, in the high-accuracy charge / discharge control system, a method of measuring and controlling the amount of charge / discharge electricity of the secondary battery is also used. This method has an advantage that the remaining capacity of the battery can be grasped because the charge / discharge electricity quantity is measured. In addition, when the battery is discharged from the fully charged state to the end-of-discharge state, the full charge capacity is measured, so that the deterioration state of the battery can be grasped from this discharge capacity.
[0003]
However, in applications that do not repeat full charge / discharge, such as a hybrid vehicle using a secondary battery, a motor generator, and an engine, for example, the secondary battery is frequently repeatedly charged and discharged in a short time. In a hybrid vehicle, a lead battery, a nickel metal hydride battery, a lithium ion battery, or the like is used as a secondary battery, and recently, a high energy density lithium ion battery has been used. In this case, in order to maximize the input / output characteristics of the battery and prolong the life, the remaining capacity to charge / discharge or the state of charge (SOC: full charge is 100%, complete discharge is 0%) are important. If the SOC is not managed, sufficient input / output characteristics cannot be obtained, and the lifetime is shortened.
[0004]
In systems that charge and discharge for a short time, such as for hybrid vehicles, the maximum input / output power is more important than the full charge capacity of the battery. The internal resistance of the battery that determines this maximum input / output power determines the state of the battery. It is used for deterioration judgment as a parameter shown. As such a degradation determination method, a technique is known in which the input / output voltage and current of a battery are measured at regular time intervals, and the internal resistance is calculated by regression analysis of a certain number of data of the measured values (for example, , See Patent Document 1).
[0005]
[Patent Document 1]
JP-A-10-106635 [0006]
[Problems to be solved by the invention]
However, in the conventional method, since the internal resistance value obtained by the regression analysis varies, there is a possibility that the determination of the deterioration of the secondary battery is erroneous.
[0007]
This example will be described with reference to the drawings. FIG. 3 shows the current transition when charging and discharging are repeated for a short time on a lithium ion battery with a rating of 3.6 Ah and SOC of 50% and an internal resistance of about 4 mΩ, and FIG. 4 shows the voltage transition at that time. These current and voltage transitions are measured every 1 sec. FIG. 5 shows the results of calculating the internal resistance by regression analysis of the measured values of current and voltage for 60 seconds, and FIG. 6 shows the internal resistance values of the results of regression analysis for 30 seconds.
[0008]
As shown in FIG. 5, the calculated value of the internal resistance varies from 0 to 6 mΩ, and the variation is large. In this example, the regression analysis was performed for 60 seconds. However, the result of the regression analysis performed for 30 seconds shown in FIG. 6 shows that the variation is further increased, and the calculated value of the internal resistance is changed from −1 to 10 mΩ. In this lithium ion battery, when the internal resistance rises to about 8 mΩ, the predetermined input / output characteristics cannot be obtained, so the life is determined. However, if the deterioration is judged only from this result, the life is determined depending on the charge / discharge current. As a result, there is a possibility that the deterioration determination is erroneous.
[0009]
An object of the present invention is to provide a charge / discharge control system that does not erroneously determine the deterioration of a secondary battery.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention measures the charge / discharge current and charge / discharge voltage of a secondary battery at regular intervals, estimates the state of charge from the measured values, and controls the charge / discharge of the battery. In the charge / discharge control system, the battery is a secondary battery for a hybrid vehicle that is used by repeatedly repeatedly charging and discharging for a short time, and is regressed from a certain number of data of the measured charge / discharge current and charge / discharge voltage. to calculate the internal resistance of the battery after analysis, the calculated cumulative charging and discharging DENDEN air amount from the time of loading to the hybrid vehicle of the battery from an integrated value of the charge and discharge current, the internal resistance and the accumulated The deterioration state of the battery is determined based on a calculated value of charge / discharge electricity.
[0011]
According to the present invention, not only the calculated value of the internal resistance obtained by the regression analysis but also the determination of the deterioration of the secondary battery including the accumulated charge / discharge amount of electricity is performed. Therefore, the internal resistance obtained from the regression analysis having a large variation is obtained. It is possible to eliminate deterioration determination errors from the calculated values. In addition, when using a lithium ion battery for a secondary battery, since charging efficiency is almost 100%, you may use any charge electric charge and discharge electric charge.
[0012]
In this case, more than the predetermined value is the internal resistance of the battery, and, when the accumulated charge-discharge DENDEN air amount of the battery is equal to or greater than a predetermined value, it is preferable to determine that the battery has deteriorated. Also, the battery temperature when the battery is being charged / discharged is measured, and the measured value and the charge state calculated from the charge / discharge current or charge / discharge voltage are applied to a map using the battery temperature and the charge state as parameters. If the calculated value of the internal resistance is corrected and the deterioration value of the battery is determined using the corrected value as the calculated value of the internal resistance, the calculated value of the internal resistance obtained by the regression analysis is corrected by the temperature and the SOC. Therefore, since it is possible to determine the deterioration with the internal resistance value close to the true value, it is possible to more accurately determine the deterioration of the secondary battery. At this time, it is desirable to correct the calculated value of the internal resistance to the internal resistance value in a predetermined standard temperature and standard charge state.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a charge / discharge control system to which the present invention can be applied will be described.
[0015]
(Constitution)
As shown in FIG. 1, the charge / discharge control system according to this embodiment measures a charge / discharge current flowing through a lithium ion battery group 1 having a current sensor such as a Hall element and 96 lithium ion batteries connected in series. A discharge current measuring circuit 2, a total voltage measuring circuit 3 for measuring the total voltage of the lithium ion battery group 1, a specific lithium ion battery having a temperature sensor such as a thermistor and arranged in a substantially central portion of the lithium ion battery group 1 A temperature measurement circuit 4 for measuring the battery temperature of the CPU, a CPU that functions as a central processing unit, a ROM that stores a basic control program of a charge / discharge control system and table data to be described later, a RAM that functions as a work area of the CPU, And a data processing microcomputer 5 having an A / D converter and the like. The microcomputer unit 5 is connected to a nonvolatile RAM 7 for storing measured data. Therefore, the charge / discharge control system has a configuration in which the data stored in the nonvolatile RAM 7 is preserved even when the supply of power is stopped.
[0016]
The lithium ion battery group 1 includes, for example, two battery modules (not shown) connected in series, and 48 lithium ion batteries are connected in series to each battery module. Each battery module incorporates a microcomputer section (not shown), and the lithium ion batteries constituting the battery module maintain substantially the same capacity during charging / discharging of the lithium ion battery group 1 under the control of the microcomputer section. The capacity adjustment is executed as described above.
[0017]
The actual charge / discharge of the lithium ion battery group 1 is controlled by a higher-order charge / discharge current control unit. As will be described later, the charge / discharge system is a communication interface connected to the microcomputer unit 5 in order to notify information such as the state of charge (SOC) of the lithium ion battery group 1 and the deterioration determination result of the lithium ion battery group 1. It is connected to the upper charge / discharge current control unit via the face unit 6.
[0018]
(Operation)
Next, the operation of the charge / discharge control system will be described mainly with the CPU of the microcomputer unit 5 with reference to a flowchart. When the microcomputer unit 5 is turned on, a deterioration determination routine for determining deterioration of the lithium ion batteries constituting the lithium ion battery group 1 is executed.
[0019]
As shown in FIG. 2, in the deterioration determination routine, first, in step 112, analog data from the total voltage measurement circuit 3 and the current measurement circuit 2 is converted into digital data by an A / D converter, and the total of the lithium ion battery group 1 is converted. The voltage V and the charge / discharge current I flowing through the lithium ion battery group 1 are taken in (measured) and stored in the RAM 7. Next, in step 114, the integrated value Q (Q = ∫Idt) of the charge / discharge current I flowing through the lithium ion battery group 1 is stored in the nonvolatile RAM 7. For example, the integrated value Q stored in the RAM 7 is read out and the previous integrated value Q is multiplied by the discharge current I measured this time and the time Δt from the previous time to the current time. And stored in the RAM 7.
[0020]
Next, in step 116, it is determined whether or not it is time to measure the battery temperature T. For example, a counter can be used to determine such measurement timing. If the determination is affirmative, analog data from the temperature measurement circuit 4 is converted to digital data by the A / D converter in step 118 and the battery temperature T is captured (measured). If the determination is negative, the next step 120 is performed. move on. That is, the battery temperature T is measured at a cycle longer than the measurement cycle of the total voltage V and the charge / discharge current I. The data measured in step 112 to step 118 are three types of total voltage V, charge / discharge current I, and battery temperature T, and there is no difference from the conventional charge / discharge control system.
[0021]
Next, in step 120, the state of charge of the battery (hereinafter referred to as SOC) is calculated from the value of the total voltage V measured in step 112 and the value of the charge / discharge current I, and stored in the RAM 7 in the next step 122. The internal resistance R of the battery is calculated by the regression analysis such as the least square method from the data of the latest fixed quantity (for example, 100 each) among the time-series change data of the values of the total voltage V and the charge / discharge current I. .
[0022]
Next, in step 124, a coefficient α is obtained from a map using the battery temperature T measured in step 118 and the SOC calculated in step 120 as parameters, and this coefficient α is multiplied by the value of the internal resistance R calculated in step 122. Thus, it is converted (corrected) into the value of the internal resistance at the standard SOC and standard temperature. In this example, as shown in Table 1 below, a table that can be converted to 50% SOC and 25 ° C battery temperature T was used for the map. Table 1 is a table of discrete values, but in step 120, it can be converted into an accurate value by interpolation.
[0023]
[Table 1]
Figure 0004415074
[0024]
In step 126, the SOC and the corrected internal resistance R are notified to the upper charge / discharge current control unit, and in the next step 128, it is determined whether or not the battery has deteriorated. The battery deterioration determination is performed based on the deterioration determination table shown in Table 2 below. Table 2 is a table in which the corrected internal resistance and accumulated charge / discharge electricity amount are parameters, and it is determined that the internal resistance value has deteriorated when the accumulated charge / discharge electricity amount exceeds a certain set value and the accumulated charge / discharge electricity amount exceeds a certain set value. It is a table to do.
[0025]
[Table 2]
Figure 0004415074
[0026]
When an affirmative determination is made at step 128, battery deterioration is notified to the upper charge / discharge current control unit at the next step 130, and when a negative determination is made, the process returns to step 112. Upon receiving the battery deterioration notification, the upper charge / discharge current control unit sends the battery deterioration to the display control unit (not shown) for controlling the installation mental panel (instrument panel) or the upper control unit (not shown). Notify that it should be displayed. Thereby, the deterioration of the battery is displayed on the instrument panel, and the driver can know that the battery has deteriorated.
[0027]
(Action etc.)
In the charge / discharge control system of this embodiment, as shown in Table 2, since the battery deterioration is determined by both the internal resistance R and the accumulated charge / discharge electric quantity (step 126), the internal resistance obtained from the regression analysis is determined. Even if the variation of the battery is large, the battery deterioration can be determined without error. FIG. 7 shows the relationship between the accumulated charge / discharge electricity amount and the internal resistance in this example. As shown in FIG. 7, when the charge / discharge charge is performed and the accumulated charge / discharge electricity amount is increased, the internal resistance definitely increases. Therefore, when the accumulated charge / discharge electricity amount exceeds the set value, the battery is deteriorated. The possibility is great, and the possibility of making a deterioration judgment error is low.
[0028]
In the charge / discharge control system of this embodiment, as shown in Table 1, the internal resistance obtained by the regression analysis is corrected by the battery temperature and the SOC (step 124), so that the internal resistance value close to the true value is obtained. Thus, it is possible to accurately determine the deterioration of the battery (step 126). FIG. 8 shows the temperature dependence of the internal resistance in this example, and FIG. 9 shows the SOC dependence of the internal resistance. As described above, since the internal resistance changes depending on the temperature and the SOC, if the reference temperature and the reference SOC are determined, it is possible to perform the deterioration determination with a more accurate internal resistance value.
[0029]
Furthermore, the charge / discharge control system of the present embodiment only needs to be able to measure the accumulated charge / discharge electricity amount, and accurately determine deterioration with a configuration in which a storage device such as a nonvolatile RAM 7 is added to the conventional charge / discharge control system. Is possible.
[0030]
In the present embodiment, an example in which the deterioration of the battery is determined based on the internal resistance R and the accumulated charge / discharge electricity amount is shown. However, the corrected internal resistance is close to the true internal resistance value and is shown in FIG. Thus, since there is a correlation between the accumulated charge / discharge electricity amount and the internal resistance, the deterioration of the battery may be determined by one of the corrected internal resistance and accumulated charge / discharge electricity amount.
[0031]
Further, in the present embodiment, a table that merely distinguishes between two states of “normal” and “deteriorated” is illustrated in Table 1. However, the present invention is not limited to this, and “caution” is required according to required characteristics. It is good also as a table which performs judgment of three steps or more, such as these. Furthermore, in the present embodiment, the table is exemplified in the map, but a mathematical formula or the like may be used.
[0032]
And in this embodiment, in order to demonstrate easily, the example which used one temperature sensor was shown, However, The temperature of the lithium ion battery was measured by one or more for every battery module, and the measured temperature The average value or the gymnastic average value may be used.
[0033]
【The invention's effect】
As described above, according to the present invention, since the determination of the deterioration of the secondary battery includes not only the calculated value of the internal resistance obtained by the regression analysis but also the accumulated charge / discharge electricity amount, the regression analysis having a large variation It is possible to obtain an effect that it is possible to eliminate a deterioration determination error from the calculated value of the internal resistance obtained from the above.
[Brief description of the drawings]
FIG. 1 is a block circuit diagram showing a schematic configuration of a charge / discharge control system according to an embodiment to which the present invention is applicable.
FIG. 2 is a flowchart of a deterioration determination routine of the charge / discharge control system according to the embodiment.
FIG. 3 is a characteristic diagram showing a change in charge / discharge current during charge / discharge.
FIG. 4 is a characteristic diagram showing a change in charge / discharge voltage during charge / discharge.
FIG. 5 is a characteristic diagram showing changes in internal resistance calculated from regression analysis values of voltage and current for 60 seconds.
FIG. 6 is a characteristic diagram showing the transition of internal resistance calculated from the regression analysis values of voltage and current for 30 seconds.
FIG. 7 is a characteristic diagram showing the relationship between cumulative charge / discharge electricity and internal resistance.
FIG. 8 is a characteristic diagram showing temperature dependence of internal resistance.
FIG. 9 is a characteristic diagram showing SOC dependency of internal resistance.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lithium ion battery group 2 Charge / discharge current measurement circuit 3 Total voltage measurement circuit 4 Temperature measurement circuit 5 Microcomputer part 6 Communication interface part 7 Nonvolatile RAM

Claims (4)

二次電池の充放電電流と充放電電圧とを一定時間毎に測定し、該測定値から充電状態を推定して前記電池の充放電を制御する充放電制御システムにおいて、前記電池は短時間の充放電を頻繁に繰り返して使用されるハイブリッド車両用の二次電池であって、前記充放電電流及び充放電電圧測定値の一定数量のデータから回帰分析を行って前記電池の内部抵抗を算出すると共に、前記充放電電流の積算値から前記電池の前記ハイブリッド車両への積載時からの累積充放電電気量を算出し、前記内部抵抗及び前記累積充放電電気量の算出値に基づいて前記電池の劣化状態を判定することを特徴とする充放電制御システム。In a charge / discharge control system that measures the charge / discharge current and charge / discharge voltage of a secondary battery at regular intervals, estimates the state of charge from the measured value, and controls the charge / discharge of the battery, the battery has a short time A rechargeable battery for a hybrid vehicle that is frequently used for charge / discharge, and calculates the internal resistance of the battery by performing regression analysis from a certain number of data of the charge / discharge current and charge / discharge voltage measurement values. together with the calculated cumulative charging and discharging DENDEN air amount from the time of loading to the hybrid vehicle of the battery from an integrated value of the charging and discharging current, the battery based on the calculated value of the internal resistance and the accumulated charge-discharge electric quantity A charge / discharge control system for determining a deterioration state of the battery. 前記電池の内部抵抗が所定値以上、かつ、前記電池の累積充放電電気量が所定値以上となったときに、前記電池が劣化したと判定することを特徴とする請求項1に記載の充放電制御システム。The internal resistance of the battery is equal to or greater than a predetermined value, and, when the accumulated charge-discharge DENDEN air amount of said battery exceeds a predetermined value, according to claim 1, wherein determining that the battery is deteriorated Charge / discharge control system. 前記電池が充放電されているときの電池温度を測定し、この測定値と前記充放電電流又は充放電電圧から算出した充電状態とを、電池温度と充電状態とをパラメータとするマップに当てはめて前記内部抵抗の算出値の補正を行い、補正後の値を前記内部抵抗の算出値として前記電池の劣化状態を判定することを特徴とする請求項1又は請求項2に記載の充放電制御システム。  The battery temperature when the battery is being charged / discharged is measured, and the measured value and the charge state calculated from the charge / discharge current or charge / discharge voltage are applied to a map using the battery temperature and the charge state as parameters. The charge / discharge control system according to claim 1 or 2, wherein the calculated value of the internal resistance is corrected, and the deterioration state of the battery is determined using the corrected value as the calculated value of the internal resistance. . 前記内部抵抗の算出値の補正は、予め定められた標準温度及び標準充電状態における内部抵抗値に補正することを特徴とする請求項3に記載の充放電制御システム。  The charge / discharge control system according to claim 3, wherein the calculated value of the internal resistance is corrected to an internal resistance value at a predetermined standard temperature and standard charge state.
JP2003062613A 2003-03-10 2003-03-10 Charge / discharge control system Expired - Fee Related JP4415074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062613A JP4415074B2 (en) 2003-03-10 2003-03-10 Charge / discharge control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062613A JP4415074B2 (en) 2003-03-10 2003-03-10 Charge / discharge control system

Publications (2)

Publication Number Publication Date
JP2004271342A JP2004271342A (en) 2004-09-30
JP4415074B2 true JP4415074B2 (en) 2010-02-17

Family

ID=33124428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062613A Expired - Fee Related JP4415074B2 (en) 2003-03-10 2003-03-10 Charge / discharge control system

Country Status (1)

Country Link
JP (1) JP4415074B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100863888B1 (en) * 2005-03-04 2008-10-15 주식회사 엘지화학 Method of estimating available power for hev battery pack
JP5130608B2 (en) * 2005-05-31 2013-01-30 日産自動車株式会社 Battery control device
KR100756837B1 (en) * 2005-06-30 2007-09-07 주식회사 엘지화학 Method and apparatus of estimating state of health of battery
KR100740097B1 (en) * 2005-10-20 2007-07-16 삼성에스디아이 주식회사 Method of estimating SOC for battery and battery management system using the same
JP4805101B2 (en) * 2006-11-21 2011-11-02 古河電気工業株式会社 Battery state estimation method, battery state monitoring device, and battery power supply system
JP4968088B2 (en) * 2008-01-24 2012-07-04 トヨタ自動車株式会社 Battery system, vehicle, battery-equipped equipment
JP4650532B2 (en) * 2008-07-11 2011-03-16 トヨタ自動車株式会社 Storage device deterioration determination device and storage device deterioration determination method
JP5815195B2 (en) * 2008-09-11 2015-11-17 ミツミ電機株式会社 Battery state detection device and battery pack incorporating the same
JP5560583B2 (en) * 2009-04-20 2014-07-30 日産自動車株式会社 Secondary battery internal resistance calculation method
JP4846829B2 (en) 2009-06-26 2011-12-28 株式会社東芝 Information processing apparatus and battery deterioration detection method
US8965721B2 (en) 2009-09-30 2015-02-24 Tesla Motors, Inc. Determining battery DC impedance
JP5627976B2 (en) * 2010-09-30 2014-11-19 Necパーソナルコンピュータ株式会社 Battery pack and information processing apparatus
JP6119402B2 (en) * 2012-05-29 2017-04-26 株式会社Gsユアサ Internal resistance estimation device and internal resistance estimation method
US9897659B2 (en) 2013-03-28 2018-02-20 Sanyo Electric Co., Ltd. Secondary battery charge status estimation device and secondary battery charge status estimation method
JP6606292B2 (en) * 2016-09-14 2019-11-13 株式会社東芝 Storage capacity estimation device, method and program
WO2019116815A1 (en) * 2017-12-11 2019-06-20 日立オートモティブシステムズ株式会社 Device for monitoring secondary cell, device for computing state of secondary cell, and method for estimating state of secondary cell

Also Published As

Publication number Publication date
JP2004271342A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP6844683B2 (en) Power storage element management device, SOC reset method, power storage element module, power storage element management program and mobile
JP5179047B2 (en) Storage device abnormality detection device, storage device abnormality detection method, and abnormality detection program thereof
JP4415074B2 (en) Charge / discharge control system
JP4275078B2 (en) Battery current limit control method
US10012700B2 (en) Electric storage apparatus
US8332169B2 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
EP1777794B1 (en) Battery management system and method of determining a state of charge of a battery
US8965722B2 (en) Apparatus for calculating residual capacity of secondary battery
KR100911317B1 (en) Apparatus and method for estimating battery's state of health based on battery voltage variation pattern
EP3343689B1 (en) Deterioration degree estimation device and deterioration degree estimation method
US20080162059A1 (en) Secondary Battery Charge/Discharge Electricity Amount Estimation Method and Device, Secondary Battery Polarization Voltage Estimation Method and Device and Secondary Battery Remaining Capacity Estimation Method and Device
US20050073315A1 (en) Method and apparatus for estimating state of charge of secondary battery
KR101498760B1 (en) Apparatus and method of estimating state of charging for battery, and battery management system using the same
JP2006112786A (en) Remaining capacity of battery detection method and electric power supply
KR20110084633A (en) Apparatus and method for estimating the life span of battery
EP1835297A1 (en) A method and device for determining characteristics of an unknown battery
CN102761141A (en) Electric quantity correction and control method of lithium ion power storage battery
KR102572652B1 (en) Method for estimating state of charge of battery
US11054476B2 (en) Method for monitoring a status of a battery, monitoring device and motor vehicle
CN112534283B (en) Battery management system, battery management method, battery pack, and electric vehicle
CN112470017B (en) Battery management device, battery management method, and battery pack
CN102890245A (en) Method for determining a charge acceptance, and method for charging a rechargeable battery
WO2017078606A1 (en) A system and a method for determining state-of-charge of a battery
CN112119317B (en) Battery management device, battery management method, and battery pack
JPH1138107A (en) Method for estimating residual capacity of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070913

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071018

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees