JP4398530B2 - Wide angle constant velocity joint boots - Google Patents

Wide angle constant velocity joint boots Download PDF

Info

Publication number
JP4398530B2
JP4398530B2 JP03797399A JP3797399A JP4398530B2 JP 4398530 B2 JP4398530 B2 JP 4398530B2 JP 03797399 A JP03797399 A JP 03797399A JP 3797399 A JP3797399 A JP 3797399A JP 4398530 B2 JP4398530 B2 JP 4398530B2
Authority
JP
Japan
Prior art keywords
case
joint
valley
constant velocity
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03797399A
Other languages
Japanese (ja)
Other versions
JP2000234672A (en
Inventor
真幸 鳥海
宏 大野
克志 斎藤
尚 松田
信彦 岡野
純 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP03797399A priority Critical patent/JP4398530B2/en
Publication of JP2000234672A publication Critical patent/JP2000234672A/en
Application granted granted Critical
Publication of JP4398530B2 publication Critical patent/JP4398530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/703Bellows

Landscapes

  • Diaphragms And Bellows (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車の駆動軸と被駆動軸とを連結する等速ジョイントにおいて、これらを囲むように取り付けられるジョイントブーツであって、特に、広角度対応型の等速ジョイントに適用すれば好適なブーツに関するものである。
【0002】
【従来技術】
この種の等速ジョイントブーツは、ゴム又は樹脂エラストマーのブロー成形により、山部と谷部とが交互に連続する筒状蛇腹部と、その両端の筒状固定部とが一体成形されている。そして、筒状固定部がクランプ部材により、等速ジョイントの駆動軸と被駆動軸側の外装ケースに夫々外装被着され、内部に潤滑用グリースが充填封入されて使用される。
【0003】
こうような等速ジョイントブーツにおいて、その筒状蛇腹部は、他の部材と干渉しないことは勿論のこと、その耐久性を維持し得る設計することが重要な課題となっている。特に、最近の等速ジョイントにおいては、そのジョイント角として50度以上の広角度での連結が行われており、このような広角度等速ジョイントに対応できるジョイントブーツの設計が重要な課題となっている。
【0004】
このような課題を解決する方策として、まず、ケースとの間でかみ込みが起こり得る筒状蛇腹部を山部から始めるように設定する方策が考えられる。図7はジョイントブーツ100の筒状蛇腹部101を筒状固定部102の軸方向内端部に対して山部101aから始まる解決案を示す断面図である。
【0005】
このような構成を採用すると、筒状蛇腹部101のかみ込みを防止することができるが、ケースに被着する筒状蛇腹部101の大径部側の径が大となり、ブーツ100自体が大きくなって、他の周辺部材との干渉が起こり、また、ブーツ内に封入するグリース量が増加してコストアップとなるため、実現性に乏しい。
【0006】
そこで、基本的には、筒状蛇腹部を谷部から始めて小径化を図る方策が前提となるが、ジョイント角が広角度(50度以上)の等速ジョイントになると、そのジョイント角を確保し、かつ周辺部材との干渉を抑えるために、外装ケースの外形をそのままにして、内径(φA:図1参照)を大きくすることになる。そうすると、ケースの肉厚が小さくなり、ジョイントブーツの第1の谷部がケース内側に入り易くなり、駆動軸に押されて、ますますケースとの間でかみ込みが発生し易くなる。
【0007】
ブーツのかみ込みを防止するために、第1の谷部の内径を大きくする方策もあるが、内径のアップ度合いにより、筒状蛇腹部の膜長が短くなり、繰り返し応力により耐久性が悪化する懸念がある。また、第1の谷部を軸方向で小径の駆動軸側に位置させる方策も考えられるが、第1の谷部はケースの軸方向内端部に当接して、組み付け時の位置決め機能を発揮させる必要があるため、採用できない。
【0008】
【発明が解決しようとする課題】
広角度対応の等速ジョイントブーツに設計においては、上記検討結果に基づき、第1の谷部の内径を、外装ケースの半径方向内側における面取り始め寸法φD(図3参照)よりも小さく値で、かつ最大ジョイント角Jθmaxのときに、かみ込みが発生しない寸法に設定していたが、本発明者らが、上記設定のジョイントブーツのかみ込み試験を行ったところ、現実には、かみ込み現象が依然として起こっていることを発見した。
【0009】
この原因をFEM(finite element method:有限要素法)を使って鋭意検討した結果、駆動軸の最大ジョイント角Jθmaxに至るまでの途中のジョイント角θで、第1の谷部がケース内部に入り込み、かみ込みが起こっていることを発見した。
【0010】
図6はこのときのFEM解析図で、同図(a)はジョイント角θがθmaxのときのFEM解析図を、同図(b)は最大ジョイント角Jθmax(Jθmax>θmax)のときのFEM解析図を夫々示す。解析したジョイントブーツ100は、筒状蛇腹部101の第1の谷部101bの内径φCが98.1mm、ケース103の面取り始め径φDが102.5mmのものを使用した。図6中、符号103はケースを、104は駆動軸を夫々示す。
【0011】
この解析図から明らかな通り、同図(b)の最大ジョイント角Jθmaxでは、筒状蛇腹部101の第1の谷部101bがケース103の軸方向内側に入ることなく、かみ込みがないことを示している。従来は、この状態でかみ込みがないものと判断していた。同図(a)のジョイント角θmaxでは、筒状蛇腹部101の第1の谷部101bがケース103の軸方向及び径方向内側に入り込み、かみ込みが起こっていた。
【0012】
【課題を解決するための手段】
本発明者らは、上記FEM解析結果に基づいて、かみ込みが発生しない第1の谷部の内径φCと、ケースの面取り始め径φDとの関係を模索した結果、0≦φD−φC≦φ2mmに設定したとき、かみ込みが全く発生しないことを見出した。
【0013】
このときのジョイントブーツの第1の谷部の入り込み寸法としては、図4のごとく、ケース面取り始め径から第1の谷部の半径方向内端までの寸法aがa≦2.2mm、第1の谷部のケース面取り始めの位置から軸方向内側への入り込み寸法bがb≦0の関係にあった。
【0014】
また、ジョイントブーツの肉厚、特に、筒状固定部の軸方向内端の肩部肉厚は、筒状蛇腹部の可撓性に影響を与え、その肉厚が薄いほど、その部分の剛性が低くなり、ジョイント角を付与したときに、圧縮側で半径方向外側に逃げやすくなるため有利である。ただ、ブロー成形の場合のブーツ厚みの成形限界(下限値)として0.5mmが挙げられ、また、上限値としては、上記設定範囲内では、4.5mmが挙げられる。すなわち、0≦φD−φC≦φ2mmの場合、その肩部肉厚として、0.5mm〜4.5mmの範囲が有効となる。
【0015】
また、ジョイント角としては、50度以上の広角度のものに適用すれば特に有効である。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1は広角度等速ジョイントの概略断面図、図2はジョイントブーツの断面図、図3はジョイントブーツの第1の谷部とケースの面取り始め径との関係を示す図、図4は同じく第1の谷部のかみ込み状態を示す図である。
【0017】
図1のごとく、広角度等速ジョイント1は、例えば、エンジンからの駆動力を車輪側に伝達する伝達機構と一部として、デファレンシャル側の駆動軸2と、車輪側の被駆動軸3との連結部に使用されるものである。被駆動軸3側の端部には、駆動軸2側に開口した椀状の外装ケース5と、このケース5の中心部において駆動軸2の端部に固定された内輪6と、この内輪6の周面とケース5の内面との間で転動する複数のボール7と、このボール7を保持するケージ8とを備え、この連結部を囲むようにジョイントブーツ11が取り付けられ、内部に潤滑用グリースが充填封入されている。そして、駆動軸2と被駆動軸3とのジョイント角を広角度(少なくとも50度以上)に設定し得るように、ケース5の軸方向内端部には面取り加工9が施されている。
【0018】
ジョイントブーツ11は、ケース5の軸方向内端部の外周面5aと駆動軸2の被取付部12とにクランプ部材13、14により被着されるもので、両端部にケース5の外周面5a及び駆動軸2の被取付部12に被着される筒状固定部15と、この筒状固定部15、15間を連結する筒状蛇腹部16とが、ゴム又は熱可塑性樹脂エラストマーのブロー成形(インジェクション成形でも可)により一体成形されている。
【0019】
筒状蛇腹部16は、ケース5の外周面に被着される筒状固定部15から駆動軸2の被取付部12に向かって略円錐筒状に縮径されたもので、ケース側筒状固定部15の軸方向内端の大径肩部17から半径方向内側に縮径された第1の谷部16aから始まり、合計6個の山部16g〜16lと、6個の谷部16a〜16fとが交互に連続する形態となっている。なお、谷部及び山部の個数は、上記実施の形態に限られるものではなく、要求特性に応じて適宜選択できることは勿論である。
【0020】
図3のごとく、第1の谷部16aの内径φCとケース5の軸方向内端面の面取り始め径φDとの関係は、0≦φD−φC≦φ2mmに設定されており、これにより、ジョイント角θでの第1の谷部16aのケース入り込み寸法としては、ケース面取り始めから第1の谷部の半径方向内端までの寸法aがa≦2.2mm、第1の谷部のケース面取り始めの位置から軸方向内側への入り込み寸法bがb≦0の関係となり、第1の谷部16aのかみ込みが防止できる。また、ジョイントブーツ11の肉厚としては、0≦φD−φC≦φ2mmの場合、0.5mm〜4.5mmの範囲が有効である。
【0021】
また、第1の谷部16aのケース側傾斜壁20は、ケース5への組み付け時に、ケース5の軸方向内端壁面21に当接させて位置決め可能な傾斜角度、例えば軸線に対して60度程度の傾斜角度で成形されている。
【0022】
上記のように構成されたジョイントブーツ11をケース5及び駆動軸2の被取付部12に組み付けた場合、最大ジョイント角Jθmax(例えば51.3度)、及びジョイント角θmax(例えば46度)においても、かみ込みが発生しなかった。
【0023】
具体的には、表1に示す径のブーツについてかみ込み試験を行い、その結果によって第1の谷部16aのかみ込み評価を行った。なお、実施例として、試料No1、2、3を、また比較例として試料No4、No5を夫々挙げた。試料No1〜3は、いずれも0≦φD−φC≦φ2mmのブーツであり、試料No4は、φD−φC=φ2.1mm、試料No5は、φD−φC=φ2.2mmのブーツである。
【0024】
【表1】

Figure 0004398530
【0025】
上記かみ込み試験の結果、0≦φD−φC≦2の範囲にある試料については、ケース面取り始めから第1の谷部16aの半径方向内端までの寸法aがa≦2.2mm、第1の谷部16aのケース面取り始めの位置から軸方向内側への入り込み寸法bがb≦0で、かみ込みが発生しなかった。図5に実施例3(試料No3)のジョイントブーツ11のジョイント角θmaxでのFEM解析図を示す。このFEM解析図から明らかなように、第1の谷部16aがケース5の内側に入り込んでおらず、かみ込みが発生していない。これに対し、試料No4、5の場合、a>2.2mmとなり、第1の谷部16aにかみ込み現象がみられた。
【0026】
【発明の効果】
以上の説明から明らかな通り、本発明によると、筒状蛇腹部の筒状固定部側の第1の谷部の内径寸法をφC、ケースの半径方向内側における面取り始め寸法をφDとしたとき、第1の谷部の内径寸法を0≦φD−φC≦φ2mmとなるように設定すれば、ブーツのかみ込みが全く発生せず、耐久性に優れたジョイントブーツを提供できる。
【図面の簡単な説明】
【図1】広角度等速ジョイントの断面図
【図2】本発明に係るジョイントブーツ断面図
【図3】ジョイントブーツの第1の谷部とケースの面取り始め径との関係を示す図
【図4】同じく第1の谷部のかみ込み状態を示す図
【図5】実施例3のジョイントブーツ11のジョイント角θmaxでのFEM解析図
【図6】(a)はジョイント角θが46度のときのFEM解析図、(b)は最大ジョイント角Jθmaxgが51.3度のときのFEM解析図
【図7】ジョイントブーツかみ込みを防止する一解決案を示す断面図
【符号の説明】
1 等速ジョイント
2 駆動軸
3 被駆動軸
5 ケース
11 ジョイントブーツ
15 筒状固定部
16 筒状蛇腹部
16a〜16f 谷部
16g〜16l 山部
17 大径肩部
20 傾斜壁
21 ケース端面[0001]
BACKGROUND OF THE INVENTION
The present invention is a joint boot that is attached so as to surround a constant velocity joint that connects a driving shaft and a driven shaft of an automobile, and is particularly suitable when applied to a wide-angle type constant velocity joint. It relates to boots.
[0002]
[Prior art]
In this type of constant velocity joint boot, a cylindrical bellows portion in which ridges and valleys are alternately continuous and cylindrical fixing portions at both ends thereof are integrally formed by blow molding of rubber or resin elastomer. The cylindrical fixing portion is externally attached to the external case on the drive shaft and driven shaft side of the constant velocity joint by the clamp member, and is filled with lubricating grease and used.
[0003]
In such a constant velocity joint boot, it is an important subject to design the cylindrical bellows part so as not to interfere with other members but to maintain its durability. Especially in recent constant velocity joints, the joint angle is connected at a wide angle of 50 degrees or more, and the design of a joint boot that can cope with such a wide angle constant velocity joint is an important issue. ing.
[0004]
As a measure for solving such a problem, first, a measure can be conceived in which a cylindrical bellows portion that may bite between the case and the case is set to start from the peak portion. FIG. 7 is a cross-sectional view showing a solution in which the cylindrical bellows portion 101 of the joint boot 100 starts from the peak portion 101a with respect to the axially inner end portion of the cylindrical fixing portion 102.
[0005]
By adopting such a configuration, the cylindrical bellows portion 101 can be prevented from being bitten, but the diameter of the cylindrical bellows portion 101 to be attached to the case becomes large, and the boot 100 itself is large. As a result, interference with other peripheral members occurs, and the amount of grease enclosed in the boot increases, resulting in increased costs.
[0006]
Therefore, basically, it is premised that the cylindrical bellows is started from the valley and the diameter is reduced, but if the joint angle is a constant velocity joint with a wide angle (50 degrees or more), the joint angle is secured. In order to suppress interference with peripheral members, the inner diameter (φA: see FIG. 1) is increased while leaving the outer shape of the outer case as it is. If it does so, the thickness of a case will become small, the 1st trough part of a joint boot will enter into a case inside easily, it will be pushed by a drive shaft, and it will become easy to generate | occur | produce between a case more and more.
[0007]
There is also a measure to increase the inner diameter of the first trough to prevent the boot from biting, but the membrane length of the cylindrical bellows becomes shorter due to the degree of increase of the inner diameter, and the durability deteriorates due to repeated stress. There are concerns. In addition, a measure for positioning the first trough on the side of the small-diameter drive shaft in the axial direction is also conceivable, but the first trough contacts the inner end of the case in the axial direction and exhibits a positioning function during assembly. Because it is necessary to make it, it cannot be adopted.
[0008]
[Problems to be solved by the invention]
In designing a wide-angle constant velocity joint boot, based on the above examination results, the inner diameter of the first valley is a value smaller than the chamfering start dimension φD (see FIG. 3) on the radially inner side of the outer case, In addition, when the maximum joint angle Jθmax is set to a size that does not cause biting, the present inventors conducted a biting test on the joint boot set as described above. I found it still happening.
[0009]
As a result of earnest examination of this cause using FEM (finite element method: finite element method), the first trough enters the inside of the case at the joint angle θ on the way to the maximum joint angle Jθmax of the drive shaft, I found that biting occurred.
[0010]
FIG. 6 is an FEM analysis diagram at this time. FIG. 6A shows an FEM analysis diagram when the joint angle θ is θmax, and FIG. 6B shows an FEM analysis when the maximum joint angle Jθmax (Jθmax> θmax). Each figure is shown. As the joint boot 100 analyzed, the first bellows portion 101b of the cylindrical bellows portion 101 has an inner diameter φC of 98.1 mm, and the case 103 has a chamfering start diameter φD of 102.5 mm. In FIG. 6, reference numeral 103 denotes a case, and 104 denotes a drive shaft.
[0011]
As is apparent from this analysis diagram, at the maximum joint angle Jθmax in FIG. 5B, the first valley portion 101b of the cylindrical bellows portion 101 does not enter the axially inner side of the case 103 and does not bite. Show. Conventionally, it was determined that there was no biting in this state. At the joint angle θmax in FIG. 5A, the first valley portion 101b of the cylindrical bellows portion 101 enters the axial direction and the radially inner side of the case 103, and biting occurs.
[0012]
[Means for Solving the Problems]
As a result of searching for the relationship between the inner diameter φC of the first valley where no biting occurs and the chamfering start diameter φD of the case based on the FEM analysis result, the present inventors have found that 0 ≦ φD−φC ≦ φ2 mm. When set to, it was found that no biting occurred.
[0013]
At this time, as shown in FIG. 4, the dimension a from the case chamfering start diameter to the radial inner end of the first valley is a ≦ 2.2 mm, as shown in FIG. The intrusion dimension b from the position at the beginning of the chamfering of the valley portion toward the inner side in the axial direction was in a relation of b ≦ 0.
[0014]
In addition, the thickness of the joint boot, particularly the shoulder thickness at the inner end in the axial direction of the cylindrical fixing part, affects the flexibility of the cylindrical bellows part, and the thinner the thickness, the more rigid the part. When the joint angle is given, it is advantageous because it is easy to escape radially outward on the compression side. However, 0.5 mm is mentioned as the molding limit (lower limit) of the boot thickness in the case of blow molding, and 4.5 mm is mentioned as the upper limit within the above setting range. That is, in the case of 0 ≦ φD−φC ≦ φ2 mm, the range of 0.5 mm to 4.5 mm is effective as the thickness of the shoulder portion.
[0015]
As the joint angle, it is particularly effective when applied to those 5 0 degrees or more wide angle.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a schematic cross-sectional view of a wide angle constant velocity joint, FIG. 2 is a cross-sectional view of a joint boot, FIG. 3 is a diagram showing the relationship between the first valley of the joint boot and the chamfering start diameter of the case, and FIG. It is a figure which shows the biting state of a 1st trough part.
[0017]
As shown in FIG. 1, the wide-angle constant velocity joint 1 includes, for example, a transmission mechanism that transmits a driving force from an engine to a wheel side, and a differential-side driving shaft 2 and a wheel-side driven shaft 3. It is used for the connecting part. At the end on the driven shaft 3 side, a bowl-shaped exterior case 5 opened to the drive shaft 2 side, an inner ring 6 fixed to the end of the drive shaft 2 at the center of the case 5, and the inner ring 6 A plurality of balls 7 that roll between the peripheral surface of the case 5 and the inner surface of the case 5 and a cage 8 that holds the balls 7, and a joint boot 11 is attached so as to surround the connecting portion, and lubricates inside. Filled with grease for use. A chamfering process 9 is applied to the inner end of the case 5 in the axial direction so that the joint angle between the drive shaft 2 and the driven shaft 3 can be set to a wide angle (at least 50 degrees or more).
[0018]
The joint boot 11 is attached to the outer peripheral surface 5a of the inner end portion in the axial direction of the case 5 and the mounted portion 12 of the drive shaft 2 by the clamp members 13 and 14, and the outer peripheral surface 5a of the case 5 at both ends. And the cylindrical fixing | fixed part 15 attached to the to-be-attached part 12 of the drive shaft 2, and the cylindrical bellows part 16 which connects between these cylindrical fixing | fixed parts 15 and 15 are blow molding of rubber | gum or a thermoplastic resin elastomer. (It is possible to use injection molding).
[0019]
The cylindrical bellows portion 16 is reduced in diameter from a cylindrical fixing portion 15 attached to the outer peripheral surface of the case 5 toward the attached portion 12 of the drive shaft 2 in a substantially conical cylindrical shape. Starting from the first trough 16a that has been reduced radially inward from the large-diameter shoulder 17 at the axially inner end of the fixed portion 15, a total of six crests 16g to 16l and six troughs 16a to 16a 16f is alternately continuous. It should be noted that the number of valleys and peaks is not limited to the above-described embodiment, and can of course be selected as appropriate according to required characteristics.
[0020]
As shown in FIG. 3, the relationship between the inner diameter φC of the first valley portion 16a and the chamfering start diameter φD of the axially inner end face of the case 5 is set to 0 ≦ φD−φC ≦ φ2 mm. As the case penetration dimension of the first trough portion 16a at θ, the dimension a from the start of chamfering of the case to the radially inner end of the first trough portion is a ≦ 2.2 mm, and the chamfering of the first trough portion is started. The intrusion dimension b from the position to the inner side in the axial direction is in a relation of b ≦ 0, and the first trough portion 16a can be prevented from being bitten. The thickness of the joint boot 11 is effectively in the range of 0.5 mm to 4.5 mm when 0 ≦ φD−φC ≦ φ2 mm.
[0021]
Further, the case-side inclined wall 20 of the first valley portion 16a is inclined at an inclination angle that can be positioned by being brought into contact with the inner wall surface 21 in the axial direction of the case 5 when assembled to the case 5, for example, 60 degrees with respect to the axis. It is molded at an angle of inclination.
[0022]
When the joint boot 11 configured as described above is assembled to the case 5 and the mounted portion 12 of the drive shaft 2, the maximum joint angle Jθmax (for example, 51.3 degrees) and the joint angle θmax (for example, 46 degrees) are also included. No biting occurred.
[0023]
Specifically, a biting test was performed on boots having the diameters shown in Table 1, and the biting evaluation of the first valley portion 16a was performed based on the result. As examples, Samples Nos. 1, 2, and 3 were given, and Samples No. 4 and No. 5 were given as comparative examples. Samples No. 1 to No. 3 are boots with 0 ≦ φD−φC ≦ φ2 mm, Sample No. 4 is a boot with φD−φC = φ2.1 mm, and Sample No. 5 is a boot with φD−φC = φ2.2 mm.
[0024]
[Table 1]
Figure 0004398530
[0025]
As a result of the above biting test, for the sample in the range of 0 ≦ φD−φC ≦ 2, the dimension a from the start of the chamfering of the case to the radially inner end of the first valley portion 16a is a ≦ 2.2 mm, The intrusion dimension b from the position at the beginning of the chamfering of the valley portion 16a toward the inside in the axial direction was b ≦ 0, and no biting occurred. FIG. 5 shows an FEM analysis diagram at the joint angle θmax of the joint boot 11 of Example 3 (sample No. 3). As is apparent from this FEM analysis diagram, the first valley 16a does not enter the inside of the case 5 and no biting occurs. On the other hand, in the case of sample Nos. 4 and 5, a> 2.2 mm, and a biting phenomenon was observed in the first valley portion 16a.
[0026]
【The invention's effect】
As is apparent from the above description, according to the present invention, when the inner diameter dimension of the first valley portion on the cylindrical fixing portion side of the cylindrical bellows portion is φC, and the chamfering start dimension on the radially inner side of the case is φD, If the inner diameter dimension of the first valley portion is set to satisfy 0 ≦ φD−φC ≦ φ2 mm, the joint boot having excellent durability can be provided without any biting of the boot.
[Brief description of the drawings]
1 is a cross-sectional view of a wide angle constant velocity joint. FIG. 2 is a cross-sectional view of a joint boot according to the present invention. FIG. 3 is a view showing a relationship between a first valley of the joint boot and a chamfering start diameter of a case. 4 is a diagram showing the state of biting of the first valley portion. FIG. 5 is an FEM analysis diagram at the joint angle θmax of the joint boot 11 of Example 3. FIG. 6A is a graph showing a joint angle θ of 46 degrees. (B) is an FEM analysis diagram when the maximum joint angle Jθmaxg is 51.3 degrees. FIG. 7 is a cross-sectional view showing a solution for preventing joint boot biting.
DESCRIPTION OF SYMBOLS 1 Constant velocity joint 2 Drive shaft 3 Driven shaft 5 Case 11 Joint boot 15 Cylindrical fixing part 16 Cylindrical bellows parts 16a-16f Valley parts 16g-16l Mountain part 17 Large diameter shoulder part 20 Inclined wall 21 Case end surface

Claims (1)

ジョイント角が50度以上の広角度の等速ジョイントの外装ケースの軸方向内端部に外装被着される筒状固定部と、この筒状固定部の軸方向内端部に、谷部から始まり、かつ谷部と山部とが交互に連続する筒状蛇腹部とが一体成形され、等速ジョイントのジョイント角が最大ジョイント角に至るまで前記筒状蛇腹部の筒状固定部側の第1の谷部がケース内部に入り込むかみ込みを防止するよう、前記筒状固定部の軸方向内端部の肉厚が0.5mm〜4.5mmの範囲に設定されると共に、記第1の谷部の内径寸法をφC、前記ケースの半径方向内側における面取り始め寸法をφDとしたとき、第1の谷部の内径寸法が0≦φD−φC≦φ2mmとなるように設定された等速ジョイントブーツ。A cylindrical fixing portion that is externally attached to the axial inner end portion of the outer case of the constant velocity joint having a wide joint angle of 50 degrees or more, and an axial inner end portion of the cylindrical fixing portion from the valley portion A cylindrical bellows portion that begins and has valleys and peaks alternately alternately is integrally formed, and the cylindrical bellows portion of the cylindrical bellows portion on the side of the cylindrical fixing portion side until the joint angle of the constant velocity joint reaches the maximum joint angle. as the first valley portion prevents jamming enters into the case, along with the thickness of the axially inner end portion of the cylindrical fixing portion is set in the range of 0.5Mm~4.5Mm, before Symbol first The inner diameter dimension of the first valley is set to 0 ≦ φD−φC ≦ φ2 mm, where φC is the inner diameter dimension of the valley and φD is the chamfering start dimension on the radially inner side of the case. Joint boots.
JP03797399A 1999-02-17 1999-02-17 Wide angle constant velocity joint boots Expired - Lifetime JP4398530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03797399A JP4398530B2 (en) 1999-02-17 1999-02-17 Wide angle constant velocity joint boots

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03797399A JP4398530B2 (en) 1999-02-17 1999-02-17 Wide angle constant velocity joint boots

Publications (2)

Publication Number Publication Date
JP2000234672A JP2000234672A (en) 2000-08-29
JP4398530B2 true JP4398530B2 (en) 2010-01-13

Family

ID=12512520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03797399A Expired - Lifetime JP4398530B2 (en) 1999-02-17 1999-02-17 Wide angle constant velocity joint boots

Country Status (1)

Country Link
JP (1) JP4398530B2 (en)

Also Published As

Publication number Publication date
JP2000234672A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
JP2007263153A (en) Constant velocity joint boot
WO2005073583A1 (en) Constant velocity universal joint for steering device and steering device
EP2177779B1 (en) Silicone boot for constant velocity universal joint and constant velocity universal joint
US7967687B2 (en) Joint structure and boot for joint
JP4398530B2 (en) Wide angle constant velocity joint boots
JP2003083449A (en) Resin joint boot
WO2008044760A1 (en) Boot for constant velocity joint and cross group-type constant velocity joint
US20240183406A1 (en) Grease sealing structure of constant velocity joint of vehicle, and constant velocity joint including same
JP4425742B2 (en) Constant velocity joint boots
JP4832837B2 (en) Constant velocity universal boots
JP5052089B2 (en) Constant velocity joint boots
US8052536B2 (en) Boot for universal joint
JP2525619Y2 (en) Universal joint boots
US7347783B2 (en) Driveshaft and method of manufacturing such a driveshaft
JP3832962B2 (en) Universal joint slidable in the axial direction
JP4652098B2 (en) Drive shaft
JP2002295509A (en) Boot for uniform joint
JP4200727B2 (en) Constant velocity joint boots
JPH10299789A (en) Flexible boot for constant velocity joint
JP2009085228A (en) Boot for constant velocity joint
KR100707005B1 (en) Slip joint of universial joint
JPH054595Y2 (en)
JP2007113614A (en) Fixed constant velocity universal joint
JP2009228728A (en) Dust preventing device for joint
JP3548329B2 (en) Shaft coupling sealing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151030

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term