JP4408970B2 - Needle roller bearings for swash plate compressors - Google Patents

Needle roller bearings for swash plate compressors Download PDF

Info

Publication number
JP4408970B2
JP4408970B2 JP15792398A JP15792398A JP4408970B2 JP 4408970 B2 JP4408970 B2 JP 4408970B2 JP 15792398 A JP15792398 A JP 15792398A JP 15792398 A JP15792398 A JP 15792398A JP 4408970 B2 JP4408970 B2 JP 4408970B2
Authority
JP
Japan
Prior art keywords
swash plate
needle roller
cage
outer ring
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15792398A
Other languages
Japanese (ja)
Other versions
JPH11351145A (en
Inventor
信吾 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP15792398A priority Critical patent/JP4408970B2/en
Publication of JPH11351145A publication Critical patent/JPH11351145A/en
Application granted granted Critical
Publication of JP4408970B2 publication Critical patent/JP4408970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のエアコンディショナー等において、作動媒体の吸入・圧縮動作を行う斜板式圧縮機用の針状ころ軸受に関する。
【0002】
【従来の技術】
現在、自動車で使用されている冷房方式は蒸気圧縮式である。蒸気圧縮式の冷凍サイクルは、圧縮機、凝縮器、受液器、膨張弁、蒸発器により構成され、この密閉された冷凍サイクル内で作動媒体(冷媒)を循環させ、低熱源(車室内空気)から高熱源(外気)へ熱を移動させて冷房を行うようになっている。
【0003】
上記の冷凍サイクルの構成要素となる圧縮機として、図5〜図7に例示するような斜板式圧縮機が使用されている。
【0004】
図5に示す斜板式圧縮機は、回転軸10に固定した両面傾斜板11の回転動作によってピストン12をシリンダ室13a内で軸方向に往復摺動させて冷媒の吸入・圧縮動作を行うタイプ(両斜板タイプ)である。シリンダブロック13には複数のシリンダ室13aが円周等間隔に形成され、各シリンダ室13a内にそれぞれ両頭形のピストン12が軸方向摺動自在に収容される。斜板11の両側面とピストン12の間にはそれぞれシュー14が介装され、このシュー14を介して、斜板11の回転運動がピストン12の往復運動に変換される。
【0005】
回転軸10に動力が入力されると、回転軸10と斜板11とが一体となって回転し、その回転が針状ころ軸受15、16によって支持される。すなわち、斜板11(及び回転軸10)には冷媒の圧縮動作に伴うアキシャル荷重がピストン12を介して負荷されるので、これをスラスト針状ころ軸受15によって支持し、回転軸10(及び斜板11)のラジアル荷重はラジアル針状ころ軸受16によって支持する構造になっている。
【0006】
図6に示す斜板式圧縮機は、回転軸20に固定した片面傾斜版21でロッド24(シューが設けられている。)を介してピストン22を往復摺動させるタイプ(片斜板タイプ)で、スラスト針状ころ軸受25とラジアル針状ころ軸受26で荷重を支持する構造になっている。
【0007】
図7に示す斜板式圧縮機は、回転軸30に角度変位可能に取付けた斜板31でロッド34(シューが設けられている。)を介してピストン32を往復摺動させるタイプ(可変容量片斜板タイプ)で、スラスト針状ころ軸受35とラジアル針状ころ軸受36で荷重を支持する構造になっている。
【0008】
上記のような斜板式圧縮機に組み込まれる針状ころ軸受15、16(25、26、35、36)の潤滑は、冷凍サイクルを循環する冷媒中に含まれる潤滑剤によって行われるが、潤滑剤の量が相対的に少なく、また、圧縮機の吸入・圧縮動作により潤滑剤の液化・気化が繰り返されること等から、軸受内部の潤滑条件は厳しい。
【0009】
【発明が解決しようとする課題】
上記のような斜板式圧縮機において、回転軸をラジアル方向に支持する針状ころ軸受(図5〜図7に示す針状ころ軸受16、26、36)としては、省スペースとコスト低減の点からシェル型針状ころ軸受が多く使用され、通常、内輪を用いずに回転軸の外周面に直接軌道面を設けている。また、保持器は薄肉鋼板製のものが多く使用され、必要に応じて、ころ案内、軸案内の何れかの案内形式を選択している。
【0010】
上述したように、この種の針状ころ軸受は厳しい潤滑条件下で運転されるため、保持器の案内形式として軸案内を選択した場合、軸受回転時、保持器の内径面が回転軸の外周面と滑り接触することによって、両者の接触部分に偏摩耗が生じ易い傾向にある。一方、保持器の案内形式としてころ案内を選択した場合、設計上は、保持器と回転軸とは非接触になるが、薄肉鋼板製の保持器では寸法公差のばらつきによって、軸受回転時、保持器の内径面が回転軸の外周面と滑り接触し、上記と同様の問題が生じる場合がある。
【0011】
そこで、本発明は、この種のラジアル針状ころ軸受において、保持器と回転軸との滑り接触部分の偏摩耗を抑制すると共に、軸受内部への潤滑剤の流通性を高めて、軸受寿命を向上させることをその目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明は、回転軸に設けた斜板の回転動作によってピストンをシリンダ内で軸方向に往復摺動させる斜板式圧縮機に組み込まれ、回転軸を固定側部材に対してラジアル方向に支持する針状ころ軸受において、固定側部材に固定される薄肉鋼板製のシェル型の外輪と、外輪の軌道面と回転軸の外周面との間に転動自在に介在する複数の針状ころと、針状ころを円周所定間隔に保持する薄肉鋼板製の保持器とを備え、保持器の内径面の表面粗さが1.0μmRa以下であり、外輪が両端に内向きの鍔部を有し、該両端の鍔部の軸方向での内面はそれぞれ保持器の端面と対向し、かつ、少なくとも一方の鍔部が軸受の軸方向外方側に向かって開いたテーパ形状を有する構成を提供する。ここで、「Ra」は、JISB 0601に規定された中心線平均粗さを表している。
【0013】
保持器の内径面の表面粗さを1.0μmRa以下とすることにより、回転軸の外周面に対する攻撃性が緩和され、回転軸の外周面の偏摩耗が抑制されると同時に、接触部分の摩擦力が軽減されるので、保持器の内径面自身の偏摩耗も抑制される。また、シェル型外輪の両端に内向きの鍔部を設け、該両端の鍔部の軸方向での内面をそれぞれ保持器の端面と対向させ、かつ、少なくとも一方の鍔部を軸受の軸方向外方側に向かって開いたテーパ形状とすることにより、軸受内部への潤滑剤の流通性を高めることができる。
【0014】
保持器は、薄肉鋼板を絞り成形したものでも良いが、所要の断面形状に成形し、針状ころを収容する複数のポケットを形成した平板状の薄肉鋼板の両端を、相互に溶着して環体とした溶接保持器を使用するのが、製造工程の簡略化の点から好ましい。
【0015】
外輪の軌道面の表面粗さを0.63μmRa以下とすることにより、外輪の軌道面と針状ころの転動面との接触部分の適切な油膜形成を確保し、軌道面や転動面のピーリング、スミアリング等の損傷を防止して寿命増大を図ることができる。
【0017】
さらに、シェル型外輪の外径面両端部の少なくとも一方に、軸受の軸方向外方側に向かって漸次縮径したテーパ部を設けることにより、軸受を固定側部材に圧入する際の同軸度の確保が容易になり、また、固定側部材がアルミ材等の柔らかい材料で形成されている場合は、圧入作業時に固定側部材を傷付ける心配も解消される。
【0018】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0019】
図1は、シェル型針状ころ軸受を示している。この針状ころ軸受は、例えば図5に示す斜板式圧縮機において、回転軸10を固定側部材に対してラジアル方向に回転自在に支持するものである。固定側部材は、図5に示す構成では、シリンダブロック(13)の内径壁を構成する部材(13b)であり、この部材(13b)は通常はアルミ材で形成される。
【0020】
この針状ころ軸受は、固定側部材(13b)に圧入固定されるシェル型の外輪1と、外輪1の軌道面1aと回転軸10の外周面との間に転動自在に介在する複数の針状ころ2と、針状ころ2を円周等間隔に保持する薄肉鋼板製の保持器3とを備えている。外輪1の両端にはそれぞれ内向きの鍔部1b、1cが形成され、これら鍔部1b、1cによって針状ころ2及び保持器3が軸方向に抜け止め規制される。
【0021】
外輪1は、例えばSCM薄肉鋼板から深絞り成形(カップ状に成形)→カップ底の抜き加工(鍔部1bの形成)→熱処理(浸炭処理又は浸炭窒化処理等)→カップ入口部周縁の焼鈍→バレル加工→カップ入口部周縁の折曲加工(鍔部1cの形成)という工程を経て、図1に示す形態に完成される。このようにして完成された外輪1の軌道面1aの表面粗さは、0.63μmRa以下である。尚、鍔部1cの折曲加工は、針状ころ2及び保持器3を軌道面1aに組み入れた後に行われる。
【0022】
図2に示すように、保持器3は、針状ころ2を収容する複数のポケット3aを円周等間隔に備え、ポケット3aの軸方向両側が環状部3b、円周方向両側が柱部3cになった環体である。柱部3cは、環状部3bからそれぞれ軸方向に連続して延びた軸方向部3c1と、軸方向部3c1からそれぞれ傾斜状に延びた傾斜部3c2と、両側の傾斜部3c2を内径側において軸方向に繋ぐ内径部3c3とを備えている。各ポケット3aにおいて、相対向する内径部3c3間の円周方向寸法は針状ころ2の直径よりも小さく、そのため内径部3c3がころ落ち止めとして機能する。傾斜部3c2は、軸受回転時、針状ころ2の転動面とピッチ円上で接触する。
【0023】
保持器3は、例えばSPC薄肉鋼板からプレス加工(基本断面形状の成形)→ポケット3aの抜き加工→両端部の溶接(図2に示すW部)→熱処理(軟窒化処理)→バレル加工という工程を経て、図2に示す形態に完成される。このようにして完成された保持器3の内径面(内径部3c3の内径面)の表面粗さは1.0μmRa以下である。
【0024】
図1に示されるように、この実施形態では、保持器3の案内形式としてころ案内を採用している。従って、軸受回転時、保持器3は針状ころ2によって案内され、設計上は回転軸10の外周面と非接触になるが、寸法公差のばらつき等によって、保持器3の内径面が回転軸10の外周面と接触する場合も起り得る。しかし、保持器3の内径面は表面粗さが1.0μmRa以下であるため、両者の接触が起こった場合でも、接触部分に偏摩耗が生じにくい。
【0025】
図3に示す実施形態では、外輪1の一方の端部の鍔部1c’(折曲加工される側の鍔部)が軸受の軸方向外方側に向かってテーパ角θ1をもって開き、かつ、外輪1の一方の端部外径面に軸受の軸方向外方側に向かってテーパ角θ2をもって漸次縮径したテーパ部1dが設けられている。テーパ角θ1、テーパ角θ2は、例えば5°程度である。
【0026】
外輪1の鍔部1c’を上記のようなテーパ形状にすることにより、軸受内部への潤滑剤の流通性を高めることができる。また、外輪1の一方の端部外径面に上記のようなテーパ部1dを設けることにより、軸受を固定側部材(13b)に圧入する際の同軸度の確保が容易になり、また、固定側部材(13b)がアルミ材等の柔らかい材料で形成されている場合は、圧入作業時に固定側部材(13B)を傷付ける心配も解消される。尚、外輪1の他方の端部の鍔部1b(深絞り加工される側の鍔部)も上記と同様のテーパ形状にしても良く、また、外輪1の他方の端部外径面にも上記と同様のテーパ部を設けても良い。
【0027】
上記のような鍔部1c’とテーパ部1dは、例えば図4に示すような治具5を用いて同時形成することができる。治具5にはテーパ角θ1をもった底壁5aとテーパ角θ2をもった周壁5bとが設けられており、外輪1(針状ころ2と保持器3が組み込まれている。)又は治具5を回転させながら、外輪1の一方の端部1e(部分的に焼鈍されている。)を治具5に押し込んで行くと、一方の端部1eが治具5の周壁5bから底壁5cに案内されて折れ曲がり、鍔部1c’とテーパ部1dが同時に形成される。
【0028】
尚、本発明は、軸案内形式の針状ころ軸受にも同様に適用することができ、また、組み込まれる斜板式圧縮機の構造は図5、図6、図7に示すものに限定されない。
【0029】
【発明の効果】
本発明は、以下に示す効果を有する。
【0030】
(1)保持器の内径面の表面粗さを1.0μmRa以下とすることにより、回転軸の外周面に対する攻撃性が緩和され、回転軸の外周面の偏摩耗が抑制されると同時に、接触部分の摩擦力が軽減されるので、保持器の内径面自身の偏摩耗も抑制される。また、シェル型外輪の両端に内向きの鍔部を設け、該両端の鍔部の軸方向での内面をそれぞれ保持器の端面と対向させ、かつ、少なくとも一方の鍔部を軸受の軸方向外方側に向かって開いたテーパ形状とすることにより、軸受内部への潤滑剤の流通性を高めることができる。
【0031】
(2)外輪の軌道面の表面粗さを0.63μmRa以下とすることにより、外輪の軌道面と針状ころの転動面との接触部分の適切な油膜形成を確保し、軌道面や転動面のピーリング、スミアリング等の損傷を防止することができる。
【0033】
(3)外輪の外径面両端部の少なくとも一方に、軸受の軸方向外方側に向かって漸次縮径したテーパ部を設けることにより、軸受を固定側部材に圧入する際の同軸度の確保が容易になり、また、固定側部材がアルミ材等の柔らかい材料で形成されている場合は、圧入作業時に固定側部材を傷付ける心配も解消される。
【0034】
)針状ころ軸受の寿命が向上する結果、斜板式圧縮機の吸入・圧縮動作が長期にわたって安定して行われ、その信頼性が向上する。
【図面の簡単な説明】
【図1】実施形態に係わるシェル型針状ころ軸受を示す断面図である。
【図2】保持器の断面図である。
【図3】他の実施形態に係わるシェル型針状ころ軸受を示す部分断面図である。
【図4】テーパ状の鍔部とテーパ部を形成する一態様を示す断面図である。
【図5】斜板式圧縮機の一構成例を示す断面図である。
【図6】斜板式圧縮機の一構成例を示す断面図である。
【図7】斜板式圧縮機の一構成例を示す断面図である。
【符号の説明】
1 外輪
2 針状ころ
3 保持器
10 回転軸
13b 固定側部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a needle roller bearing for a swash plate compressor that performs a suction / compression operation of a working medium in an air conditioner or the like of an automobile.
[0002]
[Prior art]
Currently, the cooling system used in automobiles is a vapor compression type. A vapor compression refrigeration cycle is composed of a compressor, a condenser, a receiver, an expansion valve, and an evaporator. A working medium (refrigerant) is circulated in the sealed refrigeration cycle, and a low heat source (vehicle interior air). ) To a high heat source (outside air) for cooling.
[0003]
A swash plate compressor illustrated in FIGS. 5 to 7 is used as a compressor that is a component of the refrigeration cycle.
[0004]
The swash plate compressor shown in FIG. 5 performs a refrigerant suction / compression operation by reciprocally sliding the piston 12 in the axial direction in the cylinder chamber 13a by the rotational operation of the double-sided inclined plate 11 fixed to the rotary shaft 10. (Both swash plate type). A plurality of cylinder chambers 13a are formed in the cylinder block 13 at equal intervals around the circumference, and double-headed pistons 12 are accommodated in the cylinder chambers 13a so as to be slidable in the axial direction. A shoe 14 is interposed between both side surfaces of the swash plate 11 and the piston 12, and the rotational motion of the swash plate 11 is converted into reciprocating motion of the piston 12 via the shoe 14.
[0005]
When power is input to the rotating shaft 10, the rotating shaft 10 and the swash plate 11 rotate together, and the rotation is supported by the needle roller bearings 15 and 16. That is, since the axial load accompanying the compression operation of the refrigerant is applied to the swash plate 11 (and the rotating shaft 10) via the piston 12, this is supported by the thrust needle roller bearing 15 and the rotating shaft 10 (and the inclined shaft 10). The radial load of the plate 11) is supported by a radial needle roller bearing 16.
[0006]
The swash plate compressor shown in FIG. 6 is a type (single swash plate type) in which a piston 22 is slid back and forth through a rod 24 (a shoe is provided) with a single-sided inclined plate 21 fixed to a rotary shaft 20. The thrust needle roller bearing 25 and the radial needle roller bearing 26 support the load.
[0007]
The swash plate compressor shown in FIG. 7 is a type (variable capacity piece) in which a piston 32 is slid back and forth through a rod 34 (a shoe is provided) by a swash plate 31 attached to a rotary shaft 30 so as to be capable of angular displacement. A swash plate type), which has a structure in which a load is supported by a thrust needle roller bearing 35 and a radial needle roller bearing 36.
[0008]
The needle roller bearings 15 and 16 (25, 26, 35, and 36) incorporated in the swash plate compressor as described above are lubricated by the lubricant contained in the refrigerant circulating in the refrigeration cycle. Since the amount of the oil is relatively small and the liquefaction / vaporization of the lubricant is repeated by the suction / compression operation of the compressor, the lubrication conditions inside the bearing are severe.
[0009]
[Problems to be solved by the invention]
In the swash plate compressor as described above, the needle roller bearings (needle roller bearings 16, 26, and 36 shown in FIGS. 5 to 7) that support the rotation shaft in the radial direction are space saving and cost reduction. Therefore, shell needle roller bearings are often used, and the raceway surface is usually provided directly on the outer peripheral surface of the rotating shaft without using an inner ring. Further, a cage made of a thin steel plate is often used, and a guide type of roller guide or shaft guide is selected as necessary.
[0010]
As described above, since this type of needle roller bearing is operated under severe lubrication conditions, when the shaft guide is selected as the guide type of the cage, the inner diameter surface of the cage is the outer circumference of the rotating shaft when the bearing rotates. Due to sliding contact with the surface, uneven wear tends to occur at the contact portion between the two. On the other hand, when roller guide is selected as the guide type for the cage, the cage and the rotating shaft are not in contact with each other by design. However, in the cage made of thin steel plate, it is retained during bearing rotation due to dimensional tolerance variations. The inner diameter surface of the vessel may come into sliding contact with the outer peripheral surface of the rotating shaft, and the same problem as described above may occur.
[0011]
In view of this, the present invention provides a radial needle roller bearing of this type that suppresses uneven wear at the sliding contact portion between the cage and the rotary shaft and improves the flowability of the lubricant into the bearing , thereby increasing the bearing life. Its purpose is to improve.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is incorporated in a swash plate type compressor in which a piston is reciprocally slid in an axial direction in a cylinder by a rotating operation of a swash plate provided on the rotating shaft. In a needle roller bearing supported in the radial direction, a plurality of shell-type outer rings made of thin steel plates fixed to the stationary member and a raceway surface of the outer ring and an outer peripheral surface of the rotating shaft are rotatably disposed. Needle rollers and a cage made of thin steel plate that holds the needle rollers at predetermined intervals around the circumference, the inner surface of the cage has a surface roughness of 1.0 μmRa or less, and the outer ring faces inward at both ends. A taper shape in which the inner surfaces in the axial direction of the flanges at both ends are opposed to the end surfaces of the cage, and at least one of the flanges is opened outward in the axial direction of the bearing. The structure which has is provided. Here, “Ra” represents the centerline average roughness defined in JISB 0601.
[0013]
By setting the surface roughness of the inner diameter surface of the cage to 1.0 μmRa or less, the aggressiveness against the outer peripheral surface of the rotating shaft is mitigated, and uneven wear of the outer peripheral surface of the rotating shaft is suppressed, and at the same time, the friction of the contact portion Since the force is reduced, uneven wear of the inner diameter surface of the cage itself is also suppressed. Also, inward flanges are provided at both ends of the shell-type outer ring , the inner surfaces of the flanges at both ends are opposed to the end surfaces of the cage, respectively, and at least one flange is outside the axial direction of the bearing. By making the taper shape open toward the side, the flowability of the lubricant into the bearing can be enhanced.
[0014]
The cage may be formed by drawing a thin steel plate, but the ends of a flat thin steel plate formed into a required cross-sectional shape and formed with a plurality of pockets for accommodating needle rollers are welded together to form a ring. It is preferable to use a welded cage as a body from the viewpoint of simplifying the manufacturing process.
[0015]
By setting the surface roughness of the raceway surface of the outer ring to 0.63 μmRa or less, it is possible to ensure the formation of an appropriate oil film at the contact portion between the raceway surface of the outer ring and the rolling surface of the needle roller. Damage such as peeling and smearing can be prevented to increase the life.
[0017]
Further, by providing a taper portion that is gradually reduced in diameter toward the outer side in the axial direction of the bearing on at least one of both ends of the outer surface of the shell-type outer ring, the degree of coaxiality when the bearing is press-fitted into the fixed member is increased. It is easy to ensure, and when the fixed side member is formed of a soft material such as an aluminum material, the fear of damaging the fixed side member during press-fitting work is also eliminated.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0019]
FIG. 1 shows a shell needle roller bearing. This needle roller bearing, for example, in the swash plate compressor shown in FIG. 5, supports the rotary shaft 10 so as to be rotatable in the radial direction with respect to the fixed member. In the configuration shown in FIG. 5, the fixed-side member is a member (13b) that constitutes the inner diameter wall of the cylinder block (13), and this member (13b) is usually formed of an aluminum material.
[0020]
This needle roller bearing has a plurality of shell-type outer rings 1 that are press-fitted and fixed to the fixed side member (13b), and a plurality of roll rollers interposed between the raceway surface 1a of the outer ring 1 and the outer peripheral surface of the rotary shaft 10. A needle roller 2 and a cage 3 made of a thin steel plate that holds the needle roller 2 at equal circumferential intervals are provided. Inner flanges 1b and 1c are formed at both ends of the outer ring 1, and the needle rollers 2 and the retainer 3 are prevented from coming off in the axial direction by these flanges 1b and 1c.
[0021]
For example, the outer ring 1 is formed by deep drawing from a SCM thin steel plate (formed into a cup shape) → punching the bottom of the cup (forming the flange 1b) → heat treatment (such as carburizing or carbonitriding) → annealing the peripheral edge of the cup inlet → The process shown in FIG. 1 is completed through a process of barrel processing → bending of the periphery of the cup inlet (formation of the flange 1c). The surface roughness of the raceway surface 1a of the outer ring 1 thus completed is 0.63 μmRa or less. In addition, the bending process of the collar part 1c is performed after incorporating the needle roller 2 and the retainer 3 into the raceway surface 1a.
[0022]
As shown in FIG. 2, the cage 3 includes a plurality of pockets 3 a for accommodating the needle rollers 2 at equal circumferential intervals, the annular sides 3 b on both sides in the axial direction of the pockets 3 a, and the pillar portions 3 c on both sides in the circumferential direction. It is a ring. The column portion 3c includes an axial portion 3c1 extending continuously from the annular portion 3b in the axial direction, an inclined portion 3c2 extending in an inclined manner from the axial direction portion 3c1, and an inclined portion 3c2 on both sides on the inner diameter side. And an inner diameter portion 3c3 connected in the direction. In each pocket 3a, the circumferential dimension between the opposed inner diameter portions 3c3 is smaller than the diameter of the needle roller 2, so that the inner diameter portion 3c3 functions as a roller drop stopper. The inclined portion 3c2 contacts the rolling surface of the needle roller 2 on the pitch circle when the bearing rotates.
[0023]
The cage 3 is, for example, a process of pressing from an SPC thin steel plate (forming a basic cross-sectional shape) → punching a pocket 3a → welding at both ends (W portion shown in FIG. 2) → heat treatment (soft nitriding treatment) → barrel processing After that, the configuration shown in FIG. 2 is completed. The surface roughness of the inner diameter surface of the cage 3 thus completed (the inner diameter surface of the inner diameter portion 3c3) is 1.0 μmRa or less.
[0024]
As shown in FIG. 1, in this embodiment, a roller guide is adopted as a guide type of the cage 3. Therefore, when the bearing rotates, the cage 3 is guided by the needle roller 2 and is not in contact with the outer peripheral surface of the rotating shaft 10 in design. However, due to variations in dimensional tolerances, the inner diameter surface of the cage 3 becomes the rotating shaft. It can also happen when it comes into contact with 10 outer peripheral surfaces. However, since the inner diameter surface of the cage 3 has a surface roughness of 1.0 μmRa or less, even when both contact occurs, uneven wear hardly occurs at the contact portion.
[0025]
In the embodiment shown in FIG. 3, the flange 1c ′ at one end of the outer ring 1 (the flange on the side to be bent) opens with a taper angle θ1 toward the axially outer side of the bearing, and A tapered portion 1d that is gradually reduced in diameter toward the axially outward side of the bearing with a taper angle θ2 is provided on the outer diameter surface of one end portion of the outer ring 1. The taper angle θ1 and the taper angle θ2 are, for example, about 5 °.
[0026]
By making the flange portion 1c ′ of the outer ring 1 into a tapered shape as described above, the flowability of the lubricant into the bearing can be enhanced. Further, by providing the tapered portion 1d as described above on the outer diameter surface of one end portion of the outer ring 1, it is easy to ensure the coaxiality when the bearing is press-fitted into the fixed side member (13b), and the fixed portion is fixed. When the side member (13b) is formed of a soft material such as an aluminum material, the fear of damaging the fixed side member (13B) during the press-fitting operation is also eliminated. Note that the flange 1b (the flange on the deep drawing side) at the other end of the outer ring 1 may have a tapered shape similar to the above, and the other end of the outer ring 1 may also have an outer diameter surface. You may provide the taper part similar to the above.
[0027]
The flange portion 1c ′ and the tapered portion 1d as described above can be simultaneously formed using, for example, a jig 5 as shown in FIG. The jig 5 is provided with a bottom wall 5a having a taper angle θ1 and a peripheral wall 5b having a taper angle θ2, and the outer ring 1 (the needle roller 2 and the cage 3 are incorporated) or a jig. When one end 1e (partially annealed) of the outer ring 1 is pushed into the jig 5 while rotating the tool 5, the one end 1e is moved from the peripheral wall 5b of the jig 5 to the bottom wall. 5c is guided and bent, and the flange portion 1c ′ and the tapered portion 1d are formed at the same time.
[0028]
The present invention can be similarly applied to a shaft guide type needle roller bearing, and the structure of the swash plate compressor to be incorporated is not limited to that shown in FIGS. 5, 6, and 7.
[0029]
【The invention's effect】
The present invention has the following effects.
[0030]
(1) By setting the surface roughness of the inner diameter surface of the cage to 1.0 μmRa or less, the aggression against the outer peripheral surface of the rotating shaft is alleviated, and uneven wear of the outer peripheral surface of the rotating shaft is suppressed, and at the same time Since the frictional force of the part is reduced, uneven wear of the inner diameter surface of the cage itself is also suppressed. Also, inward flanges are provided at both ends of the shell-type outer ring , the inner surfaces of the flanges at both ends are opposed to the end surfaces of the cage, respectively, and at least one flange is outside the axial direction of the bearing. By making the taper shape open toward the side, the flowability of the lubricant into the bearing can be enhanced.
[0031]
(2) By setting the surface roughness of the raceway surface of the outer ring to 0.63 μmRa or less, it is possible to ensure the formation of an appropriate oil film at the contact portion between the raceway surface of the outer ring and the rolling surface of the needle roller. Damage such as peeling and smearing of the moving surface can be prevented.
[0033]
(3) Ensuring coaxiality when the bearing is press-fitted into the stationary member by providing a tapered portion that is gradually reduced in diameter toward the outer side in the axial direction of the bearing on at least one of both ends of the outer diameter surface of the outer ring. In addition, when the fixed side member is formed of a soft material such as an aluminum material, the fear of damaging the fixed side member during press-fitting work is also eliminated.
[0034]
( 4 ) As a result of improving the life of the needle roller bearing, the suction / compression operation of the swash plate compressor is stably performed over a long period of time, and its reliability is improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a shell needle roller bearing according to an embodiment.
FIG. 2 is a cross-sectional view of a cage.
FIG. 3 is a partial cross-sectional view showing a shell needle roller bearing according to another embodiment.
FIG. 4 is a cross-sectional view showing one embodiment of forming a tapered flange and a tapered portion.
FIG. 5 is a cross-sectional view showing a configuration example of a swash plate compressor.
FIG. 6 is a cross-sectional view showing a configuration example of a swash plate compressor.
FIG. 7 is a cross-sectional view showing a configuration example of a swash plate compressor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Needle roller 3 Cage 10 Rotating shaft 13b Fixed side member

Claims (4)

回転軸に設けた斜板の回転動作によってピストンをシリンダ内で軸方向に往復摺動させる斜板式圧縮機に組み込まれ、上記回転軸を固定側部材に対してラジアル方向に支持する針状ころ軸受において、
上記固定側部材に固定される薄肉鋼板製のシェル型の外輪と、外輪の軌道面と上記回転軸の外周面との間に転動自在に介在する複数の針状ころと、針状ころを円周所定間隔に保持する薄肉鋼板製の保持器とを備え、
上記保持器の内径面の表面粗さが1.0μmRa以下であり、
上記外輪が両端に内向きの鍔部を有し、該両端の鍔部の軸方向での内面はそれぞれ保持器の端面と対向し、かつ、少なくとも一方の鍔部が軸受の軸方向外方側に向かって開いたテーパ形状を有することを特徴とする斜板式圧縮機用針状ころ軸受。
A needle roller bearing that is incorporated in a swash plate type compressor that reciprocally slides the piston in the axial direction within the cylinder by rotating the swash plate provided on the rotating shaft, and supports the rotating shaft in the radial direction with respect to the fixed member. In
A shell-type outer ring made of a thin steel plate fixed to the stationary side member, a plurality of needle rollers interposed between the raceway surface of the outer ring and the outer peripheral surface of the rotating shaft, and needle rollers; With a cage made of thin steel plates to be held at predetermined intervals around the circumference,
The surface roughness of the inner diameter surface of the cage is 1.0 μmRa or less,
The outer ring has inward flanges at both ends , the inner surfaces in the axial direction of the flanges at both ends are opposed to the end surfaces of the cage, and at least one flange is on the axially outer side of the bearing. A needle roller bearing for a swash plate compressor, characterized by having a tapered shape that opens toward the front.
上記保持器が、所要の断面形状に成形し、針状ころを収容する複数のポケットを形成した平板状の薄肉鋼板の両端を、相互に溶着して環体とした溶接保持器である請求項1記載の斜板式圧縮機用針状ころ軸受。  The weld cage is a welded cage in which both ends of a flat thin steel plate formed into a required cross-sectional shape and formed with a plurality of pockets for accommodating needle rollers are welded together to form a ring. The needle roller bearing for swash plate compressors according to 1. 上記外輪の軌道面の表面粗さが0.63μmRa以下である請求項1記載の斜板式圧縮機用針状ころ軸受。  2. The needle roller bearing for a swash plate compressor according to claim 1, wherein the outer ring raceway has a surface roughness of 0.63 [mu] mRa or less. 上記外輪の外径面両端部の少なくとも一方に、軸受外方側に向かって漸次縮径したテーパ部を設けた請求項1記載の斜板式圧縮機用針状ころ軸受。  The needle roller bearing for a swash plate compressor according to claim 1, wherein a tapered portion having a diameter gradually reduced toward the outer side of the bearing is provided on at least one of both end portions of the outer diameter surface of the outer ring.
JP15792398A 1998-06-05 1998-06-05 Needle roller bearings for swash plate compressors Expired - Lifetime JP4408970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15792398A JP4408970B2 (en) 1998-06-05 1998-06-05 Needle roller bearings for swash plate compressors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15792398A JP4408970B2 (en) 1998-06-05 1998-06-05 Needle roller bearings for swash plate compressors

Publications (2)

Publication Number Publication Date
JPH11351145A JPH11351145A (en) 1999-12-21
JP4408970B2 true JP4408970B2 (en) 2010-02-03

Family

ID=15660428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15792398A Expired - Lifetime JP4408970B2 (en) 1998-06-05 1998-06-05 Needle roller bearings for swash plate compressors

Country Status (1)

Country Link
JP (1) JP4408970B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3886350B2 (en) * 2001-08-30 2007-02-28 Ntn株式会社 Swash plate compressor
EP1666745B1 (en) * 2003-09-16 2016-11-09 NTN Corporation Shell-type needle roller bearing, supporting structure for compressor main shaft, and supporting structure for piston pump drive section
JP2005105856A (en) * 2003-09-29 2005-04-21 Ntn Corp Piston pump driving part supporting structure
JP4421456B2 (en) * 2004-11-29 2010-02-24 Ntn株式会社 Roller bearing
JP2007024207A (en) * 2005-07-19 2007-02-01 Ntn Corp Needle roller bearing
JP4703521B2 (en) * 2006-09-08 2011-06-15 Ntn株式会社 Roller with cage
JP6171601B2 (en) 2013-06-12 2017-08-02 株式会社豊田自動織機 Rotation prevention mechanism of scroll compressor
JP6290568B2 (en) * 2013-09-26 2018-03-07 Ntn株式会社 Shell roller bearing
JP2022039366A (en) * 2020-08-28 2022-03-10 Ntn株式会社 Needle roller bearing
JP2023043353A (en) * 2021-09-16 2023-03-29 Ntn株式会社 Shell roller bearing and fixing structure for shell roller bearing

Also Published As

Publication number Publication date
JPH11351145A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
CN100400910C (en) Pulley support double row ball bearing
US7273319B2 (en) Roller thrust bearing
US7448806B2 (en) Rotation support device for compressor pulley
JP4408970B2 (en) Needle roller bearings for swash plate compressors
CN101482119B (en) Scroll compressor
JPWO2004001242A1 (en) Double row ball bearings for pulley support
WO2003069175A1 (en) Pulley bearing for engine auxiliaries
JP5228812B2 (en) Hermetic compressor
EP3081742B1 (en) Compressor
US7398724B2 (en) Support structure carrying thrust load of compressor and thrust needle roller bearing
US5577846A (en) Eccentric rolling bearing device
JP2000130563A (en) Pulley unit
JP3888774B2 (en) Thrust needle roller bearings for swash plate compressors
JP2008064184A (en) Thrust needle roller bearing
JP2008232221A (en) Thrust needle roller bearing
JP2008101763A (en) Retainer for thrust roller bearing, thrust roller bearing, and rotary shaft support structure for compressor
JP2014001812A (en) Thrust ball bearing
US20220098981A1 (en) Bearing device for radial piston machine
US20220098982A1 (en) Bearing device for radial piston machine
JPH10299781A (en) Bearing for swash plate-type axial plunger pump
JP2006200634A (en) Rotary shaft support structure of compressor
JP2007085288A (en) Plunger driving structure
KR200151007Y1 (en) Compressor for airconditioner in vehicle motor
JP2004316930A (en) Thrust roller bearing for car air-conditioner compressor
WO2018030245A1 (en) Open type refrigerant compressor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term