JP4409316B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP4409316B2
JP4409316B2 JP2004068739A JP2004068739A JP4409316B2 JP 4409316 B2 JP4409316 B2 JP 4409316B2 JP 2004068739 A JP2004068739 A JP 2004068739A JP 2004068739 A JP2004068739 A JP 2004068739A JP 4409316 B2 JP4409316 B2 JP 4409316B2
Authority
JP
Japan
Prior art keywords
refrigerant circuit
refrigerant
heat exchanger
pressure
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004068739A
Other languages
Japanese (ja)
Other versions
JP2005257164A (en
Inventor
潤一郎 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2004068739A priority Critical patent/JP4409316B2/en
Publication of JP2005257164A publication Critical patent/JP2005257164A/en
Application granted granted Critical
Publication of JP4409316B2 publication Critical patent/JP4409316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、例えばコンビニエンスストアまたはスーパーマーケット等の店舗内に設置される冷蔵・冷凍ショーケース等に用いられる冷却装置に関するものである。   The present invention relates to a cooling device used for a refrigeration / frozen showcase installed in a store such as a convenience store or a supermarket.

従来、店舗内に複数の冷蔵ショーケース及び複数の冷凍ショーケースを設置する場合には、冷蔵ショーケースと冷凍ショーケースとを異なる冷媒回路によって構成し、それぞれのショーケースを冷却するようにしたものが知られている。しかしながら、冷蔵ショーケースの冷媒回路の冷却能力は熱負荷が最大になる夏期の日中を想定して設計されており、それ以外は冷却能力に余裕を残した状態で運転されるようになっているため、冷蔵ショーケースの冷却能力は最大限に利用されることなく無駄になるという欠点があった。また、圧縮機、凝縮器及び蒸発器からなる冷蔵ショーケースの冷媒回路と、圧縮機及び蒸発器からなる冷凍ショーケースの冷媒回路と、冷蔵ショーケースの冷媒回路の冷媒と冷凍ショーケースの冷媒回路の冷媒との間で熱交換を行う熱交換器とを備え、冷蔵ショーケースの冷媒回路の凝縮器から吐出された冷媒の一部を熱交換器で蒸発させるとともに、冷凍ショーケースの冷媒回路の圧縮機から吐出された冷媒を熱交換器で凝縮させることにより、ランニングコストの低減を図るようにしたものが知られている(例えば、特許文献1参照)。
特開2001−91073号公報
Conventionally, when installing a plurality of refrigerated showcases and a plurality of refrigerated showcases in a store, the refrigerated showcase and the frozen showcase are configured by different refrigerant circuits, and each showcase is cooled. It has been known. However, the cooling capacity of the refrigerant circuit of the refrigerated showcase is designed for the daytime in summer when the heat load is maximum, and other than that, the cooling circuit is operated with sufficient cooling capacity. Therefore, the cooling capacity of the refrigerated showcase has the disadvantage that it is wasted without being utilized to the maximum extent. Also, a refrigerant circuit of a refrigerated showcase comprising a compressor, a condenser and an evaporator, a refrigerant circuit of a refrigerated showcase comprising a compressor and an evaporator, a refrigerant of a refrigerant circuit of the refrigerated showcase, and a refrigerant circuit of a refrigerated showcase A heat exchanger that exchanges heat with the other refrigerant, evaporates a part of the refrigerant discharged from the condenser of the refrigerant circuit of the refrigerated showcase with the heat exchanger, and There is known a system in which the running cost is reduced by condensing the refrigerant discharged from the compressor with a heat exchanger (for example, see Patent Document 1).
JP 2001-91073 A

しかしながら、前記冷却装置では、ピーク負荷時に対応するために、冷蔵ショーケースの冷却能力及び冷凍ショーケースの冷却能力とを合わせた能力を持つ冷凍機が必要となるため、イニシャルコストが高くつくとともに、冷蔵ショーケースのピーク負荷のみに対応した能力の小さい既存の冷凍機を冷蔵ショーケースの冷凍機として用いることができないという問題点があった。   However, in order to cope with the peak load, the cooling device requires a refrigerator having the combined capacity of the refrigerated showcase and the refrigerated showcase, so that the initial cost is high, There is a problem that an existing refrigerator having a small capacity corresponding only to the peak load of the refrigerated showcase cannot be used as a refrigerator for the refrigerated showcase.

また、前記冷蔵ショーケース及び冷凍ショーケースでは、各蒸発器への冷媒の供給を停止して除霜運転を行うようになっているが、冷凍ショーケースに比べて冷蔵ショーケースは、除霜運転の時間が長く頻度も多くなるため、冷蔵ショーケースが除霜運転を行っているときは、冷凍ショーケースの冷却のためのみ冷却能力の大きな冷凍機を運転しなければならず、消費電力が多くなるという問題点があった。   In the refrigerated showcase and the refrigerated showcase, the supply of refrigerant to each evaporator is stopped to perform the defrosting operation. Compared to the refrigerated showcase, the refrigerated showcase has a defrosting operation. Therefore, when the refrigerated showcase is performing a defrosting operation, a refrigerator with a large cooling capacity must be operated only for cooling the refrigerated showcase, which consumes a lot of power. There was a problem of becoming.

本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、能力の大きい冷凍機を用いることなくランニングコストの低減を図ることができるとともに、除霜時でも消費電力を増加させることのない冷却装置を提供することにある。   The present invention has been made in view of the above problems, and the object of the present invention is to reduce the running cost without using a high-capacity refrigerator and increase power consumption even during defrosting. An object of the present invention is to provide a cooling device that is not allowed to occur.

本発明は前記目的を達成するために、第1の圧縮機、第1の凝縮器、第1の膨張手段及び第1の蒸発器からなる第1の冷媒回路と、第2の圧縮機、第2の膨張手段及び第2の蒸発器からなる第2の冷媒回路と、第1の冷媒回路の冷媒と第2の冷媒回路の冷媒との間で熱交換を行う熱交換器とを備え、第1の冷媒回路の凝縮器から吐出された冷媒の一部を熱交換器の吸入口側に設けられた第3の膨張手段を介して熱交換器内で蒸発させるとともに、第2の冷媒回路の圧縮機から吐出された冷媒を熱交換器内で凝縮させるようにした冷却装置において、前記第2の冷媒回路の冷媒を前記熱交換器の冷媒流入側または流出側で凝縮する凝縮器と、前記第1の冷媒回路の熱交換器内の蒸発圧力を所定圧力以上の圧力に調整可能な蒸発圧力調整手段とを備え、前記蒸発圧力調整手段を、第1の冷媒回路の熱交換器の冷媒吐出口側に接続された自動圧力調整弁と、第1の冷媒回路の熱負荷を検出する熱負荷検出手段と、熱負荷検出手段によって検出された熱負荷の上昇に伴って第1の冷媒回路の熱交換器内の蒸発圧力が高くなるように自動圧力調整弁を調整し、検出された熱負荷の低下に伴って第1の冷媒回路内の熱交換器内の蒸発圧力が低くなるように自動圧力調整弁を調整する制御手段とから構成している。   In order to achieve the above object, the present invention provides a first refrigerant circuit comprising a first compressor, a first condenser, a first expansion means, and a first evaporator, a second compressor, A second refrigerant circuit comprising two expansion means and a second evaporator, and a heat exchanger for exchanging heat between the refrigerant in the first refrigerant circuit and the refrigerant in the second refrigerant circuit, A part of the refrigerant discharged from the condenser of the first refrigerant circuit is evaporated in the heat exchanger through the third expansion means provided on the suction port side of the heat exchanger, and the second refrigerant circuit In the cooling device configured to condense the refrigerant discharged from the compressor in the heat exchanger, the condenser that condenses the refrigerant in the second refrigerant circuit on the refrigerant inflow side or outflow side of the heat exchanger, Evaporating pressure adjusting means capable of adjusting the evaporating pressure in the heat exchanger of the first refrigerant circuit to a pressure equal to or higher than a predetermined pressure; The evaporating pressure adjusting means includes an automatic pressure adjusting valve connected to the refrigerant outlet side of the heat exchanger of the first refrigerant circuit, and a heat load detecting means for detecting the heat load of the first refrigerant circuit, The automatic pressure regulating valve is adjusted so that the evaporation pressure in the heat exchanger of the first refrigerant circuit increases as the thermal load detected by the thermal load detection means increases, and as the detected thermal load decreases. And a control means for adjusting the automatic pressure regulating valve so that the evaporation pressure in the heat exchanger in the first refrigerant circuit is lowered.

また、前記目的を達成するために、第1の圧縮機、第1の凝縮器、第1の膨張手段及び第1の蒸発器からなる第1の冷媒回路と、第2の圧縮機、第2の膨張手段及び第2の蒸発器からなる第2の冷媒回路と、第1の冷媒回路の冷媒と第2の冷媒回路の冷媒との間で熱交換を行う熱交換器とを備え、第1の冷媒回路の凝縮器から吐出された冷媒の一部を熱交換器の吸入口側に設けられた第3の膨張手段を介して熱交換器内で蒸発させるとともに、第2の冷媒回路の圧縮機から吐出された冷媒を熱交換器内で凝縮させるようにした冷却装置において、前記第2の冷媒回路の冷媒を前記熱交換器の冷媒流入側または流出側で凝縮する凝縮器と、前記第1の冷媒回路の熱交換器内の蒸発圧力を所定圧力以上の圧力に調整可能な蒸発圧力調整手段とを備え、前記蒸発圧力調整手段を、冷媒流路の開閉によって冷媒の流量を調整する第3の膨張手段としての電子膨張弁と、第1の冷媒回路の熱負荷を検出する熱負荷検出手段と、熱負荷検出手段によって検出された熱負荷の上昇に伴って電子膨張弁の開放時間を短くし、検出された熱負荷の低下に伴って電子膨張弁の開放時間を長くする制御手段とから構成している。   In order to achieve the object, a first refrigerant circuit comprising a first compressor, a first condenser, a first expansion means and a first evaporator, a second compressor, a second A second refrigerant circuit comprising the expansion means and the second evaporator, and a heat exchanger for exchanging heat between the refrigerant in the first refrigerant circuit and the refrigerant in the second refrigerant circuit, A part of the refrigerant discharged from the condenser of the refrigerant circuit is evaporated in the heat exchanger via the third expansion means provided on the suction port side of the heat exchanger, and the second refrigerant circuit is compressed. In the cooling device configured to condense the refrigerant discharged from the machine in the heat exchanger, the condenser that condenses the refrigerant in the second refrigerant circuit on the refrigerant inflow side or outflow side of the heat exchanger; And evaporating pressure adjusting means capable of adjusting the evaporating pressure in the heat exchanger of one refrigerant circuit to a pressure higher than a predetermined pressure. The evaporating pressure adjusting means includes an electronic expansion valve as third expansion means for adjusting the flow rate of the refrigerant by opening and closing the refrigerant flow path, a thermal load detecting means for detecting the thermal load of the first refrigerant circuit, And a control means for shortening the opening time of the electronic expansion valve with an increase in the thermal load detected by the load detecting means and lengthening the opening time of the electronic expansion valve with a decrease in the detected thermal load. Yes.

これにより、第2の圧縮機から吐出された冷媒が熱交換器及び凝縮器によって凝縮されることから、熱負荷の小さい冬期等の第1の冷媒回路において余る冷却能力が第2の冷媒回路の凝縮に利用されるとともに、第1の冷媒回路の熱負荷が大きいときには第2の冷媒回路のみで冷却運転が行われる。   As a result, the refrigerant discharged from the second compressor is condensed by the heat exchanger and the condenser, so that the cooling capacity remaining in the first refrigerant circuit in the winter season when the heat load is small has the second refrigerant circuit. When it is used for condensation and the heat load of the first refrigerant circuit is large, the cooling operation is performed only by the second refrigerant circuit.

本発明によれば、熱負荷の小さい冬期等の第1の冷媒回路において余る冷却能力を第2の冷媒回路の凝縮に利用することができるので、第2の冷媒回路の第2の圧縮機の入力を最小限にして冷却装置の冷却効率を向上させることができる。また、第1の冷媒回路の熱負荷が大きいときには第2の冷媒回路のみで冷却運転を行うことができるので、第1の冷媒回路の冷却能力を大きくする必要がなく、例えば冷蔵ショーケース及び冷凍ショーケースがそれぞれの独立した冷媒回路によって冷却運転を行う既存の冷却装置に用いることができる。   According to the present invention, the surplus cooling capacity in the first refrigerant circuit in the winter season when the heat load is small can be used for the condensation of the second refrigerant circuit, so that the second compressor of the second refrigerant circuit The cooling efficiency of the cooling device can be improved by minimizing the input. In addition, since the cooling operation can be performed only with the second refrigerant circuit when the heat load of the first refrigerant circuit is large, it is not necessary to increase the cooling capacity of the first refrigerant circuit. The showcase can be used for an existing cooling device that performs cooling operation by each independent refrigerant circuit.

図1乃至図4は本発明の一実施形態を示すもので、図1は冷却装置の冷媒回路図、図2は制御系を示すブロック図、図3は冷却装置の制御動作を示すタイムチャート、図4は熱交換ユニットの第2の冷媒回路側吐出口の圧力と温度の関係を示すモリエ線図である。   1 to 4 show an embodiment of the present invention. FIG. 1 is a refrigerant circuit diagram of a cooling device, FIG. 2 is a block diagram showing a control system, and FIG. 3 is a time chart showing a control operation of the cooling device. FIG. 4 is a Mollier diagram showing the relationship between the pressure and temperature of the second refrigerant circuit side outlet of the heat exchange unit.

この冷却装置は、店舗外に設置された室外ユニット10と、店舗内に設置された冷蔵商品収納用の複数の冷蔵ショーケース20と、店舗内に設置された冷凍商品収納用の冷凍ショーケース30と、冷蔵ショーケース20側の冷凍サイクルを構成する第1の冷媒回路40と、冷凍ショーケース30側の冷凍サイクルを構成する第2の冷媒回路50と、第1の冷媒回路40の冷媒と第2の冷媒回路50の冷媒とを熱交換する熱交換器を備えた熱交換ユニット60と、各冷蔵ショーケース20及び冷凍ショーケース30の温度また除霜運転等の制御を行う制御部70とから構成されている。   This cooling device includes an outdoor unit 10 installed outside a store, a plurality of refrigerated showcases 20 for storing refrigerated products installed in the store, and a refrigerated showcase 30 for storing frozen products installed in the store. The first refrigerant circuit 40 constituting the refrigeration cycle on the refrigerated showcase 20 side, the second refrigerant circuit 50 constituting the refrigeration cycle on the refrigeration showcase 30 side, the refrigerant in the first refrigerant circuit 40 and the first refrigerant circuit 40 A heat exchange unit 60 including a heat exchanger that exchanges heat with the refrigerant in the refrigerant circuit 50 of the second refrigerant circuit 50, and a control unit 70 that controls the temperature of each refrigerated showcase 20 and the refrigerated showcase 30 and the defrosting operation. It is configured.

室外ユニット10は、第1の冷媒回路40に接続された第1の圧縮機11及び第1の凝縮器12を備え、第1の凝縮器12には外気と第1の凝縮器12内の冷媒とを熱交換させる第1の凝縮器用送風機13が設けられている。   The outdoor unit 10 includes a first compressor 11 and a first condenser 12 connected to a first refrigerant circuit 40, and the first condenser 12 includes outside air and refrigerant in the first condenser 12. A first condenser blower 13 that exchanges heat with each other is provided.

各冷蔵ショーケース20は、前面を開放した複数のオープンショーケース20aと、前面をガラス扉によって開閉するリーチインショーケース20bとを備え、それぞれのショーケースの内部には第1の冷媒回路40に接続された第1〜第5蒸発器21a,21b,21c,21d,21eが設けられ、第1〜第5の蒸発器21a,21b,21c,21d,21eには各冷蔵ショーケース20内の空気と第1〜第5の蒸発器21a,21b,21c,21d,21e内の冷媒とをそれぞれ熱交換させる第1〜第5の蒸発器用送風機22a,22b,22c,22d,22eが設けられている。   Each refrigerated showcase 20 includes a plurality of open showcases 20a whose fronts are opened, and reach-in showcases 20b whose fronts are opened and closed by glass doors. Each showcase is connected to a first refrigerant circuit 40. The first to fifth evaporators 21a, 21b, 21c, 21d, and 21e are provided, and the first to fifth evaporators 21a, 21b, 21c, 21d, and 21e include air in each refrigerated showcase 20 and First to fifth evaporator fans 22a, 22b, 22c, 22d, and 22e are provided for heat exchange with the refrigerant in the first to fifth evaporators 21a, 21b, 21c, 21d, and 21e, respectively.

冷凍ショーケース30は前面をガラス扉によって開閉するクローズドショーケースからなり、冷凍ショーケース30の内部には第2の冷媒回路50に接続された第2の圧縮機31、第2の凝縮器32及び第6の蒸発器33が設けられている。また、第2の凝縮器32には店舗内の空気と第2の凝縮器32内の冷媒とを熱交換させる第2の凝縮器用送風機34が設けられ、第6の蒸発器33には冷凍ショーケース30内の空気と第6の蒸発器33内の冷媒とを熱交換させる第6の蒸発器用送風機35が設けられている。   The refrigeration showcase 30 is a closed showcase whose front is opened and closed by a glass door. Inside the refrigeration showcase 30, a second compressor 31, a second condenser 32, and a second refrigerant circuit 50 are connected. A sixth evaporator 33 is provided. The second condenser 32 is provided with a second condenser blower 34 that exchanges heat between the air in the store and the refrigerant in the second condenser 32, and the sixth evaporator 33 has a refrigeration show. A sixth evaporator blower 35 that exchanges heat between the air in the case 30 and the refrigerant in the sixth evaporator 33 is provided.

第1の冷媒回路40は、第1の圧縮機11、第2の凝縮器12、第1〜第5の電磁弁41a,41b,41c,41d,41e、第1の膨張手段としての第1〜第5の膨張弁42a,42b,42c,42d,42e及び第1〜第5の蒸発器21a,21b,21c,21d,21eを備え、これらは冷媒流通用の配管によって接続されている。即ち、第1の圧縮機11の吐出側と第1の凝縮器12の吸入側が接続され、第1の凝縮器12の吐出側と第1〜第5の蒸発器21a,21b,21c,21d,21eのそれぞれの吸入側と後述する熱交換ユニット60の冷蔵側吸入口が並列に接続されている。第1の凝縮器12の吐出側と第1の蒸発器21aの吸入側との間には第1の電磁弁41aが設けられ、第1の電磁弁41aの第1の蒸発器21a側には第1の膨張弁42aが設けられている。第1の凝縮器12の吐出側と第2の蒸発器21bの吸入側との間には第2の電磁弁41bが設けられ、第2の電磁弁41bの第2の蒸発器21b側には第2の膨張弁42bが設けられている。第1の凝縮器12の吐出側と第3の蒸発器21cの吸入側との間には第3の電磁弁41cが設けられ、第3の電磁弁41cの第3の蒸発器21c側には第3の膨張弁42cが設けられている。第1の凝縮器12の吐出側と第4の蒸発器21dの吸入側との間には第4の電磁弁41dが設けられ、第4の電磁弁41dの第4の蒸発器21d側には第4の膨張弁42dが設けられている。第1の凝縮器12の吐出側と第5の蒸発器21eの吸入側との間には第5の電磁弁41eが設けられ、第5の電磁弁41eの第5の蒸発器21e側には第5の膨張弁42eが設けられている。また、第1〜第5の蒸発器21a,21b,21c,21d,21eのぞれぞれの吐出側及び後述する熱交換ユニット60の冷蔵側吐出口が第1の圧縮機11の吸入側に並列に接続されている。   The first refrigerant circuit 40 includes a first compressor 11, a second condenser 12, first to fifth electromagnetic valves 41a, 41b, 41c, 41d, and 41e, and first to first expansion means. A fifth expansion valve 42a, 42b, 42c, 42d, 42e and first to fifth evaporators 21a, 21b, 21c, 21d, 21e are provided, which are connected by a refrigerant circulation pipe. That is, the discharge side of the first compressor 11 and the suction side of the first condenser 12 are connected, and the discharge side of the first condenser 12 and the first to fifth evaporators 21a, 21b, 21c, 21d, Each suction side of 21e and the refrigeration side suction port of heat exchange unit 60 mentioned below are connected in parallel. A first electromagnetic valve 41a is provided between the discharge side of the first condenser 12 and the suction side of the first evaporator 21a, and the first electromagnetic valve 41a has a first evaporator 21a side. A first expansion valve 42a is provided. Between the discharge side of the first condenser 12 and the suction side of the second evaporator 21b, a second electromagnetic valve 41b is provided, and on the second evaporator 21b side of the second electromagnetic valve 41b. A second expansion valve 42b is provided. A third solenoid valve 41c is provided between the discharge side of the first condenser 12 and the suction side of the third evaporator 21c, and the third evaporator 21c side of the third solenoid valve 41c is provided on the third evaporator 21c side. A third expansion valve 42c is provided. A fourth electromagnetic valve 41d is provided between the discharge side of the first condenser 12 and the suction side of the fourth evaporator 21d, and the fourth evaporator 21d side of the fourth electromagnetic valve 41d is provided on the fourth evaporator 21d side. A fourth expansion valve 42d is provided. A fifth electromagnetic valve 41e is provided between the discharge side of the first condenser 12 and the suction side of the fifth evaporator 21e, and on the fifth evaporator 21e side of the fifth electromagnetic valve 41e. A fifth expansion valve 42e is provided. Further, the discharge side of each of the first to fifth evaporators 21 a, 21 b, 21 c, 21 d, and 21 e and the refrigeration side discharge port of the heat exchange unit 60 described later are on the suction side of the first compressor 11. Connected in parallel.

第2の冷媒回路50は、第2の圧縮機31、第2の凝縮器32、第2の膨張手段としての第6の膨張弁51及び第6の蒸発器33を備え、これらは冷媒流通用の配管によって接続されている。即ち、第2の圧縮機31の吐出側と第2の凝縮器32の吸入側が接続され、第2の凝縮器32の吐出側と後述する熱交換ユニット60の冷凍側吸入口が接続されている。また、熱交換ユニット60の冷凍側吐出口と第6の蒸発器33の吸入側が接続され、熱交換ユニット60の冷凍側吐出口と第6の蒸発器33の吸入側との間には第6の膨張弁51が設けられている。更に、第6の蒸発器33の吐出側と第2の圧縮機31の吸入側が接続されることにより第2の冷媒回路50が構成されている。   The second refrigerant circuit 50 includes a second compressor 31, a second condenser 32, a sixth expansion valve 51 as a second expansion means, and a sixth evaporator 33, which are for refrigerant circulation. Connected by pipes. That is, the discharge side of the second compressor 31 and the suction side of the second condenser 32 are connected, and the discharge side of the second condenser 32 and the freezing side suction port of the heat exchange unit 60 described later are connected. . Further, the refrigeration side discharge port of the heat exchange unit 60 and the suction side of the sixth evaporator 33 are connected, and the sixth side between the refrigeration side discharge port of the heat exchange unit 60 and the suction side of the sixth evaporator 33 is connected. An expansion valve 51 is provided. Further, the second refrigerant circuit 50 is configured by connecting the discharge side of the sixth evaporator 33 and the suction side of the second compressor 31.

熱交換ユニット60は熱交換器としての周知のカスケードコンデンサ61を備え、カスケードコンデンサ61の冷蔵側吸入口には第6の電磁弁62及び第3の膨張手段としての第7の膨張弁63が接続されている。また、カスケードコンデンサ61の冷蔵側吐出口には、カスケードコンデンサ61の冷蔵側が所定の圧力以下にならないように調整可能な蒸発圧力調整弁64が設けられている。更に、カスケードコンデンサ61の冷凍側吐出口には、カスケードコンデンサ61の冷凍側の冷媒吐出圧力を検出する圧力検出手段としての圧力センサ65が設けられている。このとき、蒸発圧力調整弁64は手動で操作可能なように、店舗のバックヤード、機械室または点検口が設けられた天井内等に設置されるようになっている。   The heat exchange unit 60 includes a known cascade condenser 61 as a heat exchanger, and a sixth electromagnetic valve 62 and a seventh expansion valve 63 as a third expansion means are connected to the refrigeration side suction port of the cascade condenser 61. Has been. Further, an evaporation pressure adjusting valve 64 that can be adjusted so that the refrigeration side of the cascade condenser 61 does not become a predetermined pressure or less is provided at the refrigeration outlet of the cascade condenser 61. Further, a pressure sensor 65 as pressure detecting means for detecting the refrigerant discharge pressure on the freezing side of the cascade capacitor 61 is provided at the freezing side discharge port of the cascade condenser 61. At this time, the evaporating pressure adjusting valve 64 is installed in a backyard of a store, a machine room, or a ceiling provided with an inspection port so that it can be manually operated.

制御部70はマイクロコンピュータからなり、第1〜第6の電磁弁41a,41b,41c,41d,41e,62、第2の凝縮器用送風機34、第2の凝縮器32の周囲の温度を検出する温度検出手段としての温度センサ71、圧力センサ65が接続されている。   The control unit 70 includes a microcomputer, and detects the ambient temperature around the first to sixth electromagnetic valves 41a, 41b, 41c, 41d, 41e, 62, the second condenser blower 34, and the second condenser 32. A temperature sensor 71 and a pressure sensor 65 are connected as temperature detection means.

以上のように構成された冷却装置において、各冷蔵ショーケース20及び冷凍ショーケース30の冷却運転は、図1に示すように、第1の圧縮機11から吐出された冷媒は、第1の凝縮器12を流通した後、第1〜第5の蒸発器21a,21b,21c,21d,21e及びカスケードコンデンサ61の冷蔵側に第1〜第5の膨張弁42a,42b,42c,42d,42e及び第7の膨張弁63を介して流通し、第1の圧縮機11に吸入される。また、第2の圧縮機31から吐出された冷媒は、第2の凝縮器32を流通した後、カスケードコンデンサ61の冷凍側を流通し、第6の蒸発器33に第6の膨張弁51を介して流通して第2の圧縮機31に吸入される。このような冷媒の循環によって各冷蔵ショーケース20及び冷凍ショーケース30内が冷却される。   In the cooling apparatus configured as described above, the cooling operation of each refrigerated showcase 20 and the refrigerated showcase 30 is performed as shown in FIG. 1, in which the refrigerant discharged from the first compressor 11 is subjected to the first condensation. After flowing through the vessel 12, the first to fifth expansion valves 42a, 42b, 42c, 42d, 42e and the first to fifth evaporators 21a, 21b, 21c, 21d, 21e and the refrigeration side of the cascade condenser 61 are provided. It flows through the seventh expansion valve 63 and is sucked into the first compressor 11. The refrigerant discharged from the second compressor 31 flows through the second condenser 32 and then flows through the freezing side of the cascade condenser 61, and the sixth expansion valve 51 is connected to the sixth evaporator 33. And is sucked into the second compressor 31. The inside of each refrigerated showcase 20 and the freezer showcase 30 is cooled by the circulation of the refrigerant.

このとき、熱交換ユニット60のカスケードコンデンサ61では、第1の冷媒回路40の冷媒が蒸発するとともに、第2の冷媒回路50の冷媒が凝縮し、第1の冷媒回路40の冷媒と第2の冷媒回路50の冷媒とが熱交換される。これにより、第2の冷媒回路50の冷媒は熱交換ユニット60において凝縮されるため、凝縮する冷媒の温度が低くなり第2の冷媒回路50の冷却効率を向上させることが可能となる。また、カスケードコンデンサ61の冷蔵側吐出口に設けられた蒸発圧力調整弁64を、例えば冷蔵ショーケース20の負荷が大きい夏期には蒸発圧力を高く設定し、冷蔵ショーケース20の負荷が小さい冬期には蒸発圧力を低く設定することによりカスケードコンデンサ61での交換熱量が調整可能となる。   At this time, in the cascade capacitor 61 of the heat exchange unit 60, the refrigerant in the first refrigerant circuit 40 evaporates, the refrigerant in the second refrigerant circuit 50 condenses, and the refrigerant in the first refrigerant circuit 40 and the second refrigerant circuit 40 Heat is exchanged with the refrigerant in the refrigerant circuit 50. Thereby, since the refrigerant of the second refrigerant circuit 50 is condensed in the heat exchange unit 60, the temperature of the refrigerant to be condensed becomes low, and the cooling efficiency of the second refrigerant circuit 50 can be improved. Further, the evaporation pressure adjusting valve 64 provided at the refrigeration outlet of the cascade condenser 61 is set to a high evaporation pressure in summer when the load of the refrigerated showcase 20 is large, for example, and in winter when the load of the refrigerated showcase 20 is small. The amount of exchange heat in the cascade condenser 61 can be adjusted by setting the evaporation pressure low.

次に、冷蔵ショーケース20及び冷凍ショーケース30の除霜運転時の制御部70の動作を説明する。図3に示すように、冷蔵ショーケース20の除霜運転は冷凍ショーケース30の除霜運転と比較して運転時間が長く頻度も多くなるため、冷蔵ショーケース20のみの除霜を行う場合は、制御部70は第1〜第6の電磁弁41a,41b,41c,41d,41e,62を閉鎖して、第1〜第5の蒸発器21a,21b,21c,21d,21e及び熱交換ユニット60への冷媒の供給を停止する。これにより、第1の冷媒回路40は運転を停止するが、第2の冷媒回路50は第2の凝縮器32のみで冷媒を凝縮して、冷凍ショーケース30の冷却運転が継続される。また、冷凍ショーケース30の除霜運転を行う場合は、冷蔵ショーケース20の除霜運転の開始に併せて除霜運転を行うことによ
り、第1の冷媒回路40及び第2の冷媒回路50の冷却運転を停止させる。冷凍ショーケース30の除霜運転が終了すると、第2の冷媒回路50のみで冷凍ショーケース30を冷却する。これにより、冷凍ショーケース30のみの運転時間を最小限にすることが可能となる。
Next, the operation of the control unit 70 during the defrosting operation of the refrigerated showcase 20 and the frozen showcase 30 will be described. As shown in FIG. 3, since the defrosting operation of the refrigerated showcase 20 is longer and more frequent than the defrosting operation of the refrigerated showcase 30, The controller 70 closes the first to sixth electromagnetic valves 41a, 41b, 41c, 41d, 41e, 62, and the first to fifth evaporators 21a, 21b, 21c, 21d, 21e and the heat exchange unit. The supply of the refrigerant to 60 is stopped. As a result, the operation of the first refrigerant circuit 40 is stopped, but the second refrigerant circuit 50 condenses the refrigerant only by the second condenser 32, and the cooling operation of the refrigeration showcase 30 is continued. Moreover, when performing the defrost operation of the freezer showcase 30, by performing a defrost operation in conjunction with the start of the defrost operation of the refrigerated showcase 20, the first refrigerant circuit 40 and the second refrigerant circuit 50 are operated. Stop the cooling operation. When the defrosting operation of the refrigerated showcase 30 is completed, the refrigerated showcase 30 is cooled only by the second refrigerant circuit 50. Thereby, it becomes possible to minimize the operation time of only the frozen showcase 30.

また、カスケードコンデンサ61の冷凍側吐出口から吐出された冷媒の圧力が圧力センサ65によって検出され、図4に示すモリエ線図に基づいて、検出圧力P1 から求められる温度T1 が温度センサ71によって検出された第2の凝縮器32の周囲の温度Tよりも低い場合には、第2の凝縮器用送風機34が停止される。   Further, the pressure of the refrigerant discharged from the freezing side discharge port of the cascade condenser 61 is detected by the pressure sensor 65, and the temperature T1 obtained from the detected pressure P1 is detected by the temperature sensor 71 based on the Mollier diagram shown in FIG. When the temperature around the second condenser 32 is lower than the temperature T, the second condenser blower 34 is stopped.

このように、本実施形態の冷却装置によれば、第2の圧縮機31から吐出された冷媒をカスケードコンデンサ61によって凝縮するようにしたので、熱負荷の小さい冬期等の第1の冷媒回路40において余る冷却能力を第2の冷媒回路50の凝縮に利用することができ、第2の冷媒回路50の第2の圧縮機31の入力を最小限にして冷却装置の冷却効率を向上させることができる。また、冷蔵ショーケース20の熱負荷が大きいときには第2の冷媒回路50のみで冷却運転を行うことができ、第1の冷媒回路40の冷却能力を大きくする必要がなく、例えば冷蔵ショーケース20及び冷凍ショーケース30がそれぞれの独立した冷媒回路によって冷却運転を行う既存の冷却装置に用いることができる。   As described above, according to the cooling device of the present embodiment, the refrigerant discharged from the second compressor 31 is condensed by the cascade condenser 61, and therefore the first refrigerant circuit 40 in winter or the like with a small heat load. The excess cooling capacity can be used for the condensation of the second refrigerant circuit 50, and the input of the second compressor 31 of the second refrigerant circuit 50 can be minimized to improve the cooling efficiency of the cooling device. it can. Further, when the heat load of the refrigerated showcase 20 is large, the cooling operation can be performed only by the second refrigerant circuit 50, and there is no need to increase the cooling capacity of the first refrigerant circuit 40. The refrigeration showcase 30 can be used in an existing cooling device that performs a cooling operation by each independent refrigerant circuit.

また、カスケードコンデンサ61の冷蔵側の蒸発圧力を調整することができるので、カスケードコンデンサ61の熱交換量を変更することができ、第1の冷媒回路40の熱負荷が大きい場合には、カスケードコンデンサ61の熱交換量を減らすことができる。   Further, since the evaporation pressure on the refrigeration side of the cascade condenser 61 can be adjusted, the heat exchange amount of the cascade condenser 61 can be changed, and when the heat load of the first refrigerant circuit 40 is large, the cascade condenser 61 The heat exchange amount of 61 can be reduced.

また、蒸発圧力調整弁64によってカスケードコンデンサ61の冷蔵側の冷媒の蒸発量を調整することができるので、蒸発圧力調整弁64を手動で操作することによりカスケードコンデンサ61の蒸発量を調整することができ、冷蔵ショーケース20の熱負荷に応じて容易にカスケードコンデンサ61での蒸発量を変更することができる。   Further, since the evaporation amount of the refrigerant on the refrigeration side of the cascade capacitor 61 can be adjusted by the evaporation pressure adjustment valve 64, the evaporation amount of the cascade capacitor 61 can be adjusted by manually operating the evaporation pressure adjustment valve 64. The evaporation amount in the cascade condenser 61 can be easily changed according to the heat load of the refrigerated showcase 20.

また、冷蔵ショーケース20が除霜運転を行うときは第6の電磁弁62を閉鎖するようにしたので、冷凍ショーケース30は第2の冷媒回路50のみで冷却運転を行うとともに、第1の冷媒回路40の冷却運転を停止させることができ、冷凍ショーケース30のためのみに冷却能力の大きい第1の冷媒回路40の冷却運転を継続する必要がないという利点がある。   In addition, since the sixth solenoid valve 62 is closed when the refrigerated showcase 20 performs the defrosting operation, the refrigerated showcase 30 performs the cooling operation only by the second refrigerant circuit 50 and the first The cooling operation of the refrigerant circuit 40 can be stopped, and there is an advantage that it is not necessary to continue the cooling operation of the first refrigerant circuit 40 having a large cooling capacity only for the refrigeration showcase 30.

また、冷凍ショーケース30の除霜運転と冷蔵ショーケース20の除霜運転を同時に開始するようにしたので、第2の冷媒回路50のみで冷凍ショーケース30の冷却運転を行う時間を最小限にすることができ、消費電力を低減させることができる。   In addition, since the defrosting operation of the refrigerated showcase 30 and the defrosting operation of the refrigerated showcase 20 are started at the same time, the time for performing the cooling operation of the refrigerated showcase 30 only with the second refrigerant circuit 50 is minimized. Power consumption can be reduced.

また、第2の冷媒回路50のカスケードコンデンサ61の吐出側の圧力を検出し、検出された圧力P1 から算出される冷媒の温度T1 が温度センサ71によって検出された第2の凝縮器32の周囲の温度Tよりも低い場合には、第2の凝縮器用送風機34の運転を停止するようにしたので、不要に第2の凝縮器用送風機34を運転することなく、消費電力を低減させることができる。   Further, the pressure on the discharge side of the cascade condenser 61 of the second refrigerant circuit 50 is detected, and the temperature T1 of the refrigerant calculated from the detected pressure P1 is detected around the second condenser 32 detected by the temperature sensor 71. When the temperature is lower than the temperature T, the operation of the second condenser blower 34 is stopped, so that the power consumption can be reduced without unnecessarily operating the second condenser blower 34. .

尚、前記実施形態では、カスケードコンデンサ61の冷蔵側吐出口に蒸発圧力調整弁64を設けて、手動によりカスケードコンデンサ61の交換熱量を調整するようにしたものを示したが、図5に示すように、蒸発圧力が高く設定された第1の蒸発圧力調整弁66と蒸発圧力が低く設定された第2の蒸発圧力調整弁67を並列に接続するとともに、第2の蒸発圧力調整弁67側に第7の電磁弁68を設け、第7の電磁弁68を閉鎖することにより蒸発圧力を高く設定し、第7の電磁弁68を開放することにより、第1及び第2の蒸発圧力調整弁66,67に冷媒を流通させるようにして蒸発圧力を低く設定するようにしてもよい。この場合、第1及び第2の蒸発圧力調整弁66,67を直接操作する必要がなく、第7の電磁弁68の開閉のみで蒸発圧力を切換えることができる。   In the above embodiment, the evaporating pressure adjusting valve 64 is provided at the refrigeration outlet of the cascade condenser 61 and the exchange heat amount of the cascade condenser 61 is adjusted manually. However, as shown in FIG. In addition, a first evaporation pressure adjusting valve 66 set at a high evaporation pressure and a second evaporation pressure adjusting valve 67 set at a low evaporation pressure are connected in parallel, and are connected to the second evaporation pressure adjusting valve 67 side. A seventh solenoid valve 68 is provided, the evaporation pressure is set high by closing the seventh solenoid valve 68, and the first and second evaporation pressure adjusting valves 66 are opened by opening the seventh solenoid valve 68. , 67 may cause the refrigerant to circulate and the evaporating pressure may be set low. In this case, it is not necessary to directly operate the first and second evaporation pressure adjusting valves 66 and 67, and the evaporation pressure can be switched only by opening and closing the seventh electromagnetic valve 68.

また、図7に示すように、蒸発圧力調整弁64を設けることなくカスケードコンデンサ61の冷蔵側吐出口に自動圧力調整弁69を設け、例えば、図8に示すように、定速の室外ユニット10の運転率またはインバータ制御の室外ユニット10の運転周波数から自動圧力調整弁69の開度を調整したり、図9に示すように、第1の冷媒回路の第1〜第5の電磁弁41a,41b,41c,41d,41eの開閉率等から自動圧力調整弁69の開度を調整するようにしてもよい。この場合、手動で蒸発圧力を調整することなく、第1の冷媒回路40の運転状態から自動で蒸発圧力を調整できるので、第1の冷媒回路40の冷凍能力をより有効に利用することができる。   Further, as shown in FIG. 7, an automatic pressure adjustment valve 69 is provided at the refrigeration outlet of the cascade condenser 61 without providing the evaporation pressure adjustment valve 64. For example, as shown in FIG. The opening of the automatic pressure regulating valve 69 is adjusted from the operating rate of the inverter unit or the operating frequency of the inverter-controlled outdoor unit 10, or as shown in FIG. 9, the first to fifth electromagnetic valves 41a, You may make it adjust the opening degree of the automatic pressure control valve 69 from the open / close rate of 41b, 41c, 41d, 41e. In this case, since the evaporation pressure can be automatically adjusted from the operating state of the first refrigerant circuit 40 without manually adjusting the evaporation pressure, the refrigeration capacity of the first refrigerant circuit 40 can be used more effectively. .

また、図10に示すように、蒸発圧力調整弁64または自動圧力調整弁69を設けることなく、第6の電磁弁62及び第7の膨張弁63の代わりに電子膨張弁80を設け、例えば、図11に示すように、定速の室外ユニット10の運転率またはインバータ制御の室外ユニット10の運転周波数から電子膨張弁80の開閉率を調整したり、図12に示すように、第1の冷媒回路40の第1〜第5の電磁弁41a,41b,41c,41d,41eの開閉率等から電子膨張弁80の開閉率を調整するようにし、冷蔵ショーケース20の除霜運転を行う場合に電子膨張弁80を閉鎖するようにしてもよい。この場合、手動で蒸発圧力を調整することなく、第1の冷媒回路40の運転状態から自動で蒸発圧力を調整できるので、第1の冷媒回路40の冷凍能力をより有効に利用できるとともに、部品点数を減らすことができる。   Further, as shown in FIG. 10, an electronic expansion valve 80 is provided in place of the sixth electromagnetic valve 62 and the seventh expansion valve 63 without providing the evaporation pressure adjusting valve 64 or the automatic pressure adjusting valve 69, for example, As shown in FIG. 11, the opening / closing rate of the electronic expansion valve 80 is adjusted from the operating rate of the constant speed outdoor unit 10 or the operating frequency of the inverter-controlled outdoor unit 10, or the first refrigerant as shown in FIG. When the open / close rate of the electronic expansion valve 80 is adjusted from the open / close rate of the first to fifth electromagnetic valves 41a, 41b, 41c, 41d, and 41e of the circuit 40, and the defrosting operation of the refrigerated showcase 20 is performed. The electronic expansion valve 80 may be closed. In this case, since the evaporation pressure can be automatically adjusted from the operating state of the first refrigerant circuit 40 without manually adjusting the evaporation pressure, the refrigeration capacity of the first refrigerant circuit 40 can be used more effectively, and the components The score can be reduced.

また、前記実施形態では、第2の冷媒回路50のカスケードコンデンサ61の吐出側の圧力を検出し、検出された圧力P1 から算出される冷媒の温度T1 が温度センサ71によって検出された第2の凝縮器32の周囲の温度Tよりも低い場合には、第2の凝縮器用送風機34の運転を停止するようにしたものを示したが、店舗内の温度Tは一年を通して一定の温度に保たれているので、第2の冷媒回路50のカスケードコンデンサ61の吐出側の圧力が温度Tに相当する圧力より低い場合に、第2の凝縮器用送風機34を停止するようにしてもよい。   In the embodiment, the pressure on the discharge side of the cascade condenser 61 of the second refrigerant circuit 50 is detected, and the temperature T1 of the refrigerant calculated from the detected pressure P1 is detected by the temperature sensor 71. In the case where the temperature is lower than the ambient temperature T of the condenser 32, the operation of the second condenser blower 34 has been stopped. However, the temperature T in the store is kept constant throughout the year. Therefore, when the pressure on the discharge side of the cascade condenser 61 of the second refrigerant circuit 50 is lower than the pressure corresponding to the temperature T, the second condenser blower 34 may be stopped.

また、前記実施形態では、第2の凝縮器32吐出側にカスケードコンデンサ61を接続したものを示したが、第2の凝縮器32の吸入側にカスケードコンデンサ61が接続されていてもよい。   In the above embodiment, the cascade condenser 61 is connected to the discharge side of the second condenser 32, but the cascade condenser 61 may be connected to the suction side of the second condenser 32.

また、前記実施形態では、冷凍ショーケース30が1台のみ第2の冷媒回路50に接続されたものを示したが、2台以上第2の冷媒回路50に接続されていてもよい。   In the embodiment, only one refrigeration showcase 30 is connected to the second refrigerant circuit 50. However, two or more refrigeration showcases 30 may be connected to the second refrigerant circuit 50.

また、前記実施形態では、冷蔵ショーケース及び冷凍ショーケースを冷却するものを示したが、冷蔵ショーケース及び冷凍ショーケースに限らず冷蔵庫、冷凍庫または空調設備等の冷却装置に用いてもよい。   Moreover, although what cooled the refrigerated showcase and the freezer showcase was shown in the said embodiment, you may use for cooling devices, such as not only a refrigerated showcase and a freezer showcase, but a refrigerator, a freezer, or an air conditioner.

本発明の一実施形態を示す冷却装置の冷媒回路図The refrigerant circuit figure of the cooling device which shows one Embodiment of this invention 制御系を示すブロック図Block diagram showing the control system 冷却装置の制御動作を示すタイムチャートTime chart showing control operation of cooling device 熱交換ユニットの第2の冷媒回路側吐出口の圧力と温度の関係を示すモリエ線図Mollier diagram showing the relationship between the pressure and temperature of the second refrigerant circuit side outlet of the heat exchange unit 熱交換器の蒸発圧力を調整するその他の例を示す要部冷媒回路図Main part refrigerant circuit diagram showing another example of adjusting the evaporation pressure of the heat exchanger 制御系を示すブロック図Block diagram showing the control system 熱交換器の蒸発圧力を調整するその他の例を示す要部冷媒回路図Main part refrigerant circuit diagram showing another example of adjusting the evaporation pressure of the heat exchanger 制御系を示すブロック図Block diagram showing the control system 制御系を示すブロック図Block diagram showing the control system 熱交換器の蒸発圧力を調整するその他の例を示す要部冷媒回路図Main part refrigerant circuit diagram showing another example of adjusting the evaporation pressure of the heat exchanger 制御系を示すブロック図Block diagram showing the control system 制御系を示すブロック図Block diagram showing the control system

11…第1の圧縮機、12…第1の凝縮器、21a,21b,21c,21d,21e…第1〜第5の蒸発器、31…第2の圧縮機、32…第2の凝縮器、33…第6の蒸発器、40…第1の冷媒回路、42a,42b,42c,42d,42e…第1〜第5の膨張弁、50…第2の冷媒回路、51…第6の膨張弁、61…カスケードコンデンサ、62…第6の電磁弁、63…第7の膨張弁、64…蒸発圧力調整弁、65…圧力センサ、71…温度センサ。   DESCRIPTION OF SYMBOLS 11 ... 1st compressor, 12 ... 1st condenser, 21a, 21b, 21c, 21d, 21e ... 1st-5th evaporator, 31 ... 2nd compressor, 32 ... 2nd condenser 33 ... Sixth evaporator, 40 ... First refrigerant circuit, 42a, 42b, 42c, 42d, 42e ... First to fifth expansion valves, 50 ... Second refrigerant circuit, 51 ... Sixth expansion Valve 61, Cascade capacitor 62 ... Sixth solenoid valve 63 ... Seventh expansion valve 64 ... Evaporation pressure regulating valve 65 ... Pressure sensor 71 ... Temperature sensor

Claims (6)

第1の圧縮機、第1の凝縮器、第1の膨張手段及び第1の蒸発器からなる第1の冷媒回路と、第2の圧縮機、第2の膨張手段及び第2の蒸発器からなる第2の冷媒回路と、第1の冷媒回路の冷媒と第2の冷媒回路の冷媒との間で熱交換を行う熱交換器とを備え、第1の冷媒回路の凝縮器から吐出された冷媒の一部を熱交換器の吸入口側に設けられた第3の膨張手段を介して熱交換器内で蒸発させるとともに、第2の冷媒回路の圧縮機から吐出された冷媒を熱交換器内で凝縮させるようにした冷却装置において、
前記第2の冷媒回路の冷媒を前記熱交換器の冷媒流入側または流出側で凝縮する凝縮器と、
前記第1の冷媒回路の熱交換器内の蒸発圧力を所定圧力以上の圧力に調整可能な蒸発圧力調整手段とを備え、
前記蒸発圧力調整手段を、第1の冷媒回路の熱交換器の冷媒吐出口側に接続された自動圧力調整弁と、第1の冷媒回路の熱負荷を検出する熱負荷検出手段と、熱負荷検出手段によって検出された熱負荷の上昇に伴って第1の冷媒回路の熱交換器内の蒸発圧力が高くなるように自動圧力調整弁を調整し、検出された熱負荷の低下に伴って第1の冷媒回路内の熱交換器内の蒸発圧力が低くなるように自動圧力調整弁を調整する制御手段とから構成した
ことを特徴とする冷却装置。
From the 1st refrigerant circuit which consists of the 1st compressor, the 1st condenser, the 1st expansion means, and the 1st evaporator, The 2nd compressor, the 2nd expansion means, and the 2nd evaporator And a heat exchanger that exchanges heat between the refrigerant of the first refrigerant circuit and the refrigerant of the second refrigerant circuit, and discharged from the condenser of the first refrigerant circuit A part of the refrigerant is evaporated in the heat exchanger through the third expansion means provided on the suction port side of the heat exchanger, and the refrigerant discharged from the compressor of the second refrigerant circuit is converted into the heat exchanger. In the cooling device designed to condense inside
A condenser that condenses the refrigerant of the second refrigerant circuit on the refrigerant inflow side or outflow side of the heat exchanger;
Evaporating pressure adjusting means capable of adjusting the evaporating pressure in the heat exchanger of the first refrigerant circuit to a pressure equal to or higher than a predetermined pressure;
The evaporating pressure adjusting means includes an automatic pressure adjusting valve connected to the refrigerant outlet side of the heat exchanger of the first refrigerant circuit, a heat load detecting means for detecting a heat load of the first refrigerant circuit, and a heat load. The automatic pressure regulating valve is adjusted so that the evaporation pressure in the heat exchanger of the first refrigerant circuit increases as the heat load detected by the detecting means increases, and the first pressure decreases as the detected heat load decreases. And a control means for adjusting the automatic pressure control valve so that the evaporation pressure in the heat exchanger in the refrigerant circuit of 1 is lowered.
第1の圧縮機、第1の凝縮器、第1の膨張手段及び第1の蒸発器からなる第1の冷媒回路と、第2の圧縮機、第2の膨張手段及び第2の蒸発器からなる第2の冷媒回路と、第1の冷媒回路の冷媒と第2の冷媒回路の冷媒との間で熱交換を行う熱交換器とを備え、第1の冷媒回路の凝縮器から吐出された冷媒の一部を熱交換器の吸入口側に設けられた第3の膨張手段を介して熱交換器内で蒸発させるとともに、第2の冷媒回路の圧縮機から吐出された冷媒を熱交換器内で凝縮させるようにした冷却装置において、
前記第2の冷媒回路の冷媒を前記熱交換器の冷媒流入側または流出側で凝縮する凝縮器と、
前記第1の冷媒回路の熱交換器内の蒸発圧力を所定圧力以上の圧力に調整可能な蒸発圧力調整手段とを備え、
前記蒸発圧力調整手段を、冷媒流路の開閉によって冷媒の流量を調整する第3の膨張手段としての電子膨張弁と、第1の冷媒回路の熱負荷を検出する熱負荷検出手段と、熱負荷検出手段によって検出された熱負荷の上昇に伴って電子膨張弁の開放時間を短くし、検出された熱負荷の低下に伴って電子膨張弁の開放時間を長くする制御手段とから構成した
ことを特徴とする冷却装置。
From the 1st refrigerant circuit which consists of the 1st compressor, the 1st condenser, the 1st expansion means, and the 1st evaporator, The 2nd compressor, the 2nd expansion means, and the 2nd evaporator And a heat exchanger that exchanges heat between the refrigerant of the first refrigerant circuit and the refrigerant of the second refrigerant circuit, and discharged from the condenser of the first refrigerant circuit A part of the refrigerant is evaporated in the heat exchanger through the third expansion means provided on the suction port side of the heat exchanger, and the refrigerant discharged from the compressor of the second refrigerant circuit is converted into the heat exchanger. In the cooling device designed to condense inside
A condenser that condenses the refrigerant of the second refrigerant circuit on the refrigerant inflow side or outflow side of the heat exchanger;
Evaporating pressure adjusting means capable of adjusting the evaporating pressure in the heat exchanger of the first refrigerant circuit to a pressure equal to or higher than a predetermined pressure;
The evaporating pressure adjusting means includes an electronic expansion valve as a third expansion means for adjusting the flow rate of the refrigerant by opening and closing the refrigerant flow path, a thermal load detection means for detecting the thermal load of the first refrigerant circuit, And a control means for shortening the opening time of the electronic expansion valve with an increase in the thermal load detected by the detecting means and lengthening the opening time of the electronic expansion valve with a decrease in the detected thermal load. A cooling device characterized.
前記第1の冷媒回路の第1の蒸発器を除霜する除霜手段と、
第1の冷媒回路から熱交換器への冷媒流路を開閉する開閉弁と、
第1の蒸発器を除霜手段によって除霜するときに開閉弁を閉鎖する制御手段とを備えた
ことを特徴とする請求項1または2記載の冷却装置。
Defrosting means for defrosting the first evaporator of the first refrigerant circuit;
An on-off valve that opens and closes a refrigerant flow path from the first refrigerant circuit to the heat exchanger;
The cooling device according to claim 1, further comprising a control unit that closes the on-off valve when the first evaporator is defrosted by the defrosting unit.
前記第1の冷媒回路の第1の蒸発器を除霜する除霜手段と、
第1の蒸発器を除霜手段によって除霜するときに蒸発圧力調整手段の電子膨張弁を閉鎖する制御手段を備えた
ことを特徴とする請求項2記載の冷却装置。
Defrosting means for defrosting the first evaporator of the first refrigerant circuit;
The cooling device according to claim 2, further comprising a control unit that closes the electronic expansion valve of the evaporation pressure adjusting unit when the first evaporator is defrosted by the defrosting unit.
前記第2の冷媒回路の第2の蒸発器を除霜する除霜手段と、
第1の冷媒回路の除霜運転と第2の冷媒回路の除霜運転とを同時に開始する制御手段とを備えた
ことを特徴とする請求項3または4記載の冷却装置。
Defrosting means for defrosting the second evaporator of the second refrigerant circuit;
The cooling device according to claim 3, further comprising a control unit that simultaneously starts a defrosting operation of the first refrigerant circuit and a defrosting operation of the second refrigerant circuit.
第2の冷媒回路の熱交換器の出口側の圧力を検出する圧力検出手段と、
第2の凝縮器の周囲の温度を検出する温度検出手段と、
検出された検出圧力に対応する冷媒の温度が検出された温度よりも低い場合には、第2の凝縮器用に設けられた送風機を停止する制御手段とを備えた
ことを特徴とする請求項1または2記載の冷却装置。
Pressure detecting means for detecting the pressure on the outlet side of the heat exchanger of the second refrigerant circuit;
Temperature detecting means for detecting the temperature around the second condenser;
Control means for stopping a blower provided for the second condenser when the temperature of the refrigerant corresponding to the detected pressure is lower than the detected temperature. Or the cooling device of 2.
JP2004068739A 2004-03-11 2004-03-11 Cooling system Expired - Fee Related JP4409316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068739A JP4409316B2 (en) 2004-03-11 2004-03-11 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068739A JP4409316B2 (en) 2004-03-11 2004-03-11 Cooling system

Publications (2)

Publication Number Publication Date
JP2005257164A JP2005257164A (en) 2005-09-22
JP4409316B2 true JP4409316B2 (en) 2010-02-03

Family

ID=35083058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068739A Expired - Fee Related JP4409316B2 (en) 2004-03-11 2004-03-11 Cooling system

Country Status (1)

Country Link
JP (1) JP4409316B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626520B2 (en) * 2006-01-11 2011-02-09 富士電機システムズ株式会社 Showcase cooling system
JP2009079788A (en) * 2007-09-25 2009-04-16 Sanden Corp Refrigerating device
JP2009300000A (en) * 2008-06-13 2009-12-24 Sharp Corp Refrigerator-freezer and cooling storage
JP2010249444A (en) * 2009-04-17 2010-11-04 Sharp Corp Freezer-refrigerator
RU2496063C2 (en) * 2009-04-17 2013-10-20 Шарп Кабусики Кайся Refrigerator with low-temperature separation, and refrigerating storage device
JP5270523B2 (en) * 2009-12-04 2013-08-21 シャープ株式会社 Freezer refrigerator
JP5988698B2 (en) * 2012-05-25 2016-09-07 三菱電機株式会社 Dual refrigeration equipment

Also Published As

Publication number Publication date
JP2005257164A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
DK2116798T3 (en) Cooling System
US20090064711A1 (en) System and method for using hot gas reheat for humidity control
JPH0799297B2 (en) Air conditioner
JP5472391B2 (en) Container refrigeration equipment
CN110779260B (en) Three-circulation quick-cooling frost-free refrigerator and continuous operation method thereof
JP5110192B1 (en) Refrigeration equipment
CN104613698A (en) Refrigerator and method of controlling the same
US20070277539A1 (en) Continuously Operating Type Showcase
CN112377986A (en) Air conditioner and control method thereof
JP5370551B1 (en) Container refrigeration equipment
JP6699254B2 (en) Cooling system
JP4409316B2 (en) Cooling system
KR101203995B1 (en) Air conditioner and Defrosting Driving Method thereof
CA2530567C (en) Multi-range cross defrosting heat pump system
JP2000266368A (en) Air-conditioner system
JP2007309585A (en) Refrigerating device
US9857123B2 (en) System and method for defrosting a condensor without external heating
JP3049425B2 (en) Refrigerator with two evaporators
KR102459591B1 (en) Control Method of Air Conditioner
JP2007100987A (en) Refrigerating system
JP3993540B2 (en) Refrigeration equipment
JP2007240040A (en) Refrigerating system and its control method
JP4702101B2 (en) Refrigerator and vending machine
JP5475033B2 (en) Refrigeration equipment
KR102260447B1 (en) Air conditioning system for refrigerating and freezing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees