JP4408637B2 - Film forming apparatus and film forming method - Google Patents

Film forming apparatus and film forming method Download PDF

Info

Publication number
JP4408637B2
JP4408637B2 JP2003056548A JP2003056548A JP4408637B2 JP 4408637 B2 JP4408637 B2 JP 4408637B2 JP 2003056548 A JP2003056548 A JP 2003056548A JP 2003056548 A JP2003056548 A JP 2003056548A JP 4408637 B2 JP4408637 B2 JP 4408637B2
Authority
JP
Japan
Prior art keywords
vapor deposition
deposition material
film forming
charged particles
arc current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003056548A
Other languages
Japanese (ja)
Other versions
JP2004263266A (en
Inventor
阿川  義昭
俊 堀内
沈  国華
原  泰博
繁 天野
山口  広一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2003056548A priority Critical patent/JP4408637B2/en
Publication of JP2004263266A publication Critical patent/JP2004263266A/en
Application granted granted Critical
Publication of JP4408637B2 publication Critical patent/JP4408637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は成膜装置に関し、特に、ダイヤモンド・ライク・カーボン(DLC)や半導体の高誘電体薄膜、絶縁膜、銅薄膜、磁性薄膜、高融点金属薄膜に適した成膜装置に関するものである。
【0002】
【従来の技術】
図8の符号101は従来技術の成膜装置を示している。
この成膜装置101は真空槽102を有しており、真空槽102内には蒸着源103が配置されている。蒸着源103の内部には蒸着材料が配置されており、蒸着源103内でアーク放電を発生させると、蒸着材料の荷電粒子が蒸着源103の放出口から放出されるようになっている。
【0003】
放出口の上方には基板ホルダ107が配置されており、蒸着材料の荷電粒子が放出口から放出されると、該荷電粒子は基板ホルダ107に保持された基板111の表面に到達し、基板111の表面に蒸着材料の薄膜が形成される。荷電粒子は中性粒子や巨大荷電粒子に比べて微細であり、反応性が高いので、基板111表面には緻密な膜が形成される。
【0004】
しかし、上述したような成膜装置101を用いて連続して成膜を行うと、徐々にアーク放電が誘発されなくなり、成膜が停止してしまう。
例えば、蒸着材料がモリブデン、ハフニウム、タンタル、タングステン、チタン、白金、鉄のように融点が1500℃以上の高融点金属で構成される場合は、アーク放電の回数が10000回〜20000回を超えるとアーク放電が誘発されなくなり、蒸着材料が銅やアルミニウムのように融点が1000℃未満の低融点金属で構成される場合は、アーク放電の回数が3000回〜4000回でアーク放電が誘発されなくなる。
このように、蒸着材料として低融点金属を用いた場合に、特に蒸着源の寿命が短いという問題があった。
【0005】
【特許文献1】
特開2001−11606号公報
【0006】
【発明が解決しようとする課題】
本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、蒸着源の寿命が長い成膜装置を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の発明は、真空槽と、蒸着材料と、アノード電極と、トリガ電極とを有し、前記蒸着材料と、前記アノード電極と、前記トリガ電極は前記真空槽内に配置され、前記蒸着材料にはコンデンサが接続され、前記コンデンサが充電された状態で、前記トリガ電極と前記蒸着材料との間にトリガ放電を発生させ、前記トリガ放電により、前記蒸着材料と前記アノード電極との間にアーク放電を誘起させると、前記コンデンサが放電してアーク電流が流れ、前記蒸着材料から前記蒸着材料の荷電粒子が放出され、前記アーク電流によって生じた磁界で、前記荷電粒子の飛行方向が、基板が配置された方向に曲げられ、前記基板表面に前記荷電粒子が到達するように構成された成膜装置であって、前記アーク電流が流れる経路のインピーダンスが、前記トリガ電極に電圧を印加してから前記アーク電流が尖頭電流値に達するまでの時間を1μ秒以上50μ秒以下とするように設定された成膜装置である。
請求項2記載の発明は、請求項1記載の成膜装置であって、前記アーク電流が流れる経路のインピーダンスが0.05Ω以上0.1Ω以下に設定された成膜装置である。
請求項3記載の発明は、真空槽内に、蒸着材料と、アノード電極と、基板とを配置しておき、前記真空槽内に真空雰囲気を形成した後、前記アノード電極と前記蒸着材料との間にアーク放電を起こし、前記蒸着材料の荷電粒子を放出させ、予め充電されたコンデンサを放電させてアーク電流を流し、前記蒸着材料の荷電粒子の飛行方向を、前記アーク電流により前記基板方向に向けて曲げ、前記基板表面に前記蒸着材料の荷電粒子を到達させて、薄膜を形成する成膜方法であって、前記アーク電流が流れる経路のインピーダンスを、前記トリガ放電が発生してから前記アーク電流が尖頭電流値に達するまでの時間を1μ秒以上50μ秒以下となるように設定しておき、前記アーク放電を発生させて成膜を行う成膜方法である。
【0008】
先ず、蒸着材料の荷電粒子を基板に到達させる工程について説明する。アノード電極を接地に置いた状態で、トリガ電極に正電圧を、蒸着材料に負電圧を印加すると、トリガ電極と蒸着材料との間にトリガ放電発生する。
【0009】
トリガ放電によってトリガ(電子、イオン)が発生すると、アノード電極と蒸着材料との間の絶縁耐性が低下し、アノード電極と蒸着材料との間にアーク放電が誘起される。アーク放電が誘起されると、コンデンサが放電されてアーク電流が流れ、蒸着材料から蒸着材料の粒子が大量に発生する。
【0010】
蒸着材料から放出される粒子には中性粒子と荷電粒子とがある。これらのうち、中性粒子と、電荷質量比(電荷/質量)の小さい巨大な荷電粒子は、クーロン力によって飛行方向が曲げられることなく直進する。従って、蒸着材料がアノード電極で囲まれた場合には、中性粒子や巨大な荷電粒子は蒸着材料から放出されると直進してアノード電極に衝突し、真空槽内に放出されることがない。
【0011】
他方、荷電粒子のうち、電荷質量比(電荷/質量)の大きい微細な荷電粒子は、クーロン力によってその飛行方向が曲げられる。アノード電極が筒状であって、アーク電流がアノード電極の中心軸線と略平行な方向にアノード電極内を流れる場合には、アーク電流により形成される磁界によって、蒸着材料の荷電粒子はアノード電極の開口に向かって飛行方向を曲げられる。
【0012】
このように、アノード電極の開口からは微細な荷電粒子のみが放出されるので、アノード電極の開口と対向する位置に基板を配置しておけば、荷電粒子が基板に到達し、基板表面に緻密で膜質の良い薄膜が形成される。
このような成膜装置では、コンデンサの放電によって蒸着材料に投入される電力が大きいと、蒸着材料が局部的にかつ急激に昇温し、蒸着材料の溶融物が飛散する。
【0013】
蒸着材料の溶融物が飛散し、トリガ電極を蒸着材料から絶縁する絶縁部材が汚れ、その絶縁耐性が低下すると、十分なトリガが発生しなくなり、アーク放電が誘起されなくなるので、成膜が停止してしまう。特に、蒸着材料が低融点金属で構成されている場合には、蒸着材料の溶融物が飛散しやすいので、蒸着源の寿命が短かった。
【0014】
コンデンサの容量を小さくし、蒸着材料への投入電力を小さくすれば、蒸着材料から小滴が発生し難くなるので、蒸着源の寿命が長くなるが、投入電力が小さくなるとアーク電流の電流値が小さくなる。
【0015】
例えば、従来の成膜装置では、コンデンサの容量を8800μFから2200μFに変えると、アーク電流の最大値である尖頭電流値が1200〜1400Aから300A〜400Aに低下してしまう。尖頭電流値が低下すると、アーク電流により発生する磁界の強度が小さくなり、蒸着材料の荷電粒子の飛行方向が曲げられる偏向角が小さくなるので、結果としてアノード電極の開口から真空槽内へ放出される荷電粒子の量が減少し、成膜速度が低下してしまう。
【0016】
本願発明の成膜装置では、アーク電流が流れる経路のインピーダンスが、トリガ電極に電圧を印加し、絶縁部材を介して蒸着材料との間で沿面放電が発生してから、1μ秒以上50μ秒以下の短い時間でアーク電流が最大値となるように設定されており、アーク電流が尖頭電流値に達する時間の遅れが短くなるので、尖頭電流値が低下しない。尚、アーク電流が尖頭電流値に達する時間が1μ秒未満だとプラズマが安定に形成されず、50μ秒を超えるとプラズマは収束せずに発散される。
【0017】
本発明の成膜装置では、コンデンサの容量を小さくしても、アーク電流の尖頭電流が低下しないので、成膜速度を従来と同程度に維持しつつ、蒸着源の寿命を長くすることができる。
【0018】
【発明の実施の形態】
以下で図面を参照し、本発明の実施形態について説明する。図1の符号1は本発明の一実施形態の成膜装置を示している。この成膜装置1は、真空槽2と、蒸着源3とを有しており、蒸着源3は後述するように真空槽2の内部に挿入され、真空槽2の底壁側に取り付けられている。
【0019】
先ず、蒸着源3の構成について説明すると、蒸着源3はアノード電極32と、取り付け部33と、放電部38とを有している。アノード電極32はステンレスのような耐熱性金属の円筒で構成されている。取り付け部33は碍子22と取り付け台23とを有しており、碍子22は台座21を介してアノード電極32の端部の内壁に取り付けられている。
【0020】
取り付け台23は円柱状であって、取り付け台23の一端はアノード電極32内で碍子22に接続されており、アノード電極32の碍子22が取り付けられた側とは反対側の端部の開口を放出口39とすると、取り付け台23の他端は放出口39に向けて突き出されている。
【0021】
放電部38は棒状電極35と、トリガ電極34と、蒸着材料31とを有している。棒状電極35はインバーのような熱膨張率の小さい材料で構成されている。棒状電極35の一端は、取り付け台23の放出口39に向けて突き出された端部に嵌入されており、他端は放出口39よりも下方位置まで突き出されている。
【0022】
蒸着材料31は放出口39よりも下方位置で棒状電極35の他端に取り付けられており、トリガ電極34は蒸着材料31と取り付け台23との間の位置で、棒状電極35の周囲を取り囲むように配置されている。
【0023】
棒状電極35と、蒸着材料31と、取り付け台23はそれぞれ導電性材料で構成されている。上述したように棒状電極35の一端は取り付け台23に嵌入されており、蒸着材料31の少なくとも一部は棒状電極35に密着しているので、棒状電極35と、蒸着材料31と、取り付け台23とは互いに電気的に接続されている。
【0024】
トリガ電極34は蒸着材料31と取り付け台23との間の位置で、棒状電極35の周囲を取り囲むように配置されている。トリガ電極34と蒸着材料31との間、トリガ電極34と棒状電極35との間、及びトリガ電極34と取り付け台23との間には、アルミナのような絶縁材料で構成された絶縁部材36が配置されており、トリガ電極34は絶縁部材によって蒸着材料31と、棒状電極35と、取り付け台23とから電気的に絶縁されている。
【0025】
次に、この蒸着源3の取り付けについて説明すると、真空槽2の底壁には開口が設けられており、蒸着源3は放出口39を真空槽2の内部に向けた状態で、真空槽2の下方から開口を通して真空槽2内に挿通され、アノード電極32の放出口39とは反対側の端部が真空槽2の底壁に気密に取り付けられている。
【0026】
この成膜装置1は、真空槽2の外部に配置されたアーク電源41と、トリガ電源42と、コンデンサ45とを有している。図1の符号47、48はコンデンサ45の端子である第一、第二の端子を示している。
【0027】
第一の端子47はケーブル49を介して碍子22の真空槽2の外部側に配置された端子27に接続されており、第二の端子48はアノード電極32と真空槽2と共に接地電位に接続されている。
【0028】
アーク電源41の端子のうち、正電源側の端子は接地電位に接続され、負電源側の端子は第一の端子47に接続されており、アーク電源41を動作させると、コンデンサ45が充電されるようになっている。
【0029】
取り付け台23は碍子22の真空槽2内部側に配置された端子28に接続されており、上述したように蒸着材料31と、棒状電極35と、取り付け台23とは電気的に接続されているので、結局コンデンサ45の充電電圧は、ケーブル49と、取り付け台23と、棒状電極35を介して蒸着材料31に印加されるようになっている。
【0030】
トリガ電源42の端子のうち、正電源側の端子はトリガ電極34に接続され、負電源側の端子は、碍子22の真空槽2の外部側の端子46に接続されており、トリガ電源42を起動すると、トリガ電極34に3.4kVの正電圧が印加され、蒸着材料31に負電圧が印加されて、トリガ電極34と蒸着材料31との間にトリガ放電が起こる。
【0031】
トリガ放電が起こると、蒸着材料31とアノード電極32との間の絶縁耐性が低下し、コンデンサ45が放電され、アノード電極32と、蒸着材料31と、棒状電極35と、取り付け台23と、ケーブル49とで構成される経路にアーク電流が流れる。
【0032】
図1の符号44はアノード電極32とコンデンサ45との接続を模式的に表した線であり、アーク電流が流れる経路のうち、符号44に示した接続と、アノード電極32と、蒸着材料31と、棒状電極35と、取り付け台23の間のインピーダンスは無視できる程小さいとすると、この経路全体のインピーダンスは第一の端子46と、碍子22の真空槽2外部側の端子36とを接続するケーブル49のインピーダンスで決定される。
【0033】
図2、図3は本願実施例の成膜装置1と、比較例の成膜装置1におけるアーク電流の電流値の変化と時間との関係を示すグラフである。
実施例はケーブル49の長さlA-Kが50mm、コンデンサ45の容量が2200μFであった場合であり、比較例はケーブル49の長さlA-Kが1000mm、コンデンサ45の容量が8800μFであった場合であり、図2、図3を比較すると、比較例ではアーク電流の電流値がトリガ放電開始から100μ秒後に最大値である尖頭電流値に達したのに対し、実施例ではアーク電流の電流値がトリガ放電開始から20μ秒と非常に短い時間で尖頭電流値に達した。
【0034】
また、実施例では比較例に比べて尖頭電流値に達するまでの時間が短いため、コンデンサ45の容量が2200μFと小さいにも係わらず、比較例と同程度の尖頭電流値が得られた。
【0035】
このように、本願の成膜装置1では、従来に比べケーブル49の長さlA-Kを短くすることで、アーク電流が流れる経路全体のインピーダンス、特にインダクタンス成分が小さくされており、アーク電流の電流値が尖頭電流値となる時間の遅れが短くなるので、アーク電流はトリガ放電開始から1μ秒以上50μ秒以下の短い間に尖頭電流値に達するようになり、また、尖頭電流値に達する時間が短くなることで尖頭電流値の値を高くすることができる。
【0036】
尚、本発明の副次的な効果として、本発明の成膜装置1は、放出口39の大きさや蒸着源3の構成が同じであっても、従来の成膜装置よりも大面積に成膜を行えるという効果を有する。
上述した実施例と比較例の成膜装置1で成膜される成膜範囲の直径と、成膜された膜の表面状態とを下記表1に示す。
【0037】
【表1】

Figure 0004408637
【0038】
図6、7はそれぞれ実施例と比較例の成膜装置1で放出口39から荷電粒子が放出されたときの状態を撮影した写真である。
図6を見ると実施例の成膜装置1では放出口39から放出された荷電粒子が均一に広がっており、広い範囲に膜厚分布の均一な膜を形成可能であることがわかる。これに対し比較例では、図7に示すように放出口39から放出された荷電粒子が広がらず、その成膜範囲も狭い。
【0039】
従来の成膜装置ではアーク電流が尖頭電流値に達するのに100μ秒と長い時間がかかったため、蒸着材料からの荷電粒子の放出に磁界の形成が追いつかず、荷電粒子は収束されなかった。これに対し、本発明の成膜装置1では、尖頭電流値に達する時間が50μ秒以下と短いので、荷電粒子の放出に磁界の形成が追いつくようになり、荷電粒子が効率的に収束される。ここでは、荷電粒子が基板と放出口39との間の位置で最も収束されるようになっており、荷電粒子は収束された後、拡がりながら基板に向かって進んだため、広い範囲に膜が形成されたと思われる。
【0040】
また、比較例の成膜装置1では蒸着材料31への投入電力が大きいため、蒸着材料31の溶融物が飛散して小滴が発生し、形成された膜の表面が白濁して見えるほど小滴が付着していたが、実施例では膜表面に小滴が見られず、膜表面全体が鏡面のように平滑であった。このように、本発明の成膜装置1を用いれば、広い範囲に良質な膜が形成することができる。
【0041】
次に、本発明の成膜装置1を用いた成膜工程について説明する。先ず、真空槽2に接続された真空排気系8を動作させ、真空槽2内に所定圧力の真空雰囲気を形成した後、該真空雰囲気を維持したまま基板を真空槽2内に搬入する。
【0042】
真空槽2内部の放出口39と対向する位置には基板ホルダ7が配置されており、真空槽2内部に搬入した基板を、成膜すべき面が放出口39に向けられた状態で基板ホルダ7に保持させる。図1の符号11は基板ホルダ7に保持された基板を示している。
【0043】
予めコンデンサ45は充電されており、真空槽2内部の真空雰囲気を維持しながら、蒸着材料31とアノード電極32との間にアーク放電を発生させ、アーク電流を流すと、蒸着材料31から蒸着材料の粒子が大量に放出される。
【0044】
蒸着材料31から放出される粒子のうち、電荷質量比の大きい微細な荷電粒子は、アーク電流により形成される磁界によって飛行方向を曲げられて放出口39から放出される。基板11は放出口39に向けられているので、放出口39から放出された荷電粒子は基板11表面に付着し、基板11の表面に蒸着材料の膜が成長する。
【0045】
上述したように、本願の成膜装置1はコンデンサ45の容量を小さくしても、アーク電流により形成される磁界の強度が弱くならないので、放出口39から放出される荷電粒子の量が減少せず、成膜速度が低下しない。
【0046】
コンデンサ45の容量を従来に比べて小さくすれば、蒸着材料31に投入される電力が小さくなり、蒸着材料31が低融点金属で構成された場合であっても、蒸着材料31の溶融物が飛散する量が少ない。
【0047】
溶融物の飛散量が少なく、トリガ電極34と蒸着材料31との間の絶縁部材36が汚れ難いと、絶縁部材36の絶縁耐性の低下によるアーク放電の放電停止が起こり難くいので、本発明の成膜装置1は従来に比べ蒸着源3の寿命が長い。
【0048】
上述した実施例の成膜装置1と比較例の成膜装置で成膜を行い、アーク放電が停止するまでのアーク放電の放電回数を求めた。
その結果を、アーク電流値の尖頭電流値と、トリガ放電開始からアーク電流が尖頭電流値に達するまでの時間と、放電に要した時間と、ケーブル49長さlA-Kと、コンデンサ45の容量と共に下記表2に記載する。
【0049】
【表2】
Figure 0004408637
【0050】
ここでは、実施例、比較例共に蒸着材料31は低融点金属であるアルミニウムで構成されており、比較例ではトリガ電極34と蒸着材料31との間の絶縁部材36の汚れによって、アーク放電が3000回発生したところで放電停止が行った。これに対し、実施例では蒸着材料31が削れて沿面が大きくなり、放電が発生しずらくなるまで成膜が続いたため、アーク放電の放電回数が20000回と多く、本発明の成膜装置1は蒸着源3の寿命が長いことがわかる。
【0051】
更に、実施例の成膜装置1で、放電回数が1回目のときと、放電回数が20000回目のときのアーク電流の電流値変化を測定した。図4、5は放電回数が1回目のときと、放電回数が20000回目のときのアーク電流の電流値と時間との関係を示すグラフである。
【0052】
図4と図5に示すように、アーク電流値の変化を示す波形は類似しており、本発明の成膜装置1では、放電回数を重ねてもアーク電流の放電の形態が変わらないことがわかる。
【0053】
従って、本発明の成膜装置1は放電回数を重ねても、アーク電流により形成される磁界に変化が生じないため、放出口39から放出される荷電粒子の量に変動が生じ難く、成膜速度が一定になる。
【0054】
以上は蒸着材料31をアルミニウムで構成する場合について説明したが、本発明はこれに限定されず、銅等の他の種類の低融点金属、カーボン、又は、Fe、Ta、NiFe、Cu、Co、FeMn等の高融点金属を用いることもできる。アノード電極32の形状も円筒状に限定されず、例えば角筒状でもよいし、あるいは板状に形成されていてもよい。
【0055】
また、真空槽2にガス供給系を接続しておき、蒸着材料の荷電粒子と反応する反応ガスを真空槽2内に供給しながら成膜を行えば、反応ガスと微小荷電粒子が基板11表面で反応し、反応ガスと蒸着材料との反応物の薄膜を形成することができる。アーク電流が流れる経路のインピーダンスは0.05Ω以上0.1Ω以下が好ましい。インピーダンスが0.1Ωを超えると、荷電粒子の収束効果が低くなる。
【0056】
【発明の効果】
本発明の成膜装置は、コンデンサの容量が小さくしてもアーク電流により形成される磁界の強度が小さくならず、蒸着材料の荷電粒子が放出口から放出される量が減少しないので、成膜速度が低下しない。コンデンサの容量を小さくすれば、蒸着材料が低融点金属で構成された場合であっても、蒸着材料の溶融物が飛散し難い。従って、本発明の成膜装置は、絶縁部材が汚れに難いため、蒸着源の寿命が長く、また、蒸着材料の溶融物が飛散し、成膜中の膜に取り込まれることがないので、形成される膜の膜質も良い。
【図面の簡単な説明】
【図1】本発明の成膜装置の一例を説明する断面図
【図2】本発明の成膜装置を用いた場合のアーク電流と時間との関係を示すグラフ
【図3】従来技術の成膜装置を用いた場合のアーク電流と時間との関係を示すグラフ
【図4】放電回数が1回目のときのアーク電流と時間との関係を示すグラフ
【図5】放電回数が20000回目のときのアーク電流と時間との関係を示すグラフ
【図6】本発明の成膜装置の放出口から荷電粒子が放出された状態を撮影した写真
【図7】従来技術の成膜装置の放出口から荷電粒子が放出された状態を撮影した写真
【図8】従来技術の成膜装置を説明する断面図
【符号の説明】
1……成膜装置 2……真空槽 3……蒸着源 7……基板ホルダ
11……基板 31……蒸着材料 32……アノード電極 34……トリガ電極 35……棒状電極 45……コンデンサ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a film forming apparatus, and more particularly to a film forming apparatus suitable for diamond-like carbon (DLC), a semiconductor high dielectric thin film, an insulating film, a copper thin film, a magnetic thin film, and a refractory metal thin film.
[0002]
[Prior art]
Reference numeral 101 in FIG. 8 denotes a conventional film forming apparatus.
The film forming apparatus 101 has a vacuum chamber 102, and a vapor deposition source 103 is disposed in the vacuum chamber 102. A vapor deposition material is arranged inside the vapor deposition source 103, and when arc discharge is generated in the vapor deposition source 103, charged particles of the vapor deposition material are emitted from the discharge port of the vapor deposition source 103.
[0003]
A substrate holder 107 is disposed above the discharge port. When charged particles of the vapor deposition material are discharged from the discharge port, the charged particles reach the surface of the substrate 111 held by the substrate holder 107, and the substrate 111. A thin film of vapor deposition material is formed on the surface of the film. Since charged particles are finer than neutral particles and giant charged particles and have high reactivity, a dense film is formed on the surface of the substrate 111.
[0004]
However, when film formation is performed continuously using the film formation apparatus 101 as described above, arc discharge is gradually not induced and film formation stops.
For example, when the vapor deposition material is composed of a high melting point metal having a melting point of 1500 ° C. or higher, such as molybdenum, hafnium, tantalum, tungsten, titanium, platinum, and iron, the number of arc discharges exceeds 10,000 to 20000 times. When arc discharge is not induced and the vapor deposition material is made of a low melting point metal having a melting point of less than 1000 ° C. such as copper or aluminum, the arc discharge is not induced when the number of arc discharges is 3000 to 4000 times.
As described above, when a low melting point metal is used as the vapor deposition material, there is a problem that the lifetime of the vapor deposition source is particularly short.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-11606
[Problems to be solved by the invention]
The present invention has been created to solve the above-described disadvantages of the prior art, and an object of the present invention is to provide a film forming apparatus having a long vapor deposition source life.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention described in claim 1 includes a vacuum chamber, a vapor deposition material, an anode electrode, and a trigger electrode, and the vapor deposition material, the anode electrode, and the trigger electrode A capacitor is connected to the vapor deposition material, and a trigger discharge is generated between the trigger electrode and the vapor deposition material in a state where the capacitor is charged, and the vapor deposition is performed by the trigger discharge. When an arc discharge is induced between a material and the anode electrode, the capacitor discharges and an arc current flows, and charged particles of the vapor deposition material are released from the vapor deposition material, and a magnetic field generated by the arc current The charged particle flight direction is bent in the direction in which the substrate is disposed, and the charged particle reaches the surface of the substrate. Impedance path flow is, the arc current from application of voltage to the trigger electrode is set the film forming apparatus to less 50μ seconds 1μ seconds time to reach peak current value.
A second aspect of the present invention is the film forming apparatus according to the first aspect, wherein an impedance of a path through which the arc current flows is set to 0.05Ω or more and 0.1Ω or less.
According to a third aspect of the present invention, an evaporation material, an anode electrode, and a substrate are arranged in a vacuum chamber, and after forming a vacuum atmosphere in the vacuum chamber, the anode electrode and the evaporation material are In the meantime, an arc discharge is caused to discharge the charged particles of the vapor deposition material, and a precharged capacitor is discharged to flow an arc current, and the flight direction of the charged particles of the vapor deposition material is changed to the substrate direction by the arc current. bending towards, said charged particles of the vapor deposition material to reach the surface of the substrate, a film forming method for forming a thin film, said arc impedance path the arc current flows, since the trigger discharge is generated In this film forming method, the time until the current reaches the peak current value is set to be 1 μsec or more and 50 μsec or less, and the arc discharge is generated to perform film formation.
[0008]
First, the process of causing the charged particles of the vapor deposition material to reach the substrate will be described. When a positive voltage is applied to the trigger electrode and a negative voltage is applied to the vapor deposition material while the anode electrode is placed on the ground, a trigger discharge is generated between the trigger electrode and the vapor deposition material.
[0009]
When a trigger (electron, ion) is generated by the trigger discharge, the insulation resistance between the anode electrode and the vapor deposition material decreases, and an arc discharge is induced between the anode electrode and the vapor deposition material. When the arc discharge is induced, the capacitor is discharged, an arc current flows, and a large amount of vapor deposition material particles are generated from the vapor deposition material.
[0010]
The particles emitted from the vapor deposition material include neutral particles and charged particles. Among these, neutral particles and huge charged particles having a small charge mass ratio (charge / mass ) travel straight without bending the flight direction due to Coulomb force. Therefore, when the vapor deposition material is surrounded by the anode electrode, neutral particles and huge charged particles go straight on and collide with the anode electrode when released from the vapor deposition material, and are not released into the vacuum chamber. .
[0011]
On the other hand, among charged particles, fine charged particles having a large charge mass ratio (charge / mass) are bent in the flight direction by Coulomb force. When the anode electrode is cylindrical and the arc current flows in the anode electrode in a direction substantially parallel to the central axis of the anode electrode, the charged particles of the vapor deposition material are caused to flow through the anode electrode by a magnetic field formed by the arc current. The flight direction can be bent toward the opening.
[0012]
In this way, only fine charged particles are emitted from the opening of the anode electrode, so if the substrate is placed at a position facing the opening of the anode electrode, the charged particles reach the substrate and become dense on the substrate surface. Thus, a thin film with good film quality is formed.
In such a film forming apparatus, when the electric power supplied to the vapor deposition material by the discharge of the capacitor is large, the vapor deposition material is locally and rapidly heated, and the melt of the vapor deposition material is scattered.
[0013]
If the melted material of the vapor deposition material scatters and the insulating member that insulates the trigger electrode from the vapor deposition material becomes dirty and its insulation resistance decreases, sufficient triggering will not occur and arc discharge will not be induced, so film formation will stop. End up. In particular, when the vapor deposition material is composed of a low melting point metal, the melt of the vapor deposition material is likely to scatter, and thus the lifetime of the vapor deposition source is short.
[0014]
If the capacitance of the capacitor is reduced and the input power to the vapor deposition material is reduced, droplets are less likely to be generated from the vapor deposition material, so the life of the vapor deposition source will be extended, but if the input power is reduced, the current value of the arc current will be Get smaller.
[0015]
For example, in the conventional film forming apparatus, when the capacitance of the capacitor is changed from 8800 μF to 2200 μF, the peak current value which is the maximum value of the arc current is reduced from 1200 to 1400 A to 300 A to 400 A. When the peak current value decreases, the strength of the magnetic field generated by the arc current decreases, and the deflection angle at which the flight direction of the charged particles of the vapor deposition material is bent decreases, resulting in the discharge from the anode electrode opening into the vacuum chamber. The amount of charged particles is reduced, and the film formation rate is reduced.
[0016]
In the film forming apparatus of the present invention, the impedance of the path through which the arc current flows is 1 μs or more and 50 μs or less after a voltage is applied to the trigger electrode and creeping discharge is generated between the vapor deposition material through the insulating member. The arc current is set to the maximum value in a short time, and the delay in the time for the arc current to reach the peak current value is shortened, so the peak current value does not decrease. If the time for the arc current to reach the peak current value is less than 1 μsec, the plasma is not stably formed, and if it exceeds 50 μsec, the plasma is emitted without converging.
[0017]
In the film forming apparatus of the present invention, even if the capacitance of the capacitor is reduced, the peak current of the arc current does not decrease, so that the lifetime of the vapor deposition source can be extended while maintaining the film forming speed at the same level as before. it can.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. Reference numeral 1 in FIG. 1 represents a film forming apparatus according to an embodiment of the present invention. The film forming apparatus 1 includes a vacuum chamber 2 and a vapor deposition source 3, and the vapor deposition source 3 is inserted into the vacuum chamber 2 and attached to the bottom wall side of the vacuum chamber 2 as will be described later. Yes.
[0019]
First, the configuration of the vapor deposition source 3 will be described. The vapor deposition source 3 includes an anode electrode 32, a mounting portion 33, and a discharge portion 38. The anode electrode 32 is formed of a cylinder of a heat resistant metal such as stainless steel. The attachment portion 33 includes an insulator 22 and an attachment base 23, and the insulator 22 is attached to the inner wall of the end portion of the anode electrode 32 via the base 21.
[0020]
The mounting base 23 has a cylindrical shape, and one end of the mounting base 23 is connected to the insulator 22 in the anode electrode 32, and an opening at the end opposite to the side on which the insulator 22 of the anode electrode 32 is attached is provided. Assuming the discharge port 39, the other end of the mounting base 23 protrudes toward the discharge port 39.
[0021]
The discharge part 38 has a rod-shaped electrode 35, a trigger electrode 34, and a vapor deposition material 31. The rod-shaped electrode 35 is made of a material having a low coefficient of thermal expansion such as Invar. One end of the rod-shaped electrode 35 is fitted into an end protruding toward the discharge port 39 of the mounting base 23, and the other end is protruded to a position below the discharge port 39.
[0022]
The vapor deposition material 31 is attached to the other end of the rod-shaped electrode 35 at a position below the discharge port 39, and the trigger electrode 34 surrounds the rod-shaped electrode 35 at a position between the vapor deposition material 31 and the mounting base 23. Is arranged.
[0023]
The rod-shaped electrode 35, the vapor deposition material 31, and the mounting base 23 are each made of a conductive material. As described above, one end of the rod-shaped electrode 35 is fitted into the mounting base 23, and at least a part of the vapor deposition material 31 is in close contact with the rod-shaped electrode 35, so the rod-shaped electrode 35, the vapor deposition material 31, and the mounting base 23. Are electrically connected to each other.
[0024]
The trigger electrode 34 is disposed between the vapor deposition material 31 and the mounting base 23 so as to surround the rod-shaped electrode 35. Between the trigger electrode 34 and the vapor deposition material 31, between the trigger electrode 34 and the rod-shaped electrode 35, and between the trigger electrode 34 and the mounting base 23, an insulating member 36 made of an insulating material such as alumina is provided. The trigger electrode 34 is electrically insulated from the vapor deposition material 31, the rod-shaped electrode 35, and the mounting base 23 by an insulating member.
[0025]
Next, the attachment of the vapor deposition source 3 will be described. An opening is provided in the bottom wall of the vacuum chamber 2, and the vapor deposition source 3 is in a state where the discharge port 39 faces the inside of the vacuum chamber 2. The end of the anode electrode 32 opposite to the discharge port 39 is hermetically attached to the bottom wall of the vacuum chamber 2 through the opening from below.
[0026]
The film forming apparatus 1 includes an arc power source 41, a trigger power source 42, and a capacitor 45 arranged outside the vacuum chamber 2. Reference numerals 47 and 48 in FIG. 1 indicate first and second terminals which are terminals of the capacitor 45.
[0027]
The first terminal 47 is connected to a terminal 27 disposed outside the vacuum chamber 2 of the insulator 22 via a cable 49, and the second terminal 48 is connected to the ground potential together with the anode electrode 32 and the vacuum chamber 2. Has been.
[0028]
Among the terminals of the arc power supply 41, the terminal on the positive power supply side is connected to the ground potential, and the terminal on the negative power supply side is connected to the first terminal 47. When the arc power supply 41 is operated, the capacitor 45 is charged. It has become so.
[0029]
The mounting base 23 is connected to a terminal 28 disposed on the inside of the vacuum chamber 2 of the insulator 22, and as described above, the vapor deposition material 31, the rod-shaped electrode 35, and the mounting base 23 are electrically connected. Therefore, the charging voltage of the capacitor 45 is eventually applied to the vapor deposition material 31 via the cable 49, the mounting base 23, and the rod-shaped electrode 35.
[0030]
Among the terminals of the trigger power source 42, the positive power source side terminal is connected to the trigger electrode 34, and the negative power source side terminal is connected to the external terminal 46 of the vacuum chamber 2 of the insulator 22. When activated, a positive voltage of 3.4 kV is applied to the trigger electrode 34, a negative voltage is applied to the vapor deposition material 31, and a trigger discharge occurs between the trigger electrode 34 and the vapor deposition material 31.
[0031]
When the trigger discharge occurs, the insulation resistance between the vapor deposition material 31 and the anode electrode 32 decreases, the capacitor 45 is discharged, the anode electrode 32, the vapor deposition material 31, the rod-shaped electrode 35, the mounting base 23, and the cable. An arc current flows through a path formed by 49.
[0032]
Reference numeral 44 in FIG. 1 is a line schematically representing the connection between the anode electrode 32 and the capacitor 45. Among the paths through which the arc current flows, the connection indicated by the reference numeral 44, the anode electrode 32, the vapor deposition material 31, and the like. If the impedance between the bar electrode 35 and the mounting base 23 is negligibly small, the impedance of the entire path is a cable connecting the first terminal 46 and the terminal 36 outside the vacuum chamber 2 of the insulator 22. It is determined by 49 impedances.
[0033]
2 and 3 are graphs showing the relationship between the change in the current value of the arc current and time in the film forming apparatus 1 of the embodiment of the present application and the film forming apparatus 1 of the comparative example.
The embodiment is a case where the length l AK of the cable 49 is 50 mm and the capacitance of the capacitor 45 is 2200 μF, and the comparative example is a case where the length l AK of the cable 49 is 1000 mm and the capacitance of the capacitor 45 is 8800 μF. 2 and 3, when compared, in the comparative example, the current value of the arc current reached the peak current value which is the maximum value 100 μsec after the start of the trigger discharge, whereas in the example, the current value of the arc current Reached the peak current value in a very short time of 20 μs from the start of the trigger discharge.
[0034]
Further, in the example, since the time required to reach the peak current value is shorter than that in the comparative example, the peak current value comparable to that in the comparative example was obtained even though the capacitance of the capacitor 45 was as small as 2200 μF. .
[0035]
As described above, in the film forming apparatus 1 of the present application, the length l AK of the cable 49 is shortened compared to the conventional one, so that the impedance of the entire path through which the arc current flows, particularly the inductance component, is reduced. Since the delay of the time when the value becomes the peak current value becomes short, the arc current reaches the peak current value within a short period of 1 μs to 50 μs from the start of the trigger discharge. The peak current value can be increased by shortening the reaching time.
[0036]
As a secondary effect of the present invention, the film forming apparatus 1 of the present invention has a larger area than the conventional film forming apparatus even if the size of the discharge port 39 and the configuration of the vapor deposition source 3 are the same. It has the effect that a film can be formed.
Table 1 below shows the diameter of the film forming range formed by the film forming apparatuses 1 of the above-described examples and comparative examples, and the surface state of the formed film.
[0037]
[Table 1]
Figure 0004408637
[0038]
FIGS. 6 and 7 are photographs taken when the charged particles are emitted from the emission port 39 by the film forming apparatuses 1 of the example and the comparative example, respectively.
It can be seen from FIG. 6 that in the film forming apparatus 1 of the embodiment, the charged particles emitted from the emission port 39 spread uniformly, and a film having a uniform film thickness distribution can be formed over a wide range. On the other hand, in the comparative example, as shown in FIG. 7, the charged particles emitted from the emission port 39 do not spread and the film forming range is narrow.
[0039]
In the conventional film forming apparatus, since it took a long time of 100 μsec for the arc current to reach the peak current value, the formation of the magnetic field could not catch up with the discharge of the charged particles from the vapor deposition material, and the charged particles were not converged. On the other hand, in the film forming apparatus 1 of the present invention, since the time to reach the peak current value is as short as 50 μsec or less, the formation of the magnetic field catches up with the discharge of the charged particles, and the charged particles are efficiently converged. The Here, the charged particles are most converged at a position between the substrate and the emission port 39. Since the charged particles are converged and then travel toward the substrate while spreading, the film is spread over a wide range. It seems that it was formed.
[0040]
Further, in the film forming apparatus 1 of the comparative example, since the input electric power to the vapor deposition material 31 is large, the melt of the vapor deposition material 31 is scattered to generate small droplets, and the surface of the formed film is so small that it appears cloudy. Although droplets were attached, no small droplets were observed on the film surface in the examples, and the entire film surface was smooth like a mirror surface. As described above, when the film forming apparatus 1 of the present invention is used, a high-quality film can be formed in a wide range.
[0041]
Next, a film forming process using the film forming apparatus 1 of the present invention will be described. First, the evacuation system 8 connected to the vacuum chamber 2 is operated to form a vacuum atmosphere at a predetermined pressure in the vacuum chamber 2, and then the substrate is carried into the vacuum chamber 2 while maintaining the vacuum atmosphere.
[0042]
A substrate holder 7 is arranged at a position facing the discharge port 39 inside the vacuum chamber 2, and the substrate loaded in the vacuum chamber 2 is placed in a state where the surface to be deposited is directed to the discharge port 39. 7 to hold. Reference numeral 11 in FIG. 1 denotes a substrate held by the substrate holder 7.
[0043]
The capacitor 45 is charged in advance, and when an arc discharge is generated between the vapor deposition material 31 and the anode electrode 32 and an arc current is passed while maintaining the vacuum atmosphere inside the vacuum chamber 2, the vapor deposition material 31 starts to vapor deposition material. A large amount of particles are released.
[0044]
Among the particles emitted from the vapor deposition material 31, fine charged particles having a large charge mass ratio are emitted from the emission port 39 with the flight direction bent by a magnetic field formed by an arc current. Since the substrate 11 is directed to the emission port 39, the charged particles emitted from the emission port 39 adhere to the surface of the substrate 11, and a film of vapor deposition material grows on the surface of the substrate 11.
[0045]
As described above, since the strength of the magnetic field formed by the arc current does not weaken even when the capacitance of the capacitor 45 is reduced, the film forming apparatus 1 of the present application reduces the amount of charged particles emitted from the emission port 39. In addition, the deposition rate does not decrease.
[0046]
If the capacity of the capacitor 45 is reduced compared to the conventional case, the electric power supplied to the vapor deposition material 31 is reduced, and even if the vapor deposition material 31 is composed of a low melting point metal, the melt of the vapor deposition material 31 is scattered. Less amount to do.
[0047]
Since the amount of molten material scattered is small and the insulating member 36 between the trigger electrode 34 and the vapor deposition material 31 is not easily soiled, it is difficult for arc discharge discharge to stop due to a decrease in insulation resistance of the insulating member 36. In the film forming apparatus 1, the lifetime of the vapor deposition source 3 is longer than that in the prior art.
[0048]
Film formation was performed with the film formation apparatus 1 of the above-described example and the film formation apparatus of the comparative example, and the number of arc discharges until the arc discharge stopped was obtained.
As a result, the peak current value of the arc current value, the time from the trigger discharge start until the arc current reaches the peak current value, the time required for the discharge, the cable 49 length lAK, and the capacitor 45 It is described in Table 2 below together with the capacity.
[0049]
[Table 2]
Figure 0004408637
[0050]
Here, in both the example and the comparative example, the vapor deposition material 31 is made of aluminum which is a low melting point metal. In the comparative example, the arc discharge is 3000 due to contamination of the insulating member 36 between the trigger electrode 34 and the vapor deposition material 31. Discharge was stopped at the time of occurrence. On the other hand, in the example, the deposition material 31 was scraped to increase the creepage surface, and the film formation continued until it was difficult to generate a discharge. Therefore, the number of arc discharges was as large as 20000, and the film formation apparatus 1 of the present invention. It can be seen that the lifetime of the vapor deposition source 3 is long.
[0051]
Furthermore, in the film forming apparatus 1 of the example, the change in the current value of the arc current was measured when the number of discharges was the first and when the number of discharges was 20000. 4 and 5 are graphs showing the relationship between the current value of the arc current and time when the number of discharges is the first and when the number of discharges is 20000.
[0052]
As shown in FIG. 4 and FIG. 5, the waveform indicating the change in the arc current value is similar, and in the film forming apparatus 1 of the present invention, the discharge form of the arc current does not change even if the number of discharges is repeated. Recognize.
[0053]
Therefore, since the magnetic field formed by the arc current does not change even when the number of discharges is repeated, the film forming apparatus 1 of the present invention hardly changes in the amount of charged particles emitted from the emission port 39, and the film is formed. The speed becomes constant.
[0054]
The above describes the case where the vapor deposition material 31 is made of aluminum, but the present invention is not limited to this, and other types of low melting point metals such as copper, carbon, or Fe, Ta, NiFe, Cu, Co, A refractory metal such as FeMn can also be used. The shape of the anode electrode 32 is not limited to a cylindrical shape, and may be, for example, a rectangular tube shape or a plate shape.
[0055]
In addition, if a gas supply system is connected to the vacuum chamber 2 and a film is formed while a reaction gas that reacts with charged particles of the vapor deposition material is supplied into the vacuum chamber 2, the reaction gas and the minute charged particles are transferred to the surface of the substrate 11. To form a thin film of a reaction product of the reaction gas and the vapor deposition material. The impedance of the path through which the arc current flows is preferably 0.05Ω to 0.1Ω. When the impedance exceeds 0.1Ω, the convergence effect of charged particles becomes low.
[0056]
【The invention's effect】
The film forming apparatus of the present invention does not reduce the strength of the magnetic field formed by the arc current even if the capacitor capacity is small, and the amount of charged particles of the vapor deposition material emitted from the discharge port does not decrease. The speed does not decrease. If the capacitance of the capacitor is reduced, the melt of the vapor deposition material is unlikely to scatter even when the vapor deposition material is made of a low melting point metal. Therefore, the film forming apparatus of the present invention has a long lifetime of the vapor deposition source because the insulating member is not easily contaminated, and the melt of the vapor deposition material is scattered and is not taken into the film during film formation. The film quality of the film is also good.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an example of a film forming apparatus of the present invention. FIG. 2 is a graph showing the relationship between arc current and time when the film forming apparatus of the present invention is used. FIG. 4 is a graph showing the relationship between arc current and time when using a membrane device. FIG. 4 is a graph showing the relationship between arc current and time when the number of discharges is the first. FIG. 6 is a photograph showing a state in which charged particles are discharged from the discharge port of the film forming apparatus of the present invention. A photograph of a state in which charged particles are released [FIG. 8] A cross-sectional view illustrating a conventional film forming apparatus [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Film-forming apparatus 2 ... Vacuum chamber 3 ... Deposition source 7 ... Substrate holder 11 ... Substrate 31 ... Deposition material 32 ... Anode electrode 34 ... Trigger electrode 35 ... Rod electrode 45 ... Capacitor

Claims (3)

真空槽と、蒸着材料と、アノード電極と、トリガ電極とを有し、
前記蒸着材料と、前記アノード電極と、前記トリガ電極は前記真空槽内に配置され、
前記蒸着材料にはコンデンサが接続され、
前記コンデンサが充電された状態で、前記トリガ電極と前記蒸着材料との間にトリガ放電を発生させ、
前記トリガ放電により、前記蒸着材料と前記アノード電極との間にアーク放電を誘起させると、前記コンデンサが放電してアーク電流が流れ、前記蒸着材料から前記蒸着材料の荷電粒子が放出され、
前記アーク電流によって生じた磁界で、前記荷電粒子の飛行方向が、基板が配置された方向に曲げられ、前記基板表面に前記荷電粒子が到達するように構成された成膜装置であって、
前記アーク電流が流れる経路のインピーダンスが、前記トリガ電極に電圧を印加してから前記アーク電流が尖頭電流値に達するまでの時間を1μ秒以上50μ秒以下とするように設定された成膜装置。
A vacuum chamber, a vapor deposition material, an anode electrode, and a trigger electrode;
The vapor deposition material, the anode electrode, and the trigger electrode are disposed in the vacuum chamber,
A capacitor is connected to the vapor deposition material,
In a state where the capacitor is charged, a trigger discharge is generated between the trigger electrode and the vapor deposition material,
When the arc discharge is induced between the vapor deposition material and the anode electrode by the trigger discharge, the capacitor is discharged, an arc current flows, and charged particles of the vapor deposition material are released from the vapor deposition material,
A film forming apparatus configured such that a flight direction of the charged particles is bent in a direction in which a substrate is disposed by a magnetic field generated by the arc current, and the charged particles reach the surface of the substrate,
The film forming apparatus in which the impedance of the path through which the arc current flows is set so that the time from when the voltage is applied to the trigger electrode until the arc current reaches the peak current value is 1 μsec or more and 50 μsec or less .
前記アーク電流が流れる経路のインピーダンスが0.05Ω以上0.1Ω以下に設定された請求項1記載の成膜装置。The film forming apparatus according to claim 1, wherein an impedance of a path through which the arc current flows is set to 0.05Ω to 0.1Ω. 真空槽内に、蒸着材料と、アノード電極と、基板とを配置しておき、
前記真空槽内に真空雰囲気を形成した後、前記アノード電極と前記蒸着材料との間にアーク放電を起こし、前記蒸着材料の荷電粒子を放出させ、予め充電されたコンデンサを放電させてアーク電流を流し、前記蒸着材料の荷電粒子の飛行方向を、前記アーク電流により前記基板方向に向けて曲げ、
前記基板表面に前記蒸着材料の荷電粒子を到達させて、薄膜を形成する成膜方法であって、
前記アーク電流が流れる経路のインピーダンスを、前記トリガ放電が発生してから前記アーク電流が尖頭電流値に達するまでの時間を1μ秒以上50μ秒以下となるように設定しておき、前記アーク放電を発生させて成膜を行う成膜方法。
In the vacuum chamber, the deposition material, the anode electrode, and the substrate are arranged,
After forming a vacuum atmosphere in the vacuum chamber, an arc discharge is generated between the anode electrode and the vapor deposition material, and charged particles of the vapor deposition material are discharged, and a precharged capacitor is discharged to generate an arc current. Flowing, bending the flight direction of the charged particles of the vapor deposition material toward the substrate by the arc current,
A film forming method for forming a thin film by causing charged particles of the vapor deposition material to reach the substrate surface,
The impedance of the path through which the arc current flows is set so that the time from when the trigger discharge occurs until the arc current reaches the peak current value is 1 μsec or more and 50 μsec or less, and the arc discharge A film forming method for forming a film by generating the above.
JP2003056548A 2003-03-04 2003-03-04 Film forming apparatus and film forming method Expired - Fee Related JP4408637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003056548A JP4408637B2 (en) 2003-03-04 2003-03-04 Film forming apparatus and film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003056548A JP4408637B2 (en) 2003-03-04 2003-03-04 Film forming apparatus and film forming method

Publications (2)

Publication Number Publication Date
JP2004263266A JP2004263266A (en) 2004-09-24
JP4408637B2 true JP4408637B2 (en) 2010-02-03

Family

ID=33120197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003056548A Expired - Fee Related JP4408637B2 (en) 2003-03-04 2003-03-04 Film forming apparatus and film forming method

Country Status (1)

Country Link
JP (1) JP4408637B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4828108B2 (en) * 2004-10-14 2011-11-30 タマティーエルオー株式会社 Physical vapor deposition equipment
EP2123792A1 (en) * 2006-12-07 2009-11-25 National University Corporation Nagoya University Process and apparatus for producing carbonaceous film

Also Published As

Publication number Publication date
JP2004263266A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
US5221427A (en) Plasma generating device and method of plasma processing
US7714240B1 (en) Microfabricated triggered vacuum switch
JP4861257B2 (en) Fine particle film manufacturing method and manufacturing apparatus using coaxial vacuum arc deposition source
WO2000079839A1 (en) Method and apparatus for forming polycrystalline particles
JP4408637B2 (en) Film forming apparatus and film forming method
KR100272044B1 (en) Heat-resistant electrode material, electrode using the same, and apparatus having plasma generating unit using this electrodes
TW200930999A (en) Ionisation vacuum gauges and gauge heads
Oates et al. A high-current pulsed cathodic vacuum arc plasma source
JP2008095163A (en) Method of forming nanometal particle and method of forming nanometal thin film, and method of controlling size of nanometal particle
US7880119B2 (en) One sided electrode for manufacturing processes especially for joining
JP4049891B2 (en) Vapor deposition equipment that generates a trigger discharge using a transformer
JPS5963651A (en) Ionizing device for material
JP4233332B2 (en) Vapor deposition equipment
JPH11350115A (en) Vapor deposition apparatus using coaxial vacuum arc vapor deposition source
JP4746578B2 (en) Vacuum deposition equipment
JP4074704B2 (en) Vapor deposition source and vapor deposition apparatus
JP5250887B2 (en) Coaxial vacuum arc deposition source and vacuum deposition equipment
JP3942343B2 (en) Plasma generator and thin film forming apparatus
JP4133296B2 (en) Vapor deposition source and vapor deposition apparatus
JPH0837099A (en) Plasma generating device
JP4704267B2 (en) Vapor deposition source, vapor deposition equipment
JPH0428862A (en) Plasma producing device
US20230223234A1 (en) Apparatus and method for depositing hard carbon layers
JP2010018871A (en) Coaxial type vacuum arc deposition source and vacuum deposition system
JPH09165673A (en) Thin film forming device and thin film forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081107

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091110

R150 Certificate of patent or registration of utility model

Ref document number: 4408637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151120

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees