JP4400850B2 - Composite member and cutting tool using the same - Google Patents

Composite member and cutting tool using the same Download PDF

Info

Publication number
JP4400850B2
JP4400850B2 JP2002372073A JP2002372073A JP4400850B2 JP 4400850 B2 JP4400850 B2 JP 4400850B2 JP 2002372073 A JP2002372073 A JP 2002372073A JP 2002372073 A JP2002372073 A JP 2002372073A JP 4400850 B2 JP4400850 B2 JP 4400850B2
Authority
JP
Japan
Prior art keywords
core material
coating layer
composite
sintered body
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002372073A
Other languages
Japanese (ja)
Other versions
JP2004204258A (en
Inventor
大輔 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002372073A priority Critical patent/JP4400850B2/en
Publication of JP2004204258A publication Critical patent/JP2004204258A/en
Application granted granted Critical
Publication of JP4400850B2 publication Critical patent/JP4400850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、長尺状の芯材が被覆層で被覆された複合硬質焼結体およびこれを複数本収束された構造を有する複合部材と、これを用いた切削工具に関する。
【0002】
【従来の技術】
従来から、材料の硬度および強度とともに靱性を改善するために、金属の酸化物、炭化物、窒化物、炭窒化物等の焼結体で形成される長尺状の芯材の外周面を他の焼結体からなる被覆層で被覆した複合硬質焼結体の研究がなされ、例えば、特許文献1〜3にて提案されている。これらに記載された複合硬質焼結体は、硬度を低下することなく、構造体の破壊抵抗を増大して靭性を高められることが記載されている。
【0003】
【特許文献1】
米国特許6063502号公報、
【特許文献2】
米国特許5645781号公報
【特許文献3】
特表2001−506930号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記特許文献1〜3に記載されるような従来の複合硬質焼結体では、例えばドリル、エンドミル等の高い衝撃がかかる切削工具等に対しては、必要とされる充分な耐摩耗性または耐欠損性が得られないことがあった。その原因として、芯材および/または被覆層中に液相を出現させ最終的に結合金属相となる成分が存在する場合には、液相が焼成中に芯材および被覆層間を拡散してしまい、芯材と被覆層が同じ特性となって靭性向上効果がなくなる場合があった。また、芯材と被覆層との焼結温度が大きく異なる場合には、焼結温度の低い側から高い側に液相成分が移動してしまい焼結温度の低い側は緻密化できず、多量の空孔(ボイド)が残存する等の問題もあった。
【0005】
したがって、本発明の目的は、上記長尺状の芯材が被覆層で被覆された複合硬質焼結体およびこれを複数本集束された構造を有する複合部材において芯材と被覆層をともに緻密化できるとともに、芯材と被覆層の特性を容易に制御でき、さらに優れた耐欠損性および耐摩耗性を備えた複合硬質焼結体およびこれを用いた複合部材、さらにはこれを利用した切削工具を提供することである。
【0006】
【課題を解決するための手段】
本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、硬質結晶粒子を結合金属相にて結合した焼結体からなる芯材における被覆層との界面付近において結合金属相の含有量の多い富化領域を形成することによって、芯材と被覆層間で起こる結合金属相の不要な移動を防止して芯材と被覆層とをともに所望の結合金属相量および特性に制御することができる結果、複合構造体の芯材および被覆層を最適な組成、特性に制御でき、これを切削工具として用いると、工具の耐欠損性および耐摩耗性が大幅に改善することを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明の複合部材は、硬質結晶粒子を結合金属相にて結合した硬質焼結体からなる長尺状の芯材の外周面を、該芯材とは少なくとも前記結合金属相の濃度が異なるセラミックスまたは硬質焼結体からなる被覆層によって被覆してなり、前記芯材の前記被覆層との界面における結合金属濃度が、前記芯材の中心部における結合金属濃度および前記被覆層における結合金属濃度よりも高いこと、すなわち、前記芯材の前記被覆層との界面近傍に前記芯材の中心よりも結合金属濃度が高い結合金属富化領域を有する複合硬質焼結体が複数本集束された構造からなることを特徴とする。このように、芯材の表面近傍において結合金属富化領域が存在することによって、被覆層と芯材間の結合金属相の拡散を適度に抑制する力が働き本来複合硬質焼結体の耐摩耗性を担う芯材部に十分な靭性を付与し複合硬質焼結体全体の耐欠損性が著しく向上するとともに、芯材の表面近傍に存在する結合金属富化領域の結合金属相の拡散によって芯材と被覆する被覆層が優れた密着力を有する。
【0008】
特に、前記芯材の中心部の結合金属濃度Dcに対する芯材の界面付近における結合金属濃度Dsの比率Ds/Dcが1.05以上であることが望ましい。
【0009】
したがって、本発明の複合硬質焼結体では、前記芯材および被覆層が、いずれも硬質結晶粒子を結合金属相にて結合した硬質焼結体からなり、前記被覆層中の結合金属相の含有量が前記芯材中心部の結合金属濃度よりも高いことが複合硬質焼結体全体としての耐欠損性が非常に優れる点で好ましい。
【0010】
また、本発明によれば、上記の複合硬質焼結体は、1本の芯材の外周を被覆層で被覆した構造のシングルフィラメントであり、このシングルフィラメントを複数本集束させた構造のマルチフィラメント構造を有する複合部材である
【0012】
数の複合硬質焼結体を束ねたマルチフィラメント構造は、全周方向に隣接する焼結体間に連続的に結合金属の濃度勾配が生じるため、芯材と被覆層の分布が平均化して局所的な特性バラツキがならされるため、構造体全体としての特性が安定する結果、耐欠損性が著しく向上し、また選択材料の結合金属量および硬質相の粒径を制御することにより耐摩耗性の向上も容易にはかることが出来る。このため、マルチフィラメント構造は、ドリルの他、フライス切削やエンドミル等の幅広い切削工具に有用である。
【0013】
【発明の実施の形態】
以下、本発明の複合部材を構成する複合硬質焼結体の一実施形態について図面を参照して詳細に説明する。図1は、本実施形態の複合硬質焼結体11を示す斜視図である。同図に示すように、複合硬質焼結体11は、長尺状の芯材12の外周面が被覆層13で被覆された構造を有している。
【0014】
そして、この芯材12は、硬質結晶粒子を結合金属相にて結合した硬質焼結体からなり、被覆層13は、この芯材12とは異なる材質から構成されている。
(芯材材質)
この芯材12を形成する硬質焼結体は、具体的には、硬質結晶粒子が、周期律表第4a,5a,6a族金属の群から選ばれる少なくとも1種の炭化物、窒化物、炭窒化物、具体的には、WC、TiC、TiCN、TiN、TaC、NbC、ZrC、ZrN、VC、Cr2CおよびMo2Cからなる群より選ばれる少なくとも1種が挙げられる。これらのうち、特にWC、TiCまたはTiCNを主成分とするのが好ましい。芯材中における硬質粒子は、平均粒径が0.1〜10μm、好ましくは0.1〜2μm、特に0.2〜0.5μmであるのがよい。
【0015】
また、結合金属としては、例えばFe、CoおよびNiからなる群より選ばれる少なくとも1種が挙げられる。これらのうち、特にCoおよび/またはNiを主成分とするのが好ましい。
【0016】
この硬質焼結体における前記硬質結晶粒子は、80〜95質量%、結合金属相は5〜20質量%の割合で存在することが、耐摩耗性を高める上で有効である。
(被覆層材質)
一方、被覆層13は、芯材12とは少なくとも前記結合金属相の濃度が異なる硬質焼結体、またはセラミック粒子を焼結助剤にて結合したセラミックスのうちのいずれかからなるものである。
【0017】
ラミックスとしては、周期律表4a、5aおよび6a族金属、Al、Si並びにZnの群から選ばれる少なくとも1種の酸化物、炭化物、窒化物、炭窒化物および硼化物からなる群より選ばれる少なくとも1種等が挙げられる。セラミックスの具体例としては、例えばAl−TiC(TiCN)、SiC、Si、ZrO、TiB、ZnO−TiC等が挙げられる。これらのうち、特にAl−TiC(TiCN)および/またはSiCが好適に使用可能である。
【0018】
硬質焼結体またはセラミックスとしては、上記した材質の他、多結晶ダイヤモンド、DLC(ダイヤモンドライクカーボン)、cBNをも用いることができる。
【0019】
なお、被覆層13が硬質焼結体からなる場合、硬質結晶粒子は、複合硬質焼結体に期待する性能によって異なるが、例えば切削工具として最適な特性を達成するためには平均粒径が0.1〜10μm、好ましくは1〜3μmであるのがよく、セラミックスからなる場合におけるセラミック粒子は、平均粒径が0.05〜10μm、好ましくは0.1〜3μmであるのがよい。
(富化層)
本発明によれば、図2の複合硬質焼結体の(a)要部拡大断面図および(b)A−A断面における結合金属相の金属の濃度分布図に示されるように、芯材12と被覆層13との界面における結合金属濃度が、芯材12の中心部における結合金属濃度および被覆層13における結合金属濃度よりも高いこと、つまり、上記芯材12の被覆層13との界面近傍に、芯材12の中心よりも結合金属相の濃度が高い結合金属相富化領域xが存在することが大きな特徴である。
このように、芯材12の被覆層13との界面近傍に結合金属相富化領域xが存在することによって、被覆層13と芯材12間の結合金属相の拡散を適度に抑制する力が働く結果、本来複合硬質焼結体11の耐摩耗性を担う芯材12に十分な靭性を付与し複合硬質焼結体11全体の耐欠損性が著しく向上するとともに、結合金属相富化領域xの結合金属相の拡散によって芯材12と被覆する被覆層13が優れた密着力を有する。
【0020】
ここで、図2(b)の結合金属相の金属の濃度分布は、複合硬質焼結体断面を波長分散型X線マイクロアナリシスによる線分析を行うことによって判定することができる。本発明における複合硬質焼結体においては、図2(b)に示すように、芯材12中心から界面に向かって結合金属相の金属が濃度勾配を有しており界面近傍、すなわち被覆層13と接触する界面直下の領域に結合金属相が富化した領域を有する。
【0021】
なお、上記結合金属相富化領域xにおける結合金属相の金属濃度の最大値Dsと、芯材12中心部における結合金属相の金属濃度Dcとは、濃度比率(Ds/Dc)が1.05以上、特に1.1以上、さらに1.2以上であることによって優れた効果が発揮される。
【0022】
また、被覆層13においては、その材質により結合金属量は変化する。
【0023】
また、被覆層13として芯材12と同様の硬質結晶粒子と結合金属相からなる硬質焼結体によって形成した場合、結合金属量は界面付近で一旦減少し被覆層13中の結合金属相の金属濃度に収束する。さらに、被覆層としてセラミックスを用いる場合には、結合金属相の金属濃度は減少する。
【0024】
なお、本発明においては、結合金属相富化領域xにおいては、いわゆる脱β層(超硬合金の表面近傍にてB1型固溶体の濃度が減少した領域)は必ずしもなくてもよい。
【0025】
また、本発明においては、被覆層13中に結合金属の拡散速度を遅くして結合金属の拡散を阻害する物質、たとえばZrC等を含有せしめることにより、芯材12/被覆層13間の相互拡散をさらに抑制することができる。
【0026】
なお、複合硬質焼結体11を構成する芯材12の直径dcの被覆層13の厚さdsに対する比率dc/dsは用途によって異なるが、切削工具に使用する際には、5〜100、好ましくは10〜50、より好ましくは20〜30であるのがよい。特に、芯材12の直径は、その用途に応じて適宜設定されるが、切削工具に用いる場合には、5〜50μm、特に10〜30μmが適当である。
【0027】
また、本発明によれば、図3の斜視図に示されるように、(a)複合硬質焼結体11を複数本集束した複合部材15a、(b)複合硬質焼結体11または集束された複合硬質焼結体を複数本配列してシート化した複合部材15b、さらに(c)このシート化した複合部材15bを複数枚積層した複合部材15cなどが挙げられる。複合部材15cの場合、(d)に示すように、上下のシートの向きを変えることも可能である。
(製法)
次に、本発明の複合硬質焼結体11の製造方法について図4の工程図を参照して説明する。なお、以下の実施形態では、芯材12および被覆層13がともに硬質焼結体からなる場合を例に挙げて説明する。
<芯材用成形体の成形工程>
まず、平均粒径が0.1〜1.5μmの前記硬質粒子80〜95質量%、好ましくは85〜90質量%と、平均粒径が0.5〜3μmの結合金属粉末5〜20質量%、好ましくは10〜15質量%とを混合し、必要に応じて、さらにこの混合物に焼結助剤成分粉末、有機バインダ、可塑剤、溶剤、分散剤、滑剤等を添加して混練した後、得られた混合物をプレス成形または鋳込み成形等の成形法により円柱形状に成形して芯材用成形体12aを作製する(図4(a)参照)。ここで、後述する共押出成形によって均質な複合成形体を得るためには、前記有機バインダの添加量を30〜70体積%、特に40〜60体積%とするのが望ましい。
【0028】
有機バインダ、可塑剤としては、パラフィンワックス、セルロース、ポリスチレン、ポリエチレン、エチレン‐エチルアクリレート、エチレン‐ビニルアセテート、ポリブチルメタクリレート、ポリエチレングリコール、ジブチルフタレート等を使用することができる。溶剤、分散剤および滑剤としてはポリエチレングリコール、ポリビニルアルコール、ミネラルオイル、ブチルオリエート、ステアリン酸等を使用することができる。
【0029】
<被覆層用成形体の成形工程>
また、被覆層13を、芯材12と同様の硬質焼結体によって形成する場合、平均粒径が1〜10μmの前述した硬質粒子85〜95質量%、好ましくは90〜95質量%と、平均粒径が1〜5μm程度の結合金属粉末5〜15質量%、好ましくは5〜10質量%とを混合して混合物を得、必要に応じて、さらにこの混合物に上記した焼結助剤成分粉末、有機バインダ、可塑剤、溶剤等を添加し、得られた混合物をプレス成形または鋳込み成形等の成形法により半割円筒形状に成形して2つの被覆層用成形体13a、13aを作製する(図4(b)参照)。
【0030】
また、被覆層13をセラミックスによって形成する場合、平均粒径が0.05〜3μmの前記セラミック粒子90〜99質量%、好ましくは95〜99質量%と、平均粒径が0.1〜5μm程度の焼結助剤粉末1〜10質量%、好ましくは1〜5質量%とを混合して混合物を得、これをプレス成形または鋳込み成形等の成形法により半割円筒形状に成形して2つの被覆層用成形体13a、13aを作製する。
【0031】
さらに、被覆層13を金属によって形成する場合、平均粒径が1〜10μmの金属粉末をプレス成形または鋳込み成形等の成形法により半割円筒形状に成形して2つの被覆層用成形体13a、13aを作製する。
【0032】
その後、上記のようにして得られた芯材用成形体12aの外周面を被覆層用成形体13a、13aによって覆うように配置して複合成形体11aを作製する(図4(c)参照)。
(共押出成形工程)
ついで、図4(d)に示すように、押出機100を用いて、上記複合成形体11aを押出成形(芯材用成形体12aと被覆層用成形体13a,13aを同時に押出す共押出成形)することによって、芯材用成形体12aの周囲に被覆層用成形体13aが被覆され、細い径に伸延された複合成形体11bを作製する。このとき、複合成形体11bの断面は、押出機100の出口形状を変えることによって、円形の他、三角形、四角形、五角形、六角形、楕円形等の任意形状に成形することもできる。
【0033】
なお、上記共押出成形において、複合成形体11aの最大径D1と共押出成形後の複合成形体11bの最大径D2との比率D2/D1は、0.02〜0.2が適当である。
【0034】
また、本発明によれば、図3に示したような、複合硬質焼結体11を束ねた複合部材、いわゆるマルチフィラメント構造を有する複合部材を形成する場合には、前述のようにして作製した複合成形体11bを束ねて集束成形体14を形成する。その場合、複合成形体11b間に上記バインダなどの接着材を介在させ、さらに、この集束成形体14にCIPなどによって圧力を印加するものであってもよいが、必要に応じ、集束成形体14を図5(a)に示すように、押出成形して、集束成形体14を細い径に伸延することもできる。この方法によれば、成形体中の複合構造体同士のより強固な密着性を得ることもできる。
【0035】
さらには、図3(b)(c)(d)に従い、複合成形体11bまたは集束成形体14を平面方向に複数本配列してシート化することも、またそのシートを積層することも可能である。シートを積層する場合、各複合成形体11bの軸方向をシート間で任意の角度(例えば0°、45°、90°等)に変化させて積層することも可能である。その場合、図5(b)に示すように、シート単体やシート積層体からなる複合成形体14をロール16によって圧延することもできる。
【0036】
上記のようにして得られた複合成形体11bや集束成形体14は、さらに公知のラピッドプロトダイビング法等の成形方法によって任意の形状に成形することも可能である。
また、上記したシートまたはこのシートを断面方向にスライスしたものを従来の超硬合金等の硬質焼結体の表面に貼り合わせ、または接合することも可能である。
(焼成工程)
ついで、上記各種の複合成形体11、集束成形体14を300〜700℃で10〜200時間昇温または保持して脱バインダ処理した後、真空中または不活性雰囲気中において、使用する材質に応じた所定温度および所定時間で焼成することにより、図3のマルチフィラメント構造の複合部材15を作製することができる。
【0037】
特に、芯材12を周期律表第4a,5a,6a族金属の群から選ばれる少なくとも1種の炭化物、窒化物、炭窒化物からなる硬質結晶粒子と、鉄族金属からなる結合金属相によって形成する場合には、Ar、N2または真空雰囲気中で1300〜1600℃で0.5〜2時間程度焼成することが望ましい。
【0038】
また、芯材と被覆層とは、上記のように同時焼成されることから、芯材を形成する材料と被覆層を形成する材料の各最適焼成温度が100℃以内の焼成温度が近似した材質からなることが望ましい。
【0039】
なお、本発明において、上記芯材12の被覆層13との界面に結合金属相富化領域xを付与する手段としては、通常の組成からなる内側を形成した後、その表面に結合金属相を多く含む組成物を表面に塗布するか、または芯材12がWC−Co系超硬合金である場合、芯材12を構成する原料粉末中に、TiC、TaC等のB1型固溶体相を形成する金属炭化物に加えてTiNやTiCNなどの窒化物および/または炭窒化物を添加して焼結中に上記窒化物または炭窒化物中の窒素成分が表面に拡散、移動する脱窒現象に伴い結合金属相の金属を表面に拡散移行することによって表面に金属富化層を形成することができる。
特に工程の簡略化の点では後者がよい。
【0040】
本発明の複合硬質焼結体は、耐欠損性および耐摩耗性に優れているので、例えばドリル、フライス、エンドミル、ドリルビット等の切削工具等の材料として使用した場合であっても、充分な耐欠損性および耐摩耗性が得られる。
【0041】
特に略円柱状で耐衝撃性が要求されるエンドミルの材料として好適である。この場合、エンドミルは、図3(a)のように複合硬質焼結体を集束させた円柱状の複合部材15aを用いて形成され、エンドミルの長手方向と複合硬質焼結体の長手方向とが平行になるようにして用いられる。これらの切削工具は、例えば上記した手順で円柱形状や直方体形状に成形された複合部材15を、公知の方法により切削加工して切削工具形状に成形することにより製造することができる。
【0042】
【実施例】
実施例1〜4、比較例1
平均粒径が0.7〜0.9μmの金属炭化物、窒化物、平均粒径が1.0〜2.0μmのCo粉末、平均粒径が0.8〜1.5μmのAl23粉末を用いて、表1に示す組成物からなる芯材および被覆層の組み合わせにおいて複合硬質焼結体を以下の手順で作製した。
【0043】
まず、表1に示した調合組成において芯材用および被覆層用の原料粉末を秤量混合し、これに有機バインダ(セルロースおよびポリエチレングリコール)30体積%と溶剤(ポリビニルアルコール)20体積%の割合で添加して混合物を得た。この混合物を芯部材については直径が20mmの円柱形状に押出成形して図4(a)に示すような芯材用成形体12aを作製した。
【0044】
ついで、被覆層用の混合物を半割円筒形状に押出成形して図4(b)に示すような厚みが1mmの被覆層用成形体13aを2つ作製した。得られた2つの被覆層用成形体13a,13aを上記芯材用成形体12aの外周面を覆うように配置して、図4(c)に示すような複合成形体11aを作製した。
【0045】
ついで、この複合成形体11aを共押出成形して、図4(d)に示すような伸延された直径が1mmの複合成形体11bを作製した。
【0046】
さらに複合成形体11bを380本集束して、これを集束成形体14を得、この集束成形体14を図4(a)に示すように、上記した押出成形工程と同様にして再度共押出成形してマルチフィラメント構造の複合部材15aを得た。この際マルチフィラメント構造の複合部材15中の単一構造体セル径は約30μmであった。
【0047】
ついで、この複合部材15を300〜700℃まで72時間で昇温させることによって脱バインダ処理を行った後、昇温速度2.5℃/分でさらに昇温し、真空中、1500℃で2時間焼成し、さらに3℃/分で降温することにより、図3(a)に示すような形状で、長さ55mm、直径5mmの複合部材15aを作製した。
【0048】
得られた複合部材15aをエンドミル形状に加工し、さらにこの表面に2μmのTiN膜をPVD法によりコーティングすることにより外径1mm、刃長5mmのエンドミルを得た。
【0049】
【表1】

Figure 0004400850
【0050】
比較例2
平均粒径1μmのWC粉末を90質量%、平均粒径1.5μmのCo粉末を10質量%の割合で秤量混合し、これに有機バインダ(パラフィンワックス)を15体積%の割合で添加して、円柱形状に圧粉成形し、これを実施例1と同様の条件で焼成して硬質焼結体を得た。この硬質焼結体から実施例1と同様にしてエンドミルを得た。
【0051】
実施例1〜4および比較例1,2で得たエンドミルの芯部材の結合金属相の金属濃度を波長分散型X線マイクロアナリシスの線分析を行い、結合金属富化領域の有無およびDs/Dcの値を測定した。
【0052】
また、実施例1〜4および比較例1,2で得た各エンドミルを取り付けた金属加工用電動工具を用いて、下記条件にて、ワーク(鋼種:S45C)に200個の穴を開け、穴開け終了後のエンドミルの刃先を顕微鏡で観察し、切れ刃の摩耗幅および欠損の有無の程度をそれぞれ調べた。結合金属濃度分析結果および観察結果を表2に示す。
(穴開け条件)
速度:v=60m/分
送り:f=0.02mm/rev
切り込み:d=2mm
【0053】
【表2】
Figure 0004400850
【0054】
表2の結果から、芯材の被覆層との界面近傍に結合金属富化領域を有する実施例1〜4については十分な耐摩耗性を有しており、欠損およびチッピングに対して優れた性能を示した。これに対し芯材表面部の結合金属濃度が低下している比較例1、および単一の材質からなる比較例2には折損やチッピングが生じ、耐摩耗性についても劣る結果であった。
【0055】
【発明の効果】
以上詳述した通り、本発明によれば、硬質結晶粒子を結合金属相にて結合した硬質焼結体からなる長尺状の芯材の前記被覆層との界面における結合金属濃度が、前記芯材の中心部における結合金属濃度および前記被覆層における結合金属濃度よりも高いこと、すなわち、前記芯材の前記被覆層との界面近傍に前記芯材の中心よりも結合金属濃度が高い結合金属富化領域を形成することによって、被覆層と芯材間の結合金属相の拡散を適度に抑制し、耐摩耗性を担う芯材に十分な靭性を付与することができる結果、複合硬質焼結体全体の耐欠損性が著しく向上するとともに、結合金属富化領域の結合金属相への拡散によって芯材と被覆層との密着性を高めることができ、複合硬質焼結体が複数本集束された構造を有する複合部材は優れた耐欠損性および耐摩耗性を備えることができる。したがって、この複合部材を切削工具として用いることによって、耐摩耗性が良好で、しかも欠損が生じにくく、耐久性に優れた切削工具を提供できる。
【図面の簡単な説明】
【図1】 本発明の複合部材を構成する複合硬質焼結体の一実施形態を示す斜視図である。
【図2】 図の複合硬質焼結体の(a)要部拡大断面図および(b)A−A断面における結合金属相の金属の濃度分布図である。
【図3】 本発明の複合部材の一実施形態を示す斜視図である。
【図4】 (a)〜(d)は、本発明の複合部材を構成する複合硬質焼結体の製造方法を説明するための工程図である。
【図5】 本発明の複合部材の製造方法を説明するための図である。
【符号の説明】
11 複合硬質焼結体(シングルフィラメント構造)
12 芯材
13 被覆層
14 結合金属富化領域
15 複合部材(マルチフィラメント構造)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite hard sintered body in which a long core material is coated with a coating layer, a composite member having a structure in which a plurality of cores are converged, and a cutting tool using the composite member.
[0002]
[Prior art]
Conventionally, in order to improve the toughness as well as the hardness and strength of the material, the outer peripheral surface of the long core formed of a sintered body of metal oxide, carbide, nitride, carbonitride, etc. A study of a composite hard sintered body coated with a coating layer made of a sintered body has been made, and proposed in Patent Documents 1 to 3, for example. It is described that the composite hard sintered bodies described therein can increase the toughness by increasing the fracture resistance of the structure without lowering the hardness.
[0003]
[Patent Document 1]
US Pat. No. 6,063,502,
[Patent Document 2]
US Pat. No. 5,645,781 [Patent Document 3]
JP-T-2001-506930 Publication [0004]
[Problems to be solved by the invention]
However, in the conventional composite hard sintered body as described in Patent Documents 1 to 3, for example, sufficient wear resistance required for a cutting tool, such as a drill or an end mill, which is subjected to high impact. Or defect resistance may not be obtained. As a cause of this, when a liquid phase appears in the core material and / or the coating layer and a component that finally becomes a bonded metal phase exists, the liquid phase diffuses between the core material and the coating layer during firing. In some cases, the core material and the coating layer have the same characteristics and the effect of improving toughness is lost. In addition, when the sintering temperature of the core material and the coating layer are greatly different, the liquid phase component moves from the low sintering temperature side to the high sintering temperature side, and the low sintering temperature side cannot be densified. There were also problems such as remaining voids.
[0005]
Accordingly, an object of the present invention is to densify both the core material and the coating layer in a composite hard sintered body in which the above-mentioned long core material is coated with a coating layer and a composite member having a structure in which a plurality of the cores are converged. Composite hard sintered body that can easily control the properties of the core material and the covering layer, and has excellent fracture resistance and wear resistance, a composite member using the same, and a cutting tool using the same Is to provide.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor has found that the content of the bonded metal phase in the vicinity of the interface with the coating layer in the core material composed of the sintered body in which the hard crystal particles are bonded with the bonded metal phase. By forming a rich enriched region, it is possible to prevent unwanted movement of the bonded metal phase between the core material and the coating layer and to control both the core material and the coating layer to the desired amount and characteristics of the bonded metal phase. As a result, it has been found that the core material and coating layer of the composite structure can be controlled to the optimum composition and characteristics, and that when used as a cutting tool, the fracture resistance and wear resistance of the tool are greatly improved. It came to complete.
[0007]
That is, the composite member of the present invention has an outer peripheral surface of a long core made of a hard sintered body in which hard crystal particles are bonded with a bonded metal phase, and the core material has at least the concentration of the bonded metal phase. different ceramics or be coated with a coating layer of a hard sintered body bonded metal concentration at the interface between the coating layer of said core member, coupled to definitive binding metal concentration and the coating layer at the center portion of the core member A plurality of composite hard sintered bodies having a bonded metal-enriched region having a higher bonded metal concentration than the center of the core material near the interface of the core material with the coating layer are concentrated. It is characterized by comprising a structure . As described above, the presence of the bonded metal-enriched region in the vicinity of the surface of the core material acts to moderately suppress the diffusion of the bonded metal phase between the coating layer and the core material, and inherently wear resistance of the composite hard sintered body. The core part responsible for the property is given sufficient toughness to significantly improve the fracture resistance of the composite hard sintered body as a whole, and the core is formed by diffusion of the bound metal phase in the bound metal rich region existing near the surface of the core material. The coating layer covering the material has excellent adhesion.
[0008]
In particular, the ratio Ds / Dc of the binding metal concentration Ds in the vicinity of the interface of the core to the binding metal concentration Dc at the center of the core is preferably 1.05 or more.
[0009]
Therefore, in the composite hard sintered body of the present invention, both the core material and the coating layer are composed of a hard sintered body in which hard crystal particles are bonded with a bonded metal phase, and the inclusion of the bonded metal phase in the coated layer It is preferable that the amount is higher than the bond metal concentration in the central part of the core material because the fracture resistance of the composite hard sintered body as a whole is very excellent.
[0010]
According to the present invention, the composite hard sintered body is a single filament having a structure in which the outer periphery of one core is covered with a coating layer, and a multifilament having a structure in which a plurality of single filaments are focused. a composite member having a structure.
[0012]
Multifilament structures bundled composite hard sintered body several, since the concentration gradient continuously bound metal between sintered bodies adjacent in the entire circumferential direction occurs, the distribution of the core and the coating layer is averaged Localized characteristic variations make the structure as a whole stable, resulting in significantly improved fracture resistance, and by controlling the amount of bonded metal in the selected material and the particle size of the hard phase, wear resistance is improved. The improvement of the property can be easily achieved. For this reason, the multifilament structure is useful for a wide range of cutting tools such as milling and end mills in addition to drills.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a composite hard sintered body constituting a composite member of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing a composite hard sintered body 11 of the present embodiment. As shown in the figure, the composite hard sintered body 11 has a structure in which the outer peripheral surface of a long core 12 is covered with a coating layer 13.
[0014]
The core material 12 is made of a hard sintered body in which hard crystal particles are bonded with a bonded metal phase, and the coating layer 13 is made of a material different from the core material 12.
(Core material)
Specifically, the hard sintered body forming the core material 12 has at least one type of carbide, nitride, carbonitride in which the hard crystal particles are selected from the group of metals in groups 4a, 5a, and 6a of the periodic table. And, specifically, at least one selected from the group consisting of WC, TiC, TiCN, TiN, TaC, NbC, ZrC, ZrN, VC, Cr 2 C and Mo 2 C. Of these, WC, TiC or TiCN is particularly preferred as the main component. The hard particles in the core material may have an average particle size of 0.1 to 10 μm, preferably 0.1 to 2 μm, particularly 0.2 to 0.5 μm.
[0015]
In addition, examples of the binding metal include at least one selected from the group consisting of Fe, Co, and Ni. Of these, Co and / or Ni are preferred as main components.
[0016]
It is effective for enhancing the wear resistance that the hard crystal particles in the hard sintered body are present in a proportion of 80 to 95% by mass and the binder metal phase in a proportion of 5 to 20% by mass.
(Coating layer material)
On the other hand, the coating layer 13 is made of either a hard sintered body having a concentration of the binding metal phase different from that of the core material 12 or a ceramic obtained by bonding ceramic particles with a sintering aid.
[0017]
The ceramics, periodic table 4a, 5a and 6a metals, Al, Si and at least one oxide selected from the group consisting of Zn, carbides, nitrides, selected from the group consisting of carbonitrides and borides At least one selected from the above. Specific examples of the ceramic include Al 2 O 3 —TiC (TiCN), SiC, Si 3 N 4 , ZrO 2 , TiB 2 , and ZnO—TiC. Among these, Al 2 O 3 —TiC (TiCN) and / or SiC can be preferably used.
[0018]
As the hard sintered body or ceramics, polycrystalline diamond, DLC (diamond-like carbon), and cBN can be used in addition to the above-described materials.
[0019]
When the coating layer 13 is made of a hard sintered body, the hard crystal particles vary depending on the performance expected of the composite hard sintered body. For example, in order to achieve optimum characteristics as a cutting tool, the average particle diameter is 0. 0.1 to 10 μm, preferably 1 to 3 μm, and ceramic particles made of ceramics have an average particle size of 0.05 to 10 μm, preferably 0.1 to 3 μm.
(Enriched layer)
According to the present invention, as shown in the (a) enlarged cross-sectional view of the main part of the composite hard sintered body of FIG. 2 and (b) the metal concentration distribution diagram of the bonded metal phase in the AA cross section, the core material 12 is shown. binding metal concentration at the interface between the coating layer 13 is higher than the binding metal concentration definitive binding metal concentration and the coating layer 1 3 at the center portion of the core member 12, that is, the covering layer 13 of the core member 12 A major feature is that a bonded metal phase enriched region x having a higher concentration of the bonded metal phase than the center of the core material 12 exists in the vicinity of the interface.
Thus, the presence of the bonded metal phase-enriched region x in the vicinity of the interface of the core material 12 with the coating layer 13 has the ability to moderately suppress the diffusion of the bonded metal phase between the coating layer 13 and the core material 12. As a result, the core material 12 originally responsible for the wear resistance of the composite hard sintered body 11 is given sufficient toughness, and the fracture resistance of the entire composite hard sintered body 11 is remarkably improved, and the bonded metal phase enriched region x The coating layer 13 that covers the core material 12 has excellent adhesion due to the diffusion of the binding metal phase.
[0020]
Here, the metal concentration distribution of the bonded metal phase in FIG. 2B can be determined by performing a line analysis by wavelength dispersion X-ray microanalysis on the cross section of the composite hard sintered body. In the composite hard sintered body according to the present invention, as shown in FIG. 2 (b), the metal in the binding metal phase has a concentration gradient from the center of the core material 12 toward the interface. A region that is enriched with a binder metal phase in a region immediately below the interface in contact with the substrate.
[0021]
The maximum value Ds of the metal concentration of the bonded metal phase in the bonded metal phase-enriched region x and the metal concentration Dc of the bonded metal phase in the central portion of the core material 12 have a concentration ratio (Ds / Dc) of 1.05. As described above, particularly excellent effects are exhibited when the ratio is 1.1 or more, and further 1.2 or more.
[0022]
Further, in the coating layer 13 is bound metal content by the material is that turn into strange.
[0023]
Further, when the coating layer 13 is formed of a hard sintered body made of the same hard crystal particles as the core material 12 and a bonded metal phase, the amount of the bonded metal is once reduced near the interface, and the metal of the bonded metal phase in the coated layer 13 Convergence to concentration. Furthermore, when using ceramics as the coating layer, the metal concentration of the bonded metal phase decreases.
[0024]
In the present invention, in the bonded metal phase enriched region x, a so-called de-β layer (region in which the concentration of the B1-type solid solution is reduced near the surface of the cemented carbide) is not necessarily required.
[0025]
Further, in the present invention, the interdiffusion between the core material 12 and the coating layer 13 is caused by containing a substance that inhibits the diffusion of the binding metal, for example, ZrC, in the coating layer 13 by slowing the diffusion rate of the binding metal. Can be further suppressed.
[0026]
In addition, although ratio dc / ds with respect to thickness ds of the coating layer 13 of the diameter dc of the core material 12 which comprises the composite hard sintered compact 11 changes with uses, when using for a cutting tool, 5-100, Preferably Is 10 to 50, more preferably 20 to 30. In particular, the diameter of the core material 12 is appropriately set according to the application, but when used for a cutting tool, 5 to 50 μm, particularly 10 to 30 μm is appropriate.
[0027]
Further, according to the present invention, as shown in the perspective view of FIG. 3, (a) a composite member 15a in which a plurality of composite hard sintered bodies 11 are bundled, (b) the composite hard sintered body 11 or bundled. Examples include a composite member 15b formed by arranging a plurality of composite hard sintered bodies into a sheet, and (c) a composite member 15c obtained by stacking a plurality of the composite members 15b formed into a sheet. In the case of the composite member 15c, it is possible to change the orientation of the upper and lower sheets as shown in FIG.
(Manufacturing method)
Next, the manufacturing method of the composite hard sintered body 11 of the present invention will be described with reference to the process diagram of FIG. In the following embodiments, a case where both the core material 12 and the coating layer 13 are made of a hard sintered body will be described as an example.
<Molding process of core molding>
First, the hard particles having an average particle size of 0.1 to 1.5 μm are 80 to 95% by mass, preferably 85 to 90% by mass, and the bonded metal powder having an average particle size of 0.5 to 3 μm is 5 to 20% by mass. , Preferably 10 to 15% by mass, and if necessary, further adding a sintering aid component powder, an organic binder, a plasticizer, a solvent, a dispersant, a lubricant, etc. to this mixture and kneading, The obtained mixture is molded into a cylindrical shape by a molding method such as press molding or cast molding to produce a core body molded body 12a (see FIG. 4A). Here, in order to obtain a homogeneous composite molded body by coextrusion molding to be described later, the amount of the organic binder added is desirably 30 to 70% by volume, particularly 40 to 60% by volume.
[0028]
As the organic binder and plasticizer, paraffin wax, cellulose, polystyrene, polyethylene, ethylene-ethyl acrylate, ethylene-vinyl acetate, polybutyl methacrylate, polyethylene glycol, dibutyl phthalate, and the like can be used. As the solvent, dispersant and lubricant, polyethylene glycol, polyvinyl alcohol, mineral oil, butyl oleate, stearic acid and the like can be used.
[0029]
<Molding process of molding for covering layer>
Moreover, when forming the coating layer 13 with the hard sintered body similar to the core material 12, the average particle diameter is 85 to 95% by mass, preferably 90 to 95% by mass, and the average particle size is 1 to 10 μm. A mixed metal powder having a particle size of about 1 to 5 μm is mixed with 5 to 15% by mass, preferably 5 to 10% by mass to obtain a mixture. If necessary, the sintering aid component powder described above is further added to the mixture. Then, an organic binder, a plasticizer, a solvent, and the like are added, and the obtained mixture is formed into a half-cylindrical shape by a molding method such as press molding or cast molding to produce two covering layer molded bodies 13a and 13a ( (Refer FIG.4 (b)).
[0030]
When the coating layer 13 is formed of ceramics, the ceramic particles having an average particle size of 0.05 to 3 μm are 90 to 99% by mass, preferably 95 to 99% by mass, and the average particle size is about 0.1 to 5 μm. 1 to 10% by mass, preferably 1 to 5% by mass of a sintering aid powder is obtained to obtain a mixture, which is molded into a half-cylindrical cylinder by a molding method such as press molding or casting. The molded bodies 13a and 13a for the coating layer are produced.
[0031]
Furthermore, when the coating layer 13 is formed of a metal, a metal powder having an average particle diameter of 1 to 10 μm is formed into a half-cylindrical shape by a molding method such as press molding or casting, and two coating layer molded bodies 13a, 13a is produced.
[0032]
Thereafter, the outer peripheral surface of the core material molded body 12a obtained as described above is disposed so as to be covered with the coating layer molded bodies 13a and 13a, thereby producing a composite molded body 11a (see FIG. 4C). .
(Co-extrusion molding process)
Next, as shown in FIG. 4 (d), using the extruder 100, the composite molded body 11a is extruded (coextrusion molding in which the core molded body 12a and the covering layer molded bodies 13a and 13a are simultaneously extruded. ) To form a composite molded body 11b that is covered with the core layer molded body 12a and is extended to a small diameter. At this time, the cross section of the composite molded body 11b can be formed into an arbitrary shape such as a triangle, a quadrangle, a pentagon, a hexagon, and an ellipse in addition to a circle by changing the outlet shape of the extruder 100.
[0033]
In the co-extrusion molding, the ratio D2 / D1 between the maximum diameter D1 of the composite molded body 11a and the maximum diameter D2 of the composite molded body 11b after the co-extrusion molding is suitably 0.02 to 0.2.
[0034]
Further, according to the present invention, as shown in FIG. 3, when a composite member in which the composite hard sintered body 11 is bundled, that is, a composite member having a so-called multifilament structure, is formed as described above. The bundling molded body 14 is formed by bundling the composite molded body 11b. In that case, an adhesive such as the binder may be interposed between the composite molded bodies 11b, and further, pressure may be applied to the focusing molded body 14 by CIP or the like. If necessary, the focusing molded body 14 may be used. As shown in FIG. 5 (a), it is possible to extend the focusing molded body 14 to a narrow diameter by extrusion molding. According to this method, it is possible to obtain stronger adhesion between the composite structures in the molded body.
[0035]
Further, according to FIGS. 3B, 3C and 3D, a plurality of composite molded bodies 11b or converging molded bodies 14 can be arranged in a plane direction to form a sheet, or the sheets can be laminated. is there. When stacking sheets, it is also possible to stack by changing the axial direction of each composite molded body 11b to an arbitrary angle (for example, 0 °, 45 °, 90 °, etc.) between the sheets. In that case, as shown in FIG. 5B, the composite molded body 14 made of a single sheet or a sheet laminate can be rolled by a roll 16.
[0036]
The composite molded body 11b and the focused molded body 14 obtained as described above can be further molded into an arbitrary shape by a molding method such as a known rapid protodiving method.
It is also possible to bond or join the above-described sheet or a slice of this sheet in the cross-sectional direction to the surface of a hard sintered body such as a conventional cemented carbide.
(Baking process)
Next, after the above-mentioned various composite molded bodies 11 and the convergent molded body 14 are heated or held at 300 to 700 ° C. for 10 to 200 hours to remove the binder, in vacuum or in an inert atmosphere, depending on the material used. The composite member 15 having a multifilament structure shown in FIG. 3 can be produced by firing at a predetermined temperature and a predetermined time.
[0037]
In particular, the core material 12 is composed of hard crystal particles made of at least one carbide, nitride, carbonitride selected from the group of metals in groups 4a, 5a, and 6a of the periodic table and a bonded metal phase made of iron group metal. when formed, Ar, it is desirable to calcining 0.5 to 2 hours at 1300 to 1600 ° C. in N 2 or in a vacuum atmosphere.
[0038]
In addition, since the core material and the coating layer are simultaneously fired as described above, the optimum firing temperature of the material for forming the core material and the material for forming the coating layer is close to the firing temperature within 100 ° C. It is desirable to consist of.
[0039]
In the present invention, as a means for imparting the binder metal phase-enriched region x to the interface between the core material 12 and the coating layer 13, after forming the inside of a normal composition, the binder metal phase is applied to the surface thereof. A composition containing a large amount is applied to the surface, or when the core material 12 is a WC-Co cemented carbide, a B1 type solid solution phase such as TiC or TaC is formed in the raw material powder constituting the core material 12. In addition to metal carbides, nitrides such as TiN and TiCN and / or carbonitrides are added and bonded during the denitrification phenomenon where the nitrogen component in the nitrides or carbonitrides diffuses and moves to the surface during sintering. A metal-enriched layer can be formed on the surface by diffusing and transferring the metal of the metal phase to the surface.
The latter is particularly preferable in terms of simplification of the process.
[0040]
Since the composite hard sintered body of the present invention is excellent in fracture resistance and wear resistance, it is sufficient even when used as a material for a cutting tool such as a drill, milling cutter, end mill, drill bit, etc. Fracture resistance and wear resistance are obtained.
[0041]
In particular, it is suitable as an end mill material that is substantially cylindrical and requires impact resistance. In this case, the end mill is formed using a cylindrical composite member 15a in which the composite hard sintered body is converged as shown in FIG. 3A, and the longitudinal direction of the end mill and the longitudinal direction of the composite hard sintered body are the same. Used in parallel. These cutting tools can be manufactured by, for example, cutting the composite member 15 formed into a cylindrical shape or a rectangular parallelepiped shape by the above-described procedure into a cutting tool shape by a known method.
[0042]
【Example】
Examples 1-4, Comparative Example 1
Metal carbide and nitride having an average particle size of 0.7 to 0.9 μm, Co powder having an average particle size of 1.0 to 2.0 μm, Al 2 O 3 powder having an average particle size of 0.8 to 1.5 μm A composite hard sintered body was produced by the following procedure in the combination of the core material and the coating layer made of the composition shown in Table 1.
[0043]
First, in the preparation composition shown in Table 1, the raw material powder for the core material and the coating layer was weighed and mixed, and this was mixed at a ratio of 30% by volume of organic binder (cellulose and polyethylene glycol) and 20% by volume of solvent (polyvinyl alcohol). Addition gave a mixture. The mixture was extruded into a cylindrical shape with a diameter of 20 mm for the core member to produce a core material molded body 12a as shown in FIG.
[0044]
Next, the coating layer mixture was extruded into a half-cylindrical cylinder to produce two coating layer molded bodies 13a having a thickness of 1 mm as shown in FIG. The obtained two moldings 13a, 13a for the covering layer were arranged so as to cover the outer peripheral surface of the core molding 12a, thereby producing a composite molding 11a as shown in FIG.
[0045]
Subsequently, the composite molded body 11a was coextruded to produce a composite molded body 11b having an extended diameter of 1 mm as shown in FIG. 4 (d).
[0046]
Further, 380 composite molded bodies 11b are focused to obtain a focused molded body 14, and the focused molded body 14 is again co-extruded in the same manner as the above-described extrusion molding step as shown in FIG. 4 (a). Thus, a composite member 15a having a multifilament structure was obtained. At this time, the single structure cell diameter in the composite member 15 having a multifilament structure was about 30 μm.
[0047]
Then, after removing the binder by heating the composite member 15 to 300 to 700 ° C. in 72 hours, the temperature was further increased at a temperature rising rate of 2.5 ° C./min. The composite member 15a having a length of 55 mm and a diameter of 5 mm was produced in a shape as shown in FIG. 3A by firing for an hour and further lowering the temperature at 3 ° C./min.
[0048]
The obtained composite member 15a was processed into an end mill shape, and a 2 μm TiN film was coated on this surface by the PVD method to obtain an end mill having an outer diameter of 1 mm and a blade length of 5 mm.
[0049]
[Table 1]
Figure 0004400850
[0050]
Comparative Example 2
WC powder with an average particle diameter of 1 μm is weighed and mixed at a ratio of 10 mass% with Co powder with an average particle diameter of 1.5 μm, and an organic binder (paraffin wax) is added at a ratio of 15 volume%. This was compacted into a cylindrical shape and fired under the same conditions as in Example 1 to obtain a hard sintered body. An end mill was obtained from this hard sintered body in the same manner as in Example 1.
[0051]
Wavelength dispersive X-ray microanalysis was performed on the metal concentration of the bonded metal phase of the core member of the end mill obtained in Examples 1 to 4 and Comparative Examples 1 and 2, and the presence or absence of the bonded metal-enriched region and Ds / Dc The value of was measured.
[0052]
In addition, using the metal working electric tool to which each end mill obtained in Examples 1 to 4 and Comparative Examples 1 and 2 was attached, 200 holes were drilled in the workpiece (steel type: S45C) under the following conditions. The edge of the end mill after completion of opening was observed with a microscope, and the wear width of the cutting edge and the presence / absence of chipping were examined. Table 2 shows the results of analysis of the bound metal concentration and the observation results.
(Drilling conditions)
Speed: v = 60m / min Feed: f = 0.02mm / rev
Cutting depth: d = 2mm
[0053]
[Table 2]
Figure 0004400850
[0054]
From the results of Table 2, Examples 1 to 4 having a bonded metal-enriched region in the vicinity of the interface with the coating layer of the core material have sufficient wear resistance, and have excellent performance against defects and chipping. showed that. On the other hand, the comparative example 1 in which the core metal surface portion has a reduced bonding metal concentration and the comparative example 2 made of a single material cause breakage and chipping, resulting in poor wear resistance.
[0055]
【The invention's effect】
As described above in detail, according to the present invention, the bond metal concentration at the interface with the coating layer of the long core material made of the hard sintered body in which the hard crystal particles are bonded with the bond metal phase is higher than the binding metal concentration definitive binding metal concentration and the coating layer at the center of the timber, i.e., bound metal concentration than the center of the core member in the vicinity of the interface between the coating layer of the core material is higher bound metal By forming the enriched region, it is possible to moderately suppress the diffusion of the bonded metal phase between the coating layer and the core material, and to impart sufficient toughness to the core material that bears wear resistance. The fracture resistance of the entire body is remarkably improved, and the adhesion between the core material and the coating layer can be enhanced by diffusion of the binder metal-enriched region into the binder metal phase, and a plurality of composite hard sintered bodies are focused. chipping composite member having excellent with structure And it is possible to obtain Bei wear resistance. Therefore, by using this composite member as a cutting tool, it is possible to provide a cutting tool that has good wear resistance and is less prone to chipping and has excellent durability.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a composite hard sintered body constituting a composite member of the present invention.
2A is an enlarged cross-sectional view of a main part of the composite hard sintered body of FIG. 1 , and FIG. 2B is a metal concentration distribution diagram of a bonded metal phase in a cross section AA.
FIG. 3 is a perspective view showing an embodiment of a composite member of the present invention.
4A to 4D are process diagrams for explaining a method for producing a composite hard sintered body constituting the composite member of the present invention.
FIG. 5 is a view for explaining a method for producing a composite member of the present invention.
[Explanation of symbols]
11 Composite hard sintered body (single filament structure)
12 Core material 13 Cover layer 14 Bonded metal enriched region 15 Composite member (multifilament structure)

Claims (5)

硬質結晶粒子を結合金属相にて結合した硬質焼結体からなる長尺状の芯材の外周面を、該芯材とは少なくとも前記結合金属相の濃度が異なるセラミックスまたは硬質焼結体からなる被覆層によって被覆してなり、前記芯材の前記被覆層との界面における結合金属濃度が、前記芯材の中心部における結合金属濃度および前記被覆層における結合金属濃度よりも高いことを特徴とする複合硬質焼結体が複数本集束された構造を有する複合部材The outer peripheral surface of a long core material made of a hard sintered body in which hard crystal particles are bonded with a bonded metal phase is made of a ceramic or a hard sintered body having at least a different concentration of the bonded metal phase from the core material. it was coated with a coating layer, binding metal concentration at the interface between the coating layer of said core material, and wherein a higher than the bonding metal concentration and bound metal concentrations definitive in the coating layer at the center portion of the core member A composite member having a structure in which a plurality of hard composite sintered bodies are converged . 前記芯材の中心部の結合金属濃度Dcに対する前記被覆層との芯材の界面付近における結合金属濃度の最大値Dsの比率Ds/Dcが1.05以上であることを特徴とする請求項1記載の複合部材The ratio Ds / Dc of the maximum value Ds of the bond metal concentration in the vicinity of the interface of the core material with the coating layer to the bond metal concentration Dc at the center of the core material is 1.05 or more. The composite member described. 前記芯材における硬質結晶粒子が、周期律表第4a,5a,6a族金属の群から選ばれる少なくとも1種の炭化物、窒化物、炭窒化物からなり、前記結合金属相が鉄族金属からなることを特徴とする請求項1または請求項2記載の複合部材The hard crystal particles in the core material are composed of at least one carbide, nitride, carbonitride selected from the group of Group 4a, 5a, and 6a metals in the periodic table, and the binding metal phase is composed of an iron group metal. The composite member according to claim 1 or 2, characterized by the above. 前記芯材および被覆層が、いずれも硬質結晶粒子を結合金属相にて結合した硬質焼結体からなり、前記被覆層中の結合金属相の含有量が前記芯材中心部の結合金属濃度よりも高いことを特徴とする請求項1乃至請求項3のいずれか記載の複合部材Each of the core material and the coating layer is made of a hard sintered body in which hard crystal particles are bonded with a bonded metal phase, and the content of the bonded metal phase in the coating layer is based on the bonded metal concentration in the center of the core material. The composite member according to any one of claims 1 to 3, wherein the composite member is also high. 請求項1乃至4のいずれか記載の複合部材からなる切削工具。A cutting tool comprising the composite member according to claim 1 .
JP2002372073A 2002-12-24 2002-12-24 Composite member and cutting tool using the same Expired - Fee Related JP4400850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002372073A JP4400850B2 (en) 2002-12-24 2002-12-24 Composite member and cutting tool using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002372073A JP4400850B2 (en) 2002-12-24 2002-12-24 Composite member and cutting tool using the same

Publications (2)

Publication Number Publication Date
JP2004204258A JP2004204258A (en) 2004-07-22
JP4400850B2 true JP4400850B2 (en) 2010-01-20

Family

ID=32810783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372073A Expired - Fee Related JP4400850B2 (en) 2002-12-24 2002-12-24 Composite member and cutting tool using the same

Country Status (1)

Country Link
JP (1) JP4400850B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206695B1 (en) * 2015-12-04 2017-10-04 株式会社タンガロイ tool
CN106869928A (en) * 2016-12-30 2017-06-20 王华彬 Iron base metal ceramics composite cutter bit

Also Published As

Publication number Publication date
JP2004204258A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
US7250123B2 (en) Composite construction and manufacturing method thereof
US20030134135A1 (en) Composite construction
JP4192037B2 (en) Cutting tool and manufacturing method thereof
JP4400850B2 (en) Composite member and cutting tool using the same
WO2006100939A1 (en) TiCN BASE CERMET AND CUTTING TOOL AND METHOD FOR MANUFACTURING CUT ARTICLE USING THE SAME
JP4195797B2 (en) Composite hard sintered body and cutting tool using the same
JP2004232001A (en) Composite hard sintered compact, and composite member and cutting tool using it
JP4061222B2 (en) Cutting tools
JP4889226B2 (en) Composite sintered body and cutting tool
JP4309777B2 (en) Cutting tools
JP4109471B2 (en) Method for producing composite structure
JP4336111B2 (en) Composite parts, cutting tools
JP3954896B2 (en) Cutting tool with breaker
JP3954903B2 (en) Cutting tools
JP4220814B2 (en) Cutting tool and manufacturing method thereof
JP4183162B2 (en) Composite structure
JP2004256851A (en) Composite structure
JP4095287B2 (en) Multi-core composite structure
JP2004250735A (en) Composite structure
JP2004202597A (en) Cutting tool
JP3828831B2 (en) Composite hard sintered body and solid drill
JP2005281759A (en) Superhigh pressure sintered structure, superhigh pressure composite sintered structure, production method therefor and cutting tool
JP2003328012A (en) Composite hard sintered-compact and cutting tool using the same
JP2003160388A (en) Composite structural body
JP2004249404A (en) Cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees