JP4399943B2 - Permanent magnet motor - Google Patents

Permanent magnet motor Download PDF

Info

Publication number
JP4399943B2
JP4399943B2 JP2000053938A JP2000053938A JP4399943B2 JP 4399943 B2 JP4399943 B2 JP 4399943B2 JP 2000053938 A JP2000053938 A JP 2000053938A JP 2000053938 A JP2000053938 A JP 2000053938A JP 4399943 B2 JP4399943 B2 JP 4399943B2
Authority
JP
Japan
Prior art keywords
teeth
permanent magnet
magnet motor
pitch
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000053938A
Other languages
Japanese (ja)
Other versions
JP2001245460A (en
Inventor
孝史 鈴木
憲治 成田
浩之 奥寺
宏治 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2000053938A priority Critical patent/JP4399943B2/en
Publication of JP2001245460A publication Critical patent/JP2001245460A/en
Application granted granted Critical
Publication of JP4399943B2 publication Critical patent/JP4399943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は永久磁石電動機に係り、詳しくはステータのコア形状と巻線係数に関する。
【0002】
【従来の技術】
図4(a)、(b)、(c)は、従来の永久磁石電動機のステータコア及びロータの一例を示す断面図、(d)は、巻線の説明図、図5は、従来の永久磁石電動機の一例を示す巻線係数の説明図である。
【0003】
従来、永久磁石電動機は、ステータコア1の継鉄部2から歯3を等間隔に設け、同歯3の両側にスロット5を形成し、少なくともロータ10と相対向する前記歯3の先端を除き絶縁し、前記スロット5から次のスロット5の間に巻線20を巻装し、永久磁石11を用いたインナーロータ10とにて構成されていた。
図4(a)は、ロ−タ10が10極、ステ−タコア1の歯3が9個であり、(b)は、ロ−タ10が8極、ステ−タコア1の歯3が12個であり、(c)は、ロ−タ10が4極、ステ−タコア1の歯3が6個である場合を示す。
このなかで、図4(a)は、前記巻線係数が最も大きい。
【0004】
以下にこの場合の巻線係数について,詳細に説明する。
先ず、巻線係数は、短節巻係数と分布巻係数の積として算出されるもので、トルク性能の良否を評価できる永久磁石電動機のトルク定数と連動する。
前記短節巻係数は、前記ステ−タコア1の等間隔の歯3が9個であるため、角度にして40°の間隔に位置するので図5の計算式により0.9848となる。前記分布巻係数の平均は、前記歯4の中心線と前記ロ−タ10の極の中心線を合わせて基準点に選び、1相について前記ステ−タコア1の歯3の中心線と前記ロ−タ10の極の中心線との位相差をθ1、θ2、θ3とするとき各々θ1=2°、θ2=6°、θ3=10°となるので、図5の計算式により、0.8312となる。
そして,この場合の巻線係数は、図5に示されるように、短節巻係数と分布巻係数の積として算出され、0.8186の最良の値となる。
【0005】
しかしながら、巻線係数=0.8186の値は永久磁石電動機として必ずしも十分な値ではなく、更なる数値向上がトルクの増大と効率向上のため望ましい。そして、上述の従来例のように等ピッチの歯3を有するステ−タコア1では、これ以上の巻線係数を大きくするには困難な状況にある。
【0006】
【発明が解決しようとする課題】
本発明は、上記従来の問題点に鑑みなされたもので、巻線係数を大きくし銅線の使用量を削減するとともに、トルクを増大し、効率を向上した永久磁石電動機を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するために、10極の極数を有する永久磁石を用いたインナーロータと、12個の歯を有するステータにて構成された永久磁石電動機において、前記ステータの歯を3つのグループに分け、同グループの各々にあっては前記歯の開口部間のピッチを連続した3個の歯の幅は広くし、残りの1個の歯の幅は狭くし、前記広ピッチの歯に、隣同志は極性が異なるように巻線を施し、狭ピッチの歯には巻線を施さず、前記各々のグループに1相分の巻線を施すことにより、全体として3相巻線を施してなるようにする。
【0008】
そして、前記広ピッチの歯の開口部間ピッチを、36°±4°の範囲に入るようにする。
【0009】
また、前記歯には絶縁を施し、集中巻の巻線を施してなるようにする。
【0010】
【発明の実施の形態】
発明の実施の形態を実施例に基づき添付図面を参照して詳細に説明する。
図1(a)は、本発明による永久磁石電動機のステータコア及びロータの一実施例を示す断面図、(b)は、巻線の説明図、図2は、本発明による永久磁石電動機の一実施例を示す巻線係数の説明図、図3は、本発明による永久磁石電動機の巻線係数の最良範囲を示す説明図である。
【0011】
図において、1はステータコア、2は継鉄部、3は広ピッチの歯、4は狭ピッチの歯、5は溝、10はロータ、11は永久磁石、20は巻線を示す。
ここで、従来例と同じ部分の符号は同一とする。
【0012】
まず、この実施例の永久磁石電動機のロ−タ10について説明すると、永久磁石11を用いて10極の極数を有するインナ−ロ−タ10を設けている。
また、永久磁石電動機のステータは、ステータコア1の継鉄部2から12個の歯3、4を前記ロ−タ10に相対向し突設している。
そして、前記歯3、4の先端を除き前記ステータコア1に絶縁を施している。
【0013】
ここで、前記12個の歯3、4を3つのグループに分ける。
そして、各々のグループに、開口部間のピッチを連続した3個の広ピッチの歯3の幅は広くし、残りの1個の狭ピッチの歯4の幅は狭くしている。
さらに、前記広ピッチの歯3の開口部間ピッチを、36°±4°の範囲に入るようにする。
また、前記広ピッチの歯3に、隣同志は極性が異なるように巻線20を施し、狭ピッチの歯4には巻線20を施さず、前記各々のグループに1相分の巻線20を集中巻により施すことにより、全体として3相巻線を施している。
【0014】
この1相分の巻線20についてさらに詳しく説明すると、前記広ピッチの歯3の3個について、前記巻線20を左側の歯3に溝5から次の溝5へ左巻きとすれば、中央の歯3には溝5から次の溝5へ右巻きに、右側の歯3を溝5から次の溝5へ左巻きに各々集中巻している。
あるいは、前記巻線20を左側の歯3に溝5から次の溝5へ右巻きとすれば、中央の歯3は溝5から次の溝5へ左巻きに、右側の歯3を溝5から次の溝5へ右巻きに各々集中巻するようにしてもよい。
これを3相すべてについて同様に集中巻する。
【0015】
次に、本発明の作用、効果について説明する。
先ず、図2に示すように、前記巻線係数は、短節巻係数と分布巻係数の積として算出されるもので、トルク性能の良否を評価できる永久磁石電動機のトルク定数と連動する。
前記短節巻係数は、前記ステ−タコア1の広ピッチの歯3が12個であるため、角度にして37°の間隔に位置するので図5の計算式により0.999となる。
【0016】
前記分布巻係数の平均は、前記狭ピッチの歯4の中心線と前記ロ−タ10の極の中心線を合わせて基準点に選び、1相について前記ステ−タコア1の歯3の中心線と前記ロ−タ10の極の中心線との位相差をθ1、θ2、θ3とするとき各々θ1=5°、θ2=6°、θ3=7°となるので、図5の計算式により、0.8638となる。
そして,この場合の巻線係数は、図5に示されるように、短節巻係数と分布巻係数の積として算出され、0.863の値となる。
【0017】
さらに、図3に示すように前記歯3の広ピッチθを角度で一般化して、短節巻係数kpと分布巻係数kdを算出する計算式を導出し、θ=32°〜40°の場合について巻線係数k(θ)を算出し、その表及びグラフを記載した。
この結果、従来の巻線係数の最良の値k(θ)=0.8186を凌ぐ値を得ることができる。
そして、図3から明らかなように、巻線係数k(θ)が0.8186を凌ぐ値を得るためには前記広ピッチθは、36°±4°の範囲に入るようにすることにより実現できる。
この結果、永久磁石電動機の巻線係数を大きくして銅線の使用量を削減するとともに、トルクを増大し、効率を向上することができる。
【0018】
【発明の効果】
以上のように本発明においては、10極の極数を有する永久磁石を用いたインナーロータと、12個の歯を有するステータにて構成された永久磁石電動機において、前記ステータの歯を3つのグループに分け、同グループの各々にあっては前記歯の開口部間のピッチを連続した3個の歯の幅は広くし、残りの1個の歯の幅は狭くし、前記広ピッチの歯に、隣同志は極性が異なるように巻線を施し、狭ピッチの歯には巻線を施さず、前記各々のグループに1相分の巻線を施すことにより、全体として3相巻線を施してなるようにした。
この結果、巻線係数を大きくして銅線の使用量を削減するとともに、トルクを増大し、効率を向上した永久磁石電動機を提供することができる。
【図面の簡単な説明】
【図1】(a))は、本発明による永久磁石電動機のステータコア及びロータの一実施例を示す断面図、(b)は、巻線の説明図である。
【図2】本発明による永久磁石電動機の一実施例を示す巻線係数の説明図である。
【図3】本発明による永久磁石電動機の巻線係数の最良範囲を示す説明図である。
【図4】(a)、(b)、(c)は、従来の永久磁石電動機のステータコア及びロータの一例を示す断面図、(d)は、巻線の説明図である。
【図5】従来の永久磁石電動機の一例を示す巻線係数の説明図である。
【符号の説明】
1 ステータコア
2 継鉄部
3 広ピッチの歯
4 狭ピッチの歯
5 溝
10 ロータ
11 永久磁石
20 巻線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a permanent magnet motor, and more particularly to a stator core shape and winding coefficient.
[0002]
[Prior art]
4A, 4B, and 4C are cross-sectional views showing examples of a stator core and a rotor of a conventional permanent magnet motor, FIG. 4D is an explanatory view of windings, and FIG. 5 is a conventional permanent magnet. It is explanatory drawing of the winding coefficient which shows an example of an electric motor.
[0003]
2. Description of the Related Art Conventionally, a permanent magnet motor is provided with teeth 3 from a yoke portion 2 of a stator core 1 at equal intervals, slots 5 are formed on both sides of the teeth 3, and at least the tip of the teeth 3 facing the rotor 10 is insulated. The winding 20 is wound between the slot 5 and the next slot 5, and the inner rotor 10 using the permanent magnet 11 is used.
In FIG. 4A, the rotor 10 has 10 poles and the stator core 1 has 9 teeth 3. FIG. 4B shows the rotor 10 having 8 poles and the stator core 1 teeth 3 of 12. FIG. (C) shows a case where the rotor 10 has four poles and the stator core 1 has six teeth 3.
Among these, FIG. 4A shows the largest winding coefficient.
[0004]
The winding coefficient in this case will be described in detail below.
First, the winding coefficient is calculated as a product of a short-pitch winding coefficient and a distributed winding coefficient, and is linked to a torque constant of a permanent magnet motor that can evaluate the quality of torque performance.
The short winding coefficient is 0.9848 according to the calculation formula of FIG. 5 because the stator core 1 has nine equally spaced teeth 3 and is positioned at an angle of 40 °. For the average of the distributed winding coefficient, the center line of the tooth 4 and the center line of the pole of the rotor 10 are selected as a reference point, and the center line of the tooth 3 of the stator core 1 and the rotor are selected for one phase. When θ1, θ2, and θ3 have phase differences from the pole center line of θ 10, θ1 = 2 °, θ2 = 6 °, and θ3 = 10 °, respectively. It becomes.
Then, as shown in FIG. 5, the winding coefficient in this case is calculated as a product of the short-pitch winding coefficient and the distributed winding coefficient, and is the best value of 0.8186.
[0005]
However, the value of winding coefficient = 0.8186 is not necessarily a sufficient value for a permanent magnet motor, and further numerical improvement is desirable for increasing torque and improving efficiency. Then, in the stator core 1 having the teeth 3 with the equal pitch as in the above-described conventional example, it is difficult to increase the winding coefficient beyond this.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a permanent magnet motor that increases the winding coefficient and reduces the amount of copper wire used, increases the torque, and improves the efficiency. It is said.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, in a permanent magnet motor composed of an inner rotor using a permanent magnet having 10 poles and a stator having 12 teeth, the stator teeth are divided into three groups. In each of the groups, the width of three consecutive teeth between the opening portions of the teeth is widened, the width of the remaining one tooth is narrowed, and the wide pitch teeth are Neighbors apply windings with different polarities, do not apply windings to narrow-pitch teeth, and apply one-phase windings to each group, so that three-phase windings are applied as a whole. To be.
[0008]
The pitch between the openings of the wide pitch teeth is set in a range of 36 ° ± 4 °.
[0009]
The teeth are insulated and concentrated windings are applied.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail based on examples with reference to the accompanying drawings.
1A is a cross-sectional view showing an embodiment of a stator core and a rotor of a permanent magnet motor according to the present invention, FIG. 1B is an explanatory view of windings, and FIG. 2 is an embodiment of a permanent magnet motor according to the present invention. FIG. 3 is an explanatory view showing the best range of the winding coefficient of the permanent magnet motor according to the present invention.
[0011]
In the figure, 1 is a stator core, 2 is a yoke part, 3 is a wide pitch tooth, 4 is a narrow pitch tooth, 5 is a groove, 10 is a rotor, 11 is a permanent magnet, and 20 is a winding.
Here, the same reference numerals are used for the same parts as in the conventional example.
[0012]
First, the rotor 10 of the permanent magnet motor of this embodiment will be described. The inner rotor 10 having the number of poles of 10 poles is provided using the permanent magnet 11.
In the stator of the permanent magnet motor, twelve teeth 3 and 4 are projected from the yoke portion 2 of the stator core 1 so as to face the rotor 10.
The stator core 1 is insulated except for the tips of the teeth 3 and 4.
[0013]
Here, the 12 teeth 3 and 4 are divided into three groups.
In each group, the widths of the three wide pitch teeth 3 in which the pitches between the openings are continuous are widened, and the widths of the remaining one narrow pitch teeth 4 are narrowed.
Further, the pitch between the openings of the wide pitch teeth 3 is set in the range of 36 ° ± 4 °.
Further, the windings 20 are applied to the wide pitch teeth 3 so that the neighbors have different polarities, and the windings 20 are not applied to the narrow pitch teeth 4. By applying concentrated winding, three-phase winding is applied as a whole.
[0014]
The winding 20 for one phase will be described in more detail. If the winding 20 is left-handed from the groove 5 to the next groove 5 on the left tooth 3, the center of the three teeth of the wide pitch 3 The teeth 3 are concentratedly wound from the groove 5 to the next groove 5 in a right-handed manner, and the right tooth 3 is wound from the groove 5 to the next groove 5 in a left-handed manner.
Alternatively, if the winding 20 is wound around the left tooth 3 from the groove 5 to the next groove 5, the central tooth 3 is turned leftward from the groove 5 to the next groove 5, and the right tooth 3 is moved from the groove 5. You may make it carry out concentrated winding each to the next groove | channel 5 right-handedly.
This is concentrated in the same manner for all three phases.
[0015]
Next, functions and effects of the present invention will be described.
First, as shown in FIG. 2, the winding coefficient is calculated as a product of a short-pitch winding coefficient and a distributed winding coefficient, and is linked with a torque constant of a permanent magnet motor that can evaluate the quality of torque performance.
The short winding coefficient is 0.999 according to the calculation formula of FIG. 5 because the stator core 1 has 12 teeth 3 with a wide pitch and is positioned at an angle of 37 °.
[0016]
For the average of the distributed winding coefficient, the center line of the teeth 4 of the stator core 1 is selected for one phase by selecting the center line of the teeth 4 of the narrow pitch and the center line of the pole of the rotor 10 as a reference point. And θ1 = 5 °, θ2 = 6 °, and θ3 = 7 ° when the phase differences between the center line of the rotor 10 and the pole of the rotor 10 are θ1, θ2, and θ3, respectively. 0.8638.
The winding coefficient in this case is calculated as the product of the short-pitch winding coefficient and the distributed winding coefficient as shown in FIG. 5 and has a value of 0.863.
[0017]
Furthermore, as shown in FIG. 3, the wide pitch θ of the teeth 3 is generalized by angle, and a calculation formula for calculating the short-pitch winding coefficient kp and the distributed winding coefficient kd is derived, and when θ = 32 ° to 40 ° The winding coefficient k (θ) was calculated for and the table and graph were described.
As a result, a value exceeding the best value k (θ) = 0.8186 of the conventional winding coefficient can be obtained.
As is apparent from FIG. 3, in order to obtain a value where the winding coefficient k (θ) exceeds 0.8186, the wide pitch θ is realized by being in the range of 36 ° ± 4 °. it can.
As a result, it is possible to increase the winding coefficient of the permanent magnet motor and reduce the amount of copper wire used, increase the torque, and improve the efficiency.
[0018]
【The invention's effect】
As described above, in the present invention, in the permanent magnet motor constituted by the inner rotor using the permanent magnet having the number of poles of 10 poles and the stator having 12 teeth, the teeth of the stator are divided into three groups. In each of the groups, the width of the three consecutive teeth is widened while the width of the remaining one tooth is narrowed, and the wide pitch teeth are formed. The neighbors apply windings with different polarities, do not apply windings to narrow-pitch teeth, and apply one-phase windings to each of the groups, so that three-phase windings are applied as a whole. It was made to become.
As a result, it is possible to provide a permanent magnet motor that increases the winding coefficient to reduce the amount of copper wire used, increases the torque, and improves the efficiency.
[Brief description of the drawings]
1A is a cross-sectional view showing an embodiment of a stator core and a rotor of a permanent magnet motor according to the present invention, and FIG. 1B is an explanatory view of windings;
FIG. 2 is an explanatory diagram of winding coefficients showing an embodiment of a permanent magnet motor according to the present invention.
FIG. 3 is an explanatory diagram showing the best range of winding coefficient of a permanent magnet motor according to the present invention.
4A, 4B, and 4C are cross-sectional views showing examples of a stator core and a rotor of a conventional permanent magnet motor, and FIG. 4D is an explanatory view of windings.
FIG. 5 is an explanatory diagram of winding coefficients showing an example of a conventional permanent magnet motor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stator core 2 yoke part 3 wide pitch tooth 4 narrow pitch tooth 5 groove 10 rotor 11 permanent magnet 20 winding

Claims (2)

10極の極数を有する永久磁石を用いたインナーロータと、12個の歯を有するステータにて構成された永久磁石電動機において、
前記ステータの歯を3つのグループに分け、同グループの各々にあっては前記歯の開口部間のピッチを連続した3個の歯の幅は広くし、残りの1個の歯の幅は狭くし、前記広ピッチの歯に、隣同志は極性が異なるように巻線を施し、狭ピッチの歯には巻線を施さず、前記各々のグループに1相分の巻線を施すことにより、全体として3相巻線を施すと共に、
前記広ピッチの歯の開口部間ピッチを、36°±4°の範囲に入るようにしたことを特徴とする永久磁石電動機。
In a permanent magnet motor composed of an inner rotor using a permanent magnet having 10 poles and a stator having 12 teeth,
The stator teeth are divided into three groups, and in each of the groups, the width of the three consecutive teeth is wide and the width of the remaining one tooth is narrow. Then, the teeth of the wide pitch are wound so that the neighbors have different polarities, the teeth of the narrow pitch are not wound, and a winding for one phase is applied to each group, As a whole, three-phase winding is applied,
A permanent magnet motor characterized in that the pitch between the openings of the wide pitch teeth falls within a range of 36 ° ± 4 °.
前記歯には絶縁を施し、集中巻の巻線を施してなることを特徴とする請求項1記載の永久磁石電動機。2. The permanent magnet motor according to claim 1, wherein the teeth are insulated and concentrated windings are applied.
JP2000053938A 2000-02-29 2000-02-29 Permanent magnet motor Expired - Fee Related JP4399943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000053938A JP4399943B2 (en) 2000-02-29 2000-02-29 Permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000053938A JP4399943B2 (en) 2000-02-29 2000-02-29 Permanent magnet motor

Publications (2)

Publication Number Publication Date
JP2001245460A JP2001245460A (en) 2001-09-07
JP4399943B2 true JP4399943B2 (en) 2010-01-20

Family

ID=18575260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000053938A Expired - Fee Related JP4399943B2 (en) 2000-02-29 2000-02-29 Permanent magnet motor

Country Status (1)

Country Link
JP (1) JP4399943B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984909B2 (en) 2002-03-29 2006-01-10 Matsushita Electric Industrial Co., Ltd. Motor
KR20030081828A (en) * 2002-04-13 2003-10-22 엘지전자 주식회사 Construction of synchronous reluctance motor of concentrated type
AU2003241781A1 (en) 2002-05-29 2003-12-12 Naoyuki Kadoya Motor generator
KR100565219B1 (en) * 2003-09-30 2006-03-30 엘지전자 주식회사 Free magnet type induction motor
GB0400737D0 (en) * 2004-01-14 2004-02-18 Rolls Royce Plc Electrical machine
JP5188746B2 (en) * 2007-05-15 2013-04-24 株式会社甲府明電舎 Brushless DC motor
EP2224578A1 (en) * 2009-02-27 2010-09-01 ABB Research Ltd. Stator winding scheme of a permanent magnet machine
JP6049765B2 (en) * 2013-01-24 2016-12-21 三菱電機株式会社 Synchronous motor
CN104779758B (en) * 2015-04-29 2018-01-30 哈尔滨工业大学 Modularization multiphase permanent magnet synchronous motor based on single two-layer hybrid winding
WO2016203578A1 (en) * 2015-06-17 2016-12-22 三菱電機株式会社 Permanent magnet synchronous motor
CN104882979A (en) * 2015-06-30 2015-09-02 广东威灵电机制造有限公司 Washing machine
CN108768006B (en) * 2018-08-17 2019-08-27 无锡晶晟科技股份有限公司 Stator laminating structure of motor and its method for winding
CN109149800B (en) * 2018-08-31 2020-03-31 南京埃克锐特机电科技有限公司 9n/10n pole segmented rotor switched reluctance motor
CN114530991A (en) * 2018-09-29 2022-05-24 宁波诺丁汉大学 Stator and rotor beneficial to heat dissipation
CN109617350B (en) * 2019-01-14 2021-03-30 哈尔滨工程大学 Minimum unit four-pair-pole asymmetric design structure of multi-unit permanent magnet motor
CN109713867B (en) * 2019-01-14 2021-03-30 哈尔滨工程大学 Minimum unit five-pair-pole asymmetric design structure of multi-unit permanent magnet motor
JP2020178497A (en) * 2019-04-19 2020-10-29 株式会社デンソー Rotary electric machine
CN110277888A (en) * 2019-05-15 2019-09-24 哈尔滨工业大学 A kind of band suitable for space equipment locks the low speed torque motor of torque certainly

Also Published As

Publication number Publication date
JP2001245460A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
JP4399943B2 (en) Permanent magnet motor
US6104117A (en) Motor with reduced clogging torque incorporating stator salient poles and rotor magnetic poles
US7859164B2 (en) Armature laminations
JP4112535B2 (en) Stator and brushless motor
EP1487089A2 (en) Permanent magnet motor
JP2008211918A (en) Rotary electric machine
US20020175581A1 (en) Permanent magnet motor
JP2002291210A (en) Structure of armature in electric motor
JPH059177U (en) Rotating electric machine
JP2004153886A (en) Synchronous motor
JP3446789B2 (en) Electric motor
JPH11234927A (en) Stator of motor
JPH0670524A (en) Brushless motor
JP2901125B2 (en) Capacitor induction motor
JP2004096808A (en) Synchronous reluctance motor
JP3196866B2 (en) Capacitor induction motor
CN109391048B (en) Stator of stepping motor and motor with stator
JP3344507B2 (en) Capacitor induction motor
JPH10164806A (en) Reluctance motor
JP3344510B2 (en) Capacitor induction motor
JP2002300740A (en) Electric motor
JP3055644B2 (en) Capacitor induction motor
JP3715053B2 (en) Hybrid stepping motor
JP3344506B2 (en) Capacitor induction motor
JPH08126281A (en) Four-phase dc brushless motor having core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees