JP4403525B2 - Gas adsorption element - Google Patents

Gas adsorption element Download PDF

Info

Publication number
JP4403525B2
JP4403525B2 JP36943499A JP36943499A JP4403525B2 JP 4403525 B2 JP4403525 B2 JP 4403525B2 JP 36943499 A JP36943499 A JP 36943499A JP 36943499 A JP36943499 A JP 36943499A JP 4403525 B2 JP4403525 B2 JP 4403525B2
Authority
JP
Japan
Prior art keywords
activated carbon
carbon fiber
fiber material
gas
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36943499A
Other languages
Japanese (ja)
Other versions
JP2001179029A (en
Inventor
健 濱松
学 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP36943499A priority Critical patent/JP4403525B2/en
Publication of JP2001179029A publication Critical patent/JP2001179029A/en
Application granted granted Critical
Publication of JP4403525B2 publication Critical patent/JP4403525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はガス吸着用エレメントに関する。
【0002】
【従来の技術】
従来、上記のガス吸着用エレメントは、例えば実公昭58−37456号公報に開示されているように、下側の無孔フランジの中央部と、中心にガス流通孔が形成された上側の有孔フランジの中央部とに、活性炭素繊維材巻付け用の巻き芯の両端部を各別に連結して、巻き芯が縦姿勢の活性炭素繊維材巻付け体を形成し、巻き芯は、内部空間が前記ガス流通孔に連通する筒状に形成するとともに、径方向で内外方向に通気可能に形成し、巻き芯に活性炭素繊維材を所定厚さの活性炭素繊維材層になる状態に巻付け、その活性炭素繊維材に金網を巻付けて、活性炭素繊維材の外方側からの被処理ガスを活性炭素繊維材により吸着処理するとともに、前記巻き芯の内部空間とガス流通孔とを通して排出するよう構成してあった。
【0003】
【発明が解決しようとする課題】
上記従来の構成によれば、活性炭素繊維材は、巻き芯に単に巻付けてあるだけであったために保形性が十分とはいえず、再生活性炭素繊維材の自重、被処理ガス成分や被処理ガス中水分の吸着、さらに、再生用ガス中の水分の吸着による重量増加や強度低下や伸度上昇により活性炭素繊維材の上端側が上側の有孔フランジに対して下降した状態に活性炭素繊維材の形が崩れやすかった。
【0004】
その結果、活性炭素繊維材の外方側の被処理ガスが、活性炭素繊維材の上端部と上側の有孔フランジとの間から巻き芯の内部空間側に入り込むというショートパスが生じて、吸着性能が低下しやすいという問題や、水蒸気等の再生用ガスが、活性炭素繊維材の上端部と上側の有孔フランジとの間から活性炭素繊維材の外方側に洩れ出るというショートパスが生じて、再生性能が低下しやすく、長時間の使用に耐えないという問題があった。
【0005】
この問題を解消するものとして、特開平10−165745号公報に開示されているように、通気性円筒状支持体の外周に活性炭素繊維シートとガラス繊維シートとを、ガラス繊維シートが外側になる状態に重ねて巻付け、さらに、活性炭素繊維シート層の外周面に突起付きの支持体を突き刺して構成したものや、特開平8−10506号公報に開示されているように、円筒状支持体の外周に活性炭素繊維材を巻付け、突起付きの複数の支持体を、前記突起が活性炭素繊維材層の外周部と内周部とに各別に突き刺さるように設けたものが提案されている。
【0006】
しかしながら、前者の構造ではガラス繊維シートが必要でそのガラス繊維シートにコストがかかり、また両者の構造とも突起付きの支持体が必要で、突起付きの支持体の製作や取り付けに手間がかかって、製作コストが高くなるという問題があった。
【0007】
本発明の目的は、被処理ガスのショートパスによる吸着性能の低下や、再生用ガスのショートパスによる再生性能の低下を抑制できて、長時間の使用に耐え、しかも、製作が簡単で製作コストを低廉化できるガス吸着用エレメントを提供する点にある。
【0008】
【課題を解決するための手段】
請求項1による発明の構成・作用・効果は次の通りである。
【0009】
[構成]
無孔フランジの中央部と、中心にガス流通孔が形成された有孔フランジの中央部とに、活性炭素繊維材巻付け用の巻き芯の両端部を各別に連結して、前記巻き芯が縦姿勢の活性炭素繊維材巻付け体を形成し、前記巻き芯に活性炭素繊維材を所定厚さの活性炭素繊維材層になる状態で同芯状に複数巻付け、前記活性炭素繊維材層の径方向でその活性炭素繊維材層の内外方向に被処理ガスを通すことで、前記被処理ガスを吸着処理するよう構成し、前記活性炭素繊維材を保形する所定数の保形用部材を、同芯状の複数の活性炭素繊維材層部分に各別に巻き付けてあって、複数の前記活性炭素繊維材層の厚さは、内周側の層より外周側の層が薄くなっている
【0010】
[作用]
被処理ガスを前記活性炭素繊維材層の径方向でその活性炭素繊維材層の内外方向に通して吸着処理する。
【0011】
上記の構成によれば、活性炭素繊維材を保形する所定数の保形用部材を活性炭素繊維材層内に設けてあるから、再生後の活性炭素繊維材の自重、被処理ガス成分や被処理ガス中水分の吸着、さらに、再生用ガス中の水分の吸着による重量増加や強度低下や伸度上昇があっても活性炭素繊維材の形が崩れにくく、活性炭素繊維材の保形性が不十分な場合の問題、つまり、前記活性炭素繊維材の自重等で活性炭素繊維材の上端側が上側のフランジ(有孔フランジ又は無孔フランジ)に対して下降した状態に活性炭素繊維材の形が崩れるといった問題を解消することができる。
【0012】
これにより、被処理ガスや再生用ガスが、活性炭素繊維材の上端部と上側のフランジとの間を、前記活性炭素繊維材層の径方向で内外方向に流通するというショートパスが生じにくくなり、例えばトルエン・ベンゼン・ジクロロメタン・トリクロロエチレン等の有機溶剤等の汚染物質を被処理ガスから効果的に除去することができるようになる。
【0013】
また、特開平10−165745号公報に開示されているように、円筒状支持体の外周に活性炭素繊維シートとガラス繊維シートとを、ガラス繊維シートが外側になる状態に重ねて巻付け、さらに、活性炭素繊維シート層の外周面に突起付きの支持体を突き刺して構成したものや、特開平8−10506号公報に開示されているように、円筒状支持体の外周に活性炭素繊維材を巻付け、突起付きの複数の支持体を、前記突起が活性炭素繊維材層の外周部と内周部とに各別に突き刺さるように設けたもののうち、前者の構造ではガラス繊維シートが必要でそのガラス繊維シートにコストがかかり、また両者の構造とも突起付きの支持体が必要で、突起付きの支持体の製作や取り付けに手間がかかって、製作コストが高くなるという問題があるが、請求項1の構成によれば、補強用のガラス繊維材や突起付きの支持体が不要であり、所定数の保形用部材を前記活性炭素繊維材層内に設けるだけでよいから、上記従来の構造に比べると、安価に製作することができる。
【0014】
[効果]
従って、被処理ガスのショートパスによる吸着性能の低下や、再生用ガスのショートパスによる再生性能の低下を抑制することができて、長時間の使用に耐えることができ、しかも、製作が簡単で製作コストを低廉化できるガス吸着用エレメントを提供することができて、被処理ガスからの有機溶剤等の汚染物質の除去に有利になった。
【0017】
[作用]
さらに、前記所定数の保形用部材は、同芯状の複数の活性炭素繊維材層部分に各別に巻き付けてあるから、同芯状の各活性炭素繊維材層部分ごとに各保形用部材の巻付け力を加えることができて、前記巻付け力で活性炭素繊維材をより保形しやすくなる。
【0018】
この場合、図3に示すように(図3は、活性炭素繊維材の重量当たりの保形用部材の枚数と、上側のフランジに対する活性炭素繊維材の上端部のずれとの関係を示す図である)、一つの保形用部材に対する前記活性炭素繊維材層部分の重量を一定値以下にすることで、活性炭素繊維材の形がより崩れにくくなる。
【0019】
[効果]
従って、被処理ガスのショートパスによる吸着性能の低下や、再生用ガスのショートパスによる脱着性能の低下をより抑制することができた。
【0020】
請求項3による発明の構成・作用・効果は次の通りである。
【0021】
[構成]
請求項2による発明の構成において、前記保形用部材が金網である。
【0022】
[作用]
請求項2の構成による作用と同様の作用を奏することができるのに加え、保形用部材が金網であるから、保形用部材を設けたこと起因する活性炭素繊維材層の通気性の低下を抑制できて、活性炭素繊維材層の径方向でその活性炭素繊維材層の内外方向に被処理ガスや脱着用ガスが通りにくくなるのを抑制でき、さらに、巻付け力の低下もあまりなく、専用の保形用部材を製作する場合に比べると、保形用部材を安価に構成することができる。
【0023】
[効果]
従って、請求項2の構成による効果と同様の効果を得やすくなるとともに、製作コストを低廉化することができた。
【0024】
請求項4による発明の構成・作用・効果は次の通りである。
【0025】
[構成]
請求項1,2,3のいずれか一つによる発明の構成において、前記活性炭素繊維材をフェルト状に形成してある。
【0026】
[作用]
請求項1,2,3のいずれか一つの構成による作用と同様の作用を奏することができるのに加え、活性炭素繊維材をフェルト状に形成してあるから、加工性が良く、生産コストが安い。
【0027】
[効果]
従って、請求項1,2,3のいずれか一つの構成による効果と同様の効果を奏することができるのに加え、活性炭素繊維材をフェルト状に形成したことで加工性が良く、生産コストが安くなるから、経済性を向上させることができた。
【0028】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0029】
図1,図2にガス吸着用エレメントを示してある。
【0030】
前記ガス吸着用エレメントはガス処理装置の吸着槽(図示せず)に収容され、その状態で径方向外方側から送られてくる被処理ガスを吸着処理する。
【0031】
前記ガス吸着用エレメントの構造について説明すると、下側の円形の無孔フランジ1の中央部と、中心に円形のガス流通孔2が形成された上側の円形の有孔フランジ3の中央部とに、活性炭素繊維材巻付け用の巻き芯4の両端部を各別に連結し、前記有孔フランジ3の中央部に、ガス流通孔2と連通する短管8を固着し、再生用ガスを噴出するノズル9を短管8の側壁に貫通させて、前記巻き芯4が縦姿勢の活性炭素繊維材巻付け体を形成してある。
【0032】
前記巻き芯4は、内部空間が前記ガス流通孔2に連通する筒状に形成するとともに、径方向で内外方向に通気可能に形成してあり、詳しくは、巻き芯4の軸線Oの周りでその軸線Oに沿う複数本の支持棒5の一端部を、ガス流通孔2周りの有孔フランジ部分に固着するとともに、支持棒5の他端部を無孔フランジ1の中央部に固着してかご型に形成してある。
【0033】
そして、脱臭機能を持たせた複数枚の活性炭素繊維材6を所定厚さの活性炭素繊維材層になる状態に、前記複数本の支持棒5に巻付けて、活性炭素繊維材層の径方向外方側からの被処理ガスを活性炭素繊維材6により吸着処理するとともに、巻き芯4の内部空間と有孔フランジ3のガス流通孔2とを通して排出するよう構成し、前記活性炭素繊維材6を保形する複数枚の金網7(保形用部材に相当)を、同芯状の複数の活性炭素繊維材層部分に各別に巻き付けてある。
【0034】
つまり、前記複数本の支持棒5に1枚の金網7を巻付け、この金網7に活性炭素繊維材6を3層に巻付け、前記3層の活性炭素繊維材6から成る活性炭素繊維材層部分に1枚の金網7を巻付け、この金網7に活性炭素繊維材6を2層に巻付け、前記2層の活性炭素繊維材6から成る活性炭素繊維材層部分に1枚の金網7を巻付け、この金網7に活性炭素繊維材6を1層に巻付けるとともに、前記1層の活性炭素繊維材6に金網7を巻き付けてある。
【0035】
これにより、同芯状の各活性炭素繊維材層部分ごとに各金網7の巻付け力を加えることができて、活性炭素繊維材6をより保形しやすくなり、活性炭素繊維材6の自重、被処理ガス成分や被処理ガス中水分の吸着、さらに、再生用ガス中の水分の吸着による重量増加や強度低下や伸度上昇があっても活性炭素繊維材6の形が崩れにくくなる。
【0036】
その結果、活性炭素繊維材6の自重等で活性炭素繊維材6の上端側が上側の有孔フランジ3に対して下降した状態に、活性炭素繊維材6の形が崩れるといった不具合を回避することができ、活性炭素繊維材6の外方側の被処理ガスが、活性炭素繊維材6の上端部と上側の有孔フランジ3との間から巻き芯4の内部空間側に入り込むというショートパスや、ノズル9側からの脱着用ガスが、活性炭素繊維材6の上端部と上側の有孔フランジ3との間から巻き芯4の外方側に洩れ出るというショートパスが生じにくくなる。
【0037】
[別実施形態]
前記被処理ガスを、活性炭素繊維材層の径方向でその活性炭素繊維材層の内方側から外方側に通すことで、吸着処理するよう構成してあってもよい。
【0038】
前記ガス吸着用エレメントは、ボックス型・カラム型・カートリッジ型などであってもよく、使用目的にあった形状を選択することができる。
【0039】
前記保形用部材は、金網に換えて、パンチングメタルなど金属製のものや、耐熱・耐薬品性のある高分子製のもので構成してあってもよい。
【0040】
前記活性炭素繊維材6はセルロース系・フェノール系・ポリアクリロニトリル系などのものであってもよい。
【0041】
前記活性炭素繊維材は織物・編物・不織布などに加工されて様々な形状で用いられるが、活性炭素前駆体繊維をニードルパンチ・ウオーターパンチ等によりフェルトに加工した後、炭化・賦活により活性炭素繊維材を得ることで加工性がよくなり、生産コストを安くできる。またフェルトとして用いることで、被処理ガスとの接触面積を多くとることができ、通気抵抗を低く抑えることができて有利である。
【0042】
フェルト加工の場合は、活性炭素繊維100重量%を用いて、目付300g/m2 〜600g/m2 ・厚み2〜4mm・引っ張り強度が150g(≒1.47N)/cm幅以上でその時の伸度を30%以下とすることで、強度や剛性を持たすためのポリプロピレン等の補強材を混合する必要性がなく、吸着容量の低下を抑制することができる。
【0043】
【実施例1】
東洋紡績(株)のセルロース系の7dtexのポリノジック繊維を100重量%用い、ニードルパンチ法によりフェルト加工後、炭化・賦活を行い、厚さ3.0mm,目付200g/m2 ,幅1200mmの複数枚のフェルト状活性炭素繊維材を前記巻き芯に巻き付けるとともに、複数枚の金網を、同芯状の複数の活性炭素繊維材層部分に各別に巻き付けてガス吸着用エレメントを構成した。
【0044】
このガス吸着用エレメントの大きさは、内径が100mm,外径が350mm、高さ寸法が600mmである。
【0045】
そして、所定期間経過後に、上側の有孔フランジに対する活性炭素繊維材の上端部のズレを測定し、図3のような測定結果を得た。
【0046】
図3において縦軸の「フェルトズレ」とは、上側の有孔フランジに対する活性炭素繊維材の上端部のズレのことである。
【0047】
図3は、活性炭素繊維材重量当たりの金網の枚数と前記ズレとの関係を示すもので、この図3に示す測定結果によれば、7.0kg以下の活性炭素繊維材に対して1枚の金網を巻付ければ、前記ズレが0になるということを確認できた。
【0048】
【実施例2】
実施例1と同様な方法によりガス吸着エレメントを作成し、前記ガス吸着用エレメントを2槽式のガス処理装置に設置し、被処理ガスとしてトルエンを用い、濃度3000ppm、風量10Nm3 /min、温度25℃、相対湿度65%のガスとして装置に導入し、吸着処理を行うとともに、吸着終了後、105℃の水蒸気により再生を行う自動シーケンスによる連続運転を行い、入口・出口濃度を島津製作所製の炭化水素計により連続測定を行い、図4のような測定結果を得た。
【0049】
この図4の測定結果によれば、従来技術のガス吸着エレメントでは、約4minで破過(装置出口へ被処理ガスが洩れ出す現象)が起こるのに対して、本発明では、約7minと延長することが確認できた。また、本発明のガス吸着エレメントを用い約12ヶ月後に前記方法により同様な測定を行った結果、前記データと同様な結果となることを確認できた。
【0050】
さらに、完了後エレメントを取り出し、形状を確認したところフェルトズレの発生はなかった。
【図面の簡単な説明】
【図1】ガス吸着用エレメントの縦断面図
【図2】ガス吸着用エレメントの平面図
【図3】活性炭素繊維材の重量当たりの金網の枚数とずれとの関係を示す図
【図4】トルエン処理テストの結果を示す図
【符号の説明】
1 無孔フランジ
2 ガス流通孔
3 有孔フランジ
4 巻き芯
6 活性炭素繊維材
7 保形用部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas adsorption element.
[0002]
[Prior art]
Conventionally, the gas adsorbing element described above has, as disclosed in, for example, Japanese Utility Model Publication No. 58-37456, a central portion of a lower non-perforated flange and an upper perforated hole in which a gas flow hole is formed in the center. Both ends of the core for wrapping the activated carbon fiber material are separately connected to the center portion of the flange to form an activated carbon fiber material wrapping body in which the winding core is in a vertical posture. Is formed in a cylindrical shape that communicates with the gas flow hole, and is formed so as to be able to vent in the radial direction inward and outward, and the activated carbon fiber material is wound around the winding core so as to become an activated carbon fiber material layer having a predetermined thickness A wire mesh is wound around the activated carbon fiber material, and the gas to be treated from the outside of the activated carbon fiber material is adsorbed by the activated carbon fiber material and discharged through the inner space of the winding core and the gas flow hole. It was configured to do.
[0003]
[Problems to be solved by the invention]
According to the above-described conventional configuration, the activated carbon fiber material is simply wound around the winding core, so that the shape retention is not sufficient, the weight of the regenerated activated carbon fiber material, the gas component to be treated, Activated carbon in a state where the upper end side of the activated carbon fiber material is lowered with respect to the upper perforated flange due to the adsorption of moisture in the gas to be treated and the increase in weight, strength reduction and elongation due to adsorption of moisture in the regeneration gas The shape of the fiber material was easy to collapse.
[0004]
As a result, a short path is generated in which the gas to be treated outside the activated carbon fiber material enters the inner space side of the winding core from between the upper end portion of the activated carbon fiber material and the upper perforated flange. There is a problem that the performance is likely to deteriorate, and a short path in which regeneration gas such as water vapor leaks to the outside of the activated carbon fiber material from between the upper end of the activated carbon fiber material and the upper perforated flange occurs. Therefore, there is a problem that the reproduction performance is likely to be deteriorated and it cannot be used for a long time.
[0005]
In order to solve this problem, as disclosed in JP-A-10-165745, an activated carbon fiber sheet and a glass fiber sheet are disposed on the outer periphery of the breathable cylindrical support, and the glass fiber sheet is disposed outside. A cylindrical support as disclosed in Japanese Patent Application Laid-Open No. 8-10506, or a structure in which an activated carbon fiber sheet layer is wound and overlapped with a state, and a support with a protrusion is inserted into the outer peripheral surface of the activated carbon fiber sheet layer. An activated carbon fiber material is wound around the outer periphery of the substrate, and a plurality of supports with protrusions are provided so that the protrusions pierce the outer and inner peripheral portions of the activated carbon fiber material layer, respectively. .
[0006]
However, the former structure requires a glass fiber sheet and the glass fiber sheet is expensive, and both structures require a support with protrusions, and it takes time and effort to produce and attach the support with protrusions. There was a problem that the production cost was high.
[0007]
The object of the present invention is to suppress the deterioration of the adsorption performance due to the short path of the gas to be treated and the deterioration of the regeneration performance due to the short path of the gas for regeneration. Is to provide a gas adsorption element that can reduce the cost of the gas.
[0008]
[Means for Solving the Problems]
The structure, operation, and effect of the invention according to claim 1 are as follows.
[0009]
[Constitution]
Both ends of the core for wrapping the activated carbon fiber material are separately connected to the center portion of the non-porous flange and the center portion of the perforated flange having a gas flow hole formed in the center, and the core is An activated carbon fiber material wound body in a vertical posture is formed, and the activated carbon fiber material layer is wound around the winding core in a concentric form in a state of becoming an activated carbon fiber material layer having a predetermined thickness. A predetermined number of shape-retaining members configured to adsorb the gas to be treated by passing the gas to be treated in the radial direction of the activated carbon fiber material layer in the inner and outer directions of the activated carbon fiber material layer. Are wound around each of a plurality of concentric activated carbon fiber material layer portions, and the thickness of the plurality of activated carbon fiber material layers is thinner on the outer peripheral side than on the inner peripheral side layer. .
[0010]
[Action]
The gas to be treated is adsorbed by passing it in the radial direction of the activated carbon fiber material layer in the inner and outer directions of the activated carbon fiber material layer.
[0011]
According to the above configuration, since the predetermined number of shape-retaining members for retaining the activated carbon fiber material are provided in the activated carbon fiber material layer, the weight of the activated carbon fiber material after regeneration, the gas component to be treated, Even if there is an increase in weight, a decrease in strength, or an increase in elongation due to the adsorption of moisture in the gas to be treated and the adsorption of moisture in the regeneration gas, the shape of the activated carbon fiber material is not easily lost, and the shape retention of the activated carbon fiber material Of the activated carbon fiber material in a state where the upper end side of the activated carbon fiber material is lowered with respect to the upper flange (perforated flange or non-porous flange) due to its own weight or the like. The problem that the shape is lost can be solved.
[0012]
As a result, a short path in which the gas to be treated and the regeneration gas flows between the upper end of the activated carbon fiber material and the upper flange in the radial direction of the activated carbon fiber material layer is less likely to occur. For example, contaminants such as organic solvents such as toluene, benzene, dichloromethane, and trichloroethylene can be effectively removed from the gas to be treated.
[0013]
Further, as disclosed in JP-A-10-165745, the activated carbon fiber sheet and the glass fiber sheet are wound around the outer periphery of the cylindrical support so that the glass fiber sheet is on the outside, The activated carbon fiber sheet layer is formed by piercing a support with a protrusion on the outer peripheral surface, or as disclosed in JP-A-8-10506, an activated carbon fiber material is provided on the outer periphery of the cylindrical support. Of the former structure, a glass fiber sheet is required in the former structure, in which a plurality of supports with windings and protrusions are provided so that the protrusions pierce the outer peripheral portion and the inner peripheral portion of the activated carbon fiber material layer. There is a problem that the glass fiber sheet is expensive, and both structures require a support with protrusions, and it takes time to manufacture and attach the support with protrusions, which increases the manufacturing cost. According to the configuration of claim 1, the glass fiber material for reinforcement and the support with projections are unnecessary, and it is only necessary to provide a predetermined number of shape-retaining members in the activated carbon fiber material layer. Compared to this structure, it can be manufactured at low cost.
[0014]
[effect]
Therefore, it is possible to suppress a decrease in adsorption performance due to the short pass of the gas to be treated and a decrease in regeneration performance due to the short pass of the regeneration gas, and it can withstand long-time use, and is easy to manufacture. A gas adsorbing element that can reduce the manufacturing cost can be provided, which is advantageous in removing contaminants such as organic solvents from the gas to be treated.
[0017]
[Action]
Further, since the predetermined number of shape-retaining members are individually wound around a plurality of concentric activated carbon fiber material layer portions, each shape-retaining member is provided for each concentric activated carbon fiber material layer portion. Thus, it becomes easier to retain the shape of the activated carbon fiber material by the winding force.
[0018]
In this case, as shown in FIG. 3 (FIG. 3 is a diagram showing the relationship between the number of shape retaining members per weight of the activated carbon fiber material and the deviation of the upper end portion of the activated carbon fiber material with respect to the upper flange. If the weight of the activated carbon fiber material layer portion with respect to one shape-retaining member is set to a certain value or less, the shape of the activated carbon fiber material is less likely to collapse.
[0019]
[effect]
Accordingly, it is possible to further suppress the decrease in the adsorption performance due to the short pass of the gas to be treated and the decrease in the desorption performance due to the short pass of the regeneration gas.
[0020]
The structure, operation, and effect of the invention according to claim 3 are as follows.
[0021]
[Constitution]
In the configuration of the invention according to claim 2, the shape retaining member is a wire mesh.
[0022]
[Action]
In addition to being able to achieve the same effect as that of the configuration of claim 2, since the shape retaining member is a wire mesh, the air permeability of the activated carbon fiber material layer due to the provision of the shape retaining member is reduced. In the radial direction of the activated carbon fiber material layer, it is possible to prevent the gas to be treated and the desorption gas from passing through in the inner and outer directions of the activated carbon fiber material layer, and there is not much decrease in the winding force. Compared to the case where a dedicated shape retaining member is manufactured, the shape retaining member can be configured at a low cost.
[0023]
[effect]
Accordingly, it is possible to easily obtain the same effect as that of the structure of claim 2 and to reduce the manufacturing cost.
[0024]
The structure, operation, and effect of the invention according to claim 4 are as follows.
[0025]
[Constitution]
In the configuration of the invention according to any one of claims 1, 2, and 3, the activated carbon fiber material is formed in a felt shape.
[0026]
[Action]
In addition to being able to achieve the same effect as that of any one of claims 1, 2 and 3, the activated carbon fiber material is formed in a felt shape, so that the workability is good and the production cost is low. cheap.
[0027]
[effect]
Therefore, in addition to being able to achieve the same effect as the effect of any one of claims 1, 2 and 3, in addition to forming the activated carbon fiber material in a felt shape, the workability is good and the production cost is low. Since it became cheaper, the economy could be improved.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0029]
1 and 2 show gas adsorption elements.
[0030]
The gas adsorption element is accommodated in an adsorption tank (not shown) of a gas processing apparatus, and in this state, the gas to be processed sent from the radially outer side is adsorbed.
[0031]
The structure of the gas adsorbing element will be described. In the center portion of the lower circular non-porous flange 1 and the central portion of the upper circular perforated flange 3 in which the circular gas flow hole 2 is formed at the center. , The both ends of the core 4 for wrapping the activated carbon fiber material are connected separately, the short tube 8 communicating with the gas flow hole 2 is fixed to the center of the perforated flange 3, and the regeneration gas is ejected. Nozzle 9 is made to penetrate the side wall of the short tube 8 so that the wound core 4 forms an activated carbon fiber material wound body in a vertical posture.
[0032]
The winding core 4 is formed in a cylindrical shape in which an internal space communicates with the gas flow hole 2 and is formed so as to be able to vent in the radial direction inward and outward. Specifically, around the axis O of the winding core 4 One end of the plurality of support rods 5 along the axis O is fixed to the perforated flange portion around the gas flow hole 2, and the other end of the support rod 5 is fixed to the center portion of the non-porous flange 1. It is shaped like a cage.
[0033]
Then, a plurality of activated carbon fiber materials 6 having a deodorizing function are wound around the plurality of support rods 5 in a state of becoming an activated carbon fiber material layer having a predetermined thickness, and the diameter of the activated carbon fiber material layer is The gas to be treated from the outside in the direction is adsorbed by the activated carbon fiber material 6 and discharged through the inner space of the winding core 4 and the gas flow hole 2 of the perforated flange 3, and the activated carbon fiber material A plurality of metal meshes 7 (corresponding to a shape-retaining member) for retaining the shape 6 are respectively wound around a plurality of concentric activated carbon fiber material layer portions.
[0034]
That is, a single wire mesh 7 is wound around the plurality of support bars 5, and the activated carbon fiber material 6 is wound around the wire mesh 7 in three layers, and the activated carbon fiber material is formed of the three layers of the activated carbon fiber material 6. One wire mesh 7 is wound around the layer portion, and the activated carbon fiber material 6 is wound around the wire mesh 7 in two layers. One wire mesh is formed on the activated carbon fiber material layer portion composed of the two layers of the activated carbon fiber material 6. 7 and the activated carbon fiber material 6 is wound around the wire mesh 7 in one layer, and the wire mesh 7 is wound around the activated carbon fiber material 6 of the one layer.
[0035]
Thereby, the winding force of each wire mesh 7 can be applied to each concentric activated carbon fiber material layer portion, and it becomes easier to retain the shape of the activated carbon fiber material 6, and the weight of the activated carbon fiber material 6 is reduced. Further, even if there is an increase in weight, a decrease in strength, or an increase in elongation due to adsorption of moisture in the gas to be treated or moisture in the gas to be treated, and adsorption of moisture in the regeneration gas, the shape of the activated carbon fiber material 6 does not easily collapse.
[0036]
As a result, it is possible to avoid such a problem that the shape of the activated carbon fiber material 6 collapses in a state where the upper end side of the activated carbon fiber material 6 is lowered with respect to the upper perforated flange 3 due to its own weight or the like. A short path in which the gas to be treated on the outer side of the activated carbon fiber material 6 enters the inner space side of the winding core 4 from between the upper end portion of the activated carbon fiber material 6 and the upper perforated flange 3, A short path in which the desorption gas from the nozzle 9 side leaks out from between the upper end portion of the activated carbon fiber material 6 and the upper perforated flange 3 to the outer side of the winding core 4 is less likely to occur.
[0037]
[Another embodiment]
You may comprise so that the said to-be-processed gas may be adsorbed by letting it pass from the inner side of the activated carbon fiber material layer to the outer side in the radial direction of the activated carbon fiber material layer.
[0038]
The gas adsorption element may be a box type, a column type, a cartridge type, or the like, and a shape suitable for the purpose of use can be selected.
[0039]
The shape retaining member may be made of a metal such as punching metal or a polymer having heat resistance and chemical resistance instead of the metal mesh.
[0040]
The activated carbon fiber material 6 may be cellulose-based, phenol-based, polyacrylonitrile-based, or the like.
[0041]
The activated carbon fiber material is processed into a woven fabric, a knitted fabric, a non-woven fabric, etc. and used in various shapes. After the activated carbon precursor fiber is processed into a felt by a needle punch, a water punch or the like, the activated carbon fiber is carbonized and activated by activation. By obtaining the material, workability is improved and the production cost can be reduced. Further, the use as felt is advantageous in that a large contact area with the gas to be treated can be obtained, and the ventilation resistance can be kept low.
[0042]
In the case of felt processing, using activated carbon fiber 100% by weight, the basis weight is 300 g / m 2 to 600 g / m 2 , the thickness is 2 to 4 mm, the tensile strength is 150 g (≈1.47 N) / cm width or more, and the elongation at that time By setting the degree to 30% or less, there is no need to mix a reinforcing material such as polypropylene for imparting strength and rigidity, and a decrease in adsorption capacity can be suppressed.
[0043]
[Example 1]
100% by weight of Toyobo Co., Ltd. cellulose-based 7dtex polynosic fiber, felted by needle punching method, carbonized and activated, multiple sheets with thickness 3.0mm, basis weight 200g / m 2 , width 1200mm The felt-like activated carbon fiber material was wound around the winding core, and a plurality of wire meshes were separately wound around the plurality of concentric activated carbon fiber material layer portions to constitute a gas adsorption element.
[0044]
The gas adsorption element has an inner diameter of 100 mm, an outer diameter of 350 mm, and a height dimension of 600 mm.
[0045]
And after progress for a predetermined period, the shift | offset | difference of the upper end part of the activated carbon fiber material with respect to an upper perforated flange was measured, and the measurement result like FIG. 3 was obtained.
[0046]
In FIG. 3, the “felt shift” on the vertical axis is a shift of the upper end portion of the activated carbon fiber material with respect to the upper perforated flange.
[0047]
FIG. 3 shows the relationship between the number of wire meshes per weight of the activated carbon fiber material and the deviation. According to the measurement result shown in FIG. 3, one sheet of activated carbon fiber material of 7.0 kg or less is shown. It was confirmed that the deviation would be zero if the wire mesh was wound.
[0048]
[Example 2]
A gas adsorbing element was prepared by the same method as in Example 1, the gas adsorbing element was installed in a two-tank gas processing apparatus, toluene was used as the gas to be processed, the concentration was 3000 ppm, the air volume was 10 Nm 3 / min, and the temperature. The gas is introduced into the apparatus as a gas of 25 ° C. and a relative humidity of 65%, and is subjected to adsorption treatment. After the adsorption is completed, continuous operation is performed by an automatic sequence in which regeneration is performed with water vapor at 105 ° C. Continuous measurement was performed with a hydrocarbon meter, and the measurement results as shown in FIG. 4 were obtained.
[0049]
According to the measurement results of FIG. 4, the gas adsorption element of the prior art breaks out (a phenomenon in which the gas to be treated leaks to the apparatus outlet) in about 4 minutes, whereas in the present invention, it extends to about 7 minutes. I was able to confirm. Moreover, as a result of performing the same measurement by the said method about 12 months after using the gas adsorption element of this invention, it has confirmed that it became the result similar to the said data.
[0050]
Furthermore, when the element was taken out after completion and the shape was confirmed, no felt shift occurred.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a gas adsorption element. FIG. 2 is a plan view of the gas adsorption element. FIG. 3 is a diagram showing the relationship between the number of metal meshes per weight of activated carbon fiber material and the deviation. Diagram showing results of toluene treatment test [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Non-porous flange 2 Gas distribution hole 3 Perforated flange 4 Winding core 6 Activated carbon fiber material 7 Shape-retaining member

Claims (4)

無孔フランジの中央部と、中心にガス流通孔が形成された有孔フランジの中央部とに、活性炭素繊維材巻付け用の巻き芯の両端部を各別に連結して、前記巻き芯が縦姿勢の活性炭素繊維材巻付け体を形成し、
前記巻き芯は、内部空間が前記ガス流通孔に連通する筒状に形成するとともに、径方向で内外方向に通気可能に形成し、
前記巻き芯に活性炭素繊維材を所定厚さの活性炭素繊維材層になる状態で同芯状に複数巻付け、前記活性炭素繊維材層の径方向でその活性炭素繊維材層の内外方向に被処理ガスを通すことで、前記被処理ガスを吸着処理するよう構成し、
前記活性炭素繊維材を保形する所定数の保形用部材を、同芯状の複数の活性炭素繊維材層部分に各別に巻き付けてあって、
複数の前記活性炭素繊維材層の厚さは、内周側の層より外周側の層が薄くなっているガス吸着用エレメント。
Both ends of the core for wrapping the activated carbon fiber material are separately connected to the center portion of the non-porous flange and the center portion of the perforated flange having a gas flow hole formed in the center, and the core is Form a vertical activated carbon fiber wound body,
The winding core is formed in a cylindrical shape in which the internal space communicates with the gas flow hole, and is formed so as to be able to vent in the inner and outer directions in the radial direction,
The activated carbon fiber material is wound around the winding core in a concentric state in a state of becoming an activated carbon fiber material layer having a predetermined thickness, and in the radial direction of the activated carbon fiber material layer, in the inner and outer directions of the activated carbon fiber material layer. It is configured to adsorb the gas to be processed by passing the gas to be processed.
A predetermined number of shape-retaining members that retain the shape of the activated carbon fiber material are individually wound around a plurality of concentric activated carbon fiber material layer portions,
The plurality of activated carbon fiber material layers are elements for gas adsorption in which the outer peripheral layer is thinner than the inner peripheral layer .
前記巻き芯は、巻き芯の軸線の周りでその軸線に沿う複数本の支持棒の一端部を、前記ガス流通孔周りの有孔フランジ部分に固着するとともに、支持棒の他端部を無孔フランジの中央部に固着して形成している請求項1記載のガス吸着用エレメント。The winding core has one end of a plurality of support rods along the axis of the winding core fixed to a perforated flange portion around the gas flow hole and the other end of the support rod is not perforated. The gas adsorbing element according to claim 1, wherein the gas adsorbing element is fixed to the center of the flange. 前記保形用部材が金網である請求項2記載のガス吸着用エレメント。  The gas adsorption element according to claim 2, wherein the shape retaining member is a wire mesh. 前記活性炭素繊維材をフェルト状に形成してある請求項1,2,3のいずれか一つに記載のガス吸着用エレメント。  4. The gas adsorption element according to claim 1, wherein the activated carbon fiber material is formed in a felt shape.
JP36943499A 1999-12-27 1999-12-27 Gas adsorption element Expired - Fee Related JP4403525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36943499A JP4403525B2 (en) 1999-12-27 1999-12-27 Gas adsorption element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36943499A JP4403525B2 (en) 1999-12-27 1999-12-27 Gas adsorption element

Publications (2)

Publication Number Publication Date
JP2001179029A JP2001179029A (en) 2001-07-03
JP4403525B2 true JP4403525B2 (en) 2010-01-27

Family

ID=18494414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36943499A Expired - Fee Related JP4403525B2 (en) 1999-12-27 1999-12-27 Gas adsorption element

Country Status (1)

Country Link
JP (1) JP4403525B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102814100A (en) * 2011-06-07 2012-12-12 东洋纺织株式会社 Gas adsorption unit device
CN102847411A (en) * 2012-10-12 2013-01-02 哈尔滨工业大学 Activated carbon fiber adsorber

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103720051A (en) * 2013-08-02 2014-04-16 太仓派欧技术咨询服务有限公司 Smoking adsorbing filter
CN113019062A (en) * 2021-02-07 2021-06-25 大同新成欣荣新材料科技有限公司 Active carbon adsorption tower

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102814100A (en) * 2011-06-07 2012-12-12 东洋纺织株式会社 Gas adsorption unit device
CN102814100B (en) * 2011-06-07 2015-05-13 东洋纺织株式会社 Gas adsorption unit device
CN102847411A (en) * 2012-10-12 2013-01-02 哈尔滨工业大学 Activated carbon fiber adsorber
CN102847411B (en) * 2012-10-12 2014-08-27 哈尔滨工业大学 Activated carbon fiber adsorber

Also Published As

Publication number Publication date
JP2001179029A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
US4046525A (en) Method for adsorbing harmful substance
US4863602A (en) Flexible filter element employing filtering sheets formed with bypass openings
JP4403525B2 (en) Gas adsorption element
WO2004094036A1 (en) Filter assembly utilizing carbon block and pleated filter element
JPH06285357A (en) Gas-liquid contact unit and gas-liquid contact device
KR101947308B1 (en) Activated hollow porous carbon nano fiber for decreasing voc and its method
JP2001070729A (en) Gas adsorbing element
US20160096127A1 (en) Filtration Article with Heat-Treated and Shrunken Fluoropolymer Knit
JP2783510B2 (en) Suction element
JP4582777B2 (en) Gas adsorbent and method for producing the same
JPH11123311A (en) Solvent recovery device
IE42749B1 (en) Fluid fractionating membrane apparatus
KR870001858A (en) Thermally Molded and Density Gradient Filters
JP3620650B2 (en) Gas processing apparatus and processing method
JPS6327770Y2 (en)
JP2565769B2 (en) Activated carbon fiber and manufacturing method thereof
JPH0523549A (en) Hollow yarn filtration module
JP2001179041A (en) Gas treatment equipment
JPH0217617Y2 (en)
JPH0128809Y2 (en)
JP2004529092A5 (en)
CN217092470U (en) High-pollutant-receiving PP activated carbon composite filter element
JP4278356B2 (en) Biological contact filter medium and water treatment method
JPS59228935A (en) Dehumidifying element
JP2591676B2 (en) Activated carbon fiber nonwoven fabric and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4403525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees