JP4413547B2 - DC circuit breaker - Google Patents

DC circuit breaker Download PDF

Info

Publication number
JP4413547B2
JP4413547B2 JP2003202126A JP2003202126A JP4413547B2 JP 4413547 B2 JP4413547 B2 JP 4413547B2 JP 2003202126 A JP2003202126 A JP 2003202126A JP 2003202126 A JP2003202126 A JP 2003202126A JP 4413547 B2 JP4413547 B2 JP 4413547B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
capacitor
circuit breaker
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003202126A
Other languages
Japanese (ja)
Other versions
JP2005044591A (en
Inventor
芳充 丹羽
邦夫 横倉
順 松崎
秀二 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003202126A priority Critical patent/JP4413547B2/en
Publication of JP2005044591A publication Critical patent/JP2005044591A/en
Application granted granted Critical
Publication of JP4413547B2 publication Critical patent/JP4413547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、転流式の直流遮断器に係り、特に転流回路のコンデンサの端子間電圧を改善し得る直流遮断器に関する。
【0002】
【従来の技術】
従来の直流遮断器は、直流回路に主遮断器と副遮断器とを直列接続し、事故電流が流れた場合、主遮断器に並列接続された転流回路から転流電流を注入して事故電流を遮断し、次いで副遮断器で直流回路を開路する構成となっている(例えば、特許文献1参照。)。
【0003】
この種の直流遮断器は、図4に示すように、直流回路のP−N間には、接離自在の一対の接点を有する主遮断器1および副遮断器2が直列に接続されている。主遮断器1には、転流スイッチ3、リアクトル4およびコンデンサ5を直列接続した転流回路6が並列に接続され、また、主遮断器1の遮断後のエネルギー吸収のためのサージアブソーバ7が同様に並列に接続されている。
【0004】
一方、従来のコンデンサ5の端子間には、充電回路8が接続され、所定の電圧値に充電されている。この充電回路8は、直流電源9と充電抵抗10とを直列接続してコンデンサ5を充電する回路、および放電スイッチ11と放電抵抗12とを直列接続してコンデンサ5の電圧を放電する回路で構成されている(例えば、特許文献2参照。)。
【0005】
このような回路構成において、図5に示すように、直流回路に過大な事故電流が流れた場合、所定の電圧値Vc1に充電されているコンデンサ5の端子間電圧は、転流スイッチ3が動作して転流電流が流れ始める時間t1において一旦放電する。そして、事故電流に転流電流が注入され、電流零点が作られる時間t2で事故電流が遮断されると、充電方向に大きく跳ね上がる。これは、余剰の電流がサージアブソーバ7を介して、転流回路6に流れ込むためである。即ち、この流れ込む電流は、転流回路6の定数で決まる周波数の振動波形であり、その結果、コンデンサ5の端子間電圧も振動波形となって所定の電圧値Vc1よりも大きく跳ね上がる。
【0006】
その後、端子間電圧は、直流回路の電流が零点を迎える時間t3において、副遮断器2で直流回路が開路されると、所定の電圧値Vc1を超えて、事故電流が大きいほど大きく上昇した電圧値Vc2に落ち着く。同時に、時間t3において、放電スイッチ11が閉極し、端子間電圧が放電される。そして、端子間電圧がほぼ零となる時間t4において、放電スイッチ11が開極して直流電源9からの充電が始まり、時間t5で所定の電圧値Vc1となり充電が完了する。
【0007】
なお、コンデンサ5の端子間電圧が所定の電圧値Vc1よりも高くなると、転流電流の波高値が大きくなって電流変化率di/dtが大きくなってしまう。このように電流変化率di/dtが大きくなると、主遮断器1の遮断特性が低下することが知られている(例えば、特許文献3参照。)。このため、コンデンサ5の端子間電圧は、所定の電圧値Vc1以下に抑えられている。
【0008】
【特許文献1】
特許第3135338号明細書(第2頁、図1)
【0009】
【特許文献2】
特開2001−67969号公報(第4頁、図3)
【0010】
【特許文献3】
特開2000−48686号公報(第2頁、図1)
【0011】
【発明が解決しようとする課題】
上記の従来の直流遮断器においては、以下の問題がある。
【0012】
直流回路の事故電流の遮断後には、主遮断器1と副遮断器2とが投入されて直流回路が再通電される。しかしながら、コンデンサ5を充電する時間t4からt5までの間に、直流回路に再び事故電流が流れると、この事故電流を遮断し難くなる。即ち、コンデンサ5の端子間電圧が所定値に達していないので、事故電流に所定の転流電流を通電することができず、電流零点を作ることができなくなる。この再び流れる事故電流は、直流回路に複数の短絡個所があったり、間欠地絡放電を伴う故障などで起こり得るが、その間隔を予測することは困難である。
【0013】
このため、転流電流の注入後において、コンデンサ5の端子間電圧を速やかに所定値に充電することが望まれていた。
【0014】
従って、本発明は、転流電流の注入後のコンデンサの端子間電圧を速やかに所定値に充電し得る直流遮断器を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために、本発明の直流遮断器は、直流回路にそれぞれ直列接続された主遮断器および副遮断器と、前記主遮断器に並列接続されたコンデンサ、リアクトルおよび転流スイッチを直列接続した転流回路と、前記コンデンサの端子間に接続された電源回路および放電回路から構成される充電回路と、前記主遮断器に並列接続されたサージアブソーバとを備え、前記電源回路は、電源に充電スイッチを直列接続して構成し、前記放電回路は、前記コンデンサの端子間に電圧検出器および放電スイッチを並列接続して構成してなり、前記主遮断器が事故電流を遮断した前記副遮断器の開路時において、前記電圧検出器で検出した電圧が所定値よりも高い場合には、前記放電スイッチを閉極し、前記コンデンサの端子電圧を電圧零まで放電させず所定値とし、前記電圧検出器で検出した電圧が所定値よりも低い場合には、前記充電スイッチを閉極し、前記コンデンサの端子電圧を所定値とすることを特徴とする。
【0016】
このような構成によれば、転流電流を注入して事故電流を遮断後、転流回路のコンデンサの端子間電圧を速やかに所定値に保つことができるので、事故電流が再通電された場合、この事故電流に所定の転流電流を注入して遮断することができる。
【0017】
【発明の実施の形態】
(第1の実施の形態)
先ず、本発明の第1の実施の形態に係る直流遮断器を図1および図2を参照して説明する。図1は、本発明の第1の実施の形態に係る直流遮断器の回路構成図、図2は、本発明の第1の実施の形態に係る直流遮断器の動作とコンデンサの端子間電圧とを説明する図である。なお、従来と同様の構成部分については、同一符号を付した。
【0018】
図1に示すように、直流回路のP−N間には、接離自在の一対の接点を有する主遮断器1および副遮断器2が直列に接続されている。主遮断器1には、転流スイッチ3、リアクトル4およびコンデンサ5を直列接続した転流回路6が並列に接続され、また、主遮断器1の遮断後のエネルギー吸収のためのサージアブソーバ7が同様に並列に接続されている。
【0019】
また、コンデンサ5の端子間には、放電回路21と電源回路22とを並列接続して構成される充電回路20が接続され、所定の電圧値に充電されている。
【0020】
放電回路21には、コンデンサ5の充電電圧を測定する電圧検出器23がコンデンサ5の端子間に並列に接続され、また、放電抵抗24が直列に接続されている。更に、電圧検出器23に連動して開閉動作する放電スイッチ25が並列に接続されている。この放電スイッチ25には、保護抵抗26が直列に接続されている。
【0021】
電源回路22には、交流電源27に充電スイッチ28と充電抵抗29とが直列に接続されている。この充電スイッチ28は、放電スイッチ25および転流スイッチ3と連動して開閉動作が行われるようになっている。また、ブリッジ回路を構成したダイオード30が接続され、交流を直流に変換して放電回路21へ直流電源の供給が行われている。
【0022】
なお、充電抵抗29は、放電抵抗24よりも大きい抵抗値となっており、コンデンサ5の放電電流が電源回路22に流れ込まないようになっている。また、コンデンサ5、放電抵抗24、放電スイッチ25、保護抵抗26で作られる閉回路において、この閉回路で形成されるリアクタンスとコンデンサ5とのインピーダンスは、放電抵抗24の抵抗値よりも小さくしており、この閉回路を流れる放電電流の振動を抑制している。
【0023】
このような回路構成において、直流回路に過大な事故電流が流れた場合、充電スイッチ28が開極し、同時に転流スイッチ3が閉極して転流電流が主遮断器1に注入される。
【0024】
ここで、図2に示すように、所定の電圧値Vc1に充電されているコンデンサ5の端子間電圧は、転流電流が流れ始める時間t1において一旦放電する。そして、事故電流に転流電流が注入され、電流零点が作られる時間t2で主遮断器1により事故電流が遮断されると、充電方向に大きく跳ね上がる。これは、余剰の電流がサージアブソーバ7を介して、転流回路6へ流れ込むためである。即ち、この流れ込む電流は、転流回路6の定数で決まる周波数の振動波形であり、その結果、コンデンサ5の端子間電圧も振動波形となって所定の電圧値Vc1よりも大きく跳ね上がる。
【0025】
その後、端子間電圧は、直流回路の電流が零点を迎える時間t3において、副遮断器2で直流回路が開路されると、所定の電圧値Vc1を超えて、事故電流が大きいほど大きく上昇した電圧値Vc2に落ち着く。同時に、時間t3において、電圧検出器23で電圧値Vc2を検出し、所定の電圧値Vc1よりも高い場合、放電スイッチ25が閉極し、放電抵抗24、保護抵抗26を介して放電される。
【0026】
そして、電圧零まで放電させず、所定の電圧値Vc1まで低下した時間t6において、放電スイッチ25を開極して放電を停止する。これらの放電においては、放電回路21の抵抗分が大きく振動波形とならないので、電圧検出器23での電圧検出が容易となる。
【0027】
これにより、コンデンサ5の端子間電圧は、事故電流の遮断後に速やかに所定の電圧値Vc1にすることができる。また、事故電流の遮断後には、転流スイッチ3は開極され、転流電流を再注入できるようになっている。
【0028】
なお、事故電流が小さく電圧値Vc2が所定の電圧値Vc1よりも低い場合には、放電スイッチ25は動作せず、充電スイッチ28が動作して充電が行われる。更に、放電スイッチ25と電圧検出器23との動作誤差で所定の電圧値Vc1よりも低い電圧値まで放電した場合には、充電スイッチ28を閉極し、所定の電圧値Vc1まで充電するようになっている。逆に、所定の電圧値Vc1よりも高い電圧値で放電が停止された場合には、放電スイッチ25が再閉極して所定の電圧値Vc1まで放電されるようになっている。
【0029】
上記第1の実施の形態の直流遮断器によれば、直流回路に事故電流が流れて転流回路6から転流電流が注入されたとき、コンデンサ5の端子間電圧を電圧検出器23で検出して速やかに所定の電圧値まで放電、または充電するので、事故電流が再通電されたとき、この事故電流に所定の転流電流を注入して遮断することができる。
【0030】
(第2の実施の形態)
次に、本発明の第2の実施の形態に係る直流遮断器を図3を参照して説明する。図3は、本発明の第2の実施の形態に係る直流遮断器の充電回路を説明する図である。この第2の実施の形態が第1の実施の形態と異なる点は、コンデンサを充電する充電回路の構成である。図4において、第1の実施の形態と同様の構成部分については、同一符号を付し、その説明を簡単にする。
【0031】
図3に示すように、充電回路35は、放電回路36とこの放電回路36に直列に接続した電源回路22とから構成されている。
【0032】
放電回路36には、例えば酸化亜鉛素子からなる電圧制限素子37がコンデンサ5の端子間に並列に接続されている。この電圧制限素子37は、コンデンサ5が充電される所定の電圧値と同様の制限電圧を持ち、更に跳ね上がった電圧を吸収する容量を有している。また、電源回路22には、交流電源27に充電スイッチ28と充電抵抗29とが直列に接続され、ブリッジ回路を構成したダイオード30により交流が直流に変換されている。
【0033】
このような回路構成において、転流電流が注入されてコンデンサ5の端子間電圧が振動波形となって所定の電圧値よりも跳ね上がった場合には、この跳ね上がった電圧は電圧制限素子37で吸収され制限電圧値に抑えられる。このため、コンデンサ5の端子間電圧を速やかに所定の電圧値に保つことができる。
【0034】
上記第2の実施の形態の直流遮断器によれば、第1の実施の形態による効果の他に、放電回路36の構成を簡素化することができる。
【0035】
【発明の効果】
以上述べたように、本発明によれば、直流回路に事故電流が流れて転流回路から転流電流を注入後、コンデンサの端子間電圧が跳ね上がったとき、この端子間電圧を速やかに充放電させて所定の電圧値に保つことができる。このため、事故電流が再通電されたとき、この事故電流に所定の転流電流を注入して遮断することができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態に係る直流遮断器の回路構成図。
【図2】 本発明の第1の実施の形態に係る直流遮断器の動作とコンデンサの端子間電圧とを説明する図。
【図3】 本発明の第2の実施の形態に係る直流遮断器の充電回路を説明する図。
【図4】 従来の直流遮断器の回路構成図。
【図5】 従来の直流遮断器の動作とコンデンサの端子間電圧とを説明する図。
【符号の説明】
1 主遮断器
2 副遮断器
3 転流スイッチ
4 リアクトル
5 コンデンサ
6 転流回路
7 サージアブソーバ
8、20、35 充電回路
9 直流電源
10、29 充電抵抗
11、25 放電スイッチ
12、24 放電抵抗
21、36 放電回路
22 電源回路
23 電圧検出器
26 保護抵抗
27 交流電源
28 充電スイッチ
30 ダイオード
37 電圧制限素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a commutation type DC circuit breaker, and more particularly to a DC circuit breaker that can improve the voltage between terminals of a capacitor of a commutation circuit.
[0002]
[Prior art]
A conventional DC circuit breaker has a main circuit breaker and a sub circuit breaker connected in series to a DC circuit, and when an accident current flows, the commutation current is injected from the commutation circuit connected in parallel to the main circuit breaker. The current is cut off, and then the DC circuit is opened by the auxiliary circuit breaker (see, for example, Patent Document 1).
[0003]
In this type of DC circuit breaker, as shown in FIG. 4, a main circuit breaker 1 and a sub circuit breaker 2 having a pair of contactable and separable contacts are connected in series between PN of the DC circuit. . A commutation circuit 6 having a commutation switch 3, a reactor 4 and a capacitor 5 connected in series is connected in parallel to the main circuit breaker 1, and a surge absorber 7 for absorbing energy after the main circuit breaker 1 is interrupted. Similarly, they are connected in parallel.
[0004]
On the other hand, a charging circuit 8 is connected between terminals of the conventional capacitor 5 and is charged to a predetermined voltage value. The charging circuit 8 includes a circuit for charging the capacitor 5 by connecting the DC power source 9 and the charging resistor 10 in series, and a circuit for discharging the voltage of the capacitor 5 by connecting the discharge switch 11 and the discharging resistor 12 in series. (For example, see Patent Document 2).
[0005]
In such a circuit configuration, as shown in FIG. 5, when an excessive fault current flows in the DC circuit, the commutation switch 3 operates as the inter-terminal voltage of the capacitor 5 charged to a predetermined voltage value Vc1. Then, the battery is discharged once at time t1 when the commutation current starts to flow. When the commutation current is injected into the accident current and the accident current is interrupted at time t2 when the current zero is generated, the current jumps greatly in the charging direction. This is because excess current flows into the commutation circuit 6 through the surge absorber 7. That is, the flowing current is a vibration waveform having a frequency determined by the constant of the commutation circuit 6, and as a result, the voltage between the terminals of the capacitor 5 also becomes a vibration waveform and jumps more than the predetermined voltage value Vc1.
[0006]
After that, when the DC circuit is opened by the secondary circuit breaker 2 at time t3 when the current of the DC circuit reaches the zero point, the voltage between the terminals exceeds the predetermined voltage value Vc1 and increases greatly as the accident current increases. It settles to the value Vc2. At the same time, at time t3, the discharge switch 11 is closed and the inter-terminal voltage is discharged. Then, at time t4 when the voltage between the terminals becomes almost zero, the discharge switch 11 is opened and charging from the DC power source 9 starts, and at time t5, the voltage becomes a predetermined voltage value Vc1 and the charging is completed.
[0007]
When the voltage between the terminals of the capacitor 5 becomes higher than the predetermined voltage value Vc1, the peak value of the commutation current increases and the current change rate di / dt increases. Thus, it is known that when the current change rate di / dt increases, the breaking characteristics of the main circuit breaker 1 deteriorate (for example, see Patent Document 3). For this reason, the voltage between the terminals of the capacitor 5 is suppressed to a predetermined voltage value Vc1 or less.
[0008]
[Patent Document 1]
Japanese Patent No. 3135338 (second page, FIG. 1)
[0009]
[Patent Document 2]
JP 2001-67969 A (page 4, FIG. 3)
[0010]
[Patent Document 3]
Japanese Unexamined Patent Publication No. 2000-48686 (2nd page, FIG. 1)
[0011]
[Problems to be solved by the invention]
The above conventional DC circuit breaker has the following problems.
[0012]
After interruption of the fault current of the DC circuit, the main circuit breaker 1 and the sub circuit breaker 2 are turned on and the DC circuit is re-energized. However, if an accident current flows again in the DC circuit during the time t4 to t5 when the capacitor 5 is charged, it is difficult to interrupt the accident current. That is, since the voltage between the terminals of the capacitor 5 does not reach the predetermined value, the predetermined commutation current cannot be applied to the accident current, and the current zero point cannot be created. The accidental current that flows again can occur due to a short circuit location in the DC circuit or a failure with intermittent ground fault discharge, but it is difficult to predict the interval.
[0013]
For this reason, it has been desired to quickly charge the inter-terminal voltage of the capacitor 5 to a predetermined value after injecting the commutation current.
[0014]
Accordingly, an object of the present invention is to provide a DC circuit breaker that can quickly charge a voltage between terminals of a capacitor after commutation current injection to a predetermined value.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, a DC circuit breaker according to the present invention includes a main circuit breaker and a sub circuit breaker connected in series to a DC circuit, and a capacitor, a reactor, and a commutation switch connected in parallel to the main circuit breaker. A commutation circuit connected in series, a charging circuit composed of a power supply circuit and a discharge circuit connected between terminals of the capacitor, and a surge absorber connected in parallel to the main circuit breaker, the power supply circuit, The charging circuit is configured by connecting a charging switch in series, and the discharging circuit is configured by connecting a voltage detector and a discharging switch in parallel between terminals of the capacitor, and the main circuit breaker interrupts the accident current. Oite to open circuit when the auxiliary circuit breaker, when the voltage detected by the voltage detector is higher than a predetermined value, then closing the discharge switch, the voltage zero terminal voltage of the capacitor or Without discharging a predetermined value, when the voltage detected by the voltage detector is lower than a predetermined value, the charging switch closing, characterized in that the terminal voltage of the capacitor with a predetermined value.
[0016]
According to such a configuration, after the commutation current is injected and the accident current is interrupted, the voltage across the terminals of the capacitor of the commutation circuit can be quickly maintained at a predetermined value. Then, a predetermined commutation current can be injected into the accident current to cut off.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
First, a DC circuit breaker according to a first embodiment of the present invention will be described with reference to FIG. 1 and FIG. FIG. 1 is a circuit configuration diagram of the DC circuit breaker according to the first embodiment of the present invention, and FIG. 2 is a diagram illustrating the operation of the DC circuit breaker according to the first embodiment of the present invention and the voltage between terminals of the capacitor. FIG. In addition, the same code | symbol was attached | subjected about the component similar to the past.
[0018]
As shown in FIG. 1, a main circuit breaker 1 and a sub circuit breaker 2 having a pair of contact points that can be separated from each other are connected in series between PN of a DC circuit. A commutation circuit 6 having a commutation switch 3, a reactor 4 and a capacitor 5 connected in series is connected in parallel to the main circuit breaker 1, and a surge absorber 7 for absorbing energy after the main circuit breaker 1 is interrupted. Similarly, they are connected in parallel.
[0019]
Further, a charging circuit 20 configured by connecting a discharge circuit 21 and a power supply circuit 22 in parallel is connected between terminals of the capacitor 5 and is charged to a predetermined voltage value.
[0020]
In the discharge circuit 21, a voltage detector 23 that measures the charging voltage of the capacitor 5 is connected in parallel between the terminals of the capacitor 5, and a discharge resistor 24 is connected in series. Further, a discharge switch 25 that opens and closes in conjunction with the voltage detector 23 is connected in parallel. A protective resistor 26 is connected to the discharge switch 25 in series.
[0021]
In the power supply circuit 22, a charging switch 28 and a charging resistor 29 are connected in series to an AC power supply 27. The charge switch 28 is configured to open and close in conjunction with the discharge switch 25 and the commutation switch 3. In addition, a diode 30 constituting a bridge circuit is connected to convert alternating current into direct current, and supply of direct current power to the discharge circuit 21 is performed.
[0022]
The charging resistor 29 has a resistance value larger than that of the discharge resistor 24 so that the discharge current of the capacitor 5 does not flow into the power supply circuit 22. Further, in the closed circuit formed by the capacitor 5, the discharge resistor 24, the discharge switch 25, and the protective resistor 26, the reactance formed in this closed circuit and the impedance of the capacitor 5 are made smaller than the resistance value of the discharge resistor 24. Therefore, the oscillation of the discharge current flowing through this closed circuit is suppressed.
[0023]
In such a circuit configuration, when an excessive fault current flows in the DC circuit, the charging switch 28 is opened, and at the same time, the commutation switch 3 is closed and the commutation current is injected into the main circuit breaker 1.
[0024]
Here, as shown in FIG. 2, the inter-terminal voltage of the capacitor 5 charged to a predetermined voltage value Vc1 is once discharged at time t1 when the commutation current starts to flow. And when commutation current is inject | poured into accident electric current and accident electric current is interrupted | blocked by the main circuit breaker 1 at the time t2 when a current zero point is made, it will jump up greatly in a charge direction. This is because excess current flows into the commutation circuit 6 through the surge absorber 7. That is, the flowing current is a vibration waveform having a frequency determined by the constant of the commutation circuit 6, and as a result, the voltage between the terminals of the capacitor 5 also becomes a vibration waveform and jumps more than the predetermined voltage value Vc1.
[0025]
After that, when the DC circuit is opened by the secondary circuit breaker 2 at time t3 when the current of the DC circuit reaches the zero point, the voltage between the terminals exceeds the predetermined voltage value Vc1 and increases greatly as the accident current increases. It settles to the value Vc2. At the same time, when the voltage detector 23 detects the voltage value Vc2 at a time t3 and is higher than the predetermined voltage value Vc1, the discharge switch 25 is closed and discharged via the discharge resistor 24 and the protective resistor 26.
[0026]
Then, the discharge switch 25 is opened and the discharge is stopped at time t6 when the voltage is not discharged to zero and decreased to the predetermined voltage value Vc1. In these discharges, the resistance of the discharge circuit 21 is large and does not become a vibration waveform, so that the voltage detector 23 can easily detect the voltage.
[0027]
Thereby, the voltage between the terminals of the capacitor 5 can be quickly set to the predetermined voltage value Vc1 after the accident current is interrupted. Further, after the fault current is interrupted, the commutation switch 3 is opened so that the commutation current can be reinjected.
[0028]
When the accident current is small and the voltage value Vc2 is lower than the predetermined voltage value Vc1, the discharge switch 25 does not operate and the charge switch 28 operates to perform charging. Further, when the discharge switch 25 and the voltage detector 23 are discharged to a voltage value lower than the predetermined voltage value Vc1 due to an operation error, the charge switch 28 is closed and charged to the predetermined voltage value Vc1. It has become. On the contrary, when the discharge is stopped at a voltage value higher than the predetermined voltage value Vc1, the discharge switch 25 is closed again and discharged to the predetermined voltage value Vc1.
[0029]
According to the DC circuit breaker of the first embodiment, the voltage detector 23 detects the voltage across the terminals of the capacitor 5 when an accident current flows through the DC circuit and the commutation current is injected from the commutation circuit 6. Then, since the battery is discharged or charged to a predetermined voltage value promptly, when the accident current is re-energized, a predetermined commutation current can be injected into the accident current and interrupted.
[0030]
(Second Embodiment)
Next, a DC circuit breaker according to a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a diagram for explaining a charging circuit for a DC circuit breaker according to the second embodiment of the present invention. The second embodiment is different from the first embodiment in the configuration of a charging circuit that charges a capacitor. In FIG. 4, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is simplified.
[0031]
As shown in FIG. 3, the charging circuit 35 includes a discharging circuit 36 and a power circuit 22 connected in series to the discharging circuit 36.
[0032]
In the discharge circuit 36, a voltage limiting element 37 made of, for example, a zinc oxide element is connected in parallel between the terminals of the capacitor 5. This voltage limiting element 37 has a limiting voltage similar to a predetermined voltage value with which the capacitor 5 is charged, and further has a capacity to absorb the jumped voltage. In the power supply circuit 22, a charging switch 28 and a charging resistor 29 are connected in series to an AC power supply 27, and AC is converted to DC by a diode 30 constituting a bridge circuit.
[0033]
In such a circuit configuration, when the commutation current is injected and the voltage between the terminals of the capacitor 5 becomes a vibration waveform and jumps up from a predetermined voltage value, the jumped voltage is absorbed by the voltage limiting element 37. The voltage limit is suppressed. For this reason, the voltage between the terminals of the capacitor 5 can be quickly maintained at a predetermined voltage value.
[0034]
According to the DC circuit breaker of the second embodiment, in addition to the effects of the first embodiment, the configuration of the discharge circuit 36 can be simplified.
[0035]
【The invention's effect】
As described above, according to the present invention, when the fault current flows in the DC circuit and the commutation current is injected from the commutation circuit, the voltage between the terminals of the capacitor jumps up and down quickly. Can be maintained at a predetermined voltage value. For this reason, when the fault current is re-energized, a predetermined commutation current can be injected into the fault current and interrupted.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram of a DC circuit breaker according to a first embodiment of the present invention.
FIG. 2 is a diagram for explaining an operation of the DC circuit breaker according to the first embodiment of the present invention and a voltage between terminals of the capacitor.
FIG. 3 is a diagram for explaining a charging circuit for a DC circuit breaker according to a second embodiment of the present invention.
FIG. 4 is a circuit configuration diagram of a conventional DC circuit breaker.
FIG. 5 is a diagram for explaining the operation of a conventional DC circuit breaker and the voltage across terminals of a capacitor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main circuit breaker 2 Sub circuit breaker 3 Commutation switch 4 Reactor 5 Capacitor 6 Commutation circuit 7 Surge absorber 8, 20, 35 Charge circuit 9 DC power supply 10, 29 Charge resistance 11, 25 Discharge switch 12, 24 Discharge resistance 21, 36 discharge circuit 22 power supply circuit 23 voltage detector 26 protective resistor 27 AC power supply 28 charge switch 30 diode 37 voltage limiting element

Claims (1)

直流回路にそれぞれ直列接続された主遮断器および副遮断器と、
前記主遮断器に並列接続されたコンデンサ、リアクトルおよび転流スイッチを直列接続した転流回路と、
前記コンデンサの端子間に接続された電源回路および放電回路から構成される充電回路と、
前記主遮断器に並列接続されたサージアブソーバとを備え、
前記電源回路は、電源に充電スイッチを直列接続して構成し、
前記放電回路は、前記コンデンサの端子間に電圧検出器および放電スイッチを並列接続して構成してなり、
前記主遮断器が事故電流を遮断した前記副遮断器の開路時において、
前記電圧検出器で検出した電圧が所定値よりも高い場合には、前記放電スイッチを閉極し、前記コンデンサの端子電圧を電圧零まで放電させず所定値とし、
前記電圧検出器で検出した電圧が所定値よりも低い場合には、前記充電スイッチを閉極し、前記コンデンサの端子電圧を所定値とすることを特徴とする直流遮断器。
A main circuit breaker and a sub circuit breaker each connected in series to a DC circuit;
A commutation circuit in which a capacitor, a reactor and a commutation switch connected in parallel to the main circuit breaker are connected in series;
A charging circuit composed of a power supply circuit and a discharging circuit connected between terminals of the capacitor;
A surge absorber connected in parallel to the main circuit breaker,
The power supply circuit is configured by connecting a charge switch in series with a power supply,
The discharge circuit is configured by connecting a voltage detector and a discharge switch in parallel between terminals of the capacitor,
Oite to open circuit when the secondary breaker the main breaker has cut off the fault current,
When the voltage detected by the voltage detector is higher than a predetermined value, the discharge switch is closed, the terminal voltage of the capacitor is set to a predetermined value without discharging to zero voltage,
When the voltage detected by the voltage detector is lower than a predetermined value, the charge switch is closed and the terminal voltage of the capacitor is set to a predetermined value .
JP2003202126A 2003-07-25 2003-07-25 DC circuit breaker Expired - Fee Related JP4413547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003202126A JP4413547B2 (en) 2003-07-25 2003-07-25 DC circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003202126A JP4413547B2 (en) 2003-07-25 2003-07-25 DC circuit breaker

Publications (2)

Publication Number Publication Date
JP2005044591A JP2005044591A (en) 2005-02-17
JP4413547B2 true JP4413547B2 (en) 2010-02-10

Family

ID=34261938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202126A Expired - Fee Related JP4413547B2 (en) 2003-07-25 2003-07-25 DC circuit breaker

Country Status (1)

Country Link
JP (1) JP4413547B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101729399B1 (en) 2014-07-02 2017-04-21 가부시키가이샤 히다치 산키시스템 Commutation type direct current breaker and monitoring method of the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6749319B2 (en) * 2014-06-30 2020-09-02 サイブレーク アーベーScibreak Ab Device, system and method for interrupting current
CN109980617A (en) * 2019-04-04 2019-07-05 国网冀北电力有限公司电力科学研究院 The electric current Interruption performance of current-injecting dc circuit breaker optimizes circuit
EP4036949A1 (en) * 2021-01-29 2022-08-03 Eaton Electrical Ltd. A hybrid dc circuit breaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101729399B1 (en) 2014-07-02 2017-04-21 가부시키가이샤 히다치 산키시스템 Commutation type direct current breaker and monitoring method of the same

Also Published As

Publication number Publication date
JP2005044591A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
KR101935754B1 (en) Overvoltage and overcurrent protection circuit and mobile terminal
KR101521545B1 (en) Device and method to interrupt high voltage direct current
JP6297619B2 (en) DC circuit breaker
KR101096391B1 (en) Battery pack
KR100943576B1 (en) Battery pack
US8274767B2 (en) Magnetic energy regeneration switch provided with protection circuit
US20150022928A1 (en) Hybrid dc circuit breaking device
CN110392975B (en) Method and voltage multiplier for converting an input voltage and separating circuit
JP2010519748A (en) Voltage limiter and photovoltaic module protection
Raghavendra et al. Modified Z-source DC circuit breaker with enhanced performance during commissioning and reclosing
JP4660131B2 (en) DC circuit breaker
Chavan et al. Coordination of solid-state circuit breakers for dc grids under high-fault-di/dt conditions
JP6431840B2 (en) Device for controlling at least one transistor
JP4413547B2 (en) DC circuit breaker
EP2510598B1 (en) Electronic protection circuit and protection device
CN109891700A (en) Power supply device
CN105529690A (en) Battery protection circuit, battery protection device, battery pack and battery protection method
CN203589708U (en) Battery protective circuit
JP3658597B2 (en) Surge protector
Liu et al. Combined optimization of SSCB snubber and freewheeling path for surgeless and quick bus fault interruption in low-voltage DC microgrid
JP7506312B2 (en) How to select a capacitor for a switch
JP7301100B2 (en) AC generating circuit and AC generator
JP2002110006A (en) Direct current breaker
AU2021234895B2 (en) Hybrid switch and control device
JP7413745B2 (en) Protection circuit and power storage device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees