JP4397976B2 - Rotating anode for X-ray tube using interference fit - Google Patents

Rotating anode for X-ray tube using interference fit Download PDF

Info

Publication number
JP4397976B2
JP4397976B2 JP33622997A JP33622997A JP4397976B2 JP 4397976 B2 JP4397976 B2 JP 4397976B2 JP 33622997 A JP33622997 A JP 33622997A JP 33622997 A JP33622997 A JP 33622997A JP 4397976 B2 JP4397976 B2 JP 4397976B2
Authority
JP
Japan
Prior art keywords
rotor
assembly
ray tube
joint
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33622997A
Other languages
Japanese (ja)
Other versions
JPH10233160A (en
Inventor
エティ・ギャニン
マーク・オー・ディラクシャン
トーマス・ジー・エベン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPH10233160A publication Critical patent/JPH10233160A/en
Application granted granted Critical
Publication of JP4397976B2 publication Critical patent/JP4397976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/10Drive means for anode (target) substrate
    • H01J2235/1006Supports or shafts for target or substrate
    • H01J2235/1013Fixing to the target or substrate

Landscapes

  • X-Ray Techniques (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、回転陽極型X線管に関し、特に、主構成部材間に締りばめを用いた回転陽極組立体を有する回転陽極型X線管に関する。
【0002】
【従来の技術】
X線管は、医療診断用イメージング、医学治療、その他種々の医学的検査および物質分析業界において、必須になっている。代表的なX線管には、焦点スポットに発生する熱を分散させる目的で、回転陽極構造が設けられている。陽極を回転させる誘導モータは、ディスク状陽極ターゲットを支持する片持車軸に組みこまれた円筒形ロータと、ロータを収容するX線管の細長いネックを取り囲む銅巻線のほどこされた鉄ステータ構造とからなる。回転陽極組立体のロータは、ロータを取り囲むステータにより駆動され、陽極電位にあり、一方ステータは電気的に接地される。X線管の陰極から出る焦点合わせされた電子ビームは、陽極−陰極間真空空間を通して加速され、陽極と衝突してX線を発生する。
【0003】
回転陽極を有するX線管装置においては、ターゲットは、タングステンなどの耐火金属から形成されたディスクからなり、このターゲットを高速で回転させながら、電子ビームをターゲットに衝突させることにより、X線を発生する。ターゲットの回転は、ターゲットから延在する支持シャフト上に設けられたロータを駆動することにより、行う。このような配置は回転陽極型X線管に代表的なもので、採用以来、動作の技術思想についてはさほど変わっていない。しかし、X線管の動作条件はこの20年間で大きく変わってきている。
【0004】
現在のX線管に用いられているターゲットは、片持装着され、大型で(直径200mm、4.5kg)、10,000rpmのような高速で回転する。管の作動中には、室温から1600°Cのようなターゲットトラックのタングステン−レニウム層における高速電子の減速により生じる高温までの極めて大きな温度変化が生じる。
【0005】
高い回転速度と高温でのバランス保持はきわめて重要である。出荷時の大型X線管についてのアンバランス度の典型的な値としては、ターゲットまたはロータ平面いずれかで、5g−cmである。きわめて大型のターゲット(直径165mm、2.7kg)を有するX線管製品の約5%が、アンバランス度が高いため、使用不可である。ターゲット重心が19μmずれると、このような量のアンバランスが生じる。陽極が大きく重くなるにつれて、アンバランス規格を越えないずれの量はより少なくなる。現在のターゲット寸法(直径約200mm、質量約4.5kg)の場合、11μmのずれでアンバランス規格を越えてしまう。大きな温度変化がある上、熱膨張係数の異なる材料を使用するので、このような小さなずれは簡単に起こる。さらに、ボルト止め、ろう付け、溶接接合部が主なアンバランス発生源となる。
【0006】
したがって、X線管の回転陽極を良好なバランスで保持するのが望ましい。
【0007】
【発明の概要】
この発明は、ターゲット、軸受組立体、ロータ組立体を含む主な構成部材間に締りばめ(interference fit)を採用することにより、陽極を良好なバランスで保持する。
この発明によれば、回転X線管の陽極構造を組み立てる。X線管は電子を放出する陰極と、ロータと、軸受組立体とを有し、ロータおよび軸受組立体は陽極を円滑に回転させるものである。この発明の方法は、電子の衝突に応じてX線を放射する陽極ターゲットを設ける工程、ロータと陽極ターゲットとの間に締りばめを用いて、バランス保持できる第1接合部を形成する工程、そして軸受組立体とロータとの間に締りばめを用いて、バランス保持できる第2接合部を形成する工程を含む。
【0008】
したがって、この発明の目的は、高回転速度および高温で良好なバランス保持の可能な陽極構造を提供することにある。この発明の別の目的は、陽極構造の主構成部材間に締りばめを用いて、X線管の寿命の間構成部材がずれるのを防止することにある。
この発明の他の目的や効果は、以下の説明や図面から明らかになるであろう。
【0009】
【具体的な構成】
この発明は、回転陽極組立体(アセンブリ)と陰極組立体を用いた回転X線管に関し、その目的は、X線管の有効寿命の間のバランス保持を改良することにある。
ここで、図面を参照すると、図1は従来の代表的なX線管陽極組立体を示す。X線管には通常、焦点スポットに発生する熱を分散するために、回転陽極組立体12が関連するステム14とともに設けられている。陽極組立体12は、ともに陽極電位にある、ターゲット16およびロータ18を含む。代表的なX線管はさらに、X線管陰極組立体(図示せず)を備え、これにより焦点合わせされた電子ビームを生成し、電子ビームを陽極−陰極間真空空間の大きな間隙を通して加速し、陽極との衝突によりX線を生成するように構成されている。
【0010】
図1についてさらに説明すると、陽極組立体12は、円筒形ロータ18を片持車軸20のまわりに配置してなる誘導モータにより回転する。片持車軸20は、スタッドおよびハブ22を介してロータ18および軸受組立体20に連結されたディスク状陽極ターゲット16を支持する。軸受組立体20は回転を円滑にする軸受を含む。誘導モータのステータにより駆動される、回転陽極組立体12のロータ18は陽極電位にあり、一方ステータは電気的に接地されている。
【0011】
代表的な組立体では、ターゲット16と、ロータ組立体18と、軸受組立体20は、ボルト止め、ろう付けおよび/または溶接接合部(ジョイント)を用いて、組み立てられる。この発明は、陽極組立体12の主部材間のはめ合いを改良するものである。
図1とともに、図2および図3を参照すると、この発明は、X線管陽極組立体に締りばめ組立を用いて、接合部での部品のずれを除く。締りばめ組立の概念は、陽極組立体12に用いるのに特に適当である。図2から明らかなように、陽極組立体12は、ターゲット16、軸受組立体20およびロータ組立体18の3つの主部材からなる。さらに、陽極組立体12は、位置24での軸受−ロータ接合部および位置26でのターゲット−ロータ接合部の2つの主接合部(ジョイント)を備える。この発明にしたがって、これらの主接合部に締りばめ組立を適用することにより、これらの主接合部でのずれをなくし、X線管の有効寿命の間のバランス保持を確実にする。したがって、この発明の好適な実施例においては、ターゲット16、軸受組立体20およびロータ組立体18を、同心な接合部を実現するのに十分な締りばめ公差に切削加工する。こうすれば、高周波(RF)加熱などの適当な手段を用いて、締りばめ部品を組み立てることができる。
【0012】
この発明の1実施例として、陽極構造の締りばめ組立について説明するが、この実施例はこの発明の範囲を限定するとみなすべきではない。図3に示すように、まず、ロータ組立体18の熱バリア部分28に組立工程、たとえばRF加熱をほどこす。これにより、軸受組立体20の接合部端30をロータ組立体18の受け入れ穴32に入れることが可能になる。軸受組立体20を配置したら、加熱を止め、位置24での接合部を放冷する。つぎに、ターゲット16のターゲットフランジ34に、組立工程、この場合もRF加熱をほどこす。こうすれば、ロータ組立体18の熱バリア部分28の端部36をターゲットフランジ34に挿入することができる。ロータ組立体18をターゲット16に対して適切に位置させたら、位置26での接合部を放冷する。この結果、主接合部での微小なずれでさえなくすることにより、X線管の有効寿命の間のバランス保持を確保した、陽極組立体12が得られる。しかし、所望の同心性を達成するのに、X線管の接合部および/または部品のどのような組み合わせを締りばめ関係に置いてもよいことが明らかである。
【0013】
この発明を、陽極構造の締りばめ組立について説明したが、X線管環境における締りばめ組立というこの発明の思想は、あらゆるタイプのX線管組立体に適用できることが当業者に明らかである。さらに、X線管環境に締りばめ組立を適用して管構成要素が管寿命の間ずれるのを防止するというこの発明の要旨から逸脱しないかぎり、この発明の種々の変更例や改変例が可能であることが当業者に明らかである。たとえば、この発明の要旨から逸脱しない範囲で、接合部の構成要素の加熱および機械的組立工程を、種々の適当な方法で行うことができ、たとえば実際の組立順序を変更することができる。
【0014】
以上、この発明を好適な実施例について説明したが、この発明の範囲内で種々の変更や改変が可能である。
【図面の簡単な説明】
【図1】従来の代表的なX線管の回転陽極の断面図である。
【図2】この発明により締りばめ構成を組み込んだ陽極の断面図である。
【図3】図2の陽極構造の分解斜視図で、この発明による締りばめ構成を示す。
【符号の説明】
12 回転陽極組立体
16 ターゲット
18 ロータ
20 軸受組立体
24 軸受−ロータ接合部
26 ターゲット−ロータ接合部
[0001]
[Industrial application fields]
The present invention relates to a rotary anode X-ray tube, and more particularly to a rotary anode X-ray tube having a rotary anode assembly using an interference fit between main components.
[0002]
[Prior art]
X-ray tubes are indispensable in medical diagnostic imaging, medical therapy, and various other medical examination and material analysis industries. A typical X-ray tube is provided with a rotating anode structure for the purpose of dispersing heat generated in the focal spot. An induction motor for rotating an anode has an iron stator structure in which a cylindrical rotor built in a cantilever axle supporting a disk-like anode target and a copper winding surrounding an elongated neck of an X-ray tube containing the rotor It consists of. The rotor of the rotating anode assembly is driven by a stator surrounding the rotor and is at an anode potential, while the stator is electrically grounded. The focused electron beam emerging from the cathode of the x-ray tube is accelerated through the anode-cathode vacuum space and collides with the anode to generate x-rays.
[0003]
In an X-ray tube device having a rotating anode, the target consists of a disk formed of a refractory metal such as tungsten, and X-rays are generated by colliding the electron beam with the target while rotating the target at high speed. To do. The target is rotated by driving a rotor provided on a support shaft extending from the target. Such an arrangement is typical for a rotary anode X-ray tube, and since its adoption, the technical concept of operation has not changed much. However, the operating conditions of X-ray tubes have changed significantly over the last 20 years.
[0004]
The target used in the current X-ray tube is cantilevered and is large (200 mm diameter, 4.5 kg) and rotates at a high speed such as 10,000 rpm. During tube operation, very large temperature changes occur from room temperature to high temperatures caused by slowing down of fast electrons in the tungsten-rhenium layer of the target track, such as 1600 ° C.
[0005]
Maintaining balance at high rotational speed and high temperature is extremely important. A typical value for the degree of unbalance for a large X-ray tube at the time of shipment is 5 g-cm on either the target or the rotor plane. About 5% of X-ray tube products with very large targets (diameter 165 mm, 2.7 kg) are unusable due to their high imbalance. When the target center of gravity shifts by 19 μm, such an amount of imbalance occurs. As the anode becomes heavier and heavier, any amount that does not exceed the unbalance specification will be less. In the case of the current target size (diameter: about 200 mm, mass: about 4.5 kg), the deviation of 11 μm exceeds the unbalanced standard. Such small deviations can easily occur because of the large temperature changes and the use of materials with different coefficients of thermal expansion. In addition, bolting, brazing, and welded joints are the main sources of unbalance.
[0006]
Therefore, it is desirable to keep the rotating anode of the X-ray tube in good balance.
[0007]
SUMMARY OF THE INVENTION
The present invention maintains an anode in good balance by employing an interference fit between the main components including the target, bearing assembly, and rotor assembly.
According to this invention, the anode structure of the rotating X-ray tube is assembled. The X-ray tube includes a cathode that emits electrons, a rotor, and a bearing assembly. The rotor and the bearing assembly rotate the anode smoothly. The method of the present invention includes a step of providing an anode target that emits X-rays in response to an electron collision, a step of forming a first joint that can be balanced using an interference fit between the rotor and the anode target, Then, a step of forming a second joint that can be kept in balance using an interference fit between the bearing assembly and the rotor is included.
[0008]
Accordingly, an object of the present invention is to provide an anode structure capable of maintaining a good balance at a high rotational speed and at a high temperature. Another object of the invention is to use an interference fit between the main components of the anode structure to prevent the components from shifting during the life of the x-ray tube.
Other objects and advantages of the present invention will become apparent from the following description and drawings.
[0009]
[Specific configuration]
The present invention relates to a rotating X-ray tube using a rotating anode assembly (assembly) and a cathode assembly, the purpose of which is to improve the balance between the useful lives of the X-ray tube.
Referring now to the drawings, FIG. 1 shows a typical conventional X-ray tube anode assembly. An x-ray tube is usually provided with a rotating anode assembly 12 with an associated stem 14 to dissipate the heat generated at the focal spot. The anode assembly 12 includes a target 16 and a rotor 18 that are both at an anode potential. A typical x-ray tube further includes an x-ray tube cathode assembly (not shown), which produces a focused electron beam that is accelerated through a large gap in the anode-cathode vacuum space. The X-ray is generated by the collision with the anode.
[0010]
Referring further to FIG. 1, the anode assembly 12 is rotated by an induction motor having a cylindrical rotor 18 disposed around a cantilever axle 20. The cantilever axle 20 supports a disc-shaped anode target 16 connected to the rotor 18 and the bearing assembly 20 via studs and a hub 22. The bearing assembly 20 includes a bearing that facilitates rotation. The rotor 18 of the rotating anode assembly 12 driven by the stator of the induction motor is at the anode potential, while the stator is electrically grounded.
[0011]
In a typical assembly, target 16, rotor assembly 18, and bearing assembly 20 are assembled using bolting, brazing and / or welded joints. The present invention improves the fit between the main members of the anode assembly 12.
Referring to FIGS. 2 and 3 in conjunction with FIG. 1, the present invention uses an interference fit assembly on the x-ray tube anode assembly to eliminate component misalignment at the joint. The concept of an interference fit assembly is particularly suitable for use with the anode assembly 12. As is apparent from FIG. 2, the anode assembly 12 includes three main members: a target 16, a bearing assembly 20, and a rotor assembly 18. Further, the anode assembly 12 includes two main joints (joints), a bearing-rotor joint at position 24 and a target-rotor joint at position 26. In accordance with the present invention, an interference fit assembly is applied to these main joints to eliminate misalignment at these main joints and to ensure balance during the useful life of the x-ray tube. Thus, in the preferred embodiment of the present invention, the target 16, bearing assembly 20 and rotor assembly 18 are machined to an interference fit tolerance sufficient to achieve concentric joints. In this way, the interference fit parts can be assembled using suitable means such as radio frequency (RF) heating.
[0012]
As an example of this invention, an anode structure interference fit assembly will be described, but this example should not be considered as limiting the scope of this invention. As shown in FIG. 3, first, an assembly process, such as RF heating, is applied to the thermal barrier portion 28 of the rotor assembly 18. This allows the joint end 30 of the bearing assembly 20 to be inserted into the receiving hole 32 of the rotor assembly 18. Once the bearing assembly 20 is in place, heating is stopped and the joint at position 24 is allowed to cool. Next, the target flange 34 of the target 16 is subjected to an assembly process, in this case also RF heating. In this way, the end 36 of the thermal barrier portion 28 of the rotor assembly 18 can be inserted into the target flange 34. Once the rotor assembly 18 is properly positioned with respect to the target 16, the joint at position 26 is allowed to cool. As a result, it is possible to obtain the anode assembly 12 that ensures the balance of the useful life of the X-ray tube by eliminating even a slight shift at the main joint. However, it will be apparent that any combination of x-ray tube joints and / or components may be placed in an interference fit relationship to achieve the desired concentricity.
[0013]
While the present invention has been described for an anode structure interference fit assembly, it will be apparent to those skilled in the art that the inventive concept of an interference fit assembly in an X-ray tube environment can be applied to any type of X-ray tube assembly. . In addition, various modifications and variations of the present invention are possible without departing from the spirit of the invention in which interference fit assembly is applied to the X-ray tube environment to prevent the tube components from deviating during the life of the tube. It will be apparent to those skilled in the art. For example, within the scope of the present invention, the heating and mechanical assembly steps of the joint components can be performed in various suitable ways, for example, the actual assembly sequence can be changed.
[0014]
Although the present invention has been described with reference to the preferred embodiments, various changes and modifications can be made within the scope of the present invention.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a rotary anode of a typical conventional X-ray tube.
FIG. 2 is a cross-sectional view of an anode incorporating an interference fit configuration in accordance with the present invention.
FIG. 3 is an exploded perspective view of the anode structure of FIG. 2 showing an interference fit configuration according to the present invention.
[Explanation of symbols]
12 Rotating anode assembly 16 Target 18 Rotor 20 Bearing assembly 24 Bearing-rotor joint 26 Target-rotor joint

Claims (3)

陽極ターゲットに衝突させる電子を放出する陰極と、前記陽極ターゲットの回転を円滑にするロータおよび軸受組立体とを有する回転X線管構造体を組み立てるにあたり、X線管構造体の少なくとも1つの接合部を特定し、この少なくとも1つの接合部に締りばめ組立を用いて同接合部でのずれをなくす、工程を含み、
前記締りばめ組立を用いる工程が、さらに、ロータと前記陽極ターゲットとの間に締りばめ組立を用いて、バランス保持できる第1接合部を形成し、軸受組立体とロータとの間に締りばめ組立を用いて、前記第1接合部よりも前記陽極ターゲットに近い位置で、バランス保持できる第2接合部を形成する工程を含む、回転X線管構造を組み立てる方法。
A cathode for emitting electrons to collide with the anode target, when assembling the rotary X-ray tube structure having a rotor and bearing assembly to facilitate rotation of the anode target, at least one joint of the X-ray tube structure And using an interference fit assembly on the at least one joint to eliminate misalignment at the joint,
Step using the fit assembly if the interference is further using a fit assembly interference fit between the rotor and the anode target, to form a first joint portion that can balance maintained, interference between the bearing assembly and the rotor A method of assembling a rotating X-ray tube structure, comprising: using a fit assembly to form a second joint that can be balanced at a position closer to the anode target than the first joint .
前記第2接合部を形成する工程が、
前記ロータにRF加熱をほどこす工程と、
前記軸受組立体の接合部端を前記ロータの受け入れ穴に入れる工程と、
前記第2接合部を放冷する工程とを含み、
前記第1接合部を形成する工程が、
前記陽極ターゲットのターゲットフランジに、RF加熱をほどこす工程と、
前記軸受組立体が接合された前記ロータの端部を前記ターゲットフランジに挿入する工程と、
前記第1接合部を放冷する工程とを含む、請求項に記載の回転X線管構造の組立方法。
The step of forming the second bonding portion comprises:
Applying RF heating to the rotor;
Placing a joint end of the bearing assembly into a receiving hole in the rotor;
Cooling the second joint part, and
The step of forming the first joint portion includes:
Applying RF heating to the target flange of the anode target;
Inserting the end of the rotor to which the bearing assembly is joined into the target flange;
The method of assembling the rotating X-ray tube structure according to claim 1 , further comprising a step of allowing the first joint portion to cool.
前記ロータにRF加熱をほどこす前記工程において、前記ロータの受け入れ穴は前記第1接合部から前記第2接合部までの区間に渡って、前記軸受組立体の外径よりも大きな内径を有し、
前記陽極ターゲットのターゲットフランジに、RF加熱をほどこす前記工程において、前記ターゲットフランジは、前記第1接合部から前記第2接合部までの区間に渡って、前記ロータの外径よりも大きな内径を有している、請求項に記載の回転X線管構造の組立方法。
In the step of applying RF heating to the rotor, the receiving hole of the rotor has an inner diameter larger than an outer diameter of the bearing assembly over a section from the first joint portion to the second joint portion. ,
In the step of applying RF heating to the target flange of the anode target, the target flange has an inner diameter larger than the outer diameter of the rotor over a section from the first joint portion to the second joint portion. The assembly method of the rotating X-ray tube structure according to claim 2 , comprising:
JP33622997A 1996-12-11 1997-12-08 Rotating anode for X-ray tube using interference fit Expired - Fee Related JP4397976B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/762013 1996-12-11
US08/762,013 US5838762A (en) 1996-12-11 1996-12-11 Rotating anode for x-ray tube using interference fit

Publications (2)

Publication Number Publication Date
JPH10233160A JPH10233160A (en) 1998-09-02
JP4397976B2 true JP4397976B2 (en) 2010-01-13

Family

ID=25063894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33622997A Expired - Fee Related JP4397976B2 (en) 1996-12-11 1997-12-08 Rotating anode for X-ray tube using interference fit

Country Status (4)

Country Link
US (1) US5838762A (en)
JP (1) JP4397976B2 (en)
AT (1) AT410991B (en)
DE (1) DE19752254B4 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6463125B1 (en) * 1999-05-28 2002-10-08 General Electric Company High performance x-ray target
US6330304B1 (en) * 2000-04-28 2001-12-11 Varian Medical Systems, Inc. Vertical rotor braze joint with retention chamfer
US6693990B1 (en) 2001-05-14 2004-02-17 Varian Medical Systems Technologies, Inc. Low thermal resistance bearing assembly for x-ray device
US6751293B1 (en) 2001-10-05 2004-06-15 Varian Medical Systems, Inc. Rotary component support system
US6819742B1 (en) 2001-12-07 2004-11-16 Varian Medical Systems, Inc. Integrated component mounting system for use in an X-ray tube
US7004635B1 (en) 2002-05-17 2006-02-28 Varian Medical Systems, Inc. Lubricated ball bearings
US6735281B2 (en) * 2002-05-17 2004-05-11 Ge Medical Systems Global Technology, Llc Rotating anode for X-ray tube using interference fit
US6751292B2 (en) * 2002-08-19 2004-06-15 Varian Medical Systems, Inc. X-ray tube rotor assembly having augmented heat transfer capability
US7056016B2 (en) * 2003-12-23 2006-06-06 General Electric Company X-ray source support assembly
US7974384B2 (en) * 2009-04-14 2011-07-05 General Electric Company X-ray tube having a ferrofluid seal and method of assembling same
CN103189660B (en) * 2010-11-05 2016-10-19 皇家飞利浦电子股份有限公司 Hydraulic pressure rolling dish supporting system
US8897420B1 (en) * 2012-02-07 2014-11-25 General Electric Company Anti-fretting coating for rotor attachment joint and method of making same
DE102015105898A1 (en) * 2014-04-23 2015-10-29 Siemens Aktiengesellschaft Anode module and beam tube device
CN105529231B (en) * 2016-01-20 2017-06-13 杭州凯龙医疗器械有限公司 X-ray tube rotating cathode assembly mounting device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1036405B (en) * 1954-09-13 1958-08-14 Gen Electric X-ray tube
FR2080250A5 (en) * 1970-02-27 1971-11-12 Radiologie Cie Gle
DE2613060C3 (en) * 1976-03-26 1979-04-26 Siemens Ag, 1000 Berlin Und 8000 Muenchen X-ray tube rotating anode
CS232586B1 (en) * 1983-03-31 1985-02-14 Frantisek Starek Seating of rotating parts of a x-ray tube's anode
JPH0226317A (en) * 1988-07-15 1990-01-29 Toshiba Corp Bearing unit and rotational anode x-ray tube device therewith
JPH0673265B2 (en) * 1989-01-31 1994-09-14 株式会社島津製作所 X-ray target manufacturing method
JP3168687B2 (en) * 1992-05-11 2001-05-21 株式会社島津製作所 Rotating anode X-ray tube and method of adjusting rotation balance of rotating anode X-ray tube

Also Published As

Publication number Publication date
DE19752254B4 (en) 2013-11-28
DE19752254A1 (en) 1998-06-18
AT410991B (en) 2003-09-25
US5838762A (en) 1998-11-17
JPH10233160A (en) 1998-09-02
ATA205197A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
JP4397976B2 (en) Rotating anode for X-ray tube using interference fit
JP4879446B2 (en) Drive assembly for an x-ray tube having a rotating anode
JP4028601B2 (en) X-ray tube
EP0229697B1 (en) X-ray target
EP0496945A1 (en) Rotary-anode type x-ray tube
US6212753B1 (en) Complaint joint for interfacing dissimilar metals in X-ray tubes
US6173996B1 (en) Compliant joint with a coupling member for interfacing dissimilar metals in X-ray tubes
JPH11224627A (en) Straddle bearing assembly
EP0189297B1 (en) X-ray tube devices
US6751293B1 (en) Rotary component support system
JPH0377617B2 (en)
JP4409855B2 (en) Rotating anode for X-ray tube using interference fit
US20010055365A1 (en) Rotary anode type x-ray tube and x-ray tube apparatus provided with the same
US7286643B2 (en) X-ray tube target balancing features
US5548628A (en) Target/rotor connection for use in x-ray tube rotating anode assemblies
JP4357094B2 (en) Rotating anode type X-ray tube and X-ray tube apparatus incorporating the same
US5592525A (en) Method for making a rotating anode with an integral shaft
US6693990B1 (en) Low thermal resistance bearing assembly for x-ray device
US6157702A (en) X-ray tube targets with reduced heat transfer
JP2011233364A (en) Rotating anode x-ray tube and rotating anode x-ray tube assembly
JP5646876B2 (en) Rotating anode X-ray tube and X-ray tube apparatus having the same
US7127034B1 (en) Composite stator
JP6620348B2 (en) Rotating anode X-ray tube
WO2023228430A1 (en) Rotary positive electrode x-ray tube
JPH11176364A (en) Rotary anode x-ray tube device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090401

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees