JP4412454B2 - Shaft coupling - Google Patents

Shaft coupling Download PDF

Info

Publication number
JP4412454B2
JP4412454B2 JP2003121213A JP2003121213A JP4412454B2 JP 4412454 B2 JP4412454 B2 JP 4412454B2 JP 2003121213 A JP2003121213 A JP 2003121213A JP 2003121213 A JP2003121213 A JP 2003121213A JP 4412454 B2 JP4412454 B2 JP 4412454B2
Authority
JP
Japan
Prior art keywords
torque transmission
shaft
transmission piece
drive shaft
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003121213A
Other languages
Japanese (ja)
Other versions
JP2004324780A (en
Inventor
岳史 石田
和春 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003121213A priority Critical patent/JP4412454B2/en
Publication of JP2004324780A publication Critical patent/JP2004324780A/en
Application granted granted Critical
Publication of JP4412454B2 publication Critical patent/JP4412454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/64Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts
    • F16D3/68Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members comprising elastic elements arranged between substantially-radial walls of both coupling parts the elements being made of rubber or similar material

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電動モータの駆動軸と油圧ポンプの回転軸など、駆動軸と従動軸とを回転接続する軸継手に関するものである。
【0002】
【従来の技術】
この種の電動モータの駆動軸と油圧ポンプの回転軸等を接続する軸継手の典型的な従来技術としては、下記特許文献1,2に記載されたものが知られている。
【0003】
【特許文献1】
特開平11−101261号公報(第3図,第4図)
【特許文献2】
特開平10−122252号公報(第2図(b),第4図)
【0004】
すなわち、特許文献1に記載された軸継手は、一方の軸端のハブと他方の軸端のハブとのトルク伝達面間に、ゴム部材を介在させたものであり、また、特許文献2に記載された軸継手は、トルク伝達に必要な高硬度の材料からなるものであって、駆動側(モータ側)回転軸の軸端に形成した四角柱状の結合軸部と、従動側(減速機構部側)の回転軸の軸端に形成した四角柱状の結合軸部とを、軸方向両側から挿入可能な四角柱状の結合穴を有し、この結合穴の内面にゴム等の弾性体を膜状に形成した構造を備える。
【0005】
【発明が解決しようとする課題】
上記従来の技術によれば、トルク伝達部にゴムが介在しているので、モータの起動・停止時、正・逆回転切換時等の耳障りな打音の発生を防止することができる。しかし、トルクによる繰り返し荷重入力によって、ゴムの耐久性が低下することが指摘されていた。
【0006】
本発明は、上述のような問題に鑑みてなされたもので、その技術的課題は、駆動軸及び従動軸との間での打音や摩耗の発生を有効に防止可能であると共に、耐久性に優れた構造の軸継手を提供することにある。
【0007】
【課題を解決するための手段】
上述した技術的課題を有効に解決するための手段として、請求項1の発明に係る軸継手は、剛材からなる継手本体と、ゴム状弾性材料からなり前記継手本体に軸方向に当接配置される弾性スペーサとを備え、前記継手本体には、駆動軸のトルク伝達片及び従動軸のトルク伝達片を挿入可能であって剛材からなるこれらのトルク伝達片と互いに接触される、剛材からなるトルク授受面を有する接続孔が開設され、前記弾性スペーサには、少なくとも一方のトルク伝達片を挿入可能な開口部が開設されると共に、前記接続孔と前記駆動軸又は従動軸のトルク伝達片との間に介在されて前記トルク伝達片を前記トルク授受面に押し付ける複数の押圧突部が形成されたものである。
【0008】
請求項2の発明に係る軸継手は、請求項1に記載された構成において、弾性スペーサが、補強体で補強され、この補強体は押圧突部の内部に埋設された補強突起が形成されたものである。
【0009】
【発明の実施の形態】
以下、本発明に係る軸継手の好ましい実施の形態について、図面を参照しながら詳細に説明する。図1は本形態の軸継手を、接続対象の回転軸と共に示す分離斜視図、図2は本形態の軸継手による回転軸接続状態を軸心を通る平面で切断して示す断面図、図3は図2におけるIII−III断面図、図4は本形態の軸継手における継手本体を軸心と平行な方向から見た正面図、図5は図3におけるV−V断面図、図6は本形態の軸継手における弾性スペーサの背面図、図7は図6におけるVII−VII断面図、図8は正面図である。
【0010】
まず図1、図2及び図3において、参照符号1,2は、それぞれ本形態の軸継手による接続対象の一対の回転軸で、このうち、駆動軸1は、例えばモータの出力軸であり、従動軸2は、例えば前記モータによって回転される油圧ポンプやあるいは減速機等の回転軸である。両回転軸1,2は、その軸端が軸方向に互いに対向される。
【0011】
駆動軸1の軸端には、直径方向に扁平で軸方向に所定の高さを有するトルク伝達片11が突設されており、従動軸2の軸端にも同様に、直径方向に扁平で軸方向に所定の高さを有するトルク伝達片21が突設されている。図2の参照符号12は、駆動軸1の外周に一体的に設けられた軸スリーブ、参照符号22は、従動軸2を回転自在に支持している軸受である。
【0012】
駆動軸1のトルク伝達片11は、軸心近傍に形成された略U字形の切欠11aによって二股の形状となっており、従動軸2のトルク伝達片21は、駆動軸1のトルク伝達片11の切欠11aに遊嵌可能な扁平な板状に形成されている。このため、トルク伝達片11,21は、互いに十字状に交差させた状態に組み合わせることができるようになっている。
【0013】
駆動軸1と従動軸2とを接続する本形態の軸継手は、継手本体3と、これに軸方向に当接配置される弾性スペーサ4とからなる。
【0014】
継手本体3は、剛材、例えば金属材料あるいは硬質の合成樹脂材料からなるものであって、外周が円筒面をなし、軸方向に貫通した接続孔31が開設されている。この接続孔31は、図3及び図4に示されるように、直径方向に互いに対向する一対の第一突部32,32と、この第一突部32,32とは位相が90度異なる位置で直径方向に互いに対向し相対的に突出高さの大きい第二突部33,33とによって、係合部31a〜31dからなる変形X字状をなしている。各第二突部33は、その山形をなす両側面が、トルク授受面33a,33bとなるものである。
【0015】
係合部31a〜31dは、図4に示される正面形状が、第一突部32,32の対向方向に対して対称な形状であると共に、第二突部33,33の対向方向に対しても対称な形状となっている。言い換えれば、180度対称位置にある係合部31a,31cは互いに回転対称となっており、他の係合部31b,31dは、係合部31a,31cとは逆方向の回転対称となっている。
【0016】
弾性スペーサ4は、図6、図7及び図8に示されるように、金属製の補強体5をインサートしたゴム状弾性材料からなるものであって、外径が継手本体3と略同径の円盤状を呈すると共に一方のトルク伝達片(図示の例では駆動軸1のトルク伝達片)11を挿入可能な長孔状の開口部40が開設されたスペーサ本体部41と、このスペーサ本体部41から軸方向に突出した一対の押圧突部42,42とからなる。
【0017】
詳しくは、押圧突部42,42は、外周側へ90度に開いた略V字形をなして180度対称位置に形成されており、すなわち、それぞれスペーサ本体部41における開口部40の回転対称位置に沿って延びる第一部分42aと、この第一部分42aから直角に延びる第二部分42bとからなる。そして図8に示されるように、第一部分42a,42aの延長面間の間隔X及び第二部分42b,42bの延長面間の間隔Yは、開口部40の幅Wよりも適宜小さいものとなっている。
【0018】
図9は弾性スペーサ4に埋設される補強体5を軸心と平行な方向から見た正面図、図10は側面図である。これら図9及び図10と、図8に示されるように、補強体5は、金属板を打ち抜きプレス成形して製作されたものであって、弾性スペーサ4におけるスペーサ本体部41に埋設される補強環51と、この補強環51の内周における円周方向180度対称位置から突出して軸方向へ屈曲し、弾性スペーサ4における押圧突部42,42に埋設される一対の補強突起52,52からなる。各補強突起52は、押圧突部42と対応して外周側へ90度に開いた略V字形をなす。したがって、各補強突起52は、各押圧突部42を構成する適当な肉厚のゴム層で覆われている。また、図6及び図7に示されるように、スペーサ本体部41の開口部40の内面には、背面側(図7における上側)から、各押圧突部42の第一部分42aの内面へ向けて傾斜した傾斜面41aが形成されている。
【0019】
上記構成の弾性スペーサ4は、金属板を打ち抜きプレス成形した補強体5を、予め加硫接着剤を塗布してから、図示されていない金型キャビティ内にセットして、未加硫ゴム材料を充填し、加熱・加圧することによって、この補強体5を埋設した状態に一体成形することによって製作することができる。
【0020】
なお、図6の背面図に示されるスペーサ本体部41の外周部の円周方向3箇所に形成された凹部41bは、弾性スペーサ4の加硫成形に際して、補強体5をキャビティ内に同心的に位置決めするために、金型に設けられた突起による成形痕であり、スペーサ本体部41の開口部40の内面に、傾斜面41aと隣接して形成された凹部41cは、補強体5を円周方向に対して位置決めして、この補強体5の各補強突起52を押圧突部42の成形位置と対応させるために、金型に設けられた突起による成形痕である。このようにして、補強体5が正確に位置決めされた状態で弾性スペーサ4に埋設されていることにより、回転バランスの高精度化及びトルク伝達性の高精度化が図られている。また、凹部41b,41cでは、防錆の観点から、補強体5の表面を覆うように薄いゴム膜が廻り込んでいることが好ましい。
【0021】
図1及び図2に示されるように、駆動軸1に外装された軸スリーブ12には、トルク伝達片11の外周側を取り囲む環状のハウジング部12aが形成されており、継手本体3及び弾性スペーサ4からなる軸継手は、このハウジング部12aの内周に収容されるようになっている。また、継手本体3の軸方向肉厚と、弾性スペーサ4におけるスペーサ本体部41の軸方向肉厚の和は、トルク伝達片11,12の軸方向突出長さよりも大きいものとなっている。
【0022】
以上のように構成された実施の形態において、継手本体3及び弾性スペーサ4からなる軸継手は、図1及び図2に示されるように、軸方向に互いに対向する駆動軸1と従動軸2の間に介在して、両軸1,2を回転接続するものである。そして図2及び図3に示されるように、弾性スペーサ4は、そのスペーサ本体部41を継手本体3の一端面に当接させると共に、押圧突部42,42を、継手本体3の接続孔31に挿入して第一突部32,32に嵌合させた状態として組み合わされる。
【0023】
この状態では、弾性スペーサ4のスペーサ本体部41に開設された長孔状の開口部40と、継手本体3の接続孔31における係合部31a,31cが、略一致する位相上にある。このため、例えば駆動軸1のトルク伝達片11を、弾性スペーサ4の開口部40を介して継手本体3の接続孔31における係合部31a,31cへ挿入し、駆動軸1と軸方向に対向する従動軸2のトルク伝達片21を、継手本体3の接続孔31における係合部31b,31dに挿入することによって、トルク伝達片11と従動軸2のトルク伝達片21が互いに十字形をなすように組み合わされた状態で、駆動軸1と従動軸2が回転接続される。
【0024】
また、図2に示されるように、弾性スペーサ4のスペーサ本体部41における継手本体3と反対側の端面は、駆動軸1におけるトルク伝達片11が形成された端面13に圧接され、継手本体3における弾性スペーサ4と反対側の端面は、従動軸2におけるトルク伝達片21が形成された端面23に圧接される。そして、先に説明したように、継手本体3とスペーサ本体部41の軸方向肉厚の和は、トルク伝達片11,21の軸方向突出長さよりも大きいため、駆動軸1のトルク伝達片11と従動軸2の端面23、及び従動軸2のトルク伝達片21と駆動軸の端面13は、互いに非接触となっている。
【0025】
なお、図3に破線で示されるように、継手本体3の各第一突部32に嵌合した押圧突部42の第一部分42aと、継手本体3の接続孔31における係合部31a,31cに挿入される駆動軸1のトルク伝達片11との間には、適当な締め代が設定されているが、弾性スペーサ4のスペーサ本体部41における開口部40の内面には、傾斜面41aが形成されているので、駆動軸1のトルク伝達片11を、前記開口部40から継手本体3の接続孔31における係合部31a,31cへ挿入して行くと共に、各押圧突部42の第一部分42aのゴム層に予圧縮を与えて行く過程での挿入抵抗が少ない。このため、組み込み時の作業性が良好なものとなっている。
【0026】
また、図1及び図2とは逆に、継手本体3を駆動軸1側、弾性スペーサ4を従動軸2側へ向けて配置しても良い。
【0027】
ここで、上述のように、継手本体3の各第一突部32に嵌合した押圧突部42の第一部分42aと、継手本体3の接続孔31における係合部31a,31cに挿入された駆動軸1のトルク伝達片11との間には、図3に破線で示される締め代が設定されているため、前記第一部分42aのゴム層が、内部の補強突起52と、トルク伝達片11との間で適当に予圧縮された状態となる。したがって、駆動軸1のトルク伝達片11は、前記第一部分42aのゴム層の圧縮反力によって、継手本体3の第二突部33,33におけるトルク授受面33a,33aに押し付けられる。
【0028】
同様に、押圧突部42の第二部分(開口部40と直角な部分)42bと、継手本体3の接続孔31における係合部31b,31dに挿入された従動軸2のトルク伝達片21との間にも、図3に破線で示されるように、適当な締め代が設定されており、前記第二部分42bのゴム層が、内部の補強突起52と、トルク伝達片21との間で適当に予圧縮された状態となる。したがって、従動軸2のトルク伝達片21は、前記第二部分42bのゴム層の圧縮反力によって、継手本体3の第二突部33,33におけるトルク授受面33b,33bに押し付けられる。
【0029】
このため、駆動軸1が図3における時計回りの方向(矢印R方向)へ回転すると、この駆動軸1におけるトルク伝達片11からのトルクが、第二突部33,33におけるトルク授受面33a,33aから継手本体3へ伝達され、第二突部33,33におけるトルク授受面33a,33aとは反対側のトルク授受面33b,33bから、従動軸2のトルク伝達片21へ伝達されることになる。そしてこの過程では、トルク伝達片11,21は、弾性スペーサ4における押圧突部42の弾性によって、各第二突部33のトルク授受面33a,33bに押し付けられているので、起動・停止時や振動入力によるガタ付きを発生することがなく、これに起因する摩耗や打音の発生も有効に防止される。
【0030】
また、駆動軸1及び従動軸2のトルク伝達片11,21と、継手本体3のトルク授受面33a,33bとによる荷重(トルク)伝達部分には、互いに剛材同士の接触となり、ゴム層が介在しないため、繰り返し荷重入力によるゴム層の劣化や損傷等は起こり得ない。
【0031】
しかも、従動軸2のトルク伝達片21は、駆動軸1のトルク伝達片11の切欠11aに遊嵌され、駆動軸1のトルク伝達片11と従動軸2の端面23、及び従動軸2のトルク伝達片21と駆動軸の端面13が互いに非接触であり、弾性スペーサ4におけるスペーサ本体部41が、駆動軸1の端面13と継手本体3との間で適当な圧縮弾性を付与されていることから、駆動軸1又は従動軸2で発生した軸方向の振動が、スペーサ本体部41のゴム層の変形性によって有効に吸収される。
【0032】
【発明の効果】
請求項1の発明に係る軸継手によれば、剛材からなる継手本体と、ゴム状弾性材料からなる弾性スペーサが軸方向に互いに当接配置され、弾性スペーサに形成された押圧突部の締め代によって、駆動軸のトルク伝達片及び従動軸のトルク伝達片と、継手本体の接続孔とのガタ付きをなくしたため、摩耗や打音の発生を、有効に防止することができ、駆動軸及び従動軸のトルク伝達片と継手本体のトルク授受面とによるトルク伝達部分は互いに剛材同士の接触となり、ゴム層が介在しないため、繰り返し荷重入力によるゴム層の劣化や損傷等が起こり得ない。また、弾性スペーサの軸方向弾性によって、軸方向振動に対する防振性能を奏することができる。
【0033】
請求項2の発明に係る軸継手によれば、弾性スペーサが、補強体を一体に埋設した状態でゴム状弾性材料により成形されたものであるため、適切な強度を確保すると共に、継手本体の接続孔に対する押圧突部の挿入や、駆動軸及び従動軸のトルク伝達片の挿入を容易に行うことができ、かつトルク伝達片に対する締め代を適切に設定することができる。
【図面の簡単な説明】
【図1】本発明に係る軸継手の好ましい実施の形態を、接続対象の回転軸1,2と共に示す分離斜視図である。
【図2】本発明に係る軸継手の好ましい実施の形態による回転軸接続状態を、軸心を通る平面で切断して示す断面図である。
【図3】図2におけるIII−III断面図である。
【図4】本発明に係る軸継手の好ましい実施の形態における継手本体3を軸心と平行な方向から見た正面図である。
【図5】図4におけるV−V断面図である。
【図6】本発明に係る軸継手の好ましい実施の形態における弾性スペーサ4を軸心と平行な方向から見た背面図である。
【図7】図6におけるVII−VII断面図である。
【図8】本発明に係る軸継手の好ましい実施の形態における弾性スペーサ4を軸心と平行な方向から見た正面図である。
【図9】図6の弾性スペーサ4に埋設される補強体5を軸心と平行な方向から見た正面図である。
【図10】図6の弾性スペーサ4に埋設される補強体5の側面図である。
【符号の説明】
1 駆動軸
11,21 トルク伝達片
12 軸スリーブ
2 従動軸
22 軸受
3 継手本体
31 接続孔
31a〜31d 係合部
32 第一突部
33 第二突部
33a,33b トルク授受面
4 弾性スペーサ
40 開口部
41 スペーサ本体部
41a 傾斜面
41b,41c 凹部
42 押圧突部
42a 第一部分
42b 第二部分
5 補強体
51 補強環
52 補強突起
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a shaft coupling that rotationally connects a drive shaft and a driven shaft, such as a drive shaft of an electric motor and a rotary shaft of a hydraulic pump.
[0002]
[Prior art]
As a typical prior art of a shaft coupling that connects a drive shaft of this type of electric motor and a rotary shaft of a hydraulic pump, those described in Patent Documents 1 and 2 below are known.
[0003]
[Patent Document 1]
JP-A-11-101261 (FIGS. 3 and 4)
[Patent Document 2]
Japanese Patent Laid-Open No. 10-122252 (FIGS. 2 (b) and 4)
[0004]
That is, the shaft coupling described in Patent Document 1 is such that a rubber member is interposed between the torque transmission surfaces of the hub at one shaft end and the hub at the other shaft end. The described shaft coupling is made of a material of high hardness necessary for torque transmission, and is formed of a square columnar coupling shaft formed at the shaft end of the drive side (motor side) rotating shaft, and the driven side (deceleration mechanism). A square columnar coupling shaft formed at the shaft end of the rotating shaft on the side of the unit) and a rectangular columnar coupling hole that can be inserted from both sides in the axial direction, and an elastic body such as rubber is formed on the inner surface of the coupling hole The structure formed in the shape is provided.
[0005]
[Problems to be solved by the invention]
According to the above conventional technique, since the rubber is interposed in the torque transmitting portion, it is possible to prevent the generation of annoying hitting sound at the time of starting / stopping the motor, switching between normal / reverse rotation, and the like. However, it has been pointed out that the durability of rubber is reduced by repeated load input by torque.
[0006]
The present invention has been made in view of the above-described problems, and its technical problem is that it is possible to effectively prevent the occurrence of hitting sound and wear between the drive shaft and the driven shaft, and durability. It is to provide a shaft coupling having an excellent structure.
[0007]
[Means for Solving the Problems]
As a means for effectively solving the technical problem described above, the shaft coupling according to the invention of claim 1 includes a joint body made of a rigid material, and a rubber-like elastic material that is in contact with the joint body in the axial direction. A rigid member that is capable of inserting a torque transmission piece of a drive shaft and a torque transmission piece of a driven shaft into the joint body and is in contact with these torque transmission pieces made of a rigid material. A connection hole having a torque transmission / reception surface is formed, and the elastic spacer is provided with an opening into which at least one torque transmission piece can be inserted, and torque transmission between the connection hole and the drive shaft or the driven shaft. A plurality of pressing protrusions that are interposed between the two pieces and press the torque transmitting piece against the torque transfer surface are formed.
[0008]
According to a second aspect of the present invention, in the shaft coupling according to the first aspect, the elastic spacer is reinforced with a reinforcing body, and the reinforcing body is formed with a reinforcing protrusion embedded in the pressing protrusion. Is.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of a shaft coupling according to the present invention will be described in detail with reference to the drawings. 1 is an exploded perspective view showing a shaft joint of this embodiment together with a rotation shaft to be connected, FIG. 2 is a cross-sectional view showing a state where the rotary shaft connected by the shaft joint of this embodiment is cut along a plane passing through the axis, and FIG. 2 is a cross-sectional view taken along the line III-III in FIG. 2, FIG. 4 is a front view of the joint body of the shaft joint of this embodiment as viewed from a direction parallel to the axis, FIG. 5 is a cross-sectional view taken along line VV in FIG. FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. 6, and FIG. 8 is a front view.
[0010]
First, in FIG. 1, FIG. 2 and FIG. 3, reference numerals 1 and 2 are a pair of rotating shafts to be connected by the shaft coupling of this embodiment, respectively, among which the drive shaft 1 is an output shaft of a motor, for example. The driven shaft 2 is a rotating shaft such as a hydraulic pump rotated by the motor or a speed reducer. The shaft ends of the rotary shafts 1 and 2 are opposed to each other in the axial direction.
[0011]
A torque transmission piece 11 that is flat in the diametrical direction and has a predetermined height in the axial direction protrudes from the shaft end of the drive shaft 1, and is similarly flat in the diametrical direction at the shaft end of the driven shaft 2. A torque transmission piece 21 having a predetermined height in the axial direction is projected. Reference numeral 12 in FIG. 2 is a shaft sleeve integrally provided on the outer periphery of the drive shaft 1, and reference numeral 22 is a bearing that rotatably supports the driven shaft 2.
[0012]
The torque transmission piece 11 of the drive shaft 1 has a bifurcated shape by a substantially U-shaped notch 11 a formed in the vicinity of the shaft center, and the torque transmission piece 21 of the driven shaft 2 is the torque transmission piece 11 of the drive shaft 1. It is formed in a flat plate shape that can be loosely fitted in the notch 11a. For this reason, the torque transmission pieces 11 and 21 can be combined in a state of crossing each other in a cross shape.
[0013]
The shaft joint of the present embodiment for connecting the drive shaft 1 and the driven shaft 2 is composed of a joint main body 3 and an elastic spacer 4 disposed in contact with the joint body 3 in the axial direction.
[0014]
The joint body 3 is made of a rigid material, for example, a metal material or a hard synthetic resin material, and has an outer periphery forming a cylindrical surface, and a connection hole 31 penetrating in the axial direction is opened. As shown in FIGS. 3 and 4, the connection hole 31 has a pair of first protrusions 32 and 32 that are opposed to each other in the diametrical direction, and the first protrusions 32 and 32 are 90 degrees out of phase. The second protrusions 33 and 33 that are opposed to each other in the diametrical direction and have a relatively large protrusion height form a deformed X-shape including the engaging portions 31a to 31d. As for each 2nd protrusion 33, the both sides | surfaces which make the mountain form become torque transfer surfaces 33a and 33b.
[0015]
The engaging portions 31a to 31d have a front shape shown in FIG. 4 that is symmetric with respect to the opposing direction of the first protrusions 32 and 32, and with respect to the opposing direction of the second protrusions 33 and 33. Is also symmetrical. In other words, the engaging portions 31a and 31c in the 180-degree symmetry position are rotationally symmetric with each other, and the other engaging portions 31b and 31d are rotationally symmetric in the opposite direction to the engaging portions 31a and 31c. Yes.
[0016]
As shown in FIGS. 6, 7, and 8, the elastic spacer 4 is made of a rubber-like elastic material with a metal reinforcing body 5 inserted therein, and has an outer diameter that is substantially the same as that of the joint body 3. A spacer main body 41 having a disk shape and having an elongated opening 40 into which one torque transmission piece (torque transmission piece of the drive shaft 1 in the illustrated example) 11 can be inserted, and the spacer main body 41 And a pair of pressing protrusions 42 and 42 protruding in the axial direction.
[0017]
Specifically, the pressing protrusions 42 and 42 are substantially V-shaped and opened at 90 degrees toward the outer peripheral side, and are formed at 180 degrees symmetrical positions, that is, the rotationally symmetric positions of the openings 40 in the spacer main body 41 respectively. And a second portion 42b extending perpendicularly from the first portion 42a. And as FIG. 8 shows, the space | interval X between the extended surfaces of 1st part 42a, 42a and the space | interval Y between the extended surfaces of 2nd part 42b, 42b become a thing suitably smaller than the width W of the opening part 40. As shown in FIG. ing.
[0018]
FIG. 9 is a front view of the reinforcing body 5 embedded in the elastic spacer 4 as seen from a direction parallel to the axis, and FIG. 10 is a side view. As shown in FIGS. 9 and 10 and FIG. 8, the reinforcing body 5 is manufactured by punching and pressing a metal plate, and is reinforced in the spacer main body 41 of the elastic spacer 4. From the ring 51 and a pair of reinforcing protrusions 52, 52 that protrude from a symmetrical position in the circumferential direction of the inner periphery of the reinforcing ring 51 and bend in the axial direction, and are embedded in the pressing protrusions 42, 42 of the elastic spacer 4. Become. Each reinforcing protrusion 52 has a substantially V-shape corresponding to the pressing protrusion 42 and opened 90 degrees toward the outer peripheral side. Accordingly, each reinforcing protrusion 52 is covered with a rubber layer having an appropriate thickness that constitutes each pressing protrusion 42. As shown in FIGS. 6 and 7, the inner surface of the opening 40 of the spacer body 41 is directed from the back side (upper side in FIG. 7) toward the inner surface of the first portion 42 a of each pressing protrusion 42. An inclined surface 41a is formed.
[0019]
The elastic spacer 4 having the above-described configuration is obtained by applying a vulcanized adhesive in advance to a reinforcing body 5 obtained by punching a metal plate and press-molding it, and then setting the unvulcanized rubber material in a mold cavity (not shown). By filling, heating and pressurizing, the reinforcing body 5 can be integrally formed in an embedded state.
[0020]
In addition, the concave portions 41b formed at three locations in the circumferential direction of the outer peripheral portion of the spacer main body portion 41 shown in the rear view of FIG. 6 are concentric with the reinforcing body 5 in the cavity when the elastic spacer 4 is vulcanized. A recess 41c formed on the inner surface of the opening 40 of the spacer main body 41 adjacent to the inclined surface 41a is formed by a protrusion provided on the mold for positioning. In order to position each reinforcing protrusion 52 of the reinforcing body 5 to correspond to the forming position of the pressing protrusion 42, the forming marks are formed by protrusions provided on the mold. In this way, the reinforcing body 5 is embedded in the elastic spacer 4 in a state where the reinforcing body 5 is accurately positioned, so that the rotational balance is highly accurate and the torque transmission property is highly accurate. In addition, in the recesses 41b and 41c, it is preferable that a thin rubber film surrounds the surface of the reinforcing body 5 from the viewpoint of rust prevention.
[0021]
As shown in FIGS. 1 and 2, the shaft sleeve 12 that is externally mounted on the drive shaft 1 is formed with an annular housing portion 12 a that surrounds the outer peripheral side of the torque transmission piece 11. The shaft coupling composed of 4 is accommodated in the inner periphery of the housing portion 12a. The sum of the axial thickness of the joint body 3 and the axial thickness of the spacer body 41 of the elastic spacer 4 is larger than the axial protruding length of the torque transmitting pieces 11 and 12.
[0022]
In the embodiment configured as described above, the shaft coupling composed of the coupling body 3 and the elastic spacer 4 is composed of the drive shaft 1 and the driven shaft 2 that are opposed to each other in the axial direction, as shown in FIGS. The both shafts 1 and 2 are rotationally connected with an intervening therebetween. As shown in FIGS. 2 and 3, the elastic spacer 4 causes the spacer body 41 to abut one end surface of the joint body 3, and the pressing protrusions 42, 42 are connected to the connection holes 31 of the joint body 3. The first protrusions 32 and 32 are combined and inserted into the first protrusions 32 and 32.
[0023]
In this state, the long hole-shaped opening 40 formed in the spacer main body 41 of the elastic spacer 4 and the engaging portions 31 a and 31 c in the connection hole 31 of the joint main body 3 are on substantially the same phase. For this reason, for example, the torque transmission piece 11 of the drive shaft 1 is inserted into the engagement portions 31 a and 31 c in the connection hole 31 of the joint body 3 through the opening 40 of the elastic spacer 4 and faces the drive shaft 1 in the axial direction. By inserting the torque transmission piece 21 of the driven shaft 2 into the engaging portions 31b and 31d in the connection hole 31 of the joint body 3, the torque transmission piece 11 and the torque transmission piece 21 of the driven shaft 2 form a cross shape. In such a combined state, the drive shaft 1 and the driven shaft 2 are rotationally connected.
[0024]
As shown in FIG. 2, the end surface of the elastic spacer 4 opposite to the joint body 3 in the spacer body 41 is pressed against the end surface 13 of the drive shaft 1 on which the torque transmission piece 11 is formed. The end face on the opposite side to the elastic spacer 4 is pressed against the end face 23 on the driven shaft 2 where the torque transmitting piece 21 is formed. As described above, the sum of the axial thicknesses of the joint main body 3 and the spacer main body 41 is larger than the axial protruding length of the torque transmission pieces 11, 21, and thus the torque transmission piece 11 of the drive shaft 1. The end surface 23 of the driven shaft 2 and the torque transmission piece 21 of the driven shaft 2 and the end surface 13 of the drive shaft 1 are not in contact with each other.
[0025]
3, the first portions 42a of the pressing protrusions 42 fitted to the first protrusions 32 of the joint body 3 and the engaging portions 31a and 31c in the connection holes 31 of the joint body 3 are indicated by broken lines. An appropriate tightening allowance is set between the torque transmission piece 11 of the drive shaft 1 inserted into the inner surface of the opening 40 in the spacer main body 41 of the elastic spacer 4 and an inclined surface 41a. Since it is formed, the torque transmission piece 11 of the drive shaft 1 is inserted into the engaging portions 31a and 31c in the connection hole 31 of the joint body 3 from the opening 40, and the first portion of each pressing protrusion 42. There is little insertion resistance in the process of giving pre-compression to the rubber layer of 42a. For this reason, the workability at the time of incorporation is good.
[0026]
1 and 2, the joint body 3 may be disposed with the drive shaft 1 side and the elastic spacer 4 with the driven shaft 2 side.
[0027]
Here, as described above, the first portion 42 a of the pressing protrusion 42 fitted to each first protrusion 32 of the joint body 3 and the engaging portions 31 a and 31 c in the connection hole 31 of the joint body 3 are inserted. 3 is set between the torque transmission piece 11 of the drive shaft 1 and the rubber layer of the first portion 42a is formed between the reinforcing protrusion 52 inside and the torque transmission piece 11. It will be in the state precompressed appropriately between. Therefore, the torque transmission piece 11 of the drive shaft 1 is pressed against the torque transmitting and receiving surfaces 33a and 33a of the second protrusions 33 and 33 of the joint body 3 by the compression reaction force of the rubber layer of the first portion 42a.
[0028]
Similarly, the second portion (portion perpendicular to the opening 40) 42b of the pressing protrusion 42 and the torque transmission piece 21 of the driven shaft 2 inserted into the engaging portions 31b and 31d in the connection hole 31 of the joint body 3 Also, as shown by a broken line in FIG. 3, an appropriate tightening allowance is set, and the rubber layer of the second portion 42 b is interposed between the reinforcing protrusion 52 inside and the torque transmission piece 21. It is in a pre-compressed state appropriately. Accordingly, the torque transmitting piece 21 of the driven shaft 2 is pressed against the torque transmitting / receiving surfaces 33b and 33b of the second protrusions 33 and 33 of the joint body 3 by the compression reaction force of the rubber layer of the second portion 42b.
[0029]
For this reason, when the drive shaft 1 rotates in the clockwise direction in FIG. 3 (arrow R direction), the torque from the torque transmission piece 11 on the drive shaft 1 is changed to the torque transmission / reception surface 33a, 33a is transmitted to the joint body 3, and is transmitted to the torque transmitting piece 21 of the driven shaft 2 from the torque transmitting / receiving surfaces 33b and 33b on the opposite side of the torque transmitting / receiving surfaces 33a and 33a of the second protrusions 33 and 33. Become. In this process, the torque transmission pieces 11 and 21 are pressed against the torque transfer surfaces 33a and 33b of the second protrusions 33 by the elasticity of the pressing protrusions 42 in the elastic spacer 4, so There is no play due to vibration input, and the occurrence of wear and sound due to this is effectively prevented.
[0030]
In addition, the load (torque) transmission portions formed by the torque transmission pieces 11 and 21 of the drive shaft 1 and the driven shaft 2 and the torque transmitting and receiving surfaces 33a and 33b of the joint body 3 are in contact with each other, and a rubber layer is formed between them. Since there is no interposition, the rubber layer cannot be deteriorated or damaged due to repeated load input.
[0031]
Moreover, the torque transmission piece 21 of the driven shaft 2 is loosely fitted in the notch 11 a of the torque transmission piece 11 of the drive shaft 1, and the torque of the torque transmission piece 11 of the drive shaft 1, the end surface 23 of the driven shaft 2, and the torque of the driven shaft 2. The transmission piece 21 and the end surface 13 of the drive shaft 1 are not in contact with each other, and the spacer main body 41 of the elastic spacer 4 is given appropriate compression elasticity between the end surface 13 of the drive shaft 1 and the joint main body 3. Therefore, the axial vibration generated in the drive shaft 1 or the driven shaft 2 is effectively absorbed by the deformability of the rubber layer of the spacer body 41.
[0032]
【The invention's effect】
According to the shaft coupling of the first aspect of the invention, the joint body made of a rigid material and the elastic spacer made of a rubber-like elastic material are arranged in contact with each other in the axial direction, and the pressing protrusion formed on the elastic spacer is tightened. By eliminating the backlash between the torque transmission piece of the drive shaft and the torque transmission piece of the driven shaft, and the connection hole of the joint body, it is possible to effectively prevent the occurrence of wear and hitting sound. Torque transmission portions of the torque transmission piece of the driven shaft and the torque transmission / reception surface of the joint body are in contact with each other, and no rubber layer is interposed between them. Therefore, deterioration or damage of the rubber layer due to repeated load input cannot occur. Moreover, the anti-vibration performance with respect to axial vibration can be exhibited by the axial elasticity of the elastic spacer.
[0033]
According to the shaft coupling according to the invention of claim 2, since the elastic spacer is formed of a rubber-like elastic material in a state in which the reinforcing body is embedded integrally, it is possible to secure appropriate strength and It is possible to easily insert the pressing protrusions into the connection holes and the torque transmission pieces of the drive shaft and the driven shaft, and set the tightening allowance for the torque transmission pieces appropriately.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a preferred embodiment of a shaft coupling according to the present invention together with rotating shafts 1 and 2 to be connected.
FIG. 2 is a cross-sectional view showing a connecting state of a rotary shaft according to a preferred embodiment of the shaft coupling according to the present invention, cut along a plane passing through the axis.
3 is a cross-sectional view taken along line III-III in FIG.
FIG. 4 is a front view of the joint body 3 in a preferred embodiment of the shaft joint according to the present invention as seen from a direction parallel to the axis.
5 is a cross-sectional view taken along line VV in FIG.
FIG. 6 is a rear view of the elastic spacer 4 in a preferred embodiment of the shaft coupling according to the present invention as viewed from a direction parallel to the axis.
7 is a sectional view taken along line VII-VII in FIG.
FIG. 8 is a front view of an elastic spacer 4 in a preferred embodiment of a shaft coupling according to the present invention as viewed from a direction parallel to the axis.
9 is a front view of the reinforcing body 5 embedded in the elastic spacer 4 of FIG. 6 as viewed from a direction parallel to the axis.
10 is a side view of the reinforcing body 5 embedded in the elastic spacer 4 of FIG. 6. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Drive shaft 11, 21 Torque transmission piece 12 Shaft sleeve 2 Drive shaft 22 Bearing 3 Joint main body 31 Connection hole 31a-31d Engagement part 32 First protrusion 33 Second protrusion 33a, 33b Torque transfer surface 4 Elastic spacer 40 Opening Portion 41 Spacer body 41a Inclined surfaces 41b and 41c Recess 42 Pressing protrusion 42a First portion 42b Second portion 5 Reinforcement body 51 Reinforcement ring 52 Reinforcement protrusion

Claims (2)

剛材からなる継手本体(3)と、ゴム状弾性材料からなり前記継手本体(3)に軸方向に当接配置される弾性スペーサ(4)とを備え、前記継手本体(3)には、駆動軸(1)のトルク伝達片(11)及び従動軸(2)のトルク伝達片(21)を挿入可能であって剛材からなるこれらのトルク伝達片(11,21)と互いに接触される、剛材からなるトルク授受面(33a,33b)を有する接続孔(31)が開設され、前記弾性スペーサ(4)には、少なくとも一方のトルク伝達片(11)を挿入可能な開口部(40)が開設されると共に、前記接続孔(31)と前記駆動軸(1)又は従動軸(2)のトルク伝達片(21)との間に介在されて前記トルク伝達片(11,21)を前記トルク授受面(33a,33b)に押し付ける複数の押圧突部(42)が形成されたことを特徴とする軸継手。A joint body (3) made of a rigid material, and an elastic spacer (4) made of a rubber-like elastic material and arranged in axial contact with the joint body (3), the joint body (3) The torque transmission piece (11) of the drive shaft (1) and the torque transmission piece (21) of the driven shaft (2) can be inserted and come into contact with these torque transmission pieces (11, 21) made of a rigid material. A connection hole (31) having a torque transmitting / receiving surface (33a, 33b) made of a rigid material is opened, and an opening (40) into which at least one torque transmission piece (11) can be inserted into the elastic spacer (4). ) Is opened, and the torque transmission piece (11, 21) is interposed between the connection hole (31) and the torque transmission piece (21) of the drive shaft (1) or the driven shaft (2). A plurality of presses to be pressed against the torque transfer surfaces (33a, 33b) Shaft coupling, characterized in that the projection (42) is formed. 弾性スペーサ(4)が補強体(5)で補強され、この補強体(5)には押圧突部(42)の内部に埋設された補強突起(52)が形成されたことを特徴とする請求項1に記載の軸継手。The elastic spacer (4) is reinforced by a reinforcing body (5), and a reinforcing protrusion (52) embedded in the inside of the pressing protrusion (42) is formed on the reinforcing body (5). Item 10. The shaft coupling according to Item 1.
JP2003121213A 2003-04-25 2003-04-25 Shaft coupling Expired - Fee Related JP4412454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121213A JP4412454B2 (en) 2003-04-25 2003-04-25 Shaft coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121213A JP4412454B2 (en) 2003-04-25 2003-04-25 Shaft coupling

Publications (2)

Publication Number Publication Date
JP2004324780A JP2004324780A (en) 2004-11-18
JP4412454B2 true JP4412454B2 (en) 2010-02-10

Family

ID=33499852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121213A Expired - Fee Related JP4412454B2 (en) 2003-04-25 2003-04-25 Shaft coupling

Country Status (1)

Country Link
JP (1) JP4412454B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6400499B2 (en) * 2015-02-09 2018-10-03 Dmg森精機株式会社 Tool fixing structure of turret device in machine tool
CN105125105B (en) * 2015-08-31 2017-10-13 浙江省上虞油封制造有限公司 Household electrical appliances tool rest motor connectors
US11015656B2 (en) 2016-08-08 2021-05-25 Nsk Ltd. Torque transmission joint and electric power steering device
CN109790873B (en) * 2016-10-13 2021-08-31 日本精工株式会社 Torque transmission joint and electric power steering device

Also Published As

Publication number Publication date
JP2004324780A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
US20170175821A1 (en) Torque transmission joint and electric power steering device
JP4545163B2 (en) Tube pump and pump rotor
US9334903B2 (en) Rotation transmitting member, coupling directly connected to shafts, and shaft connecting mechanism
JP2006275178A (en) Electromagnetic clutch
JPH09240494A (en) Elastic joint in steering device
JP4412454B2 (en) Shaft coupling
JP4073688B2 (en) Power transmission mechanism
JPH09166168A (en) Floating disc brake
JP2004068846A (en) Shaft coupling
JP2007263315A (en) Pulley
JPH09264330A (en) Elastic flexible shaft coupling
JP4336923B2 (en) Flexible coupling
JP2001041308A (en) Power transmission device
JP3731236B2 (en) Torsion damper
JP2004068943A (en) Shaft coupling
JP3835501B2 (en) Elastic coupling
JP2002276777A (en) Power transmitting device
JP5319228B2 (en) Torsional vibration reduction device
JP4102950B2 (en) Electric motor rotor
JP3904301B2 (en) Power transmission mechanism
JP2004068944A (en) Rotary shaft connecting structure
JP4038948B2 (en) Power transmission device
JP2532940Y2 (en) clutch
JP4304388B2 (en) Electric motor rotor
JP2004044709A (en) Shaft joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees