JP4395913B2 - Short-range correction objective lens - Google Patents

Short-range correction objective lens Download PDF

Info

Publication number
JP4395913B2
JP4395913B2 JP10014199A JP10014199A JP4395913B2 JP 4395913 B2 JP4395913 B2 JP 4395913B2 JP 10014199 A JP10014199 A JP 10014199A JP 10014199 A JP10014199 A JP 10014199A JP 4395913 B2 JP4395913 B2 JP 4395913B2
Authority
JP
Japan
Prior art keywords
lens
objective lens
short
aberration
front group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10014199A
Other languages
Japanese (ja)
Other versions
JP2000292689A (en
JP2000292689A5 (en
Inventor
元壽 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10014199A priority Critical patent/JP4395913B2/en
Publication of JP2000292689A publication Critical patent/JP2000292689A/en
Publication of JP2000292689A5 publication Critical patent/JP2000292689A5/ja
Application granted granted Critical
Publication of JP4395913B2 publication Critical patent/JP4395913B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、近距離補正型の対物レンズに関する。特に、本発明は、広い像高を確保しつつ、良好な収差性能を得るための技術に関する。
【0002】
【従来の技術】
従来、ガウスタイプまたは変形ガウスタイプのレンズとして、近距離撮影時に前群・後群の空気間隔を可変するレンズが知られている。
例えば、本出願人は、特開昭55−28038号公報において、絞りの前後に正の屈折力の前群と正の屈折力の後群とを配置し、近距離撮影時に、これら前群.後群の空気間隔を増大させつつ、両群を物体側へ繰り出すレンズを開示している。このような空気間隔の増大により、絞りと前群との間隔が広がった場合、物体と入射瞳との間隔が広がり、入射光束(絞りを通過する光束)のレンズ入射角が小さくなる。また、空気間隔の増大により、絞りと後群との間隔が広がった場合、像面と出射瞳との間隔が大きくなり、絞りを通過した光束がレンズを出射する際の角度が小さくなる。これらの作用から、近距離撮影時における収差補正が容易となり、撮影倍率が等倍程度の明るいレンズを実現することが可能となる。また、本出願人は、特開昭56−107209号公報において、前群および後群のパワー配分を特定の範囲に限定することにより、近距離撮影時の収差性能を良好にしたレンズを実現している。
【0003】
【発明が解決しようとする課題】
ところで、特開昭55−28038号公報に記載の従来例では、広い像高を確保しつつ像倍率を上げると、球面収差および像面湾曲に劣化が生じやすく、高い光学性能を得ることが困難になるという問題点があった。
特開昭56−107209号公報に記載の従来技術においても、充分良好な光学性能を得るためには、像高を21.6mm(35mmライカ判相当)程度に制限する必要があった。
そこで、本発明では、より広い像高を確保しつつ、近距離撮影時の収差補正を容易にした近距離補正型の対物レンズを提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明の近距離補正型対物レンズは、被写体側より絞りを挟んで、正の屈折力を有する前群と、正の屈折力を有する後群とからなる。この前群は、正の屈折力を有する両凸レンズL1と、物体側に凸面を向けた正メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3とからなる。また、後群は、像側に凸面を向けた接合メニスカスレンズL4と、像側に凸面を向けた正メニスカスレンズL5とからなる。これらの前群と後群は、近距離撮影時に異なる移動距離で物体側へ移動させることにより合焦状態を得、かつ、後群については次の条件式(1)を満足することを特徴とする。0.75<(d4/DR)<0.8 ・・・(1)(ただし、上記のd4は前記接合メニスカスレンズL4のレンズ厚、上記のDRは後群のレンズ総厚を示す)
【0005】
また、近距離補正型対物レンズの前群は、次の条件式(2)を満足することを特徴とする。
0.25<(d3/DF)<0.3 ・・・(2)
(ただし、上記のd3は前記負メニスカスレンズL3のレンズ厚、上記のDFは前群のレンズ総厚を示す)
また、前群の焦点距離をfF、対物レンズ全体の焦点距離をfとしたとき、次の条件式(3)を満足してもよい。
2<(fF/f)<3 ・・・(3)
また、後群の接合メニスカスレンズL4を構成する物体側レンズのアッベ数をνd41、後群の接合メニスカスレンズL4を構成する像側レンズのアッベ数をνd42としたとき、次の条件式(4)を満足してもよい。
(νd41−νd42)>10 ・・・(4)
また、前群の移動量を1として後群の移動比をX2としたとき、次の条件式(6)を満足してもよい。
0.6<X2<0.9 ・・・(6)
また、対物レンズ全体の焦点距離をfとしたとき、次の条件式(8)を満足してもよい。
(DR/f)>0.15 ・・・(8)
【0006】
<作用>
ウスタイプまたは変形ガウスタイプの対物レンズにおいて、前群と後群とに別々の移動量を与えて空気間隔を変化させることにより、近距離撮影時に良好な収差補正が得られることは公知である。
【0007】
さらに、本発明では、後群のレンズ厚の比率を調整して射出瞳を像から離すことにより、収差補正を容易にすることを考えた。このような発想に基づいて、次の条件式(1)を定めた。
0.75<(d4/DR)<0.8 ・・・(1)
(ただし、d4は接合メニスカスレンズL4のレンズ厚、DRは後群のレンズ総厚)
この条件式(1)を満足することにより、射出瞳を像から離すことが可能となる。その結果、レンズ系から射出される軸上光束の収束角度が小さくなり、球面収差などの軸上収差が小さくなる。
【0008】
また、本発明では、条件式(1)を満たして射出瞳が像から離れることにより、レンズ系から射出される斜光束の射出角度が小さくなる。その結果、像周辺に生じるコマ収差などの軸外収差が小さくなる。したがって、その分だけ、広い像高を確保することが容易となる。
【0009】
一方、レンズ厚比[d4/DR]が、条件式(1)の下限値0.75を下回ると、近距離撮影に際して像周辺部に生じるコマ収差が大きくなるため、広い像高を確保することが困難となる。また、球面収差の補正も困難となる。
逆に、レンズ厚比[d4/DR]が、条件式(1)の上限値0.8を上回ると、後群の他のレンズ厚が極端に小さくなり、後群での倍率色収差の補正などが困難となる。
【0010】
なお、条件式(1)を満たすことにより射出瞳が像から離れる理由としては、例えば、下記のような光学作用が考えられる。
従来例(例えば、特開昭55−28038号公報)では、レンズ厚比[d4/DR]がおよそ0.7程度であった。本発明では、条件式(1)を満たすため、このレンズ厚比[d4/DR]は従来例よりも大きくなる。その結果、接合メニスカスレンズL4の凸面は像側へ後退し、通過光束は像寄りの位置から収束を開始する。この状態でレンズ全系の焦点距離を維持するためには、後群の正の屈折力を弱める必要がある。このように後群の正の屈折力が弱くなることにより、射出瞳は像から離れる。
なお、本発明の条件式(1)は、実施形態に示すような収差補正の結果などに基づいて定めたものなので、上記光学作用の説明によって発明内容が限定されるものではない。
【0011】
さらに、本発明では、前群のレンズ厚の比率を調整して、入射瞳を物体から離すことにより、収差補正を容易にすることを考えた。このような発想に基づいて、条件式(2)を定めた。0.25<(d3/DF)<0.3 ・・・(2)(ただし、d3は負メニスカスレンズL3のレンズ厚、DFは前群のレンズ総厚である)この条件式(2)の範囲に、レンズ厚比[d3/DF]を限定することにより、特に前群におけるコマ収差や球面収差を小さくすることができる。
【0012】
一方、レンズ厚比[d3/DF]が、条件式(2)の下限値0.25を下回ると、上記の効果が薄れ、近距離撮影時に前群での収差量が比較的大きくなる。
逆に、レンズ厚比[d3/DF]が、条件式(2)の上限値0.3を上回ると、前群の他のレンズ厚が薄くなり、前群での倍率色収差や軸上色収差の補正が困難となる。
【0013】
《本発明と併用してより有効となる構成》
以下、本発明と併用する上で好ましい構成について、順に説明する。
【0014】
[1]本発明において、レンズの大口径化を図る場合、前群の屈折力を小さくして、前群で発生する収差量を抑えることが好ましい。しかし、前群の屈折力を弱めると、近距離撮影に際して前群の移動量が大きくなり、光学系の全長が長くなるなどの弊害が生じる。
そこで、前群の焦点距離をfFとし、対物レンズ全体の焦点距離をfとした場合、
2<(fF/f)<3 ・・・(3)
の範囲に、前群の屈折力を確保することが好ましい。
この場合、条件式(3)の下限を下回ると、前群で発生する収差が増大して近距離撮影時に良好な収差性能を得ることが困難となる。
逆に、条件式(3)の上限を上回ると、前群で発生する収差量は少なくなるが、近接撮影時の前群繰り出し量が大きくなり、光学系の全長の増大を招いてしまう。
【0015】
[2]さらに、本発明において、レンズ系の倍率色収差を良好に補正する場合、接合メニスカスレンズL4を構成する物体側レンズのアッベ数をνd41とし、像側レンズのアッベ数をνd42として、
(νd41−νd42)>10 ・・・(4)
を満足するように設計することが好ましい。
【0016】
この場合、条件式(4)の下限を下回ると、後群での色消し効果が低下する。特に、像周辺に生じる倍率色収差の補正が困難となる。
また、さらに広い像高を達成しようとした場合には、
(νd41−νd42)>15 ・・・(5)
を満足するように設計することが特に好ましい。この条件式(5)を満足することにより、後群の色消し効果をさらに確実に得ることが可能となる。
【0017】
[3]また、本発明において、前群と後群との移動比を規定することにより、近距離撮影時における収差補正の効果をさらに高めることができる。この場合、前群の移動量を1として後群の移動比をX2と表したとき、
0.6<X2<0.9 ・・・(6)
を満足するように設定することが好ましい。
【0018】
移動比X2が、上限値0.9よりも大きくなると、全体繰り出しとほぼ同様の合焦方式となり、近距離撮影時に良好な収差性能を確保することが困難となる。逆に、移動比X2が、下限値0.6よりも小さくなると、撮影倍率を大きくした場合に前群の移動量が増大して光学系の全長が長くなり、実用的でなくなってしまう。
さらに、近距離撮影時に良好な収差性能を確保するためには、
0.75<X2<0.85 ・・・(7)
を満足するように、移動比X2を設定することが好ましい。
【0019】
[4]また、本発明において、後群のレンズ総厚DRを厚くして出射瞳と像とを確実に遠ざけることにより、近距離撮影時における収差補正の効果をさらに高めることができる。この場合、レンズ全系の焦点距離をfとしたとき、
(DR/f)>0.15 ・・・(8)
を満足するように設定することが好ましい。
逆に、上式中の(DR/f)が、下限値0.15を下回ると、後群を構成する各レンズの厚みが薄くなるため、出射瞳と像とを顕著に離すことが困難となる。
【0020】
【発明の実施の形態】
以下、図面に基づいて本発明における実施の形態を説明する。
【0021】
<参考例>
1は、近距離補正型対物レンズ10の無限遠側および最至近側のレンズ構成を示す図である。
【0022】
図1において、近距離補正型対物レンズ10は、前群LF、絞りS、および後群LRから構成される。この前群LFは、物体側から順に、両凸レンズL1、物体側に凸面を向けた正メニスカスレンズL2、および、物体側に凸面を向けた負メニスカスレンズL3を並べて構成される。一方、後群LRは、物体側から順に、像側に凸面を向けた接合メニスカスレンズL4、および像側に凸面を向けた正メニスカスレンズL5を並べて構成される。
表1は、近距離補正型対物レンズ10のレンズ諸元を示す表である。
【表1】

Figure 0004395913
【0023】
これらのレンズ諸元から、本発明の条件対応値は次の値となる。
条件対応値:
(1) d4/DR=0.774
(2) fF/f=2.457
(3) νd41−νd42=21.62
(4) X2=0.85
(5) DR/f=0.182
これらの値は、上述した条件式(1)、(3)〜(6),(8)をそれぞれ満足する。
【0024】
図2は、近距離補正型対物レンズ10の無限遠時の収差図である。図3は、近距離補正型対物レンズ10の最至近時の収差図である。これらの収差図には、球面収差、非点収差、歪曲収差、コマ収差、倍率色収差をまとめて示す。また、収差図中のAは入射画角を示し、HOは物体高を示す。
図3に示されるように、撮影倍率−1/2倍の最至近時において、収差(特に球面収差およびコマ収差)が良好に補正されていることがわかる。
また特に、最至近時のコマ収差は、大きな物体高HOに対しても良好に補正されており、近距離撮影時に広い像高を適切に確保することができる。
【0025】
第1の実施形態>
4は、近距離補正型対物レンズ20の無限遠側および最至近側のレンズ構成を示す図である。なお、レンズの基本構成については、参考例と同様であるため、ここでの説明を省略する。表2は、近距離補正型対物レンズ20のレンズ諸元を示す表である。
【表2】
Figure 0004395913
【0026】
これらのレンズ諸元から、本発明の条件対応値は次の値となる。
条件対応値:
(1) d4/DR=0.758
(2) d3/DF=0.272
(3) fF/f=2.111
(4) νd41−νd42=19.48
(5) X2=0.82
(6) DR/f=0.170
これらの値は、上述した条件式(1)〜(8)をすべて満足する。
【0027】
図5は、近距離補正型対物レンズ20の無限遠時の収差図である。図6は、近距離補正型対物レンズ20の最至近時の収差図である。これらの収差図には、球面収差、非点収差、歪曲収差、コマ収差、倍率色収差をまとめて示す。また、収差図中のAは入射画角を示し、HOは物体高を示す。図6に示されるように、撮影倍率−1/2倍の最至近時において、収差(特に球面収差およびコマ収差)が良好に補正されていることがわかる。また特に、条件式(2)を満足することにより、参考例よりも、コマ収差がさらに良好に補正される。したがって、近距離撮影時においても、像高30mm程度の広いイメージサークルを容易に確保することが可能となる。
【0028】
第2の実施形態>
7は、近距離補正型対物レンズ30の無限遠側および最至近側のレンズ構成を示す図である。なお、レンズの基本構成については、参考例と同様であるため、ここでの説明を省略する。表3は、近距離補正型対物レンズ30のレンズ諸元を示す表である。
【表3】
Figure 0004395913
【0029】
これらのレンズ諸元から、本発明の条件対応値は次の値となる。
条件対応値:
(1) d4/DR=0.785
(2) d3/DF=0.299
(3) fF/f=2.092
(4) νd41−νd42=19.41
(5) X2=0.825
(6) DR/f=0.191
これらの値は、上述した条件式(1)〜(8)をすべて満足する。
【0030】
図8は、近距離補正型対物レンズ30の無限遠時の収差図である。図9は、近距離補正型対物レンズ30の最至近時の収差図である。これらの収差図には、球面収差、非点収差、歪曲収差、コマ収差、倍率色収差をまとめて示す。また、収差図中のAは入射画角を示し、HOは物体高を示す。図9に示されるように、撮影倍率−1/2倍の最至近時において、収差(特に球面収差およびコマ収差)が良好に補正されていることがわかる。また特に、条件式(2)を満足することにより、参考例よりも、コマ収差がさらに良好に補正される。したがって、近距離撮影時においても、像高30mm程度の広いイメージサークルを容易に確保することが可能となる。
【0031】
<実施形態の補足事項>
なお、上述した実施形態では、ガウスタイプの対物レンズを挙げて説明したが、本発明はこの構成に限定されるものではない。例えば、変形ガウスタイプなどのレンズ構成に本発明を適用してもよい。
【0032】
【発明の効果】
請求項1に記載の発明では、後群のレンズ厚比を条件式(1)の範囲に限定することにより、近距離撮影時に広い像高を適切に確保しつつ、良好な収差性能を得ることが可能となる。
また、請求項2に記載の発明では、前群のレンズ厚比を条件式(2)の範囲にさらに限定することにより、近距離撮影時に一層広い像高を確保しつつ、より良好な収差性能を得ることが可能となる。
以上説明したように、本発明の適用により、近距離撮影時の像高を広く確保することが容易に可能となる。特に、大きな像高(イメージサークル)を必要とするシフト・チルト撮影光学系やブレ補正光学系などに本発明を適用することにより、これら光学系の収差性能を的確に向上させることが可能となる。
【図面の簡単な説明】
【図1】近距離補正型対物レンズ10の無限遠側および最至近側のレンズ構成を示す図である。
【図2】近距離補正型対物レンズ10の無限遠時の収差図である。
【図3】近距離補正型対物レンズ10の最至近時の収差図である。
【図4】近距離補正型対物レンズ20の無限遠側および最至近側のレンズ構成を示す図である。
【図5】近距離補正型対物レンズ20の無限遠時の収差図である。
【図6】近距離補正型対物レンズ20の最至近時の収差図である。
【図7】近距離補正型対物レンズ30の無限遠側および最至近側のレンズ構成を示す図である。
【図8】近距離補正型対物レンズ30の無限遠時の収差図である。
【図9】近距離補正型対物レンズ30の最至近時の収差図である。
【符号の説明】
10,20,30 近距離補正型対物レンズ
LF 前群
LR 後群
L1 両凸レンズ
L2 正メニスカスレンズ
L3 負メニスカスレンズ
L4 接合メニスカスレンズ
L5 正メニスカスレンズ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a short distance correction type objective lens. In particular, the present invention relates to a technique for obtaining good aberration performance while ensuring a wide image height.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a Gauss type or modified Gauss type lens, a lens that varies the air spacing between the front group and the rear group at the time of short-distance shooting is known.
For example, in the Japanese Patent Application Laid-Open No. 55-28038, the present applicant arranges a front group having a positive refractive power and a rear group having a positive refractive power before and after the stop, and the front group. A lens that extends both groups toward the object side while increasing the air gap between the rear groups is disclosed. When the distance between the stop and the front group increases due to such an increase in the air interval, the interval between the object and the entrance pupil increases, and the lens incident angle of the incident light beam (light beam passing through the stop) decreases. Further, when the distance between the diaphragm and the rear group is increased due to the increase in the air distance, the distance between the image plane and the exit pupil is increased, and the angle at which the light beam that has passed through the diaphragm exits the lens is decreased. Because of these effects, it becomes easy to correct aberrations during short-distance shooting, and it is possible to realize a bright lens with a shooting magnification of about the same magnification. In addition, in the Japanese Patent Application Laid-Open No. 56-107209, the present applicant has realized a lens with good aberration performance at close-up shooting by limiting the power distribution of the front group and the rear group to a specific range. ing.
[0003]
[Problems to be solved by the invention]
Incidentally, in the conventional example described in Japanese Patent Application Laid-Open No. 55-28038, if the image magnification is increased while ensuring a wide image height, spherical aberration and field curvature are likely to deteriorate, and it is difficult to obtain high optical performance. There was a problem of becoming.
In the prior art described in JP-A-56-107209, in order to obtain sufficiently good optical performance, it is necessary to limit the image height to about 21.6 mm (equivalent to 35 mm Leica size).
Accordingly, an object of the present invention is to provide a short-distance correction type objective lens that facilitates aberration correction during short-distance shooting while ensuring a wider image height.
[0004]
[Means for Solving the Problems]
Short-range-corrected objective lens of the present invention, across the aperture from the object side, consisting of a front group having positive refractive power, and a rear group having positive refractive power. The front group includes a biconvex lens L1 having a positive refractive power, a positive meniscus lens L2 having a convex surface directed toward the object side, a negative meniscus lens L3 with a convex surface directed toward the object side. Further, the rear group is a cemented meniscus lens L4 having a convex surface directed toward the image side, a positive meniscus lens L5 with the convex surface facing the image side. These front group and rear group are characterized by obtaining a focused state by moving to the object side at different moving distances during close-up shooting, and satisfying the following conditional expression (1) for the rear group: To do. 0.75 <(d4 / DR) <0.8 (1) (where d4 is the lens thickness of the cemented meniscus lens L4, and DR is the total lens thickness of the rear group)
[0005]
In addition, the front group of the short distance correction objective lens satisfies the following conditional expression (2).
0.25 <(d3 / DF) <0.3 (2)
(Where d3 is the lens thickness of the negative meniscus lens L3, and DF is the total lens thickness of the front group)
Further, when the focal length of the front group is fF and the focal length of the entire objective lens is f, the following conditional expression (3) may be satisfied .
2 <(fF / f) <3 (3)
When the Abbe number of the object side lens constituting the rear group cemented meniscus lens L4 is νd41 and the Abbe number of the image side lens constituting the rear group cemented meniscus lens L4 is νd42, the following conditional expression (4): You may be satisfied .
(Νd41−νd42)> 10 (4)
Further, when the movement amount of the front group is 1 and the movement ratio of the rear group is X2, the following conditional expression (6) may be satisfied .
0.6 <X2 <0.9 (6)
Further, when the focal length of the entire objective lens is f, the following conditional expression (8) may be satisfied .
(DR / f)> 0.15 (8)
[0006]
<Action>
In moth Usutaipu or modified Gauss type objective lens, by changing the air space giving separate movement amount into a front group and the rear group, it is known that good aberration correction at short distance photographing is obtained.
[0007]
Furthermore, in the present invention, it has been considered that aberration correction can be facilitated by adjusting the ratio of the lens thickness of the rear group to separate the exit pupil from the image. Based on this idea, the following conditional expression (1) was determined.
0.75 <(d4 / DR) <0.8 (1)
(Where d4 is the thickness of the cemented meniscus lens L4, DR is the total thickness of the rear lens group)
When this conditional expression (1) is satisfied, the exit pupil can be separated from the image. As a result, the convergence angle of the axial light beam emitted from the lens system is reduced, and axial aberrations such as spherical aberration are reduced.
[0008]
In the present invention, the exit angle of the oblique light beam emitted from the lens system is reduced by satisfying conditional expression (1) and leaving the exit pupil away from the image. As a result, off-axis aberrations such as coma generated around the image are reduced. Therefore, it is easy to secure a wide image height by that amount.
[0009]
On the other hand, when the lens thickness ratio [d4 / DR] is less than the lower limit value 0.75 of the conditional expression (1), coma aberration generated in the peripheral portion of the image during short-distance shooting increases, and thus a wide image height is ensured. It becomes difficult. In addition, it is difficult to correct spherical aberration.
Conversely, when the lens thickness ratio [d4 / DR] exceeds the upper limit value 0.8 of conditional expression (1), the other lens thicknesses in the rear group become extremely small, and correction of lateral chromatic aberration in the rear group, etc. It becomes difficult.
[0010]
Note that the following optical action can be considered as the reason why the exit pupil moves away from the image by satisfying conditional expression (1).
In the conventional example (for example, JP-A-55-28038), the lens thickness ratio [d4 / DR] is about 0.7. In the present invention, since the conditional expression (1) is satisfied, the lens thickness ratio [d4 / DR] is larger than that of the conventional example. As a result, the convex surface of the cemented meniscus lens L4 retracts toward the image side, and the passing light beam starts to converge from a position near the image. In order to maintain the focal length of the entire lens system in this state, it is necessary to weaken the positive refractive power of the rear group. As the positive refractive power of the rear group becomes weak in this way, the exit pupil moves away from the image.
Since conditional expression (1) of the present invention is determined based on the result of aberration correction as shown in the embodiment, the invention content is not limited by the description of the optical action.
[0011]
Furthermore, in the present invention, it has been considered that aberration correction can be facilitated by adjusting the ratio of the lens thickness of the front group and separating the entrance pupil from the object. Conditional expression (2) was defined based on such an idea. 0.25 <(d3 / DF) <0.3 (2) (where d3 is the lens thickness of the negative meniscus lens L3, and DF is the total lens thickness of the front group) of the conditional expression (2) By limiting the lens thickness ratio [d3 / DF] to the range, coma aberration and spherical aberration can be reduced particularly in the front group.
[0012]
On the other hand, when the lens thickness ratio [d3 / DF] is less than the lower limit value 0.25 of the conditional expression (2), the above effect is reduced, and the amount of aberration in the front group becomes relatively large during short-distance shooting.
Conversely, when the lens thickness ratio [d3 / DF] exceeds the upper limit of 0.3 in the conditional expression (2), the other lens thicknesses in the front group become thin, and the lateral chromatic aberration and axial chromatic aberration in the front group decrease. Correction becomes difficult.
[0013]
<< Configuration that is more effective in combination with the present invention >>
Hereinafter, preferred configurations for use in combination with the present invention will be described in order.
[0014]
[1] In the present invention, when increasing the diameter of the lens, it is preferable to reduce the amount of aberration generated in the front group by reducing the refractive power of the front group. However, if the refractive power of the front group is weakened, the amount of movement of the front group increases during short-distance shooting, and the total length of the optical system becomes longer.
Therefore, when the focal length of the front group is f F and the focal length of the entire objective lens is f,
2 <(f F / f) <3 (3)
It is preferable to secure the refractive power of the front group in the range of.
In this case, if the lower limit of conditional expression (3) is not reached, the aberration generated in the front group increases, making it difficult to obtain good aberration performance during close-up shooting.
On the other hand, if the upper limit of conditional expression (3) is exceeded, the amount of aberration generated in the front group decreases, but the amount of front group extension during close-up photography increases, leading to an increase in the overall length of the optical system.
[0015]
[2] Further, in the present invention, when the lateral chromatic aberration of the lens system is favorably corrected, the Abbe number of the object side lens constituting the cemented meniscus lens L4 is νd41, and the Abbe number of the image side lens is νd42.
(Νd41−νd42)> 10 (4)
It is preferable to design so as to satisfy
[0016]
In this case, if the lower limit of conditional expression (4) is not reached, the achromatic effect in the rear group will be reduced. In particular, it is difficult to correct lateral chromatic aberration that occurs around the image.
Also, when trying to achieve a wider image height,
(Νd41−νd42)> 15 (5)
It is particularly preferable to design so as to satisfy the above. By satisfying this conditional expression (5), the achromatic effect of the rear group can be obtained more reliably.
[0017]
[3] In the present invention, by defining the movement ratio between the front group and the rear group, it is possible to further enhance the effect of aberration correction at the time of close-up shooting. In this case, when the movement amount of the front group is 1 and the movement ratio of the rear group is expressed as X2,
0.6 <X2 <0.9 (6)
It is preferable to set so as to satisfy the above.
[0018]
When the movement ratio X2 is larger than the upper limit value 0.9, the focusing method is almost the same as the entire extension, and it is difficult to ensure good aberration performance at the time of short-distance shooting. On the other hand, if the movement ratio X2 is smaller than the lower limit value 0.6, when the photographing magnification is increased, the amount of movement of the front group increases and the total length of the optical system becomes longer, making it impractical.
Furthermore, in order to ensure good aberration performance during close-up shooting,
0.75 <X2 <0.85 (7)
It is preferable to set the movement ratio X2 so as to satisfy the above.
[0019]
[4] In the present invention, by increasing the total lens thickness DR of the rear group and reliably separating the exit pupil and the image, it is possible to further enhance the aberration correction effect during close-up shooting. In this case, when the focal length of the entire lens system is f,
(DR / f)> 0.15 (8)
It is preferable to set so as to satisfy the above.
Conversely, if (DR / f) in the above formula is below the lower limit of 0.15, the thickness of each lens constituting the rear group becomes thin, and it is difficult to significantly separate the exit pupil from the image. Become.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0021]
<Reference example>
FIG. 1 is a diagram showing a lens configuration of the short distance correction objective lens 10 on the infinity side and the closest side.
[0022]
In FIG. 1, the short distance correction objective lens 10 includes a front group LF, a stop S, and a rear group LR. The front group LF includes, in order from the object side, a biconvex lens L1, a positive meniscus lens L2 having a convex surface facing the object side, and a negative meniscus lens L3 having a convex surface facing the object side. On the other hand, the rear group LR includes, in order from the object side, a cemented meniscus lens L4 having a convex surface facing the image side and a positive meniscus lens L5 having a convex surface facing the image side.
Table 1 is a table showing lens specifications of the short distance correction objective lens 10.
[Table 1]
Figure 0004395913
[0023]
From these lens specifications, the condition-corresponding value of the present invention is the following value.
Conditional values:
(1) d4 / DR = 0.774
(2) f F /f=2.457
(3) νd41−νd42 = 21.62
(4) X2 = 0.85
(5) DR / f = 0.182
These values satisfy the conditional expressions (1), (3) to (6), and (8) described above.
[0024]
FIG. 2 is an aberration diagram of the short distance correction objective lens 10 at infinity. FIG. 3 is an aberration diagram of the short distance correction objective lens 10 at the closest distance. These aberration diagrams collectively show spherical aberration, astigmatism, distortion aberration, coma aberration, and lateral chromatic aberration. In the aberration diagrams, A represents the incident angle of view, and HO represents the object height.
As shown in FIG. 3, it can be seen that aberrations (particularly spherical aberration and coma aberration) are well corrected at the closest time when the photographing magnification is −½ times.
In particular, the coma aberration at the closest distance is well corrected even for a large object height HO, and a wide image height can be appropriately ensured during close-up shooting.
[0025]
< First Embodiment>
FIG. 4 is a diagram showing a lens configuration of the short distance correction objective lens 20 on the infinity side and the closest side. Since the basic configuration of the lens is the same as that of the reference example , description thereof is omitted here. Table 2 is a table showing lens specifications of the short distance correction objective lens 20.
[Table 2]
Figure 0004395913
[0026]
From these lens specifications, the condition-corresponding value of the present invention is the following value.
Conditional values:
(1) d4 / DR = 0.758
(2) d3 / DF = 0.272
(3) f F /f=2.111
(4) νd41−νd42 = 19.48
(5) X2 = 0.82
(6) DR / f = 0.170
These values satisfy all the conditional expressions (1) to (8) described above.
[0027]
FIG. 5 is an aberration diagram of the short distance correction objective lens 20 at infinity. FIG. 6 is an aberration diagram of the short distance correction objective lens 20 at the closest distance. These aberration diagrams collectively show spherical aberration, astigmatism, distortion aberration, coma aberration, and lateral chromatic aberration. In the aberration diagrams, A represents the incident angle of view, and HO represents the object height. As shown in FIG. 6, it can be seen that aberrations (particularly spherical aberration and coma aberration) are well corrected at the closest time when the photographing magnification is −½ times. In particular, when the conditional expression (2) is satisfied, coma is corrected more satisfactorily than in the reference example . Accordingly, a wide image circle having an image height of about 30 mm can be easily secured even during close-up shooting.
[0028]
< Second Embodiment>
FIG. 7 is a diagram illustrating a lens configuration on the infinity side and the closest side of the short distance correction objective lens 30. Since the basic configuration of the lens is the same as that of the reference example , description thereof is omitted here. Table 3 is a table showing lens specifications of the short distance correction objective lens 30.
[Table 3]
Figure 0004395913
[0029]
From these lens specifications, the condition-corresponding value of the present invention is the following value.
Conditional values:
(1) d4 / DR = 0.785
(2) d3 / DF = 0.299
(3) f F /f=2.092
(4) νd41−νd42 = 19.41
(5) X2 = 0.825
(6) DR / f = 0.191
These values satisfy all the conditional expressions (1) to (8) described above.
[0030]
FIG. 8 is an aberration diagram of the short distance correcting objective lens 30 at infinity. FIG. 9 is an aberration diagram of the short distance correction objective lens 30 at the closest distance. These aberration diagrams collectively show spherical aberration, astigmatism, distortion aberration, coma aberration, and lateral chromatic aberration. In the aberration diagrams, A represents the incident angle of view, and HO represents the object height. As shown in FIG. 9, it can be seen that aberrations (especially spherical aberration and coma aberration) are well corrected at the closest time when the photographing magnification is -1/2. In particular, when the conditional expression (2) is satisfied, coma is corrected more satisfactorily than in the reference example . Accordingly, a wide image circle having an image height of about 30 mm can be easily secured even during close-up shooting.
[0031]
<Supplementary items of the embodiment>
In the above-described embodiment, a Gaussian objective lens has been described. However, the present invention is not limited to this configuration. For example, the present invention may be applied to a lens configuration such as a modified Gaussian type.
[0032]
【The invention's effect】
In the first aspect of the invention, by limiting the lens thickness ratio of the rear group to the range of the conditional expression (1), it is possible to obtain a good aberration performance while appropriately securing a wide image height at the time of short-distance shooting. Is possible.
In the invention according to claim 2, by further limiting the lens thickness ratio of the front group to the range of the conditional expression (2), it is possible to obtain a better aberration performance while securing a wider image height at the time of close-up shooting. Can be obtained.
As described above, by applying the present invention, it is possible to easily ensure a wide image height at the time of short-distance shooting. In particular, by applying the present invention to a shift / tilt imaging optical system or a blur correction optical system that requires a large image height (image circle), it becomes possible to accurately improve the aberration performance of these optical systems. .
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a lens configuration of an infinite distance side and a closest distance side of a short-distance correction objective lens 10;
FIG. 2 is an aberration diagram of the short distance correction objective lens 10 at infinity.
FIG. 3 is an aberration diagram of the short distance correction objective lens 10 at the closest distance.
FIG. 4 is a diagram showing a lens configuration on the infinity side and the closest side of the short distance correction objective lens 20;
FIG. 5 is an aberration diagram of the short distance correction objective lens 20 at infinity.
FIG. 6 is an aberration diagram of the short distance correction objective lens 20 at the closest distance.
FIG. 7 is a diagram showing a lens configuration on the infinity side and the closest side of the short distance correction type objective lens 30;
FIG. 8 is an aberration diagram of the short distance correction objective lens 30 at infinity.
FIG. 9 is an aberration diagram of the short distance correction objective lens 30 at the closest distance.
[Explanation of symbols]
10, 20, 30 Short-range correction objective lens LF Front group LR Rear group L1 Biconvex lens L2 Positive meniscus lens L3 Negative meniscus lens L4 Joint meniscus lens L5 Positive meniscus lens

Claims (5)

被写体側より絞りを挟んで、正の屈折力を有する前群と、正の屈折力を有する後群とからなり
前記前群は、正の屈折力を有する両凸レンズL1と、物体側に凸面を向けた正メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3とからなり
前記後群は、像側に凸面を向けた接合メニスカスレンズL4と、像側に凸面を向けた正メニスカスレンズL5とからなり
近距離撮影時には前記前群と前記後群とを異なる移動距離で物体側へ移動させて合焦させ、
前記接合メニスカスレンズL4のレンズ厚をd4、前記後群のレンズ総厚をDR、前記負メニスカスレンズL3のレンズ厚をd3、前記前群のレンズ総厚をDFとしたとき、次の条件式(1)〜(2)を満足することを特徴とする近距離補正型対物レンズ。
0.75<(d4/DR)<0.8 ・・・(1)
0.25<(d3/DF)<0.3 ・・・(2)
Across the aperture from the object side, it consists of a front group having positive refractive power, and a rear group having positive refractive power,
The front group includes a biconvex lens L1 having a positive refractive power, a positive meniscus lens L2 having a convex surface directed toward the object side and a negative meniscus lens L3 with a convex surface directed toward the object side,
The rear group includes a cemented meniscus lens L4 having a convex surface directed toward the image side and a positive meniscus lens L5 with the convex surface facing the image side,
At the time of short-distance shooting, the front group and the rear group are moved to the object side at different moving distances and focused.
When the lens thickness of the cemented meniscus lens L4 is d4, the total lens thickness of the rear group is DR , the lens thickness of the negative meniscus lens L3 is d3, and the total lens thickness of the front group is DF , the following conditional expression ( 1) A short-distance correction type objective lens that satisfies the following (2) .
0.75 <(d4 / DR) <0.8 (1)
0.25 <(d3 / DF) <0.3 (2)
前記前群の焦点距離をfF、対物レンズ全体の焦点距離をfとしたとき、次の条件式(3)を満足することを特徴とする請求項に記載の近距離補正型対物レンズ。
2<(fF/f)<3 ・・・(3)
FF the focal length of the front group and the focal length of the entire objective lens is f, the short-range-corrected objective lens according to claim 1, characterized by satisfying the following condition (3).
2 <(fF / f) <3 (3)
前記後群の前記接合メニスカスレンズL4を構成する物体側レンズのアッベ数をνd41、前記後群の前記接合メニスカスレンズL4を構成する像側レンズのアッベ数をνd42としたとき、次の条件式(4)を満足することを特徴とする請求項1又は2に記載の近距離補正型対物レンズ。
(νd41−νd42)>10 ・・・(4)
When the Abbe number of the object side lens constituting the cemented meniscus lens L4 in the rear group is νd41 and the Abbe number of the image side lens constituting the cemented meniscus lens L4 in the rear group is νd42, the following conditional expression ( The short-distance correction objective lens according to claim 1 or 2 , wherein 4) is satisfied.
(Νd41−νd42)> 10 (4)
前記前群の移動量を1として前記後群の移動比をX2としたとき、次の条件式(6)を満足することを特徴とする請求項1からのいずれか1項に記載の近距離補正型対物レンズ。
0.6<X2<0.9 ・・・(6)
The near condition according to any one of claims 1 to 3 , wherein the following conditional expression (6) is satisfied when the movement amount of the front group is 1 and the movement ratio of the rear group is X2. Distance correction type objective lens.
0.6 <X2 <0.9 (6)
対物レンズ全体の焦点距離をfとしたとき、次の条件式(8)を満足することを特徴とする請求項1からのいずれか1項に記載の近距離補正型対物レンズ。(DR/f)>0.15 ・・・(8)When the focal length of the entire objective lens is f, the short-range-corrected objective lens according to claims 1, characterized by satisfying the following condition (8) in any one of 4. (DR / f)> 0.15 (8)
JP10014199A 1999-04-07 1999-04-07 Short-range correction objective lens Expired - Lifetime JP4395913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10014199A JP4395913B2 (en) 1999-04-07 1999-04-07 Short-range correction objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10014199A JP4395913B2 (en) 1999-04-07 1999-04-07 Short-range correction objective lens

Publications (3)

Publication Number Publication Date
JP2000292689A JP2000292689A (en) 2000-10-20
JP2000292689A5 JP2000292689A5 (en) 2006-10-12
JP4395913B2 true JP4395913B2 (en) 2010-01-13

Family

ID=14266045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10014199A Expired - Lifetime JP4395913B2 (en) 1999-04-07 1999-04-07 Short-range correction objective lens

Country Status (1)

Country Link
JP (1) JP4395913B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905653B2 (en) * 2006-03-28 2012-03-28 ペンタックスリコーイメージング株式会社 Medium telephoto lens system
JP2008309998A (en) 2007-06-14 2008-12-25 Sony Corp Tilt lens system and imaging apparatus
US9535260B2 (en) * 2014-02-20 2017-01-03 Canon Kabushiki Kaisha Adapter having tilt-shift unit, and camera system
JP6759593B2 (en) * 2016-01-13 2020-09-23 株式会社ニコン Imaging lens and imaging system
JP6862169B2 (en) * 2016-12-15 2021-04-21 キヤノン株式会社 Optical equipment and imaging equipment
CN109752820B (en) * 2017-11-01 2024-03-29 广州长步道光电科技有限公司 High-resolution low-distortion micro-distance industrial lens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493809A (en) * 1990-08-03 1992-03-26 Canon Inc Gausstype lens
JPH1068880A (en) * 1996-08-27 1998-03-10 Nikon Corp Aberration variable optical system having macro mechanism

Also Published As

Publication number Publication date
JP2000292689A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
JP3584107B2 (en) Zoom lens
JP5628090B2 (en) Inner focus lens
JP2503580B2 (en) Optical system with variable bokeh
JP5726491B2 (en) Large-aperture telephoto zoom lens with anti-vibration function
JP3810106B2 (en) Wide angle lens
JP4401451B2 (en) Zoom lens and optical apparatus having the same
JPH09159911A (en) Inner focus type telephoto lens
JP2005352060A (en) Small-size wide-angle lens with large aperture and camera equipped with same
JPH06201988A (en) Large aperture ratio internal focusing telephoto lens
JPH07101253B2 (en) Shooting lens using floating
JPS63316815A (en) Gaussian rear focus lens
JP4472079B2 (en) Medium telephoto lens
JP4550970B2 (en) Floating photography lens
JP4395913B2 (en) Short-range correction objective lens
JP3925747B2 (en) Large aperture lens for low-light shooting
JP3352264B2 (en) Retrofocus type lens and camera having the same
JP3964533B2 (en) Medium telephoto lens
JPS6113206B2 (en)
JP4004587B2 (en) Small wide-angle photographic lens
JP4717493B2 (en) Retro focus type super wide angle lens
JP4171942B2 (en) Zoom lens
JP3005037B2 (en) Compact high zoom lens
JPH0795143B2 (en) Large aperture ratio telephoto lens
JP3486352B2 (en) Wide-angle zoom lens system
JP4434596B2 (en) Retro focus lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151030

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term