JP4410354B2 - Li-absorbing glass for chemical strengthening, and method for producing chemically strengthened glass using Li-absorbing glass for chemical strengthening - Google Patents

Li-absorbing glass for chemical strengthening, and method for producing chemically strengthened glass using Li-absorbing glass for chemical strengthening Download PDF

Info

Publication number
JP4410354B2
JP4410354B2 JP30822699A JP30822699A JP4410354B2 JP 4410354 B2 JP4410354 B2 JP 4410354B2 JP 30822699 A JP30822699 A JP 30822699A JP 30822699 A JP30822699 A JP 30822699A JP 4410354 B2 JP4410354 B2 JP 4410354B2
Authority
JP
Japan
Prior art keywords
glass
chemical strengthening
absorbing
molten salt
absorbing glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30822699A
Other languages
Japanese (ja)
Other versions
JP2001130923A (en
Inventor
浩一 佐藤
一雄 立和名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP30822699A priority Critical patent/JP4410354B2/en
Publication of JP2001130923A publication Critical patent/JP2001130923A/en
Application granted granted Critical
Publication of JP4410354B2 publication Critical patent/JP4410354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、化学強化の際に母材ガラスからイオン交換によって溶融塩中に溶出するLiを吸収する機能を有するLi吸収ガラス等に関し、特に、化学強化に適した化学強化用Li吸収ガラス、及びこの化学強化用Li吸収ガラスを用いた化学強化ガラスの製造方法等に関する。
【0002】
【従来の技術】
ガラス基板等の強度を向上させる目的で、ガラス基板等の表面を化学強化処理することが知られている。詳しくは、耐衝撃性(落下に対する強度を含む)や耐振動性などの機械的強度を向上させ衝撃や振動によってガラス基板等が破損するのを防止する目的で、ガラス基板の表面に低温イオン交換法による化学強化処理を施すことが知られている。
【0003】
化学強化処理は、例えば、Liイオンを含んだ母材ガラスをNaイオン及び/又はKイオンを含んだ溶融塩中に浸漬することにより、母材ガラス中のLiイオンを、Liイオンよりもイオン半径の大きいNa、Kイオンでイオン交換により置換して、ガラス表面層に強い圧縮応力を発生させて強度を増大させる処理である。
【0004】
【発明が解決しようとする課題】
しかし、化学強化のイオン交換反応により、母材ガラス中のLiイオンが溶融塩中に溶出し、処理回数が増すごとに溶融塩中のLi濃度は増加するため、化学強化のイオン交換がおこりづらくなり、所定の機械強度等が得られないという問題がある。
この問題を解決するため、特公平6−71521号公報では、溶融塩中に溶出したLiイオンをγアルミナからなる吸着剤を用いて除去する技術が提案されているが、Liイオンを吸収できる量が限られていて、ある一定期間の後Li濃度は上昇を始める問題がある。
また、特開昭64−24053号公報には、イオン交換による屈折率分布ガラスを製造する際に、溶融塩中に溶出したイオンを、イオン吸収ガラスで吸収する技術が開示されている。しかしながら、かかる技術は、不適切な成分を含むことによる弊害があり、また、イオン交換による屈折率分布ガラスを製造することが目的であるため、化学強化を目的としたイオン交換においてそのまま適用することはできない。
【0005】
本発明は上述した背景の下になされたものであり、化学強化に適した化学強化用Liイオン吸収ガラス等の提供を第一の目的とする。
また、化学強化用Liイオン吸収ガラスを用いた化学強化ガラスの製造方法の提供を第二の目的とする。
さらに、イオン交換速度等の性能を向上させたLiイオン吸収ガラス等の提供を第三の目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために本発明は、以下の構成としてある。
【0007】
(構成1)Li2Oを含んだガラスを、Na2O及び/又はK2Oを含んだ溶融塩で化学強化する際、溶融塩中に溶出したLiイオンを吸収する目的で溶融塩中に浸漬される化学強化用Li吸収ガラスであって、Na2Oを20wt%以上含有する化学強化用Li吸収ガラス。
【0008】
(構成2)Li2Oを含んだガラスを、Na2O及び/又はK2Oを含んだ溶融塩で化学強化する際、溶融塩中に溶出したLiイオンを吸収する目的で溶融塩中に浸漬される化学強化用Li吸収ガラスであって、Na2Oを20〜40wt%、SiO2を30〜60wt%主として含有する化学強化用Li吸収ガラス。
【0009】
(構成3)Li2Oを含んだガラスを、Na2O及び/又はK2Oを含んだ溶融塩で化学強化する際、溶融塩中に溶出したLiイオンを吸収する目的で溶融塩中に浸漬される化学強化用Li吸収ガラスであって、Na2Oを23〜40wt%、SiO2を30〜60wt%主として含有する化学強化用Li吸収ガラス。
【0010】
(構成4)Li2Oを含んだガラスを、Na2O及び/又はK2Oを含んだ溶融塩で化学強化する際、溶融塩中に溶出したLiイオンを吸収する目的で溶融塩中に浸漬される化学強化用Li吸収ガラスであって、Na2Oを25〜40wt%、SiO2を30〜60wt%、主として含有する化学強化用Li吸収ガラス。
【0011】
(構成5)K2Oを0〜15wt%、Cs2Oを0〜15wt%、MgOを0〜15wt%、CaOを0〜15wt%、SrOを0〜15wt%、ZnOを0〜15wt%、TiO2を0〜15wt%、Nb25を0〜15wt%、Ta25を0〜15wt%、La23を0〜15wt%、Y23を0〜15wt%、Yb23を0〜15wt%、Gd23を0〜15wt%、Al23を0〜15wt%、WO3を0〜15wt%、Sb23を0〜15wt%、As23を0〜15wt%、ZrO2を0〜15wt%、TeO2を0〜15wt%、Bi23を0〜15wt、B23を0〜4wt%、BaOを0〜4wt%、PbOを0〜3wt%、含有することを特徴とする構成1乃至4のいずれかに記載の化学強化用Li吸収ガラス。
【0012】
(構成6)B23、PbO、BaO及びLi2Oのうちの一以上の成分を実質的に含まないことを特徴とする構成1乃至5のいずれかに記載の化学強化用Li吸収ガラス。
【0013】
(構成7)母材ガラスとして化学強化の強度が十分得られる量のLiイオンを含むガラスを用い、構成1乃至6のいずれかに記載の化学強化用Li吸収ガラスを用いて、これらをNa2O及び/又はK2Oを含んだ溶融塩に浸漬して母材ガラスの化学強化を行うことを特徴とする化学強化ガラスの製造方法。
【0014】
(構成8)Li2Oを含んだガラスをイオン交換する際、溶融塩中に溶出したLiイオンを吸収する目的で溶融塩中に浸漬されるLi吸収ガラスにおいて、Na2Oを20wt%以上含有し、SiO2、P25及びGeO2のうちのいずれかを30〜60wt%含有し、かつ、K2Oを0〜15wt%、Cs2Oを0〜15wt%、MgOを0〜15wt%、CaOを0〜15wt%、SrOを0〜15wt%、ZnOを0〜15wt%、TiO2を0〜15wt%、Nb25を0〜15wt%、Ta25を0〜15wt%、La23を0〜15wt%、Y23を0〜15wt%、Yb23を0〜15wt%、Gd23を0〜15wt%、Al23を0〜15wt%、WO3を0〜15wt%、Sb23を0〜15wt%、As23を0〜15wt%、ZrO2を0〜15wt%、TeO2を0〜15wt%、Bi23を0〜15wt、B23を0〜4wt%、BaOを0〜4wt%、PbOを0〜3wt%、含有することを特徴とするLi吸収ガラス。
【0015】
(構成9)B23、PbO、BaO及びLi2Oのうちの一以上の成分を実質的に含まないことを特徴とする構成8に記載のLi吸収ガラス。
【0016】
【作用】
本発明の化学強化用Liイオン吸収ガラスは、Na2Oを多く含んでおり、化学強化条件下で、Liイオン吸収ガラス中のNa2O含有量が多くなるほど、Liイオンの吸収スピードが増し、Liイオンの吸収量が増えるので、溶融塩中のLiイオン濃度を常に低く保つことができ、これにより所定の機械的強度及び圧縮応力層の深さを有する化学強化ガラスが得られる。また、本発明の化学強化用Liイオン吸収ガラスは、不適切な成分を含まない、あるいは不適切な成分が少ないので、イオン交換速度や化学的耐久性等の性能を低下させることがない。
【0017】
また、本発明の化学強化ガラスの製造方法によれば、母材ガラスとして化学強化の強度が十分得られる量のLiイオンを含むガラスを用い、かつ、上記本発明の化学強化用Liイオン吸収ガラスを用いているので、所定の機械的強度及び圧縮応力層の深さを有する化学強化ガラスが得られる。
また、溶融塩中のLiイオン濃度を上げない効果があり、Liイオン濃度が高くなった溶融塩を交換する必要がないので製造効率がよい。
【0018】
さらに、本発明のLiイオン吸収ガラスによれば、不適切な成分を含まない、あるいは不適切な成分が少ないので、イオン交換速度や化学的耐久性等の性能を向上させたLiイオン吸収ガラスが得られる。
【0019】
以下、本発明を詳細に説明する。
本発明の化学強化用Liイオン吸収ガラス及び本発明のLiイオン吸収ガラスにおける含有量の限定理由は以下のとおりである。
【0020】
Na2Oはイオン交換、特に化学強化時のイオン交換の際、溶融塩中に溶出するLiイオンと再度イオン交換させる成分として必須成分である。Na2OはLi吸収ガラス中の含有量が多くなるほど溶融塩中のLiを吸収するスピード、Liを吸収する絶対量が増加することがわかった。特に化学強化時のイオン交換の際、溶融塩中のLiを吸収するスピードが重要となる。これは、溶融塩中のLiを吸収するスピードが大きいと、溶融塩中のLiイオン濃度を常に低く保つことができるからである。これらのことから、Na2Oは20wt%以上含有させることが好ましい。またNa2Oが40wt%を越えるとガラス化しなくなるか、ガラスの化学的耐久性が低下しLi吸収ガラス自体が溶融塩に溶けてしまう可能性がある。よって上限は40wt%以下とすることが好ましい。より好ましいNa2Oの含有量は23〜40wt%で、さらに好ましくは25〜40wt%である。
【0021】
SiO2はガラス形成成分として、またNa2Oを20〜40wt%と多く含有してもガラス化し、かつ溶融塩に対する化学的耐久性を強くする成分として含有することが好ましい。SiO2の好ましい含有量は30〜60wt%の範囲である。
ガラス形成成分としてはSiO2の代わりにP25、GeO2を用いても構わない。P25、GeO2の好ましい含有量はそれぞれ30〜60wt%の範囲である。
【0022】
23はガラス形成成分として添加すると溶融塩に対する化学的耐久性が悪くなり、ガラス成分が溶融塩中に溶出するため、B23:4wt%以下とすることが好ましく、B23:1wt%以下とすることがさらに好ましく、さらには、B23は実質的に含有しないことが最も好ましい。
【0023】
Li吸収ガラスにLiが含まれるとLiの吸収を阻害することから、Li吸収ガラスはLiイオンを含有しないことが好ましい。特に、化学強化用Liイオン吸収ガラスにおいては、短時間で化学強化し、所定の強度及び圧縮応力層(歪み層)の深さを得るため、Liイオンを含有しないことが好ましい。
【0024】
他の任意成分としては、K2O、Cs2O、MgO、CaO、SrO、BaO、PbO、ZnO、TiO2、Nb25、Ta25、La23、Y23、Yb23、Gd23、Al23、WO3、Sb23、As23、ZrO2、TeO2、Bi23がそれぞれ0〜15wt%の範囲で添加可能である。
ただし、BaO、PbOはLi2Oのイオン変換速度を低下させるため、BaO:4wt%以下、PbO:3wt%以下とすることが好ましく、BaO:1wt%以下、PbO:1wt%以下とすることがさらに好ましく、さらには、BaO、PbOは実質的に含有しないことが最も好ましい。
【0025】
なお、本発明のLi吸収ガラスの組成は、母材ガラスの組成とは関係がなく、Liを吸収する能力等が高く、不適切な成分を含まないガラス組成であればよい。
【0026】
本発明の化学強化ガラスの製造方法においては、母材ガラスとして化学強化の強度が十分得られる量のLiイオンを含むガラスを用いることが必要である。
このような母材ガラスの組成としては、例えば、Li2O:8〜13wt%、SiO2:76〜84wt%、Al23:1〜7wt%、Na2O:0〜3wt%、K2O:0〜6wt%、B23:0〜3wt%含有し、MgO、CaO、SrO、BaO、PbO、ZnOのうちの一種以上を0〜5wt%含有する母材ガラス(以下母材ガラス1と記す)等が挙げられる。
【0027】
母材ガラスの他の組成としては、例えば、SiO2:62〜75重量%、Al23:5〜15重量%、Li2O:4〜10重量%、Na2O:4〜12重量%、ZrO2:5.5〜15重量%を主成分として含有するとともに、Na2O/ZrO2の重量比が0.5〜2.0、Al23/ZrO2の重量比が0.4〜2.5であるアルミノシリケートガラス(以下母材ガラス2と記す)等が挙げられる。
また、ZrO2の未溶解物が原因で生じるガラス基板表面の突起をなくすためには、モル%表示で、SiO2を57〜74%、ZrO2を0〜2.8%、Al23を3〜15%、LiO2を7〜16%、Na2Oを4〜14%、含有するアルミノシリケートガラス(以下母材ガラス3と記す)等が好ましい。
母材ガラスのさらに他の組成としては、例えば、以下に示すガラスが挙げられる。
wt%で、SiO2:61〜75%、Al23:10〜22%、Li2O:4〜8%、Na2O:10.1〜15%、含有するアルミノシリケートガラス(以下母材ガラス4と記す)。
モル%で、SiO2:35〜70%、Al23:0〜15%、Li2O+Na2O:3〜30%、CaO:1〜45%、CaO+MgO:3〜45%、TiO2:0.1〜30%、含有するアルミノシリケートガラス(以下母材ガラス5と記す)。
このようなアルミノシリケートガラスは、化学強化することによって、表層に生じる圧縮応力、内部に生じる引張応力、圧縮応力層の深さの三者のバランスに優れるとともに、抗折強度や、耐熱性に優れ、高温環境下であってもNaの析出がないとともに平坦性を維持し、ヌープ硬度にも優れる。このようなアルミノシリケートガラスは、例えば、磁気記録媒体用のガラス基板として適する。
【0028】
なお、化学強化ガラスの製造方法においては、母材ガラスとLiイオン吸収ガラスとは、組成が異なる。
【0029】
本発明の化学強化ガラスの製造方法において、Na2O及び/又はK2Oを含んだ溶融塩で化学強化する際の条件としては、上記母材ガラス1の場合は、溶融塩の温度:280〜490℃、処理時間:数時間〜十数時間が好ましく、溶融塩の温度:300〜450℃、処理時間:2時間〜8時間がさらに好ましい。この条件であると、強度と圧縮応力層の深さのバランスに優れる。特に、溶融塩の温度:400℃程度、処理時間:8時間程度であると、強度が大きく、圧縮応力層の深さも深くなるので好ましい。
同様に、上記母材ガラス2〜5の場合は、溶融塩の温度:280℃〜歪点以下、処理時間:数分〜数十時間が好ましく、溶融塩の温度:300〜500℃、処理時間:数分〜十数時間がさらに好ましい。
【0030】
【実施例】
以下、実施例に基づき本発明をさらに具体的に説明する。
(実施例1〜15及び比較例1〜2)
表1及び表2(表1のつづき)に示す実施例1〜15の調合組成(重量%)に従ってLi吸収ガラスを作成した。調合原料は炭酸塩、硝酸塩、酸化物のいずれも使用可能で、これらの原料を所望の割合に秤取し、混合して調合原料とし、これを1100℃〜1450℃に加熱した溶解炉に投入し、溶解、清澄、撹拌し、均一化してから鋳型にキャストした。
これらのLi吸収ガラスを予めLiイオンを添加した溶融塩中に浸漬し、溶融塩中のLiイオン濃度を調べた。また、これらのLiイオン吸収ガラスと表1及び表2に示す母材ガラスを溶融塩中に浸漬し、母材ガラスの抗折強度及び圧縮応力層の深さを調べた。これらの結果を表1及び表2(表1のつづき)に示す。
【0031】
【表1】

Figure 0004410354
【表2】
Figure 0004410354
【0032】
表1及び表2におけるLiイオン濃度は、上記で得られたLiイオン吸収ガラスを細かく粉砕して2.8mm角を通過し1mm角にとどまる大きさの粉末を試料とし、KNO3:NaNO3=1:1の溶融塩中に、Liイオンを300ppm、Liイオン吸収ガラスを溶融塩重量に対して10%添加して、400℃で10日間保持後の溶融塩中のLiイオン濃度を示している。
【0033】
表1及び表2の結果より、予め溶融塩中に添加したLiイオンは、Li吸収ガラスの作用により吸収され、溶融塩中のLiイオン濃度は大きく低下することが確認された。また、Li吸収ガラス中のNa2O量が多いほど、溶融塩中のLi濃度が低くなることも確認された。
【0034】
抗折強度1及び圧縮応力層の深さは、表1及び表2に示す組成の母材ガラスからなる抗折強度試験用標準試料(大きさ40×3mm、厚さ1mmで、両面研磨したもの)を、KNO3:NaNO3=1:1の溶融塩中でLiイオンが無い初期状態から、400℃×8hrの条件で化学強化を行ったときの抗折強度及び圧縮応力層の深さの結果である。
抗折強度2は、Li吸収ガラスを細かく粉砕して2.8mm角を通過し1mm角にとどまる大きさの粉末を試料とし、この粉末Li吸収ガラスを溶融塩重量に対して10%添加して、Liイオンは化学強化により50ppm/day溶出すると仮定して、Liイオンを50ppm/day添加して400℃×30日後に400℃×8hr化学強化を行い、抗折強度を測定した結果であり、抗折強度3はさらにLiイオンを50ppm/day添加して60日後に400℃×8hr化学強化を行い、抗折強度を測定した結果である。
【0035】
表1及び表2の結果より、溶融塩中にLi吸収ガラスを浸漬しない場合(比較例1)、及び、γアルミナを用いて溶融塩中のLiを吸着させた場合(比較例2)は、いずれの場合も抗折強度は化学強化を行うほど低下するが、実施例1〜15のLi吸収ガラスを添加することにより化学強化を行っても抗折強度の低下は少ないことが確認された。また、実施例1〜15のLi吸収ガラスを添加することにより、圧縮応力層の深さが所定範囲内にあることが確認された。さらに、抗折強度の低下の度合いはLi吸収ガラス中のNa2O量が多いほど少ないことも確認された。
【0036】
以上実施例をあげて本発明を説明したが、本発明は上記実施例に限定されるものではない。
【0037】
例えば、Li吸収ガラスの組成や形状、母材ガラスの組成や形状、化学強化条件等は実施例の範囲に限定されず、本発明の範囲内で適宜設計変更できる。
【0038】
本発明の化学強化ガラスの製造方法によって得られた化学強化ガラスは、落下に対する強度や耐衝撃性などの機械的強度等が必要なガラス基板やガラス製品などの用途に広く使用できる。
【0039】
【発明の効果】
以上説明したように、本発明の化学強化用Liイオン吸収ガラスは、Na2Oを多く含み、Liイオン吸収ガラス中のNa2O含有量を調整して化学強化条件下におけるLiイオンの吸収スピード及び吸収量を制御(大きく)でき、溶融塩中のLiイオン濃度を常に低く保つことができるので、所定の強度及び圧縮応力層の深さを有する化学強化ガラスが得られる。また、本発明の化学強化用Liイオン吸収ガラスは、不適切な成分を含まない、あるいは不適切な成分が少ないので、イオン交換速度や化学的耐久性等の性能を低下させることがない。
【0040】
また、本発明の化学強化ガラスの製造方法によれば、母材ガラスとして化学強化の強度が十分得られる量のLiイオンを含むガラスを用い、かつ、上記本発明の化学強化用Liイオン吸収ガラスを用いているので、所定の強度及び圧縮応力層の深さを有する化学強化ガラスが得られる。
【0041】
さらに、本発明のLiイオン吸収ガラスによれば、不適切な成分を含まない、あるいは不適切な成分が少ないので、イオン交換速度や化学的耐久性等の性能を向上させたLiイオン吸収ガラスが得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Li-absorbing glass having a function of absorbing Li eluting into a molten salt by ion exchange from a base glass during chemical strengthening, in particular, a Li-absorbing glass for chemical strengthening suitable for chemical strengthening, and The present invention relates to a method for producing chemically strengthened glass using this chemically strengthened Li-absorbing glass.
[0002]
[Prior art]
It is known that the surface of a glass substrate or the like is chemically strengthened for the purpose of improving the strength of the glass substrate or the like. Specifically, low-temperature ion exchange is performed on the surface of glass substrates in order to improve mechanical strength such as impact resistance (including strength against dropping) and vibration resistance, and to prevent damage to glass substrates due to impact and vibration. It is known to perform chemical strengthening treatment by the law.
[0003]
The chemical strengthening treatment is performed by, for example, immersing a base glass containing Li ions in a molten salt containing Na ions and / or K ions, so that the Li ions in the base glass have an ionic radius rather than Li ions. This is a treatment for increasing the strength by generating strong compressive stress in the glass surface layer by replacing with large Na and K ions by ion exchange.
[0004]
[Problems to be solved by the invention]
However, due to the ion exchange reaction for chemical strengthening, Li ions in the base glass are eluted into the molten salt, and the Li concentration in the molten salt increases as the number of treatments increases, making it difficult for chemical strengthening ion exchange to occur. Therefore, there is a problem that a predetermined mechanical strength or the like cannot be obtained.
In order to solve this problem, Japanese Patent Publication No. 6-71521 proposes a technique for removing Li ions eluted in the molten salt using an adsorbent made of γ-alumina. However, there is a problem that the Li concentration starts to increase after a certain period.
Japanese Patent Application Laid-Open No. 64-24053 discloses a technique for absorbing ions eluted in a molten salt with an ion-absorbing glass when producing a refractive index distribution glass by ion exchange. However, this technique has an adverse effect due to the inclusion of inappropriate components, and the purpose is to produce a refractive index distribution glass by ion exchange, so it can be applied as it is in ion exchange for the purpose of chemical strengthening. I can't.
[0005]
The present invention has been made under the above-described background, and a first object is to provide a chemical strengthening Li ion absorbing glass suitable for chemical strengthening.
The second object is to provide a method for producing chemically strengthened glass using Li ion absorbing glass for chemically strengthening.
Furthermore, the third object is to provide Li ion absorbing glass and the like with improved performance such as ion exchange rate.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration.
[0007]
(Configuration 1) When a glass containing Li 2 O is chemically strengthened with a molten salt containing Na 2 O and / or K 2 O, it is incorporated into the molten salt for the purpose of absorbing Li ions eluted in the molten salt. A Li-absorbing glass for chemical strengthening, which is immersed, and contains 20 wt% or more of Na 2 O.
[0008]
(Configuration 2) When a glass containing Li 2 O is chemically strengthened with a molten salt containing Na 2 O and / or K 2 O, it is incorporated into the molten salt for the purpose of absorbing Li ions eluted in the molten salt. A Li-absorbing glass for chemical strengthening, which is immersed in Li-absorbing glass for chemical strengthening, and mainly contains 20 to 40 wt% Na 2 O and 30 to 60 wt% SiO 2 .
[0009]
(Configuration 3) When glass containing Li 2 O is chemically strengthened with molten salt containing Na 2 O and / or K 2 O, the molten salt is contained in the molten salt for the purpose of absorbing Li ions eluted in the molten salt. A Li-absorbing glass for chemical strengthening, which is immersed in the Li-absorbing glass for chemical strengthening, mainly containing 23 to 40 wt% of Na 2 O and 30 to 60 wt% of SiO 2 .
[0010]
(Configuration 4) When a glass containing Li 2 O is chemically strengthened with a molten salt containing Na 2 O and / or K 2 O, it is contained in the molten salt for the purpose of absorbing Li ions eluted in the molten salt. A Li-absorbing glass for chemical strengthening, which is immersed, and mainly contains 25-40 wt% Na 2 O and 30-60 wt% SiO 2 .
[0011]
(Configuration 5) 0 to 15 wt% of K 2 O, 0 to 15 wt% of Cs 2 O, 0 to 15 wt% of MgO, 0 to 15 wt% of CaO, 0 to 15 wt% of SrO, 0 to 15 wt% of ZnO, TiO 2 0-15 wt%, Nb 2 O 5 0-15 wt%, Ta 2 O 5 0-15 wt%, La 2 O 3 0-15 wt%, Y 2 O 3 0-15 wt%, Yb 2 0 to 15 wt% for O 3 , 0 to 15 wt% for Gd 2 O 3 , 0 to 15 wt% for Al 2 O 3 , 0 to 15 wt% for WO 3 , 0 to 15 wt% for Sb 2 O 3 , As 2 O 3 the 0 to 15 wt%, a ZrO 2 0 to 15 wt%, a TeO 2 0~15wt%, 0~15wt the Bi 2 O 3, B 2 O 3 and 0~4wt%, 0~4wt% of BaO, the PbO The Li absorption gas for chemical strengthening according to any one of the constitutions 1 to 4, characterized by containing 0 to 3 wt%. Nest.
[0012]
(Structure 6) The Li-absorbing glass for chemical strengthening according to any one of Structures 1 to 5, which is substantially free of one or more components of B 2 O 3 , PbO, BaO and Li 2 O. .
[0013]
(Configuration 7) using a glass containing Li ions in an amount strength chemical strengthening as a base glass is obtained sufficiently, using chemical reinforcing Li absorbing glass according to any of the first to 6, these Na 2 A method for producing chemically tempered glass, wherein the glass base material is chemically strengthened by immersing in a molten salt containing O and / or K 2 O.
[0014]
(Configuration 8) Li ion absorbing glass immersed in a molten salt for the purpose of absorbing Li ions eluted in the molten salt when ion exchange of the glass containing Li 2 O contains 20 wt% or more of Na 2 O 30 to 60 wt% of any one of SiO 2 , P 2 O 5 and GeO 2 , 0 to 15 wt% of K 2 O, 0 to 15 wt% of Cs 2 O, and 0 to 15 wt% of MgO %, CaO and 0 to 15 wt%, SrO of 0 to 15 wt%, 0 to 15 wt% of ZnO, the TiO 2 0~15wt%, Nb 2 O 5 and 0~15wt%, Ta 2 O 5 and 0 to 15 wt% La 2 O 3 0-15 wt%, Y 2 O 3 0-15 wt%, Yb 2 O 3 0-15 wt%, Gd 2 O 3 0-15 wt%, Al 2 O 3 0-15 wt% , WO 3 and 0 to 15 wt%, 0 to 15 wt% of Sb 2 O 3, As 2 3 0 to 15 wt%, a ZrO 2 0 to 15 wt%, a TeO 2 0~15wt%, 0~15wt the Bi 2 O 3, B 2 O 3 and 0~4wt%, 0~4wt% of BaO, PbO Li absorbing glass, characterized by containing 0 to 3 wt%.
[0015]
(Arrangement 9) The Li-absorbing glass according to Arrangement 8, wherein one or more components of B 2 O 3 , PbO, BaO and Li 2 O are not substantially contained.
[0016]
[Action]
Chemical strengthening for Li-ion-absorbing glass of the present invention includes a number of Na 2 O, the chemical strengthening conditions, the higher the content of Na 2 O in the Li-ion absorbing glass increases, increases the absorption speed of Li ions, Since the amount of Li ion absorption increases, the Li ion concentration in the molten salt can always be kept low, whereby a chemically strengthened glass having a predetermined mechanical strength and a compressive stress layer depth is obtained. Moreover, since the Li ion absorbing glass for chemical strengthening of the present invention does not contain an inappropriate component or has few inappropriate components, performances such as ion exchange rate and chemical durability are not deteriorated.
[0017]
In addition, according to the method for producing chemically strengthened glass of the present invention, a glass containing Li ions in an amount sufficient to obtain the strength of chemical strengthening is used as the base glass, and the Li ion absorbing glass for chemical strengthening of the present invention is used Therefore, a chemically strengthened glass having a predetermined mechanical strength and a depth of the compressive stress layer can be obtained.
In addition, there is an effect of not increasing the Li ion concentration in the molten salt, and the production efficiency is good because it is not necessary to replace the molten salt having a high Li ion concentration.
[0018]
Furthermore, according to the Li ion absorbing glass of the present invention, since there are few inappropriate components or there are few inappropriate components, the Li ion absorbing glass with improved performance such as ion exchange rate and chemical durability can be obtained. can get.
[0019]
Hereinafter, the present invention will be described in detail.
The reasons for limiting the contents in the Li ion absorbing glass for chemical strengthening of the present invention and the Li ion absorbing glass of the present invention are as follows.
[0020]
Na 2 O is an essential component as a component to be ion-exchanged again with Li ions eluted in the molten salt during ion exchange, particularly ion exchange during chemical strengthening. It has been found that the Na 2 O content increases in the Li-absorbing glass, so that the speed of absorbing Li in the molten salt and the absolute amount of absorbing Li increase. In particular, the speed of absorbing Li in the molten salt is important during ion exchange during chemical strengthening. This is because the Li ion concentration in the molten salt can always be kept low if the speed of absorbing Li in the molten salt is high. For these reasons, Na 2 O is preferably contained in an amount of 20 wt% or more. The or Na 2 O is not vitrification exceeds 40 wt%, decrease the chemical durability of the glass Li absorbing glass itself may possibly be dissolved in the molten salt. Therefore, the upper limit is preferably 40 wt% or less. The content of Na 2 O is more preferably 23 to 40 wt%, and further preferably 25 to 40 wt%.
[0021]
SiO 2 is preferably contained as a glass-forming component, or as a component that vitrifies even when Na 2 O is contained in a large amount of 20 to 40 wt% and enhances chemical durability against molten salt. The preferred content of SiO 2 is in the range of 30 to 60 wt%.
As the glass forming component, P 2 O 5 or GeO 2 may be used instead of SiO 2 . The preferred contents of P 2 O 5 and GeO 2 are each in the range of 30 to 60 wt%.
[0022]
B 2 O 3 is made poor chemical resistance to the molten salt is added as a glass-forming component, the glass component is eluted into the molten salt, B 2 O 3: preferably to 4 wt% or less, B 2 O 3 : 1 wt% or less is more preferable, and B 2 O 3 is most preferably not contained.
[0023]
When Li is contained in the Li-absorbing glass, the Li-absorbing glass is preferably inhibited from containing Li ions. In particular, in the Li ion absorbing glass for chemical strengthening, it is preferable not to contain Li ions in order to chemically strengthen in a short time and to obtain a predetermined strength and depth of the compressive stress layer (strain layer).
[0024]
Other optional components include K 2 O, Cs 2 O, MgO, CaO, SrO, BaO, PbO, ZnO, TiO 2 , Nb 2 O 5 , Ta 2 O 5 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 , Gd 2 O 3 , Al 2 O 3 , WO 3 , Sb 2 O 3 , As 2 O 3 , ZrO 2 , TeO 2 , Bi 2 O 3 can be added in the range of 0 to 15 wt%, respectively. is there.
However, since BaO and PbO decrease the ion conversion rate of Li 2 O, BaO: 4 wt% or less, PbO: 3 wt% or less are preferable, BaO: 1 wt% or less, and PbO: 1 wt% or less. More preferably, it is most preferable that BaO and PbO are not substantially contained.
[0025]
The composition of the Li-absorbing glass of the present invention is not related to the composition of the base glass, and may be any glass composition that has a high ability to absorb Li and does not contain inappropriate components.
[0026]
In the method for producing chemically strengthened glass according to the present invention, it is necessary to use a glass containing Li ions in an amount sufficient to obtain the strength of chemical strengthening as the base glass.
As a composition of such a base glass, for example, Li 2 O: 8 to 13 wt%, SiO 2 : 76 to 84 wt%, Al 2 O 3 : 1 to 7 wt%, Na 2 O: 0 to 3 wt%, K 2 O: 0 to 6 wt%, B 2 O 3 : 0 to 3 wt%, and a base glass containing 0 to 5 wt% of one or more of MgO, CaO, SrO, BaO, PbO, ZnO (hereinafter referred to as “base metal”) And the like).
[0027]
As other components of the matrix glass, for example, SiO 2: 62-75 wt%, Al 2 O 3: 5~15 wt%, Li 2 O: 4~10 wt%, Na 2 O: 4~12 weight %, ZrO 2 : 5.5 to 15% by weight as a main component, the weight ratio of Na 2 O / ZrO 2 is 0.5 to 2.0, and the weight ratio of Al 2 O 3 / ZrO 2 is 0. And aluminosilicate glass (hereinafter referred to as base material glass 2) of 4 to 2.5.
Further, in order to eliminate protrusions on the surface of the glass substrate caused by the undissolved material of ZrO 2 , SiO 2 is 57 to 74%, ZrO 2 is 0 to 2.8%, Al 2 O 3 in terms of mol%. Are preferably 3-15%, LiO 2 7-16%, Na 2 O 4-14%, aluminosilicate glass (hereinafter referred to as base glass 3).
Examples of other compositions of the base glass include the following glasses.
Aluminosilicate glass (hereinafter referred to as mother) containing wt%, SiO 2 : 61-75%, Al 2 O 3 : 10-22%, Li 2 O: 4-8%, Na 2 O: 10-15% (Referred to as material glass 4).
In mol%, SiO 2: 35~70%, Al 2 O 3: 0~15%, Li 2 O + Na 2 O: 3~30%, CaO: 1~45%, CaO + MgO: 3~45%, TiO 2: 0.1 to 30% aluminosilicate glass (hereinafter referred to as “matrix glass 5”).
Such an aluminosilicate glass is excellent in bending strength and heat resistance, as well as having a good balance between the compressive stress generated in the surface layer, the tensile stress generated in the interior, and the depth of the compressive stress layer by chemical strengthening. Even under a high temperature environment, there is no precipitation of Na, flatness is maintained, and Knoop hardness is excellent. Such an aluminosilicate glass is suitable as a glass substrate for a magnetic recording medium, for example.
[0028]
In the method for producing chemically strengthened glass, the composition of the base glass and the Li ion absorbing glass is different.
[0029]
In the method for producing chemically tempered glass according to the present invention, as a condition for chemical strengthening with a molten salt containing Na 2 O and / or K 2 O, in the case of the base glass 1, the temperature of the molten salt: 280 ˜490 ° C., treatment time: several hours to tens of hours are preferred, molten salt temperature: 300 to 450 ° C., treatment time: 2 hours to 8 hours are more preferred. Under this condition, the balance between the strength and the depth of the compressive stress layer is excellent. In particular, when the temperature of the molten salt is about 400 ° C. and the processing time is about 8 hours, the strength is large and the depth of the compressive stress layer is also preferable.
Similarly, in the case of the above-described base glass 2 to 5, the temperature of the molten salt: 280 ° C. to the strain point or less, the processing time: several minutes to several tens of hours are preferable, and the temperature of the molten salt: 300 to 500 ° C., the processing time. : Several minutes to several tens of hours are more preferable.
[0030]
【Example】
Hereinafter, the present invention will be described more specifically based on examples.
(Examples 1-15 and Comparative Examples 1-2)
Li-absorbing glasses were prepared according to the blended compositions (% by weight) of Examples 1 to 15 shown in Table 1 and Table 2 (continued in Table 1). Any of carbonate, nitrate and oxide can be used as the compounding raw material. These raw materials are weighed in a desired ratio and mixed to prepare the compounding raw material, which is put into a melting furnace heated to 1100 ° C to 1450 ° C. Then, the mixture was dissolved, clarified, stirred and homogenized, and then cast into a mold.
These Li absorption glasses were immersed in a molten salt to which Li ions had been added in advance, and the Li ion concentration in the molten salt was examined. Moreover, these Li ion absorption glasses and the base glass shown in Table 1 and Table 2 were immersed in molten salt, and the bending strength of the base glass and the depth of the compressive stress layer were examined. These results are shown in Tables 1 and 2 (continued in Table 1).
[0031]
[Table 1]
Figure 0004410354
[Table 2]
Figure 0004410354
[0032]
The Li ion concentration in Table 1 and Table 2 is obtained by finely pulverizing the Li ion absorbing glass obtained above, and using a powder of a size that passes through a 2.8 mm square and remains at 1 mm square as a sample. KNO 3 : NaNO 3 = The concentration of Li ions in the molten salt after 10 days of retention at 400 ° C. is shown after adding 300 ppm Li ions and 10% Li ion absorbing glass to the molten salt weight in the 1: 1 molten salt. .
[0033]
From the results of Tables 1 and 2, it was confirmed that Li ions added in advance to the molten salt were absorbed by the action of the Li absorption glass, and the Li ion concentration in the molten salt was greatly reduced. It was also confirmed that the Li concentration in the molten salt decreases as the amount of Na 2 O in the Li-absorbing glass increases.
[0034]
The bending strength 1 and the depth of the compressive stress layer are the standard samples for bending strength testing (size 40 × 3 mm, thickness 1 mm, polished on both sides) made of the base glass having the composition shown in Table 1 and Table 2. ) Of the bending strength and the depth of the compressive stress layer when chemical strengthening is performed under the condition of 400 ° C. × 8 hr from the initial state where there is no Li ion in the molten salt of KNO 3 : NaNO 3 = 1: 1. It is a result.
The bending strength 2 is obtained by finely pulverizing Li-absorbing glass and using a powder of a size that passes through 2.8 mm square and stays at 1 mm square as a sample. , Li ions were assumed to elute at 50 ppm / day by chemical strengthening, Li ions were added at 50 ppm / day, 400 ° C. × 30 hours after chemical strengthening, and the bending strength was measured. The bending strength 3 is the result of further measuring the bending strength after adding 60 ppm / day of Li ions and performing chemical strengthening at 400 ° C. for 8 hours after 60 days.
[0035]
From the results of Table 1 and Table 2, when Li absorbing glass is not immersed in the molten salt (Comparative Example 1), and when Li in the molten salt is adsorbed using γ-alumina (Comparative Example 2), In any case, the bending strength decreases as the chemical strengthening is performed. However, it was confirmed that even when the chemical strengthening is performed by adding the Li-absorbing glass of Examples 1 to 15, the bending strength is hardly decreased. Moreover, it was confirmed by adding Li absorption glass of Examples 1-15 that the depth of a compressive-stress layer exists in the predetermined range. Furthermore, it was also confirmed that the degree of decrease in the bending strength decreases as the amount of Na 2 O in the Li-absorbing glass increases.
[0036]
Although the present invention has been described with reference to the examples, the present invention is not limited to the above examples.
[0037]
For example, the composition and shape of the Li-absorbing glass, the composition and shape of the base glass, the chemical strengthening conditions, and the like are not limited to the scope of the examples, and can be appropriately changed within the scope of the present invention.
[0038]
The chemically strengthened glass obtained by the method for producing chemically strengthened glass of the present invention can be widely used for applications such as glass substrates and glass products that require mechanical strength such as strength against impact and impact resistance.
[0039]
【The invention's effect】
As described above, the chemical strengthening Li-ion-absorbing glass of the present invention, contains a large amount of Na 2 O, absorption speed of Li ions in the chemical strengthening conditions by adjusting the content of Na 2 O in the Li-ion absorbing glass Further, the amount of absorption can be controlled (increased), and the Li ion concentration in the molten salt can always be kept low, so that a chemically strengthened glass having a predetermined strength and a depth of the compressive stress layer can be obtained. Moreover, since the Li ion absorbing glass for chemical strengthening of the present invention does not contain an inappropriate component or has few inappropriate components, performances such as ion exchange rate and chemical durability are not deteriorated.
[0040]
In addition, according to the method for producing chemically strengthened glass of the present invention, a glass containing Li ions in an amount capable of sufficiently obtaining the strength of chemical strengthening is used as the base glass, and the Li ion absorbing glass for chemically strengthening of the present invention is used. Therefore, a chemically strengthened glass having a predetermined strength and a depth of the compressive stress layer can be obtained.
[0041]
Furthermore, according to the Li ion absorbing glass of the present invention, since there are few inappropriate components or there are few inappropriate components, the Li ion absorbing glass with improved performance such as ion exchange rate and chemical durability can be obtained. can get.

Claims (5)

母材ガラスとして化学強化の強度が十分得られる量のLiイオンを含む磁気記録媒体用ガラス基板を用い、
Li2Oを含んだガラスを、Na2O及び/又はK2Oを含んだ溶融塩で化学強化する際、溶融塩中に溶出したLiイオンを吸収する目的で溶融塩中に浸漬される化学強化用Li吸収ガラスであって、Na2Oを20wt%以上含有し、
SiO 2 、P 2 5 及びGeO 2 のうちのいずれかを30〜60wt%含有し、かつ、
2 Oを0〜15wt%、Cs 2 Oを0〜15wt%、MgOを0〜15wt%、CaOを0〜15wt%、SrOを0〜15wt%、ZnOを0〜15wt%、TiO 2 を0〜15wt%、Nb 2 5 を0〜15wt%、Ta 2 5 を0〜15wt%、La 2 3 を0〜15wt%、Y 2 3 を0〜15wt%、Yb 2 3 を0〜15wt%、Gd 2 3 を0〜15wt%、Al 2 3 を0〜15wt%、WO 3 を0〜15wt%、Sb 2 3 を0〜15wt%、As 2 3 を0〜15wt%、ZrO 2 を0〜15wt%、TeO 2 を0〜15wt%、Bi 2 3 を0〜15wt、B 2 3 を0〜4wt%、BaOを0〜4wt%、PbOを0〜3wt%、含有する化学強化用Li吸収ガラスを用いて、
これらをNa2O及び/又はK2Oを含んだ溶融塩に浸漬して磁気記録媒体用ガラス基板の化学強化を行い、化学強化により抗折強度を高めることを特徴とする磁気記録媒体用ガラス基板の製造方法。
Using a glass substrate for a magnetic recording medium containing an amount of Li ions sufficient to obtain sufficient strength of chemical strengthening as a base glass,
When a glass containing Li 2 O is chemically strengthened with a molten salt containing Na 2 O and / or K 2 O, the chemical is immersed in the molten salt for the purpose of absorbing Li ions eluted in the molten salt. a Li absorbing glass reinforced, contain Na 2 O or 20 wt%,
Any of SiO 2, P 2 O 5 and GeO 2 containing 30 to 60 wt%, and,
K 2 O of 0~15wt%, Cs 2 O and 0 to 15 wt%, MgO and 0 to 15 wt%, CaO and 0 to 15 wt%, SrO of 0 to 15 wt%, 0 to 15 wt% of ZnO, the TiO 2 0 ~15wt%, Nb 2 O 5 and 0~15wt%, Ta 2 O 5 and 0~15wt%, La 2 O 3 and 0 to 15 wt%, 0 to 15 wt% of Y 2 O 3, the Yb 2 O 3 0 ~15wt%, Gd 2 O 3 and 0~15wt%, Al 2 O 3 and 0 to 15 wt%, WO 3 and 0 to 15 wt%, 0 to 15 wt% of Sb 2 O 3, the As 2 O 3 0 to 15 wt %, ZrO 2 0-15 wt%, TeO 2 0-15 wt%, Bi 2 O 3 0-15 wt, B 2 O 3 0-4 wt%, BaO 0-4 wt%, PbO 0-3 wt% , using Li-absorbing glass for chemical strengthening containing,
Glass for magnetic recording media characterized in that these are immersed in a molten salt containing Na 2 O and / or K 2 O to chemically strengthen the glass substrate for magnetic recording media, and the bending strength is increased by chemical strengthening. A method for manufacturing a substrate.
前記化学強化用Li吸収ガラスであって、Na2Oを20〜40wt%、SiO2を30〜60wt%主として含有する化学強化用Li吸収ガラスを用いることを特徴とする請求項1記載の磁気記録媒体用ガラス基板の製造方法。 Wherein a chemical strengthening for Li absorbing glass, 20 to 40 wt% of Na 2 O, a SiO 2 30 to 60 wt%, the magnetic according to claim 1, wherein the use of chemical strengthening Li absorbing glass containing mainly A method for producing a glass substrate for a recording medium. 前記化学強化用Li吸収ガラスであって、Na2Oを23〜40wt%、SiO2を30〜60wt%主として含有する化学強化用Li吸収ガラスを用いることを特徴とする請求項2記載の磁気記録媒体用ガラス基板の製造方法。 Wherein a chemical strengthening for Li absorbing glass, 23~40wt% of Na 2 O, a SiO 2 30 to 60 wt%, the magnetic according to claim 2, wherein the use of chemical strengthening Li absorbing glass containing mainly A method for producing a glass substrate for a recording medium. 前記化学強化用Li吸収ガラスであって、Na2Oを25〜40wt%、SiO2を30〜60wt%、主として含有する化学強化用Li吸収ガラスを用いることを特徴とする請求項3記載の磁気記録媒体用ガラス基板の製造方法。 Wherein a chemical strengthening for Li absorbing glass, 25~40wt% of Na 2 O, a SiO 2 30 to 60 wt%, the magnetic according to claim 3, wherein the use of chemical strengthening Li absorbing glass containing mainly A method for producing a glass substrate for a recording medium. 23、PbO、BaO及びLi2Oのうちの一以上の成分を実質的に含まない化学強化用Li吸収ガラスを用いることを特徴とする請求項1乃至のいずれか1項に記載の磁気記録媒体用ガラス基板の製造方法。B 2 O 3, PbO, according to any one of claims 1 to 4, characterized in the use of chemical strengthening Li absorbing glass that is substantially free of one or more components of the BaO and Li 2 O Of manufacturing a glass substrate for magnetic recording media.
JP30822699A 1999-10-29 1999-10-29 Li-absorbing glass for chemical strengthening, and method for producing chemically strengthened glass using Li-absorbing glass for chemical strengthening Expired - Fee Related JP4410354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30822699A JP4410354B2 (en) 1999-10-29 1999-10-29 Li-absorbing glass for chemical strengthening, and method for producing chemically strengthened glass using Li-absorbing glass for chemical strengthening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30822699A JP4410354B2 (en) 1999-10-29 1999-10-29 Li-absorbing glass for chemical strengthening, and method for producing chemically strengthened glass using Li-absorbing glass for chemical strengthening

Publications (2)

Publication Number Publication Date
JP2001130923A JP2001130923A (en) 2001-05-15
JP4410354B2 true JP4410354B2 (en) 2010-02-03

Family

ID=17978456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30822699A Expired - Fee Related JP4410354B2 (en) 1999-10-29 1999-10-29 Li-absorbing glass for chemical strengthening, and method for producing chemically strengthened glass using Li-absorbing glass for chemical strengthening

Country Status (1)

Country Link
JP (1) JP4410354B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218253A1 (en) * 2019-04-26 2020-10-29 Agc株式会社 Life extension method for molten salt composition, manufacturing method for chemically strengthened glass, glass auxiliary agent, and raw material for glass

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004011218B4 (en) * 2004-03-04 2006-01-19 Schott Ag X-ray opaque glass, process for its preparation and its use
US8759238B2 (en) 2010-05-27 2014-06-24 Corning Incorporated Ion exchangeable glasses
CN112390539B (en) * 2019-08-16 2024-01-02 重庆鑫景特种玻璃有限公司 Salt bath purification additive material and method of use thereof
CN112645608B (en) * 2019-10-16 2023-05-30 重庆鑫景特种玻璃有限公司 Silicon-free salt bath purification additive material and application method thereof
CN112608033A (en) * 2020-09-12 2021-04-06 重庆鑫景特种玻璃有限公司 Chemically strengthened glass ceramics and strengthening method
CN116768493A (en) * 2020-09-12 2023-09-19 重庆鑫景特种玻璃有限公司 Boron-free and phosphorus-free ion sieve with high stability and preparation and application thereof
CN112125511B (en) * 2020-09-28 2022-04-12 成都光明光电股份有限公司 Optical glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218253A1 (en) * 2019-04-26 2020-10-29 Agc株式会社 Life extension method for molten salt composition, manufacturing method for chemically strengthened glass, glass auxiliary agent, and raw material for glass

Also Published As

Publication number Publication date
JP2001130923A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
EP2075237B1 (en) Reinforced glass substrate
KR20220065854A (en) Lithium-zirconium-based aluminosilicate glass, tempered glass, manufacturing method thereof and display device
KR102113788B1 (en) Aluminosilicate glasses for ion exchange
JP5834793B2 (en) Method for producing chemically strengthened glass
JP5444846B2 (en) Glass plate for display device
EP2415724B1 (en) Glass suitable for chemically toughening and chemically toughened glass
JP3187321B2 (en) Chemically strengthened glass composition and chemically strengthened glass article
JP2023009302A (en) glass for chemical strengthening
CN107935378B (en) High-strength glass for display device and preparation method thereof
US11292741B2 (en) Ion-exchangeable lithium-containing aluminosilicate glasses
JPH11314931A (en) Glass for chemical strengthening
KR20130023101A (en) Glass composition, glass obtained therefrom, and preparation process and use of the glass
WO2023082935A1 (en) Crystalline glass and reinforced crystalline glass, and preparation methods therefor
JP2977068B2 (en) Glass for chemical strengthening
JP4410354B2 (en) Li-absorbing glass for chemical strengthening, and method for producing chemically strengthened glass using Li-absorbing glass for chemical strengthening
JP7013623B1 (en) Crystallized glass and reinforced crystallized glass
CN109020196A (en) A kind of chemically reinforced glass being easy to ion exchange
JP2837134B2 (en) Information recording substrate and information recording medium
CN112919802A (en) High-strength flexible radiation-resistant glass and preparation method thereof
JPH06144868A (en) Optical glass
WO2023082936A1 (en) Crystalline glass and reinforced crystalline glass, and preparation methods therefor
JP2001226137A (en) Method for manufacturing glass base plate for chemical reinforcement and chemically reinforced glass article obtained by using the same
WO2020246274A1 (en) Glass, chemically tempered glass, and method for producing same
WO2022141274A1 (en) Glass, tempered glass and preparation method therefor, and electronic product
WO2012066989A1 (en) Glass composition for chemical strengthening

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees