JP4413367B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP4413367B2
JP4413367B2 JP2000080482A JP2000080482A JP4413367B2 JP 4413367 B2 JP4413367 B2 JP 4413367B2 JP 2000080482 A JP2000080482 A JP 2000080482A JP 2000080482 A JP2000080482 A JP 2000080482A JP 4413367 B2 JP4413367 B2 JP 4413367B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
upstream
downstream
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000080482A
Other languages
Japanese (ja)
Other versions
JP2001259424A (en
Inventor
茂二 松本
光一 笠原
容規 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp filed Critical Cataler Corp
Priority to JP2000080482A priority Critical patent/JP4413367B2/en
Priority to US09/803,908 priority patent/US6846466B2/en
Priority to EP01107031A priority patent/EP1136115B1/en
Priority to DE60115308T priority patent/DE60115308T2/en
Publication of JP2001259424A publication Critical patent/JP2001259424A/en
Application granted granted Critical
Publication of JP4413367B2 publication Critical patent/JP4413367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、上流側触媒と下流側触媒とからなるタンデム型の排気ガス浄化用触媒に関する。
【0002】
【従来の技術】
近年自動車の排気ガス規制強化により、HC、CO、NOxをより一層低減することが必要となっている。従来の排気ガス浄化用触媒の多くは担持層にアルミナなどの耐火性無機酸化物中に、酸化セリウムやセリウムを含む複合酸化物が含まれている。例えば、特許公報第2690661号には、排気ガス流入側触媒にパラジウム、アルカリ土類金属酸化物、ランタン酸化物、活性アルミナ、セリウム酸化物とジルコニウム酸化物の複合物または固溶体を特定量含んだ担持層を、排気ガス流出側触媒には貴金属と耐火性無機酸化物よりなるモノリス担体の触媒が開示されている。そして上流側触媒と下流側触媒とは、その位置を逆に配置しても良い旨の開示がある。しかしこの場合、排気ガス中の一酸化炭素(CO)や窒素酸化物(NOx)の浄化性能が不足して、排気ガス規制強化の基準を充分満足しないという不具合がある。
【0003】
また、特開平10−249200号公報には、特にNOxの浄化性能を高めるため、バリウム化合物の粒子径と使用量を規定し触媒金属にパラジウムを用いて形成された担持層をもつ一体型触媒が開示されている。しかしこの場合は、炭化水素の浄化性能が充分でないという不具合がある。
【0004】
【発明が解決しようとする課題】
本発明は上記の事情に鑑みてなされたもので、自動車排気ガス規制強化の基準に適応するHCの浄化性能を保持してかつCO、NOxの浄化性能を向上させた排気ガス浄化触媒とすることを課題とする。
【0005】
【課題を解決するための手段】
本発明の排気ガス浄化用触媒は、各々、軸方向に貫通する多数の貫通孔を持つ筒状の担体と、該貫通孔を区画する内面に形成された耐火性無機酸化物の担持層と、該担持層に保持された貴金属の触媒成分とを有し、排気ガスの流れに対して上流側に配置された上流側触媒と下流側に配置された下流側触媒とからなる排気ガス浄化用触媒において、前記上流側触媒は、前記貴金属にパラジウム、パラジウムとロジウム、またはパラジウムと白金から選ばれる1種を含み、前記担持層は少なくともバリウム、およびランタンを含むアルミナで構成され、前記下流側触媒は、前記貴金属として白金、パラジウム、ロジウムの少なくとも1種を含み、前記担持層はランタンを含むアルミナと、セリウム、セリウムとジルコニウムの固溶体、セリウムとジルコニウムとイットリウムの固溶体から選ばれる1種とで構成され、前記下流側触媒は、触媒1リットル中にランタン元素が0.8〜4.5gを含有することを特徴とする。
【0006】
前記上流側触媒は、パラジウムとバリウムとの比が重量比でPd:Ba=1:100〜1:1であることが好ましい。
【0007】
前記上流側触媒と前記下流側触媒の容量比は、上流側触媒容量:下流側触媒容量=1:10〜3:1であることが好ましい。
【0008】
前記上流側触媒と前記下流側触媒は、同一担体上に形成することが好ましい。
【0009】
【発明の実施の形態】
本発明の排気ガス浄化用触媒は、各々、軸方向に貫通する多数の貫通孔を持つ筒状の担体と、該貫通孔を区画する内面に形成された耐火性無機酸化物の担持層と、該担持層に保持された貴金属の触媒成分とを有し、排気ガスの流れに対して上流側に配置された上流側触媒と下流側に配置された下流側触媒で構成される。
【0010】
この上流側触媒と下流側触媒は、排気ガスの流れ方向のそれぞれ上流側、下流側にそれぞれ隣接または適宜間隔を設けて配備することができる。排気ガスは上流側から上記の両触媒内を通過することによりHC、CO、NOxの浄化が行われて外部に排出される。
【0011】
担体は、軸方向に貫通する多数の貫通孔を持つ筒状を持ち排気ガスが貫通孔を通過する形状であり、通常担体として利用されているセラミックス製または金属製のハニカム状の貫通孔をもつものがいずれも利用できる。
【0012】
本願発明の特徴とするところは、上流側触媒の担持層がセリウム元素を含まず下流側触媒の担持層にのみセリウム元素を担持した構成にある。
【0013】
上流側触媒の担持層は、バリウム元素、ランタン元素を含むアルミナで構成される。ランタン元素はアルミナに固溶した状態であることが好ましい。バリウム元素は酸化物粒子としてアルミナ中に分散していることが好ましい。
【0014】
バリウム元素、ランタン元素の量的割合は、触媒容量1リットル当たりバリウムは元素として1〜100g、ランタンは元素として1.0〜8.0gより好ましくは0.8〜7.0g存在することが好ましい。また、アルミナは、活性アルミナが好まし触媒容量1リットル当たり50〜200g存在することが好ましい。
【0015】
上流側触媒の担持層に担持されている貴金属成分としては、少なくともパラジウムが用いられる。さらに、パラジウムに白金またはロジウムを加えて触媒性能を高めることができる。
【0016】
これら貴金属の量は、触媒容量1リットル当たりパラジウムは0.01〜10g用いるのが好ましい。ロジウムや白金とパラジウムを併用するときは、パラジウム0.01〜5g、ロジウム0〜1.0g、白金0〜5gの範囲で用いるのが浄化効率およびコストの点で望ましい。
【0017】
前記バリウム元素と貴金属のパラジウムとの間には、燃料リッチな条件の排気ガスではパラジウムがHCにより吸着被毒を受けNOxの転化性能が低下するとされている。バリウム元素が存在するとパラジウムのHC吸着被毒が低減できる。その効果を発現するためにはパラジウムとバリウムとの比が元素重量比でPd:Ba=1:100〜1:1とすることが好ましい。上記の範囲を逸脱するとNOxの浄化率が低下すので好ましくない。
【0018】
上流側触媒の担持層構成としてセリウム元素を含まないことにより、触媒系内でセリウムが排気ガス中の酸素を消費して還元雰囲気とするのを防ぎ、より酸化性雰囲気とし貴金属によりHCを酸化してHCの浄化性を高め、下流側触媒でのHC浄化能力の不足を補強すると共に、下流側触媒でのCO、NOxの浄化効率を高めることが可能となっていると推測される。
【0019】
下流側触媒の担持層は、ランタンを含むアルミナと、セリウムまたはセリウムとジルコニウムの固溶体およびセリウムとジルコニウムとイットリウムの固溶体から選ばれる1種とで構成される。下流側触媒は上流側触媒と異なりセリウム元素を含むことで触媒内の雰囲気をより還元性として、CO、NOxの浄化効率を高めることができる。
【0020】
触媒1リットル中にランタン元素が0.8〜4.5g、アルミナが50〜250gであることが好ましい。また、セリウム元素は単独またはジルコニウム、あるいはジルコニウムとイットリウムとの固溶体として存在することがその浄化効果および触媒の耐久性を高めるため好ましい。
【0021】
セリウム元素は触媒容量1リットル当たり42〜112g、ジルコニウム元素との固溶体の場合はCe:Zr=2:1〜1:2、ジルコニウム元素とイットリウム元素との固溶体の場合はCe:Zr=2:1〜1:2であり、さらにY元素の比はZr元素に対しZr:Y=10〜7の範囲であることが好ましい。
【0022】
下流側触媒は、貴金属触媒の白金、パラジウム、ロジウムのうち少なくとも1種が担持されている。上記の組成の担持層と上記の貴金属の少なくとも1種とにより上流側触媒で浄化が不十分であった有害成分が還元浄化できる。
【0023】
貴金属の量は触媒容量1リットル当たり0.5〜10gの範囲であることが浄化性能を保持するために好ましい。貴金属は高価であるので効果を保持する範囲で少量であることが望ましい。
【0024】
下流側触媒では、セリウム元素が担持層に存在することにより上流側触媒とは異なる雰囲気が形成され、上流側触媒で充分浄化されなかったCOや、HCなどが浄化でき、上流側触媒と下流側触媒とが一体となって作用して排気ガス浄化触媒として性能を向上させることができる。
【0025】
また、上流側の担持層および下流側担持層を同一の担体上に連続的に形成しても同様な効果をもつ浄化触媒が得られる。例えば、担持層形成時に担体の片側のみ所望の担持層形成した後、残りの担持層を反対側からコートすることで容易に形成できる。
【0026】
上記で説明した上流側触媒と下流側触媒とを排気ガスの流路に一対として配置する場合、両者の容量比は、図4および図5に示したように上流側触媒容量:下流側触媒容量=2:8〜7:3の範囲であることが好ましい。両者の容量比をこの範囲とすることによりHC、CO、NOxの浄化効率が高まり厳しい条件となる排ガス規制をクリアすることが可能となる。
【0027】
【実施例】
以下、実施例により具体的に説明する。
【0028】
(実施例1)
(上流側触媒)
ランタン3.9gを含むアルミナ120g、硫酸バリウム39.6g、アルミナゾル40gを混合攪拌してスラリー状とした。このスラリーにパラジウム水溶液(Pdとして1.5g)添加して充分攪拌してアルミナに担持させてコート用スラリーを作成した。このスラリーを容量が約500cm3のコージェライト製担体に塗布し、乾燥後上流側触媒とした。なお、元素の重量比でPd:Ba=1:15.5である。
【0029】
(下流側触媒)
ランタン3.9を含むアルミナ120g、ジルコニウムとイットリウムを含む酸化セリウム固溶体(元素組成比Ce:Zr:Y=10:9:1)52g、アルミナゾル40gを混合攪拌してスラリー状にした。このスラリーに白金水溶液(Ptとして1.0g)添加して充分攪拌して白金をアルミナとジルコニウムとイットリウムを含む酸化セリウム固溶体に担持させたスラリーとした。このスラリーを容積約1000cm3のコージェライト製担体に塗布、乾燥後、ロジウム水溶液(Rhとして0.2g)を担持し乾燥後、下流側触媒とした。
【0030】
上流側触媒容量(500m3):下流側触媒容量(1000m3)=1:2である。
(実施例2)
実施例1の上流側触媒において、貴金属をパラジウム0.75gと白金0.75gとに変えた以外は実施例1と同様にして上流側触媒を作製した。なお、下流側触媒は実施例1と同様にして作製したものを用いた。
【0031】
バリウムとパラジウムの比率はBa:Pd=31:1である。
(実施例3)
実施例1の上流側触媒において、貴金属をパラジウム1.35gとロジウム0.15gとに変えた以外は実施例1と同様にして上流側触媒を作製した。なお、下流側触媒は実施例1と同様にして作製したものを用いた。
【0032】
バリウムとパラジウムの比率はBa:Pd=17.3:1である。
(実施例4)
実施例1の上流側触媒において、バリウムの量を実施例1の2倍(79.2g)とした以外は実施例1と同様にして上流側触媒を作製した。なお、下流側触媒は実施例1と同様にして作製したものを用いた。
【0033】
バリウムとパラジウムの比率はBa:Pd=31:1である。
(実施例5)
実施例1の上流側触媒において、バリウムの量を実施例1の半分(19.8g)とした以外は実施例1と同様にして上流側触媒を作製した。なお、下流側触媒は実施例1と同様にして作製したものを用いた。
【0034】
バリウムとパラジウムの比率はBa:Pd=7.1:1である。
(比較例1)
実施例1の上流側触媒において酸化セリウム86g添加してコーティング用のスラリーとした他は同様にして上流側触媒を作製した。下流側触媒は実施例1と同じものを用いた。
(比較例2)
比較例1において上流側触媒の酸化セリウムをジルコニウムを含む酸化セリウム固溶体(元素比率はCe:Zr=1:1)を用いた以外は比較例1と同様にして上流側触媒を作製した。
(比較例3)
比較例1において上流側触媒の酸化セリウムをジルコニウムとイットリウムを含む酸化セリウム固溶体(元素比率はCe:Zr:Y=10:9:1)を用いた以外は比較例1と同様にして上流側触媒を作製した。
(比較例4)
比較例1において上流側触媒の酸化セリウム量を43g(比較例1の半分の量)とした他は比較例1と同様にして上流側触媒を作成した。
【0035】
上記の各触媒の上流側触媒について触媒1リットル当たりの各成分の含有量を表1に示した。
【0036】
【表1】

Figure 0004413367
【0037】
(触媒の評価)
実施例1〜5及び比較例1〜4で得られた各触媒を4000ccのガソリンエンジンに取り付け、入りガス温度900℃の条件で50時間耐久試験を行った。図1にその詳細のチャートを示した。まず、ストイキで40秒、その後リッチで16秒とし触媒内に二次空気をリッチ条件とした後5秒後に15秒間導入する計60秒のサイクルを3000回(50時間)繰り返し行った。その後、各触媒を1500ccのエンジン車輌に取り付け、評価モードEPA75で排ガス浄化性能を評価した。炭化水素の浄化率の結果を図2に、NOxの浄化率の結果を図3の棒グラフで示した。
【0038】
図2に示したように実施例1〜5の各触媒は、比較例1〜4の各触媒に比較してHCの残存率が少なく浄化率が高いことを示している。中でも実施例1はHCの浄化率に優れていることが分かる。
【0039】
図3はNOxの浄化率で実施例1〜5の各触媒は、比較例1〜4の各触媒に比較して浄化率が高くなっていることが分かる。
【0040】
図4および図5には、実施例1に示した上流側触媒と下流側触媒との容量比を1/9〜9/1に変えてその触媒のHCおよびNOxの浄化率を調べた結果を示した。その結果、上流側/下流側触媒の容量比が2/8〜7/3の範囲であるとHCおよびNOxの浄化率をバランス良く満足させることができることを示している。
【0041】
【発明の効果】
本発明の排気ガス浄化触媒によれば、上流側触媒と、下流側触媒の担持層の耐火性無機物の組成を変え、下流側触媒にセリウム元素を存在させたことにより、上流側触媒および下流側触媒とでそれぞれ浄化機能を分担補充することにより、排気ガスのHC浄化性能を向上させ、さらにCO、NOx浄化性能も向上し、より高い浄化性能が発現できる排気ガス浄化用触媒が得られる。
【図面の簡単な説明】
【図1】実施例及び比較例の各触媒の耐久試験の条件を説明するチャートである。
【図2】実施例及び比較例の各触媒の炭化水素浄化率を示す棒グラフである。
【図3】実施例及び比較例の各触媒のNOx浄化率を示す棒グラフである。
【図4】上流側/下流側触媒の容量比の違いによるHCの浄化率を示すグラフである。
【図5】上流側/下流側触媒の容量比の違いによるNOxの浄化率を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tandem type exhaust gas purifying catalyst comprising an upstream catalyst and a downstream catalyst.
[0002]
[Prior art]
In recent years, it has become necessary to further reduce HC, CO, and NOx due to stricter exhaust gas regulations of automobiles. Many of the conventional exhaust gas purifying catalysts contain cerium oxide or a complex oxide containing cerium in a refractory inorganic oxide such as alumina in a supporting layer. For example, in Japanese Patent Publication No. 2690661, a catalyst containing a specific amount of palladium, alkaline earth metal oxide, lanthanum oxide, activated alumina, a composite of cerium oxide and zirconium oxide or a solid solution is provided on the exhaust gas inflow side catalyst. As a catalyst for the exhaust gas outflow side, a catalyst of a monolith support made of a noble metal and a refractory inorganic oxide is disclosed. Further, there is a disclosure that the upstream catalyst and the downstream catalyst may be disposed in reverse positions. However, in this case, there is a problem that the purification performance of carbon monoxide (CO) and nitrogen oxide (NOx) in the exhaust gas is insufficient and the exhaust gas regulation strengthening standard is not sufficiently satisfied.
[0003]
Japanese Patent Application Laid-Open No. 10-249200 discloses an integrated catalyst having a support layer formed by using palladium as a catalyst metal and regulating the particle diameter and amount of use of a barium compound in order to improve NOx purification performance. It is disclosed. However, in this case, there is a problem that the hydrocarbon purification performance is not sufficient.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and provides an exhaust gas purification catalyst that maintains HC purification performance that conforms to the standards for strengthening automobile exhaust gas regulations and that has improved CO and NOx purification performance. Is an issue.
[0005]
[Means for Solving the Problems]
The exhaust gas purifying catalyst of the present invention each has a cylindrical carrier having a large number of through-holes penetrating in the axial direction, a support layer of a refractory inorganic oxide formed on the inner surface defining the through-holes, An exhaust gas purifying catalyst comprising an upstream catalyst disposed on the upstream side and a downstream catalyst disposed on the downstream side of the exhaust gas flow, having a noble metal catalyst component held on the support layer Wherein the upstream catalyst contains one kind selected from palladium, palladium and rhodium, or palladium and platinum as the noble metal, the support layer is made of alumina containing at least barium and lanthanum, and the downstream catalyst The noble metal includes at least one of platinum, palladium, and rhodium, and the support layer includes lanthanum-containing alumina, cerium, a solid solution of cerium and zirconium, and cerium. It is composed of one or a selected from Rukoniumu yttrium solid solution, the downstream catalyst is lanthanum in the catalyst 1 liter, characterized by containing a 0.8~4.5G.
[0006]
In the upstream catalyst, the weight ratio of palladium to barium is preferably Pd: Ba = 1: 100 to 1: 1.
[0007]
The capacity ratio of the upstream catalyst and the downstream catalyst is preferably upstream catalyst capacity: downstream catalyst capacity = 1: 10 to 3: 1.
[0008]
The upstream catalyst and the downstream catalyst are preferably formed on the same carrier.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The exhaust gas purifying catalyst of the present invention each has a cylindrical carrier having a large number of through-holes penetrating in the axial direction, a support layer of a refractory inorganic oxide formed on the inner surface defining the through-holes, And a catalyst component of a noble metal held in the support layer, and is composed of an upstream catalyst arranged on the upstream side with respect to the flow of exhaust gas and a downstream catalyst arranged on the downstream side.
[0010]
The upstream catalyst and the downstream catalyst can be arranged adjacent to each other or at an appropriate interval on the upstream side and the downstream side in the exhaust gas flow direction. Exhaust gas passes through both of the above-mentioned catalysts from the upstream side, purifies HC, CO, and NOx and is discharged outside.
[0011]
The carrier has a cylindrical shape with a large number of through-holes penetrating in the axial direction, and the exhaust gas passes through the through-holes, and has a ceramic or metal honeycomb-like through-hole normally used as a carrier. Anything can be used.
[0012]
The feature of the present invention is that the upstream catalyst support layer does not contain a cerium element, and the downstream catalyst support layer supports the cerium element only.
[0013]
The upstream catalyst support layer is made of alumina containing barium and lanthanum elements. The lanthanum element is preferably in a state of being dissolved in alumina. The barium element is preferably dispersed in alumina as oxide particles.
[0014]
As for the quantitative ratio of barium element and lanthanum element, it is preferable that 1 to 100 g of barium as an element and 1.0 to 8.0 g of lanthanum, more preferably 0.8 to 7.0 g of lanthanum are present per liter of catalyst capacity. . Further, alumina is preferably activated alumina, and is preferably present in an amount of 50 to 200 g per liter of catalyst capacity.
[0015]
As the noble metal component supported on the upstream catalyst support layer, at least palladium is used. Furthermore, platinum or rhodium can be added to palladium to enhance catalyst performance.
[0016]
As for the amount of these noble metals, it is preferable to use 0.01 to 10 g of palladium per liter of catalyst capacity. When rhodium or platinum and palladium are used in combination, it is desirable in terms of purification efficiency and cost to use in the range of 0.01 to 5 g of palladium, 0 to 1.0 g of rhodium, and 0 to 5 g of platinum.
[0017]
Between the barium element and the precious metal palladium, it is said that in the exhaust gas under fuel-rich conditions, palladium is adsorbed and poisoned by HC and the NOx conversion performance is lowered. The presence of barium element can reduce HC adsorption poisoning of palladium. In order to exhibit the effect, it is preferable that the ratio of palladium to barium is Pd: Ba = 1: 100 to 1: 1 in terms of element weight ratio. Deviating from the above range is not preferable because the NOx purification rate decreases.
[0018]
By not containing cerium element as the support layer structure of the upstream catalyst, cerium prevents oxygen in the exhaust gas from consuming oxygen in the catalyst system to form a reducing atmosphere, and oxidizes HC with a noble metal in a more oxidizing atmosphere. Thus, it is presumed that it is possible to improve the purification efficiency of HC, reinforce the shortage of HC purification capacity in the downstream catalyst, and increase the purification efficiency of CO and NOx in the downstream catalyst.
[0019]
The downstream catalyst support layer is composed of alumina containing lanthanum and one kind selected from cerium or a solid solution of cerium and zirconium and a solid solution of cerium, zirconium and yttrium. Unlike the upstream catalyst, the downstream catalyst contains a cerium element, whereby the atmosphere in the catalyst can be made more reducible and the purification efficiency of CO and NOx can be increased.
[0020]
It is preferable that lanthanum element is 0.8 to 4.5 g and alumina is 50 to 250 g in 1 liter of the catalyst. Further, it is preferable that the cerium element is present alone or as a solid solution of zirconium or zirconium and yttrium in order to enhance the purification effect and the durability of the catalyst.
[0021]
The cerium element is 42 to 112 g per liter of catalyst capacity, Ce: Zr = 2: 1 to 1: 2 in the case of a solid solution with a zirconium element, and Ce: Zr = 2: 1 in the case of a solid solution with a zirconium element and an yttrium element. It is preferable that the ratio of the Y element is in the range of Zr: Y = 10 to 7 with respect to the Zr element.
[0022]
The downstream catalyst carries at least one of platinum, palladium, and rhodium as noble metal catalysts. By the support layer having the above composition and at least one of the above precious metals, harmful components that have been insufficiently purified by the upstream catalyst can be reduced and purified.
[0023]
The amount of the noble metal is preferably in the range of 0.5 to 10 g per liter of the catalyst capacity in order to maintain the purification performance. Since the noble metal is expensive, it is desirable that the amount of the precious metal is small as long as the effect is maintained.
[0024]
In the downstream side catalyst, an atmosphere different from that of the upstream side catalyst is formed due to the presence of cerium element in the supporting layer, and CO, HC, etc. that have not been sufficiently purified by the upstream side catalyst can be purified. The performance of the exhaust gas purification catalyst can be improved by working together with the catalyst.
[0025]
Further, even if the upstream support layer and the downstream support layer are continuously formed on the same carrier, a purification catalyst having the same effect can be obtained. For example, it can be easily formed by forming a desired carrier layer on only one side of the carrier when forming the carrier layer and then coating the remaining carrier layer from the opposite side.
[0026]
When the upstream catalyst and the downstream catalyst described above are arranged as a pair in the exhaust gas flow path, the capacity ratio between them is as shown in FIGS. 4 and 5. = 2: 8 to 7: 3 is preferable. By setting the volume ratio of both in this range, the purification efficiency of HC, CO, and NOx is increased, and exhaust gas regulations that are severe conditions can be cleared.
[0027]
【Example】
Hereinafter, specific examples will be described.
[0028]
Example 1
(Upstream catalyst)
120 g of alumina containing 3.9 g of lanthanum, 39.6 g of barium sulfate, and 40 g of alumina sol were mixed and stirred to form a slurry. A palladium aqueous solution (1.5 g as Pd) was added to the slurry, and the mixture was sufficiently stirred and supported on alumina to prepare a coating slurry. This slurry was applied to a cordierite carrier having a capacity of about 500 cm 3 and dried to obtain an upstream catalyst. Note that the weight ratio of elements is Pd: Ba = 1: 15.5.
[0029]
(Downstream catalyst)
120 g of alumina containing 3.9 g of lanthanum, 52 g of cerium oxide solid solution containing zirconium and yttrium (element composition ratio Ce: Zr: Y = 10: 9: 1), and 40 g of alumina sol were mixed and stirred to form a slurry. A platinum aqueous solution (1.0 g as Pt) was added to this slurry and stirred sufficiently to obtain a slurry in which platinum was supported on a cerium oxide solid solution containing alumina, zirconium and yttrium. This slurry was applied to a cordierite carrier having a volume of about 1000 cm 3 , dried, supported with an aqueous rhodium solution (0.2 g as Rh), dried, and used as a downstream catalyst.
[0030]
Upstream catalyst capacity (500 m 3 ): Downstream catalyst capacity (1000 m 3 ) = 1: 2.
(Example 2)
An upstream catalyst was produced in the same manner as in Example 1 except that the upstream catalyst of Example 1 was changed to 0.75 g of palladium and 0.75 g of platinum. The downstream catalyst was the same as that produced in Example 1.
[0031]
The ratio of barium and palladium is Ba: Pd = 31: 1.
(Example 3)
An upstream catalyst was produced in the same manner as in Example 1 except that the upstream catalyst of Example 1 was changed to 1.35 g of palladium and 0.15 g of rhodium. The downstream catalyst was the same as that produced in Example 1.
[0032]
The ratio of barium to palladium is Ba: Pd = 17.3: 1.
Example 4
An upstream catalyst was produced in the same manner as in Example 1 except that the amount of barium in the upstream catalyst of Example 1 was twice that of Example 1 (79.2 g). The downstream catalyst was the same as that produced in Example 1.
[0033]
The ratio of barium and palladium is Ba: Pd = 31: 1.
(Example 5)
An upstream catalyst was produced in the same manner as in Example 1 except that the amount of barium in the upstream catalyst of Example 1 was half that of Example 1 (19.8 g). The downstream catalyst was the same as that produced in Example 1.
[0034]
The ratio of barium and palladium is Ba: Pd = 7.1: 1.
(Comparative Example 1)
An upstream catalyst was prepared in the same manner except that 86 g of cerium oxide was added to the upstream catalyst of Example 1 to prepare a slurry for coating. The same downstream catalyst as in Example 1 was used.
(Comparative Example 2)
An upstream catalyst was produced in the same manner as in Comparative Example 1 except that the cerium oxide solid solution containing zirconium was used as the upstream catalyst cerium oxide in Comparative Example 1 (element ratio was Ce: Zr = 1: 1).
(Comparative Example 3)
In Comparative Example 1, the upstream catalyst was used in the same manner as in Comparative Example 1 except that the upstream catalyst was cerium oxide solid solution containing zirconium and yttrium (element ratio was Ce: Zr: Y = 10: 9: 1). Was made.
(Comparative Example 4)
An upstream catalyst was prepared in the same manner as in Comparative Example 1 except that the amount of cerium oxide in the upstream catalyst in Comparative Example 1 was 43 g (half the amount of Comparative Example 1).
[0035]
Table 1 shows the content of each component per liter of the catalyst on the upstream side of each catalyst.
[0036]
[Table 1]
Figure 0004413367
[0037]
(Evaluation of catalyst)
Each catalyst obtained in Examples 1 to 5 and Comparative Examples 1 to 4 was attached to a 4000 cc gasoline engine, and a 50-hour endurance test was performed under the condition of an inlet gas temperature of 900 ° C. FIG. 1 shows a detailed chart thereof. First, a total of 60 seconds was repeated 3000 times (50 hours) for 40 seconds by stoichiometry, then 16 seconds for rich, and secondary air was made rich in the catalyst, and then introduced for 15 seconds after 5 seconds. Thereafter, each catalyst was attached to a 1500 cc engine vehicle, and the exhaust gas purification performance was evaluated in evaluation mode EPA75. The result of the purification rate of hydrocarbons is shown in FIG. 2, and the result of the purification rate of NOx is shown by the bar graph in FIG.
[0038]
As shown in FIG. 2, each of the catalysts of Examples 1 to 5 has a lower residual rate of HC and a higher purification rate than the catalysts of Comparative Examples 1 to 4. In particular, it can be seen that Example 1 has an excellent HC purification rate.
[0039]
FIG. 3 shows the NOx purification rate, and the catalysts of Examples 1 to 5 have higher purification rates than the catalysts of Comparative Examples 1 to 4.
[0040]
4 and 5 show the results of examining the HC and NOx purification rates of the catalyst by changing the capacity ratio between the upstream catalyst and the downstream catalyst shown in Example 1 to 1/9 to 9/1. Indicated. As a result, when the capacity ratio of the upstream side / downstream side catalyst is in the range of 2/8 to 7/3, the purification rate of HC and NOx can be satisfied with a good balance.
[0041]
【The invention's effect】
According to the exhaust gas purifying catalyst of the present invention, the upstream side catalyst and the downstream side catalyst and the downstream side catalyst are changed by changing the composition of the refractory inorganic substance in the support layer of the downstream side catalyst, and the cerium element is present in the downstream side catalyst. By replenishing the purification function with each catalyst, the exhaust gas purification catalyst that improves the HC purification performance of the exhaust gas, further improves the CO and NOx purification performance, and can exhibit higher purification performance can be obtained.
[Brief description of the drawings]
FIG. 1 is a chart for explaining the conditions of an endurance test for each catalyst of an example and a comparative example.
FIG. 2 is a bar graph showing the hydrocarbon purification rate of each catalyst in Examples and Comparative Examples.
FIG. 3 is a bar graph showing NOx purification rates of respective catalysts of Examples and Comparative Examples.
FIG. 4 is a graph showing the HC purification rate due to the difference in the capacity ratio of the upstream / downstream catalyst.
FIG. 5 is a graph showing the NOx purification rate depending on the capacity ratio of the upstream / downstream catalyst.

Claims (4)

各々、軸方向に貫通する多数の貫通孔を持つ筒状の担体と、該貫通孔を区画する内面に形成された耐火性無機酸化物の担持層と、該担持層に保持された貴金属の触媒成分とを有し、排気ガスの流れに対して上流側に配置された上流側触媒と下流側に配置された下流側触媒とからなる排気ガス浄化用触媒において、
前記上流側触媒は、前記貴金属にパラジウム、パラジウムとロジウム、またはパラジウムと白金、から選ばれる1種を含み、前記担持層は少なくともバリウム、およびランタンを含むアルミナで構成され、
前記下流側触媒は、前記貴金属として白金、パラジウム、ロジウムの少なくとも1種を含み、前記担持層はランタンを含むアルミナと、セリウム、セリウムとジルコニウムの固溶体、セリウムとジルコニウムとイットリウムの固溶体から選ばれる1種とで構成され、
前記下流側触媒は、触媒1リットル中にランタン元素が0.8〜4.5gを含有することを特徴とする排気ガス浄化用触媒。
A cylindrical carrier having a large number of through-holes each penetrating in the axial direction, a refractory inorganic oxide support layer formed on the inner surface defining the through-holes, and a noble metal catalyst held in the support layer An exhaust gas purification catalyst comprising an upstream catalyst disposed upstream of an exhaust gas flow and a downstream catalyst disposed downstream of the exhaust gas flow,
The upstream catalyst contains one kind selected from palladium, palladium and rhodium, or palladium and platinum as the noble metal, and the support layer is composed of alumina containing at least barium and lanthanum,
The downstream catalyst contains at least one of platinum, palladium, and rhodium as the noble metal, and the support layer is selected from alumina containing lanthanum, a solid solution of cerium, cerium and zirconium, and a solid solution of cerium, zirconium and yttrium. Composed of seeds,
The downstream catalyst contains 0.8 to 4.5 g of lanthanum element in 1 liter of the catalyst.
前記上流側触媒は、パラジウムとバリウムとの比が重量比でPd:Ba=1:100〜1:1である請求項1に記載の排気ガス浄化用触媒。2. The exhaust gas purifying catalyst according to claim 1, wherein the upstream catalyst has a weight ratio of palladium to barium of Pd: Ba = 1: 100 to 1: 1. 前記上流側触媒と前記下流側触媒の容量比は、上流側触媒容量:下流側触媒容量=1:10〜3:1である請求項1に記載の排気ガス浄化用触媒。2. The exhaust gas purifying catalyst according to claim 1, wherein a capacity ratio between the upstream catalyst and the downstream catalyst is upstream catalyst capacity: downstream catalyst capacity = 1: 10 to 3: 1. 前記上流側触媒と前記下流側触媒は、同一担体上に形成したものある請求項1に記載の排気ガス浄化用触媒。The exhaust gas purification catalyst according to claim 1, wherein the upstream catalyst and the downstream catalyst are formed on the same carrier.
JP2000080482A 2000-03-22 2000-03-22 Exhaust gas purification catalyst Expired - Fee Related JP4413367B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000080482A JP4413367B2 (en) 2000-03-22 2000-03-22 Exhaust gas purification catalyst
US09/803,908 US6846466B2 (en) 2000-03-22 2001-03-13 Catalyst for purifying an exhaust gas
EP01107031A EP1136115B1 (en) 2000-03-22 2001-03-21 Catalyst for purifying an exhaust gas
DE60115308T DE60115308T2 (en) 2000-03-22 2001-03-21 Catalyst for purifying an exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000080482A JP4413367B2 (en) 2000-03-22 2000-03-22 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2001259424A JP2001259424A (en) 2001-09-25
JP4413367B2 true JP4413367B2 (en) 2010-02-10

Family

ID=18597580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000080482A Expired - Fee Related JP4413367B2 (en) 2000-03-22 2000-03-22 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4413367B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004025096A1 (en) * 2002-09-13 2004-03-25 Johnson Matthey Public Limited Company Process for treating compression ignition engine exhaust gas
JP4768260B2 (en) 2004-12-27 2011-09-07 株式会社キャタラー Exhaust gas purification catalyst
JP4669322B2 (en) 2005-05-24 2011-04-13 株式会社キャタラー Exhaust gas purification catalyst
JP4797838B2 (en) * 2006-07-06 2011-10-19 トヨタ自動車株式会社 Gas purification catalyst
JP6569637B2 (en) * 2016-10-14 2019-09-04 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2001259424A (en) 2001-09-25

Similar Documents

Publication Publication Date Title
EP1136115B1 (en) Catalyst for purifying an exhaust gas
EP1308200B1 (en) Exhaust gas purifying catalyst
KR100484688B1 (en) Engine Exhaust Gas Treatment System and How to Use
JP5996538B2 (en) Catalyst for lean-burn gasoline engines with improved NO oxidation activity
EP2501464B1 (en) Zoned catalyzed soot filter
EP1332787B1 (en) Catalyst for purifying exhaust gases
JP3391878B2 (en) Exhaust gas purification catalyst
WO2010010747A1 (en) Catalyst device for exhaust gas purification and method of purifying exhaust gas
JP6246192B2 (en) Three-way catalyst system
JP2013500857A (en) Gasoline engine exhaust gas treatment system
EP0622107B1 (en) Exhaust gas purifying catalyst in diesel engines
US10408102B2 (en) Oxidation catalyst device for exhaust gas purification
JP6748590B2 (en) Exhaust gas purification catalyst
JP2001079402A (en) Exhaust gas cleaning catalyst and its production
JP4413366B2 (en) Exhaust gas purification catalyst
JP4413367B2 (en) Exhaust gas purification catalyst
JPS6268544A (en) Monolithic catalyst for purifying exhaust gas
JP4810947B2 (en) Control method for internal combustion engine
WO2020203424A1 (en) Exhaust gas cleaning catalytic device
JP3431507B2 (en) Exhaust gas purification catalyst
CN111790270A (en) Filter catalyst, exhaust gas purification device, and method for producing filter catalyst
CN112236228B (en) Exhaust gas purifying catalyst device
JP3433885B2 (en) Diesel exhaust gas purification catalyst
JP3477982B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH09225306A (en) Exhaust gas purifying catalyst and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4413367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees