JP4413329B2 - Method for producing thick-walled poled crystals - Google Patents

Method for producing thick-walled poled crystals Download PDF

Info

Publication number
JP4413329B2
JP4413329B2 JP28102199A JP28102199A JP4413329B2 JP 4413329 B2 JP4413329 B2 JP 4413329B2 JP 28102199 A JP28102199 A JP 28102199A JP 28102199 A JP28102199 A JP 28102199A JP 4413329 B2 JP4413329 B2 JP 4413329B2
Authority
JP
Japan
Prior art keywords
crystal
domain
inverted
thick
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28102199A
Other languages
Japanese (ja)
Other versions
JP2001100261A (en
Inventor
優 中村
高志 常川
浩一 谷口
一行 只友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP28102199A priority Critical patent/JP4413329B2/en
Publication of JP2001100261A publication Critical patent/JP2001100261A/en
Application granted granted Critical
Publication of JP4413329B2 publication Critical patent/JP4413329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、光通信、光情報、光応用計測分野、特に、高出力応用分野に応用される波長変換素子として利用される、周期的な分極反転構造を有した厚肉の非線形光学結晶の製造方法に関するものである。
【0002】
【従来の技術】
周期的な分極反転構造を有した非線形光学結晶、特に、Periodically Poled LiNbO3 [(PPLN):周期的分極反転ニオブ酸リチウム]は大きな非線型光学定数d33を利用できるため、高変換効率な波長変換が可能であり、PPLNの分極反転周期を変化させることによって、様々な波長が得られるため、これを用いた光源の応用が期待されている。実際、0.5mm厚PPLNは、相互作用長が50mm以上のものが報告され、実用化されつつある。
【0003】
しかし、PPLNは一般にレーザー破壊閾値が低く、大きなレーザーパワー密度で入射することが困難なため、ハイパワー応用には不向きであった。レーザー破壊を解決するもっとも単純な方法は、レーザービーム径を広げて、レーザーパワー密度を下げることであり、ハイパワー応用のためには、結晶断面積の大きなPPLNが求められる。
これまで、大断面積化を図るために、1mm厚PPLNの作製が試みられてきたが、0.5mm厚では市販レベルにあるものの、1mm厚PPLNについては作製が困難である。この要因は、分極反転電圧が〜20kVと高いこと、及び、分極反転を行なうための電圧印加において、結晶が割れ易いことなどが挙げられる。
【0004】
LiNbO3(LN)以外の結晶においても、周期的な分極反転構造の作製が試みられている。その例としては、MgO-doped LiNbO3(MgO:LN)、LiTaO3(LT)、KTiOPoO4(KTP)、RbTiOAsO4、RbTiOPO4などがあるが、周期的な分極反転構造が可能な基板厚としては最大でも1mm程度である。(まれに3mmというものがある)
【0005】
ハイパワー用にさらに厚い基板厚の周期的な分極反転構造を有した非線形光学結晶を得るための方法としては、結晶貼り合わせ方法がある。通常の分極反転結晶の貼り合わせ方法は、2つの非線形光学結晶を準備し、それぞれ分極反転処理を行なった後、結晶表面の電極のみを取り除き、これら結晶同士を貼り合わせる方法である。
【0006】
ところで、分極反転構造を観察する方法として、分極反転処理を行った結晶に対してエッチングを施す方法がある。エッチングにより分極反転構造が観察できるのは、+Z面と−Z面(反転させるべき分極方向をZ軸方向とするとき、該Z軸方向に対して垂直な2面)におけるエッチングレートが分極反転部と非反転部とで異なり、結果として周期的な分極反転構造が浮き出すためであり、これにより分極反転構造が可視化されて観察できるようになる。
【0007】
通常、上述の分極反転結晶の貼り合わせを行うに際しては、分極反転構造を観察するためのエッチングは行なわない。エッチング後の結晶の±Z面には凹凸が生じており、結晶を貼り合わせる場合に重要な貼り合わせ面の平坦度(平滑度)が損なわれてしまうからである。したがって、分極反転結晶を張り合わせる場合、構造観察のためのエッチングは行なわず、貼り合わせる方法がとられてきた。
【0008】
【発明が解決しようとする課題】
しかしながら、上記したような通常の結晶貼り合わせ方法では、貼り合わせた後でないと、周期的な分極反転構造の位置関係を確認することができないことになる。而して、周期的な分極反転構造を有した非線形光学結晶を貼り合わせる場合、最も重要なことは、それぞれの分極反転結晶の分極反転周期を互いに合わせることなのであるが、従来方法では貼り合せ後に事後的に分極反転周期の位置関係を確認できるに過ぎなかった。貼り合わせ後の周期的分極反転結晶を波長変換素子として考えた場合、貼り合わせた分極反転結晶同士の分極反転周期(Λ)のずれの許容範囲は、Λ/8以内が必要であるという報告もあり、このような厳密な周期の位置あわせは極めて困難であるという問題があった。
【0009】
【課題を解決するための手段】
貼り合せによって厚肉の分極反転結晶を得る場合において、分極反転周期のズレが生じないようにするためには、周期的な分極反転構造が観察でき、それぞれの結晶の位置合わせが可能であることが望ましい。他方、結晶貼り合わせ面は、平滑であることが必要である。
かかる事情に鑑みて本発明はなされたものであって、その要旨は、互いに反転パターンが一致した周期的な分極反転構造を具備する複数の非線形光学結晶を準備し、これら結晶を貼り合わせて厚肉分極反転結晶を得る方法において、結晶の貼り合せ面と反対の面にエッチングを行って分極反転構造を浮き出たせる可視化処理を施し、当該結晶の分極反転構造を観察しつつ貼り合せ固定することを特徴とする厚肉分極反転結晶の作製方法にある。
【0010】
また、上記で得られた厚肉分極反転結晶の片面にエッチングを行って可視化処理を施し、当該結晶の他面に、さらに別の非線形光学結晶を貼り合せ固定することにより、より厚肉の分極反転結晶を作製することもできる。
【0011】
【作用】
本発明によれば、貼り合わせ時に、周期的な分極反転構造が観察可能であるため、貼り合わせるべき結晶同士の分極反転周期のずれ量を低減することができ、かつ、貼り合わせ面が平滑であるため、結晶貼り合わせが容易になる。
【0012】
【発明の実施の形態】
本発明の厚肉分極反転結晶の作製方法は、
▲1▼ 互いに反転パターンが一致した周期的な分極反転構造を具備する複数の非線形光学結晶を準備すること、
▲2▼ 結晶の貼り合せ面と反対の面にエッチングを行って分極反転構造を浮き出たせる可視化処理を施すこと、及び
▲3▼ 当該結晶の分極反転構造を観察しつつ貼り合せ固定する
ことを要点としている。以下、これら工程について説明する。
【0013】
本発明で用いる非線形光学結晶としては、LiNbO3(LN)が好ましく用いられるが、この他にMgO-doped LiNbO3(MgO:LN)、LiTaO3(LT)、KTiOPoO4(KTP)、RbTiOAsO4、RbTiOPO4なども用いることができる。またこのような非線形光学結晶に周期的な分極反転構造をを形成する手段としては、例えば電圧印加法に依ることができる。この方法は、非線形光学結晶の基板に対して、該基板の片面(+z面)中の分極反転すべき領域に、プラス側(高電位側)の液体電極を対向させ、かつ+z面の特定領域だけに液体電極からの電界を作用させるために、部分的に絶縁膜を形成してマスクし、また裏面(−z面)にマイナス側(グランド側)の液体電極を対向させ、この状態から、両方の液体電極を介して該基板に分極反転電圧を印加することによって、分極反転構造を形成する方法である。
【0014】
次に、本発明で行う可視化処理としては、貼り合せを意図する面とは反対の面にエッチングを施与する方法が採用される。エッチングを行うことにより、エッチングレートが分極反転部と非反転部とで異なる結果、周期的な分極反転構造がそのエッチング面において凹凸状に浮き出し、これにより分極反転構造が可視化されて観察できるようになる。このエッチングの具体的方法としては、例えば、60℃程度のHF+HNO3混合液(HF:HNO3=1:2)に5〜10分程度、浸漬する等の方法を採用することができる。この場合、結晶張り合わせ面には、エッチングに対する保護層を設けることが望ましい。この保護層としては、例えばエッチング液に対して耐性のあるワックス層を被着する方法、または、エッチングを行ないたい面のみ、エッチング液に接する方法などが挙げられる。
【0015】
貼り合せのための位置合わせに際しては、各々の分極反転結晶に上記の工程で浮き出させた凹凸を互いに一致させるよう位置調整する。通常この種結晶基板は透明であるため、目視による位置調整が可能で、例えば顕微鏡とマニピュレータを用いて位置合わせを行うことができる。この他に、例えばシリコン等の張り合わせに用いられている陽極接合装置に見られるような、精密アライメント機構を備えた装置で位置合わせを行なうような方法でも位置合わせを行うことができる。
【0016】
2つの結晶を貼り合せる方法としては、例えば加熱加圧による方法を採用することができる。即ち、貼り合せるべき2つの結晶を最適位置で固定した後、適当な圧力をかけた状態で、高温環境で一定時間保持する方法である。
一般的な金属接合接合の場合、接合温度Tは、T/Tm=0.53〜0.88(Tm:結晶融点)の範囲とし、塑性変形を生じない範囲で、接合時間は長ければ長いほど、接合圧力は大きければ大きいほど接合性は向上するので、本発明にあってもこれに準じて貼り合せを行うことができる。
【0017】
さらに厚肉の結晶を得ようとするときは、上記の工程で作製した貼り合せ結晶に対して、同様な可視化処理を施した新たな非線形光学結晶を、上記と同様な手法で貼り合せれば良い。なお、この場合、貼り合せ結晶は両面とも可視化処理が行われた関係上凹凸面となっているので、新たな結晶と貼り合せる面を研磨する等して平坦化処理する必要がある。
【0018】
【実施例】
+Z板(+c板)0.5mm基板厚のLiNbO3結晶を用い、以下の工程により、貼り合わせ用の周期的な分極反転結晶を作製した。
(1)LiNbO3結晶を所定のサイズに切り出す。
(2)LiNbO3結晶の+Z面上にレジストを塗布し、フォトリソグラフィー法により29.8μmの周期ごとにレジスト抜き部分(分極が反転する部分)を作製する。この周期は、SHG、OPO、SFG、DFGで異なり、また、入力波長、結晶温度、出力波長によって、一義的に決定されるものである。なお、この場合の分極反転構造部分の長さは30mmとした。
(3)スパッタによりレジストがある部分、およびレジストが抜けた部分上に金属膜(膜厚数1000オングストローム程度)を形成する。
(4)+側は、金属膜に液体電解質を接触させ、−側は、液体電解質が直接、基板の−Z面に直接、接している。
(5)電圧を印加することにより、分極を反転する。
(6)金属膜、及び、フォトレジストを取り除く。
(7)結晶張り合わせ面のみ、エッチング液(HF:HNO3=1:2、60℃、5〜10分)に対して強いワックス(保護膜)を作製する。
(8)LiNbO3結晶のエッチングを行なう。エッチング条件は、60℃のHF:HNO3混合液(HF:HNO3=1:2)中に5分浸漬とした。これにより、エッチング面には、約1μm程度の凹凸が形成された。
(9)エッチング後、ワックスを取り除く。
以上の工程によって、張り合わせ用の周期的な分極反転結晶を作製した。
【0019】
以下に貼り合わせ工程を示す。
(1)張り合わせを行なう周期的分極反転結晶同士の分極反転周期を合わせる、位置合わせを行なう。透明な基板であるため、上の分極反転結晶と下の分極反転結晶の位置合わせが可能である。本実施例では、陽極接合装置の精密アライメント機構を用いて両基板のアライメントを行なうという方法により位置合わせを行った。
(2)最適位置で固定する。本実施例では、陽極接合装置にてアライメントを行なった後、両基板を密着させ、その状態のまま約100℃に加熱することで固定した。
(3)固定後、荷重10kgをかけたまま、900℃で5hr加熱して貼り合わせた。
【0020】
貼り合わせ後、すべり試験方法で、機械強度には問題がないことを確認した。また、張り合わせ部分を観察するために、断面を切り出し、エッチング(HF:HNO3=1:2、60℃、5〜10分)により断面観察を行なった結果、上下の分極反転ドメイン同士が良好に接合されていることが観察された。
【0021】
【発明の効果】
以上説明した通りの本発明の厚肉分極反転結晶の作製方法によれば、貼り合わせ時に、周期的な分極反転構造が観察可能であるため、貼り合わせるべき結晶同士の分極反転周期のずれ量を低減することができ、かつ、貼り合わせ面が平滑であるため、結晶貼り合わせが容易になる。従って、ハイパワーレーザーへの適用に耐性がある厚肉の分極反転結晶が容易に作製できるという利点がある。
[0001]
[Technical field to which the invention belongs]
The present invention relates to the production of a thick nonlinear optical crystal having a periodically domain-inverted structure, which is used as a wavelength conversion element applied to the fields of optical communication, optical information, and optical applied measurement, particularly high power applications. It is about the method.
[0002]
[Prior art]
Nonlinear optical crystals with a periodic domain-inverted structure, especially Periodically Poled LiNbO 3 [(PPLN): Periodically domain-inverted lithium niobate], because it can use the large nonlinear optical constant d33, it enables highly efficient wavelength conversion Since various wavelengths can be obtained by changing the polarization inversion period of PPLN, application of a light source using this is expected. In fact, 0.5 mm-thick PPLN having an interaction length of 50 mm or more has been reported and is being put into practical use.
[0003]
However, PPLN is generally unsuitable for high power applications because it has a low laser destruction threshold and is difficult to enter with a large laser power density. The simplest method for solving laser destruction is to widen the laser beam diameter and lower the laser power density. For high power applications, PPLN with a large crystal cross section is required.
Up to now, attempts have been made to produce a 1 mm thick PPLN in order to achieve a large cross-sectional area. However, although a 0.5 mm thickness is on the commercial level, it is difficult to produce a 1 mm thick PPLN. This is because, for example, the polarization inversion voltage is as high as ˜20 kV, and the crystal is easily broken when a voltage is applied to perform polarization inversion.
[0004]
In crystals other than LiNbO3 (LN), attempts have been made to produce periodic domain-inverted structures. Examples include MgO-doped LiNbO 3 (MgO: LN), LiTaO 3 (LT), KTiOPoO 4 (KTP), RbTiOAsO 4 , RbTiOPO 4 etc. Is about 1 mm at the maximum. (In rare cases, there is 3mm)
[0005]
As a method for obtaining a nonlinear optical crystal having a periodically domain-inverted structure with a thicker substrate thickness for high power, there is a crystal bonding method. A normal method for bonding polarization-inverted crystals is a method in which two nonlinear optical crystals are prepared and subjected to polarization inversion processing, and then only the electrodes on the surface of the crystal are removed and these crystals are bonded together.
[0006]
By the way, as a method of observing the domain-inverted structure, there is a method of etching a crystal subjected to domain-inversion processing. The domain-inverted structure can be observed by etching because the etching rate on the + Z plane and the −Z plane (two planes perpendicular to the Z-axis direction when the polarization direction to be inverted is the Z-axis direction) is the domain-inverted portion. This is because the periodic domain-inverted structure emerges as a result, and the domain-inverted structure can be visualized and observed.
[0007]
Usually, when bonding the above-described domain-inverted crystals, etching for observing the domain-inverted structure is not performed. This is because the ± Z plane of the crystal after etching is uneven, and the flatness (smoothness) of the bonded surface, which is important when bonding the crystal, is impaired. Therefore, when a polarization-inverted crystal is bonded, a method of bonding is used without performing etching for structure observation.
[0008]
[Problems to be solved by the invention]
However, in the normal crystal bonding method as described above, the positional relationship of the periodically domain-inverted structure cannot be confirmed without bonding. Thus, when bonding a nonlinear optical crystal having a periodic polarization reversal structure, the most important thing is to match the polarization reversal periods of the respective polarization reversal crystals. It was only possible to confirm the positional relationship of the polarization inversion period afterwards. There is also a report that when the periodically poled crystal after bonding is considered as a wavelength conversion element, the allowable range of deviation of the polarization inversion period (Λ) between the bonded polarization inversion crystals needs to be within Λ / 8. There is a problem that such exact alignment of the period is extremely difficult.
[0009]
[Means for Solving the Problems]
When obtaining thick polarization-reversed crystals by bonding, periodic polarization reversal structures can be observed and the alignment of each crystal is possible in order to prevent deviation of the polarization reversal period. Is desirable. On the other hand, the crystal bonding surface needs to be smooth.
The present invention has been made in view of such circumstances, and the gist of the present invention is to prepare a plurality of nonlinear optical crystals having a periodic domain-inverted structure in which inversion patterns coincide with each other, and these crystals are bonded together to obtain a thickness. In the method of obtaining a meat polarization inversion crystal, the surface opposite to the bonding surface of the crystal is etched to perform a visualization treatment to reveal the domain inversion structure, and the bonding is fixed while observing the polarization inversion structure of the crystal. A feature is a method for producing a thick-walled domain-inverted crystal.
[0010]
In addition, etching is performed on one side of the thick polarization-inverted crystal obtained above to perform a visualization treatment, and another nonlinear optical crystal is bonded and fixed to the other side of the crystal, thereby further thickening the polarization. Inverted crystals can also be produced.
[0011]
[Action]
According to the present invention, since the periodically domain-inverted structure can be observed at the time of bonding, the amount of deviation of the polarization inversion period between crystals to be bonded can be reduced, and the bonded surface is smooth. Therefore, crystal bonding becomes easy.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing the thick domain-inverted crystal of the present invention is as follows.
(1) preparing a plurality of nonlinear optical crystals having a periodic domain-inverted structure in which inversion patterns coincide with each other;
(2) The point opposite to the crystal bonding surface is etched to make the polarization inversion structure appear, and (3) The crystal inversion structure of the crystal is observed and fixed. It is said. Hereinafter, these steps will be described.
[0013]
As the nonlinear optical crystal used in the present invention, LiNbO 3 (LN) is preferably used. Besides this, MgO-doped LiNbO 3 (MgO: LN), LiTaO 3 (LT), KTiOPoO 4 (KTP), RbTiOAsO 4 , RbTiOPO 4 or the like can also be used. As a means for forming a periodic domain-inverted structure in such a nonlinear optical crystal, for example, a voltage application method can be used. In this method, a positive side (high potential side) liquid electrode is opposed to a region to be polarized in one side (+ z plane) of the substrate of the nonlinear optical crystal, and a specific region on the + z plane. In order to apply the electric field from the liquid electrode only, an insulating film is partially formed and masked, and the liquid electrode on the negative side (ground side) is opposed to the back surface (−z surface). In this method, a domain-inverted structure is formed by applying a domain-inverted voltage to the substrate through both liquid electrodes.
[0014]
Next, as a visualization process performed in the present invention, a method of applying etching to a surface opposite to a surface intended for bonding is employed. As a result of etching, the etching rate differs between the domain-inverted part and the non-inverted part. As a result, the periodically domain-inverted structure emerges unevenly on the etched surface so that the domain-inverted structure can be visualized and observed. Become. As a specific method of this etching, for example, a method of immersing in a HF + HNO 3 mixed solution (HF: HNO 3 = 1: 2) at about 60 ° C. for about 5 to 10 minutes can be employed. In this case, it is desirable to provide a protective layer against etching on the crystal bonding surface. Examples of the protective layer include a method of depositing a wax layer resistant to the etching solution, or a method of contacting only the surface to be etched with the etching solution.
[0015]
At the time of alignment for bonding, the position adjustment is performed so that the unevenness raised in the above-described steps on each domain-inverted crystal matches each other. Since this seed crystal substrate is usually transparent, position adjustment by visual observation is possible, and alignment can be performed using, for example, a microscope and a manipulator. In addition to this, alignment can also be performed by a method in which alignment is performed with an apparatus equipped with a precision alignment mechanism, such as found in an anodic bonding apparatus used for bonding silicon or the like.
[0016]
As a method for bonding the two crystals, for example, a method by heating and pressing can be employed. In other words, after fixing two crystals to be bonded at an optimum position, they are held in a high temperature environment for a certain period of time under a suitable pressure.
In the case of general metal bonding, the bonding temperature T is in the range of T / Tm = 0.53 to 0.88 (Tm: crystalline melting point), and the longer the bonding time is within the range where plastic deformation does not occur. The larger the bonding pressure is, the better the bonding property is. Therefore, even in the present invention, bonding can be performed in accordance with this.
[0017]
When trying to obtain a thicker crystal, if a new nonlinear optical crystal that has been subjected to the same visualization process is bonded to the bonded crystal produced in the above-described process by the same method as described above, good. In this case, the bonded crystal is an uneven surface because both surfaces are visualized, and thus it is necessary to perform a flattening process by polishing the surface to be bonded to a new crystal.
[0018]
【Example】
+ Z plate (+ c plate) Using a LiNbO 3 crystal having a substrate thickness of 0.5 mm, a periodically poled crystal for bonding was produced by the following steps.
(1) A LiNbO 3 crystal is cut into a predetermined size.
(2) A resist is applied on the + Z plane of the LiNbO 3 crystal, and a resist removal portion (a portion where the polarization is inverted) is produced every 29.8 μm by photolithography. This period differs for SHG, OPO, SFG, and DFG, and is uniquely determined by the input wavelength, crystal temperature, and output wavelength. In this case, the length of the domain-inverted structure portion was 30 mm.
(3) A metal film (having a film thickness of about several thousand angstroms) is formed on the portion where the resist is present by sputtering and the portion where the resist is removed.
(4) The liquid electrolyte is brought into contact with the metal film on the + side, and the liquid electrolyte is in direct contact with the −Z surface of the substrate on the − side.
(5) Reverse the polarization by applying a voltage.
(6) The metal film and the photoresist are removed.
(7) A wax (protective film) strong against the etching solution (HF: HNO3 = 1: 2, 60 ° C., 5 to 10 minutes) is produced only on the crystal bonding surface.
(8) Etching of LiNbO 3 crystal. Etching conditions were immersed in a HF: HNO3 mixed solution (HF: HNO3 = 1: 2) at 60 ° C. for 5 minutes. As a result, irregularities of about 1 μm were formed on the etched surface.
(9) After the etching, the wax is removed.
Through the above steps, a periodically poled crystal for bonding was produced.
[0019]
The bonding process is shown below.
(1) Positioning is performed by matching the polarization inversion periods of the periodically poled crystals to be bonded. Since it is a transparent substrate, it is possible to align the upper domain-inverted crystal and the lower domain-inverted crystal. In this example, alignment was performed by a method of aligning both substrates using the precision alignment mechanism of the anodic bonding apparatus.
(2) Fix at the optimum position. In this example, after alignment with an anodic bonding apparatus, both substrates were brought into close contact with each other, and fixed by heating to about 100 ° C. in that state.
(3) After fixing, with a load of 10 kg applied, it was heated and bonded at 900 ° C. for 5 hours.
[0020]
After bonding, it was confirmed by the slip test method that there was no problem in mechanical strength. In addition, in order to observe the bonded portion, the cross section was cut out and the cross section was observed by etching (HF: HNO 3 = 1: 2, 60 ° C., 5 to 10 minutes). It was observed that they were joined.
[0021]
【The invention's effect】
According to the method for producing a thick domain-inverted crystal of the present invention as described above, since the periodic domain-inverted structure can be observed at the time of bonding, the amount of deviation of the domain-inverted period between crystals to be bonded can be reduced. Since it can be reduced and the bonding surface is smooth, crystal bonding becomes easy. Therefore, there is an advantage that a thick domain-inverted crystal resistant to application to a high power laser can be easily manufactured.

Claims (2)

互いに反転パターンが一致した周期的な分極反転構造を具備する2つの非線形光学結晶を準備し、これら結晶を貼り合せて厚肉分極反転結晶を得る方法において、前記2つの非線形光学結晶において、結晶の貼り合せ面と反対の面にエッチングを行って分極反転構造を浮き出たせる可視化処理を施し、かつ、結晶の貼り合せ面のみエッチング前に保護膜を作製しエッチング後にその保護膜を取り除くことによって貼り合せ面を平滑として、前記2つの非線形光学結晶の前記可視化処理を施した分極反転構造を観察しつつ貼り合せ固定することを特徴とする厚肉分極反転結晶の作製方法。In a method for preparing two nonlinear optical crystals having periodic domain-inverted structures having inversion patterns that coincide with each other and bonding the crystals to obtain a thick domain-inverted crystal, Etching is performed on the surface opposite to the bonding surface to visualize the domain-inverted structure, and only the bonding surface of the crystal is protected before the etching, and then the protective film is removed after etching. A method for producing a thick-walled domain-inverted crystal, characterized in that the surfaces are smooth and bonded and fixed while observing the domain-inverted structure of the two nonlinear optical crystals that has been subjected to the visualization process. 請求項1で得られた厚肉分極反転結晶の片面に請求項1で得られた厚肉分極反転結晶と反転パターンが一致した周期的な分極反転構造を具備する別の非線形光学結晶を貼り合せて厚肉分極反転結晶を得る方法において、請求項1で得られた厚肉分極反転結晶における前記別の非線形光学結晶と貼り合せる面を平滑化処理し、一方、前記別の非線形光学結晶において、結晶の貼り合せ面と反対の面にエッチングを行って分極反転構造を浮き出たせる可視化処理を施し、かつ、結晶の貼り合せ面のみエッチング前に保護膜を作製しエッチング後にその保護膜を取り除くことによって貼り合せ面を平滑として、請求項1で得られた厚肉分極反転結晶と前記別の非線形光学結晶とを前記可視化処理を施した分極反転構造を観察しつつ貼り合せ固定することを特徴とする厚肉分極反転結晶の作製方法。 A non-linear optical crystal having a periodic domain-inverted structure in which the inversion pattern coincides with the thick domain-inverted crystal obtained in claim 1 is bonded to one side of the thick domain-inverted crystal obtained in claim 1 In the method for obtaining a thick polarization-reversed crystal, the surface to be bonded to the other nonlinear optical crystal in the thick polarization-reversed crystal obtained in claim 1 is smoothed, while in the other nonlinear optical crystal, Etching is performed on the surface opposite to the crystal bonding surface to visualize the domain-inverted structure, and only the crystal bonding surface is subjected to a protective film before etching, and the protective film is removed after etching. the mating surfaces as smooth paste, and bonding while observing the polarization inversion structure obtained thick poled crystals and the another of the nonlinear optical crystal was subjected to the visualization processing with claim 1 fixed The method for manufacturing a thick poled crystals characterized and.
JP28102199A 1999-10-01 1999-10-01 Method for producing thick-walled poled crystals Expired - Lifetime JP4413329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28102199A JP4413329B2 (en) 1999-10-01 1999-10-01 Method for producing thick-walled poled crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28102199A JP4413329B2 (en) 1999-10-01 1999-10-01 Method for producing thick-walled poled crystals

Publications (2)

Publication Number Publication Date
JP2001100261A JP2001100261A (en) 2001-04-13
JP4413329B2 true JP4413329B2 (en) 2010-02-10

Family

ID=17633193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28102199A Expired - Lifetime JP4413329B2 (en) 1999-10-01 1999-10-01 Method for producing thick-walled poled crystals

Country Status (1)

Country Link
JP (1) JP4413329B2 (en)

Also Published As

Publication number Publication date
JP2001100261A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
EP0532969B1 (en) Process for fabricating an optical device for generating a second harmonic optical beam
JPH10503602A (en) Fabrication of patterned polarized dielectric structures and devices
EP1015936B1 (en) Method of poling of optical crystals
US5522973A (en) Fabrication of ferroelectric domain reversals
JP2009217009A (en) Harmonic wave generator
US8184360B2 (en) Wavelength converting devices
JP4579417B2 (en) Optical waveguide manufacturing
JP2002040502A (en) Optical waveguide element
US7864409B2 (en) Fabrication method for quasi-phase-matched waveguides
WO2003003111A1 (en) Electric field poling of ferroelectric materials
JP3303346B2 (en) Method for controlling polarization of lithium niobate and lithium tantalate, method for manufacturing optical waveguide device using the same, and optical waveguide device
JP4413329B2 (en) Method for producing thick-walled poled crystals
US5382334A (en) Process for forming polarization inversion layer
JP2000029086A (en) Production of ferroelectric crystal having periodic polarity inversion structure
US12007666B2 (en) Wavelength conversion element and method for producing same
JPH10246900A (en) Production of microstructure of ferroelectric single crystal substrate
JP3884197B2 (en) Fabrication method of domain-inverted structure
Choi et al. Poling quality enhancement of PPLN devices using negative multiple pulse poling method
JP3885939B2 (en) Manufacturing method of optical waveguide device
JP2962024B2 (en) Method for manufacturing optical waveguide and method for manufacturing optical wavelength conversion element
JP3316987B2 (en) Method of forming domain-inverted grating and optical waveguide
JP4764964B2 (en) Method for forming minute periodic polarization reversal structure and minute periodic polarization reversal structure
Kwon et al. Influence of annealing temperature on domain shape of periodically poled LiNbO3 for Ti: LN waveguides
JPH06174908A (en) Production of waveguide type diffraction grating
JP4333534B2 (en) Optical waveguide manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4413329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

EXPY Cancellation because of completion of term