JP4392938B2 - Permselective membrane reactor - Google Patents

Permselective membrane reactor Download PDF

Info

Publication number
JP4392938B2
JP4392938B2 JP2000018825A JP2000018825A JP4392938B2 JP 4392938 B2 JP4392938 B2 JP 4392938B2 JP 2000018825 A JP2000018825 A JP 2000018825A JP 2000018825 A JP2000018825 A JP 2000018825A JP 4392938 B2 JP4392938 B2 JP 4392938B2
Authority
JP
Japan
Prior art keywords
reactor
gas
rectifying plate
porous tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000018825A
Other languages
Japanese (ja)
Other versions
JP2001213611A (en
Inventor
繁雄 後藤
智彦 田川
始 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2000018825A priority Critical patent/JP4392938B2/en
Publication of JP2001213611A publication Critical patent/JP2001213611A/en
Application granted granted Critical
Publication of JP4392938B2 publication Critical patent/JP4392938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機質ガスの脱水素反応、水蒸気改質反応などに用いられる選択透過膜反応器に関する。
【0002】
【従来の技術】
パラフィンからのオレフィンや芳香族の誘導ならびに改質反応、エチルベンゼンからのスチレンの誘導に代表されるアルキルアロマテイックスの脱水素反応など、水素を生成する脱水素反応は一般に大きな吸熱およびモル数の増大を伴い、熱力学的平衡反応率を高くするため、高温、低反応物分圧にする必要がある。
【0003】
エチルベンゼンの脱水素を例に取ると、工業的に実施するためには、一般に600℃から800℃の高温と反応物の10倍程度の加熱水蒸気を必要とする。こうした脱水素反応を促進させる方法として、多孔質ガラス、パラジウムメッキした無機多孔質体、金属多孔質体の表面に酸化物層を形成させその外側にパラジウムメッキした水素透過管などを反応器内に設置し、反応生成物の水素の一部を反応器外に取り出しつつ脱水素反応を行うメンブレンリアクターが提案されている。
【0004】
代表的な例として図7に示すように、外表面にパラジウム薄膜30を形成した多孔質セラミック管31を外筒32に内設し、多孔質セラミック管31の内部に触媒33を充填した内部充填方式の選択透過膜反応器34が提案されている(例えば特開昭63−154629号、特開平5−317708号を参照)。
【0005】
この方式では、原料ガス35が多孔質セラミック管31内部に充填された触媒層33を通過することにより製品ガス36と副生成ガスとして水素ガス37が生成する。水素ガス37は多孔質セラミック管31およびパラジウム薄膜30を透過し、多孔質セラミック管と外筒との空隙に流れるスイープガス38と共に反応器外に流出される。スイープガスを用いないで減圧にしてパラジウム薄膜を透過した水素を反応器外へ流出させることも行われる。この方式では、触媒とパラジウム膜が直接接触しない構造であるから、触媒によるパラジウム膜の劣化が回避できる。
【0006】
パラジウム膜を薄膜化するためには多孔質セラミック管の外表面も極細孔の層とする必要があり、セラミック層も水素透過の抵抗になりうる。ここで、水素透過の方向は図8に示すように2種類ある。水素をクヌッセン拡散などの1乗則が支配的である多孔質セラミック層を先に透過させ、その後1/2乗則に支配されるパラジウム層を透過させるCPモードと、先にパラジウム層を透過させ、その後セラミック層を透過させるPCモードとがある。CPモードがPCモードよりも透過速度が速いのが一般的である。したがって、図7の方式はこの点からも有利である。
【0007】
触媒活性が低いときには触媒量を多く充填する必要があり、大口径のパラジウム担持セラミック管が要求される。しかしながら、パラジウム膜を外表面に成膜する大口径の多孔質セラミック管の製作はきわめて困難である。従って、多孔質セラミック管に充填できる触媒量が制限され、工業的な規模の反応器とすることは困難である。
【0008】
工業的な反応器とするには、水素除去速度と脱水素反応速度が適合する最適設計を行う必要がある。
脱水素は触媒の活性に依存し、多量の触媒を必要とする場合がある。一方、図7の方式ではパラジウム膜を外表面に成膜した多孔質セラミック管の寸法に制限があり、充填できる触媒量を多くすることができない。
【0009】
従って、図9に示す通り、内壁面にパラジウム膜39を成膜した多孔質セラミック管40を外筒41に内設し、多孔質セラミック管と外筒との間に形成される空隙に固体触媒を充填した外部充填方式の選択透過膜反応器43が提案されている。
【0010】
この方式の場合は、副生成ガスの水素44は多孔質セラミック管40を透過し、パラジウム膜39を透過した後、多孔質セラミック管内部に流れるスイープガス45と共に反応器外に流出される。触媒とパラジウム膜の直接接触は回避され、かつ、CPモードも確保される。
【0011】
又、外筒41の形状は任意に設計可能であり、必要な反応速度を確保するための触媒量に対応した外筒の大きさとすることができる。更に、セラミック管内部がスイープ部とされているから、スイープガスの代わりに空気を流通させ、透過水素を燃焼させることにより水素透過速度を向上させることができる。更に又、この燃焼熱を触媒層に供給することも可能となる。
【0012】
触媒活性が低く、多くの触媒層が必要な場合は、外筒の径を大きくすれば可能となる。
しかしながら、図9の方式の大口径反応器においては、外筒近傍に生成した水素は半径方法の拡散抵抗のためパラジウム膜部39への到達が困難となり、メンブレンリアクターとしての効率が低下するとの問題をかかえている。
【0013】
【発明が解決しようとする課題】
本発明は、上述した種々の問題点に鑑みてなされたものであり、その目的とするところは、触媒活性が低く、多くの触媒量が必要な場合であっても任意に設計可能な反応器であって、かつ反応率の高い選択透過膜反応器を提供することにある。
【0014】
【課題を解決するための手段】
本発明によれば、選択透過膜反応器であって、該反応器の入口より流入した原料ガスが該反応器内の触媒を充填した反応室内で反応し、生成した製品ガスを該反応器の出口より流出させ、副生成ガスを選択透過膜を透過させて該反応室外へと流出させる選択透過膜反応器において、
該反応器が選択透過膜を表面に成膜した多孔質管を内設し、該反応器の内壁と該多孔質管との空隙に触媒層を設けて反応室とし、該反応器の内壁近傍で生成した副生成ガスを該多孔質管表面へと誘導する整流板を該反応室内に設けたことを特徴とする選択透過膜反応器が提供される。
【0015】
本発明においては、選択透過膜が水素透過膜であることを特徴とする選択透過膜反応器が提供される。更に、その水素透過膜がパラジュウム合金膜であることが好ましい。更に又、選択透過膜が多孔質管の内壁に成膜されていることが好ましい。
【0016】
又、本発明においては、整流板が熱伝導率5Wm-1-1以上の伝熱性に優れた材料であることが好ましい。
【0017】
また、本発明によれば、選択透過膜反応器であって、反応器の入口より流入した原料ガスが反応器内の触媒を充填した反応室内で反応し、生成した製品ガスを反応器の出口より流出させ、副生成ガスを選択透過膜を透過させて反応室外へと流出させる選択透過膜反応器において、
反応器が選択透過膜を内表面又は外表面に成膜した多孔質管を内設し、反応器の内壁と多孔質管との空隙に形成された反応室の構成が、円形状の開口部を有する整流板であって、開口部内周面が多孔質管と当接し、整流板の外縁部が反応室内壁近傍にあって、整流板の一方の面側から流入するガス流を他方の面側へ反転し流出する第1ガス反転流路部を有する第1整流板と円形状の開口部を有する整流板であって、整流板の外縁部が反応器内壁と当接し、開口部の内周面が多孔質管外壁の近傍にあって、整流板の一方の面から流入するガス流を他方の面側へ反転流出する第2ガス反転流路部を有する第2整流板とが交互に上下方向に棚組みされると共に各整流板間に触媒が充填された構成であることを特徴とする選択透過膜反応器が提供される。
【0018】
本発明においては、反応器が円筒体であることが好ましい。更に、多孔質管が袋管であって、倒立状態で反応器に内設されていることが好ましい。
【0019】
又、本発明においては、多孔質管の外径が連続的又は段階的に長さ方向に変化していることが好ましい。更に、反応器の巾方向の寸法が連続的又は段階的に高さ方向に変化していることが好ましい。
【0020】
本発明においては、第1ガス反転流路部が反応器内壁の全周にわたって形成されていることが好ましい。更に、第2ガス反転流路部が多孔質管の外周の全周にわたって形成されていることが好ましい。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではないことはいうまでもない。
本発明を図1に基づいて説明する。図1は整流板付き外部充填式選択透過膜反応器1の断面図である。
【0022】
下部に原料ガスの入口2を有し、上部に製品ガスの出口3を有する円形の反応筒4にパラジウム薄膜5を内壁面に成膜したセラミック多孔質管6を挿入し、反応筒側部の内壁4aとセラミック多孔質管外壁6aとの空隙にドーナツ状の第1整流板7とドーナツ状の第2整流板8を夫々交互に所定間隔で触媒9と共に入れ、上下方向に複数段に棚組みをする。
【0023】
第1整流板7の内周径はセラミック多孔質管6の外径とほぼ同じであり、内周面7aにてセラミック多孔質管6に気密状態で当接している。第1整流板7の外周径は反応筒4の内径より若干小さく、第1整流板の外周面7bは反応筒内壁4aと若干の空隙を有している。
【0024】
第2整流板8の外周径は反応筒4の内径とほぼ同じであり、外周面8bにて反応筒内壁4aに気密状態で当接している。第2整流板8の内周径はセラミック多孔質管の外径より若干大きく、第2整流板の内周面8aはセラミック多孔質管6と若干の空隙を有している。
【0025】
セラミック多孔質管6は袋管状であって、その内部には空気流入用のパイプ10が挿入され、パイプ内に流れる空気がセラミック多孔質管の内部底面6cに吹き付けられた後パラジウム膜5に沿って下部に流れ、反応筒4から流出される構成に組み立てられている。
【0026】
この様な構成に組み立てられた本発明の選択膜反応器1におけるガスの流れについて説明する。入口より流入した原料ガスは第1整流板7と反応筒内壁4aとの空隙部に流入し、第2整流板8と反応筒の内壁4aが当接状態にあるため、方向を反転して、第1整流板7の上面をセラミック多孔質6方向に流れる。
【0027】
セラミック多孔質管6近傍に達したガスは第2整流板8とセラミック多孔質管6との空隙部に流れ、第1整流板7とセラミック多孔質管6が当接しているためガス流の方向は反転され、第2整流板8の上面を反応筒内壁4a方向へと流れる。これを順次各段の棚組みされた第1整流板7と第2整流板8の間で繰り返しながら、最終的には反応筒4の上部のガス出口3へと誘導される。
【0028】
以上の通り、第1整流板7と反応筒内壁4a間の空隙においてガス流の反転が行われており、この空隙を以下第1ガス反転流路部11と称する。又、第2整流板8とセラミック多孔質管6との空隙においてガス流の反転が行われており、この空隙を以下第2ガス反転流路部12と称する。
【0029】
以上のようなガス流となる本発明の選択透過膜反応器1においては、入口2より流入した原料ガスは各整流板間に充填されている触媒層9を通過しながら製品ガスと水素を生成するが、反応筒内壁近傍に生成した水素ガスも整流板7,8によってセラミック多孔質管近傍に誘導され第2ガス反転流路部12にてセラミック多孔質管6およびパラジウム膜5を透過して空気と接触し燃焼して反応筒外に流失される。
【0030】
第2ガス反転流路部12で水素モル分率の低下したガスは再び整流板7,8内の触媒層9によって製品ガスと水素を生成しながら反応筒内壁4a方向に向かい、第1ガス反転流路部11で反転し、セラミック多孔質管6方向へと流れ、第2ガス反転流路部12にて水素モル分率は下げられる。
【0031】
この様に1サイクルごとに水素モル分率が下げられながら触媒層9を流れるため、反応率は著しく向上する。又、触媒層を流れる原料ガスの流路は著しく長くなり、多量の触媒を用いたのと同一の効果が得られる。更に、パラジウム膜を成膜するセラミック多孔質管も小口径で良く、製造コストが著しく低減され、且つ触媒の活性に応じて任意に設計が可能となる。従って、工業的に生産可能な選択膜反応器とすることができる。
【0032】
整流板として、熱伝導率が5Wm-1-1以上の伝熱性に優れた材料を用い、セラミック多孔質管内に空気を流せば、パラジウム膜を透過した水素が燃焼し、その燃焼熱が整流板に伝熱し、触媒層全体を均一に加熱し、触媒反応を活性化するため好ましい。
尚、空気流入用のパイプ10を挿入し、パイプ内に流れる空気を予熱しながらセラミック多孔質管底部に吹き出せば、セラミック管に対する熱衝撃も少なく且つ円滑な燃焼と排出が行われるので好ましい。
【0033】
又、図2に示す通り、セラミック多孔質管および反応筒をテーバ状にして、整流板を反応筒内壁又はセラミック多孔質管外壁に当接した状態で触媒と共に挿着し易くすることが好ましい。セラミック多孔質管の内壁にパラジウム膜を成膜しているから、パラジウム膜と触媒は接触せず、触媒によるパラジウム膜の劣化が回避されるから好ましい。
【0034】
なお、本発明は前記実施態様に限定されるものではなく、各種の実施態様が可能である。例えば、反応筒は矩形状又は多角形状の筒体であっても良い。セラミック多孔質管においても同様である。副生成ガス、触媒、透過膜の種類によっては多孔質管の外表面に成膜しても良い。多孔質管はセラミックが耐熱性、耐食性などで好ましいが金属であっても良い。整流板は分割板を組み合わせた板であっても良い。或いはらせん体であっても良い。らせん体の場合はらせん体の外縁部が反応筒の外壁およびセラミック多孔質管の外壁に当接していることが必要である。
【0035】
又、図3に示す通り、第1整流板7の外径は反応筒内径4aと当接できる程度に同じにして、切り欠け部7cを第1ガス反転流路部11としてもよい。第2整流板8についても同様、図4に示す通り、その内径をセラミック多孔質管6の外径と当接できる程度に同じにして、切り欠け部8cを第2ガス反転流路部12としてもよい。更に、整流板を支える支柱(図示しない)を各整流板間や反応筒底部に設けてもよい。
【0036】
更に又、パラジウム膜を成膜したセラミック多孔質管を複数本反応筒内に設置し、整流板でガス流路を制御しつつ反応を行う所謂整流板付き多管式選択透過膜反応器も可能である。この場合は、反応側の水素モル分率が全ての位置でゼロになるようにセラミック多孔質管の本数、位置を決定することが好ましい。
【0037】
【実施例】
化学式1に示すシクロヘキサンの脱水素反応について、図1の選択膜反応器を用いた場合の反応率についてコンピューターシミュレーションによって求めた。その結果を図5に示す。
【0038】
【化1】
612=C66+3H2
【0039】
前提条件として、セラミック多孔質管の外径17mm、長さ1m、反応筒内径85mm、触媒5%Pd/Al23、反応温度473K、全圧0.1MPa、原料ガスは純粋のシクロヘキサンを用い、入口モル流量1.0×10-4mol/sとする。セラミック多孔質管内に空気を流し、Pd膜を透過した水素はすぐに燃焼される。即ち、スイープ側の水素分圧はゼロとした。整流板のガス流誘導効果として、触媒層が充填された反応室(ドーナツ状)における半径方向の水素の拡散係数Dtを整流板が無い場合の半径方向の水素拡散係数Dhの10倍とした。
【0040】
又、触媒による化学反応速度式は数式1を用いた(N. Itoh、AIChJ,Vol 33, pp1576-1578,(1987)を参照)。パラジウム膜を成膜したセラミック多孔質管の水素透過速度は数式2を用いた。
【0041】
【数1】

Figure 0004392938
A;反応速度
k=0.221exp(−4270/T) [mol/s・Pa・m3]
P=4.89×1035exp(−26490/T) [Pa3]
A;シクロヘキサンの分圧 PE;ベンゼンの分圧 PH;水素分圧 [Pa]
A =2.03×10-10exp(6270/T) [Pa-1]
【0042】
【数2】
H=αH ((PHR/PO0.5−(PHS/PO0.5 ) [mol/s]
H;パラジウム膜を成膜したセラミック多孔質管中の水素速度
αH ;パラジウム膜中の水素透過係数(Hermanの式(Herman et al., J. Membr.
Sci., Vol.136,pp161-172(1997)による。)
HR;反応室側の水素分圧 [Pa]
O;基準圧力 [Pa]
HS;スイープ側の水素分圧 ,PHS =0 [Pa]
【0043】
コンピューターシミュレーション結果である図5より明らかの通り、反応筒内壁近傍の水素モル分率はセラミック多孔質管近傍の水素モル分率と大差なく低く、入口近辺では、0.15(即ち、15%)まで上昇するが出口方向に徐々に低下し、0.04程度に達する。この結果、各層の触媒層においても水素による阻害作用が小さく反応は長さに比例して増加し、反応率は85%に達する。この値は、膜を用いない通常の固定層反応器のときの平衡反応率0.06(6%)よりもはるかに大きいことが分かる。図5において実施例1として示す。
【0044】
尚、整流板の効果が最も高い場合として、半径方向の水素モル分率に差がなく、反応筒内壁近傍における水素モル分率がセラミック多孔質管近傍の水素モル分率と同じと仮定した場合についてのコンピューターシミュレーション結果を図5に併記した。この場合の反応率は0.98(98%)であってそれほど向上しない。図5において実施例2として示す。
【0045】
更にパラジウム膜の水素透過速度が極限まで向上したとして、反応器内の水素分圧を常にゼロにした場合のコンピューターシミュレーション結果を図5に併記した。この場合は大幅に向上して、入口近傍で既に完全に反応する。このことは、本発明の整流板によるガスの誘導と共に透過性の優れた選択透過膜を用いれば相乗効果により著しい反応率の高い選択透過膜反応器が得られることを示している。図5において実施例3として示す。
【0046】
比較例として、整流板を用いない場合についてコンピューターシミュレーションした結果を図6に示す。前提条件として半径方向の水素拡散係数の設定以外は全て前記実施例と同じにしてシミュレーションした。
【0047】
図6に示される通り、反応器の内壁近傍における水素モル分率は、入口近傍で既に平衡状態0.15(15%)に達し、その後徐々に下降し、出口近傍でも0.06とまだ高い水準である。反応率は0.53(53%)程度である。
【0048】
【発明の効果】
以上説明したように、本発明の選択透過膜反応器は、反応筒内壁近傍で生成した水素が整流板によってパラジウム膜近傍まで誘導され、水素モル分率が下げられながら再び触媒層を流れる構成であるから反応率は著しく向上する。又、触媒層を流れる原料ガスの流路は著しく長くなり、多量の触媒を用いたのと同一の効果が得られる。更に、パラジウム膜を成膜するセラミック多孔質管も小口径でよく、製造コストが著しく低減され、且つ触媒の活性に応じて任意に設計が可能となる。従って、工業的に生産可能な選択透過膜反応器とすることができる。
【図面の簡単な説明】
【図1】 本発明の整流板付き外部充填式選択透過膜反応器の断面図を示す。
【図2】 本発明の外部充填式選択透過膜反応器の実施態様の1例を示す。
【図3】 多孔質管に当接する整流板の実施態様の1例を示す。
【図4】 反応筒内壁に当接する整流板の実施態様の1例を示す。
【図5】 本発明の選択透過膜反応器を用いて、シクロヘキサンの脱水素反応における反応率をコンピューターシミュレーションにより求めた結果を示す。
【図6】 比較例として、整流板を用いない場合の反応率についてコンピューターシミュレーションにより求めた結果を示す。
【図7】 従来の内部充填式選択透過膜反応器を示す。
【図8】 パラジウム膜を成膜したセラミック多孔質管における2種類の水素透過モード(CPモード、PCモード)を示す。
【図9】 従来の外部充填式選択透過膜反応器を示す。
【符号の説明】
1…整流板付き外部充填式選択透過膜反応器、2…原料ガス入口、3…製品ガス出口、4…反応筒、4a…反応筒側部の内壁、5…パラジウム膜、6…セラミック多孔質管、6a…セラミック多孔質管の外壁、6b…セラミック多孔質管の内壁、6c…セラミック多孔質管の底部、7…第1整流板、7a…第1整流板の内周面、7b…第1整流板の外周面、7c…第1整流板の切り欠け部、8…第2整流板、8a…第2整流板の内周面、8b…第2整流板の外周面、8c…第2整流板の切り欠け部、9…触媒層、10…空気流入用パイプ、11…第1ガス反転流路部、12…第2ガス反転流路部、13…原料ガス、14…製品ガス、15…水素ガス、16…空気、17…燃焼ガス、30…パラジウム薄膜、31…多孔質セラミック管、32…外筒、33…触媒、34…内部充填方式の選択透過膜反応器、35…原料ガス、36…製品ガス、37…水素ガス、38…スイープガス、39…パラジウム膜、40…セラミック多孔質管、41…外筒、42…触媒、43…外部充填方式の選択透過膜反応器、44…水素、45…スイープガス、46…原料ガス、47…製品ガス。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a selectively permeable membrane reactor used for dehydrogenation reaction of organic gas, steam reforming reaction and the like.
[0002]
[Prior art]
Dehydrogenation reactions that produce hydrogen, such as olefin and aromatic induction from paraffin and reforming reactions, and alkylaromatics dehydrogenation represented by styrene from ethylbenzene, generally have a large endotherm and increase in moles. In order to increase the thermodynamic equilibrium reaction rate, it is necessary to increase the temperature and the reactant partial pressure.
[0003]
Taking the dehydrogenation of ethylbenzene as an example, in order to implement industrially, a high temperature of 600 ° C. to 800 ° C. and heated steam about 10 times that of the reactant are generally required. As a method for promoting such a dehydrogenation reaction, porous glass, palladium-plated inorganic porous material, an oxide layer formed on the surface of a metal porous material, and a palladium-plated hydrogen permeation tube on the outside thereof are placed in the reactor. There has been proposed a membrane reactor that is installed and performs a dehydrogenation reaction while taking out part of the hydrogen of the reaction product out of the reactor.
[0004]
As a typical example, as shown in FIG. 7, a porous ceramic tube 31 having a palladium thin film 30 formed on the outer surface is provided in an outer cylinder 32, and an internal filling in which a catalyst 33 is filled inside the porous ceramic tube 31. A selective permeation membrane reactor 34 of the type has been proposed (see, for example, JP-A-63-154629 and JP-A-5-317708).
[0005]
In this method, the raw material gas 35 passes through the catalyst layer 33 filled in the porous ceramic tube 31 to generate the product gas 36 and the hydrogen gas 37 as a by-product gas. The hydrogen gas 37 passes through the porous ceramic tube 31 and the palladium thin film 30, and flows out of the reactor together with the sweep gas 38 flowing in the gap between the porous ceramic tube and the outer cylinder. It is also possible to reduce the pressure without using a sweep gas so that hydrogen that has permeated the palladium thin film flows out of the reactor. In this method, since the catalyst and the palladium film are not in direct contact with each other, deterioration of the palladium film due to the catalyst can be avoided.
[0006]
In order to reduce the thickness of the palladium membrane, the outer surface of the porous ceramic tube also needs to be an extremely porous layer, and the ceramic layer can also be a resistance to hydrogen permeation. Here, there are two types of hydrogen permeation directions as shown in FIG. CP mode that allows hydrogen to permeate the porous ceramic layer where the first power rule such as Knudsen diffusion is dominant first, and then permeates the palladium layer governed by the 1/2 power law, and first allows the palladium layer to permeate. Then, there is a PC mode in which the ceramic layer is transmitted. The CP mode generally has a higher transmission speed than the PC mode. Therefore, the method of FIG. 7 is advantageous also from this point.
[0007]
When the catalytic activity is low, it is necessary to fill a large amount of catalyst, and a large-diameter palladium-carrying ceramic tube is required. However, it is extremely difficult to manufacture a large-diameter porous ceramic tube in which a palladium film is formed on the outer surface. Therefore, the amount of catalyst that can be filled in the porous ceramic tube is limited, and it is difficult to obtain an industrial scale reactor.
[0008]
In order to make an industrial reactor, it is necessary to perform an optimum design that matches the hydrogen removal rate and the dehydrogenation rate.
Dehydrogenation depends on the activity of the catalyst and may require large amounts of catalyst. On the other hand, in the method of FIG. 7, there is a limit to the size of the porous ceramic tube having a palladium film formed on the outer surface, and the amount of catalyst that can be filled cannot be increased.
[0009]
Therefore, as shown in FIG. 9, a porous ceramic tube 40 having a palladium film 39 formed on the inner wall surface is provided in the outer cylinder 41, and a solid catalyst is formed in the gap formed between the porous ceramic tube and the outer cylinder. A selective permeation membrane reactor 43 of an external filling type filled with bismuth has been proposed.
[0010]
In this system, the by-product gas hydrogen 44 permeates the porous ceramic tube 40, permeates the palladium film 39, and then flows out of the reactor together with the sweep gas 45 flowing inside the porous ceramic tube. Direct contact between the catalyst and the palladium membrane is avoided, and the CP mode is secured.
[0011]
Further, the shape of the outer cylinder 41 can be arbitrarily designed, and the outer cylinder 41 can have a size corresponding to the amount of catalyst for ensuring a required reaction rate. Further, since the inside of the ceramic tube is a sweep portion, air can be circulated instead of the sweep gas, and the permeated hydrogen can be burned to improve the hydrogen permeation rate. Furthermore, this combustion heat can be supplied to the catalyst layer.
[0012]
If the catalyst activity is low and a large number of catalyst layers are required, it is possible to increase the diameter of the outer cylinder.
However, in the large-diameter reactor of the system shown in FIG. 9, the hydrogen generated in the vicinity of the outer cylinder is difficult to reach the palladium membrane 39 due to the diffusion resistance of the radius method, and the efficiency as a membrane reactor is lowered. Have
[0013]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned various problems, and the object of the present invention is to provide a reactor that can be arbitrarily designed even when the catalyst activity is low and a large amount of catalyst is required. It is another object of the present invention to provide a selectively permeable membrane reactor having a high reaction rate.
[0014]
[Means for Solving the Problems]
According to the present invention, a selectively permeable membrane reactor, in which a raw material gas flowing in from the inlet of the reactor reacts in a reaction chamber filled with a catalyst in the reactor, and the produced product gas is supplied to the reactor. In the selectively permeable membrane reactor that flows out from the outlet and allows the by-product gas to pass through the selectively permeable membrane and out of the reaction chamber,
The reactor has a porous tube with a permselective membrane formed on the surface, and a catalyst layer is provided in the space between the inner wall of the reactor and the porous tube to form a reaction chamber, in the vicinity of the inner wall of the reactor There is provided a permselective membrane reactor characterized in that a rectifying plate for guiding the by-product gas generated in step (1) to the surface of the porous tube is provided in the reaction chamber.
[0015]
In the present invention, there is provided a selectively permeable membrane reactor, wherein the selectively permeable membrane is a hydrogen permeable membrane. Further, the hydrogen permeable membrane is preferably a palladium alloy membrane. Furthermore, it is preferable that the permselective membrane is formed on the inner wall of the porous tube.
[0016]
In the present invention, the rectifying plate is preferably a material having a heat conductivity of 5 Wm −1 K −1 or more and excellent heat conductivity.
[0017]
Further, according to the present invention, a selectively permeable membrane reactor, in which a raw material gas flowing in from the inlet of the reactor reacts in a reaction chamber filled with a catalyst in the reactor, and the produced product gas is discharged from the reactor. In the permselective membrane reactor that causes the by-product gas to permeate through the permselective membrane and out of the reaction chamber,
The reactor has a porous tube with a permselective membrane formed on the inner surface or outer surface, and the reaction chamber formed in the space between the inner wall of the reactor and the porous tube has a circular opening. The inner peripheral surface of the opening is in contact with the porous tube, the outer edge of the current plate is in the vicinity of the reaction chamber wall, and the gas flow flowing from one surface side of the current plate is directed to the other surface. A first rectifying plate having a first gas reversing flow path portion that is reversed and flows out to the side, and a rectifying plate having a circular opening, the outer edge of the rectifying plate being in contact with the inner wall of the reactor, Alternatingly with the second rectifying plate having a second gas reversing flow path section in which the peripheral surface is in the vicinity of the outer wall of the porous tube and the gas flow flowing in from one surface of the rectifying plate is reversed to flow out to the other surface side There is provided a selectively permeable membrane reactor characterized in that it is constructed in a vertically stacked manner and is filled with a catalyst between each rectifying plate. .
[0018]
In the present invention, the reactor is preferably a cylindrical body. Furthermore, it is preferable that the porous tube is a bag tube and is installed in the reactor in an inverted state.
[0019]
In the present invention, it is preferable that the outer diameter of the porous tube changes in the length direction continuously or stepwise. Furthermore, it is preferable that the dimension in the width direction of the reactor is changed in the height direction continuously or stepwise.
[0020]
In the present invention, it is preferable that the first gas reversal flow path portion is formed over the entire circumference of the inner wall of the reactor. Furthermore, it is preferable that the second gas reversal flow path portion is formed over the entire circumference of the porous tube.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, although embodiment of this invention is described, it cannot be overemphasized that this invention is not limited to the following embodiment.
The present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view of an externally packed selectively permeable membrane reactor 1 with a current plate.
[0022]
A ceramic porous tube 6 having a palladium thin film 5 formed on the inner wall surface is inserted into a circular reaction cylinder 4 having a raw material gas inlet 2 at the bottom and a product gas outlet 3 at the top. A doughnut-shaped first rectifying plate 7 and a donut-shaped second rectifying plate 8 are alternately inserted with a catalyst 9 at predetermined intervals in the gap between the inner wall 4a and the ceramic porous tube outer wall 6a, and shelves in multiple stages in the vertical direction. do.
[0023]
The inner peripheral diameter of the first rectifying plate 7 is substantially the same as the outer diameter of the ceramic porous tube 6 and is in contact with the ceramic porous tube 6 in an airtight state on the inner peripheral surface 7a. The outer peripheral diameter of the first rectifying plate 7 is slightly smaller than the inner diameter of the reaction tube 4, and the outer peripheral surface 7b of the first rectifying plate has a slight gap with the reaction tube inner wall 4a.
[0024]
The outer peripheral diameter of the second rectifying plate 8 is substantially the same as the inner diameter of the reaction tube 4, and is in contact with the reaction tube inner wall 4a in an airtight state at the outer peripheral surface 8b. The inner peripheral diameter of the second rectifying plate 8 is slightly larger than the outer diameter of the ceramic porous tube, and the inner peripheral surface 8a of the second rectifying plate has a slight gap with the ceramic porous tube 6.
[0025]
The ceramic porous tube 6 is a bag-shaped tube, and an air inflow pipe 10 is inserted into the inside thereof. After the air flowing in the pipe is blown onto the inner bottom surface 6c of the ceramic porous tube, the ceramic porous tube 6 is along the palladium film 5. And flows into the lower part and is assembled to flow out of the reaction tube 4.
[0026]
The gas flow in the selective membrane reactor 1 of the present invention assembled in such a configuration will be described. The source gas flowing in from the inlet flows into the gap between the first rectifying plate 7 and the reaction cylinder inner wall 4a, and the second rectifying plate 8 and the inner wall 4a of the reaction cylinder are in contact with each other. The upper surface of the first rectifying plate 7 flows in the ceramic porous 6 direction.
[0027]
The gas that has reached the vicinity of the ceramic porous tube 6 flows into the gap between the second rectifying plate 8 and the ceramic porous tube 6, and the first rectifying plate 7 and the ceramic porous tube 6 are in contact with each other, so the direction of the gas flow Is reversed and flows on the upper surface of the second rectifying plate 8 toward the reaction cylinder inner wall 4a. While this is sequentially repeated between the first rectifying plate 7 and the second rectifying plate 8 which are assembled in the respective shelves, finally, the gas is guided to the gas outlet 3 at the upper part of the reaction tube 4.
[0028]
As described above, the gas flow is reversed in the gap between the first rectifying plate 7 and the reaction cylinder inner wall 4a, and this gap is hereinafter referred to as the first gas reversing flow path section 11. Further, the gas flow is reversed in the gap between the second rectifying plate 8 and the ceramic porous tube 6, and the gap is hereinafter referred to as a second gas reversal flow path portion 12.
[0029]
In the selectively permeable membrane reactor 1 of the present invention having the above gas flow, the raw material gas flowing in from the inlet 2 generates product gas and hydrogen while passing through the catalyst layer 9 filled between the rectifying plates. However, the hydrogen gas generated in the vicinity of the inner wall of the reaction cylinder is also guided to the vicinity of the ceramic porous tube by the rectifying plates 7 and 8 and permeates the ceramic porous tube 6 and the palladium membrane 5 through the second gas reversal flow path portion 12. It burns in contact with air and is washed away from the reaction cylinder.
[0030]
The gas whose hydrogen mole fraction has decreased in the second gas reversal flow path section 12 is again directed toward the inner wall 4a of the reaction cylinder while generating product gas and hydrogen by the catalyst layer 9 in the rectifying plates 7 and 8, and the first gas reversal. It reverses in the flow path part 11 and flows toward the ceramic porous tube 6, and the hydrogen mole fraction is lowered in the second gas reversal flow path part 12.
[0031]
Thus, since the hydrogen mole fraction is lowered every cycle and flows through the catalyst layer 9, the reaction rate is remarkably improved. Further, the flow path of the raw material gas flowing through the catalyst layer is remarkably long, and the same effect as when a large amount of catalyst is used can be obtained. Further, the ceramic porous tube for forming the palladium film may have a small diameter, the manufacturing cost is remarkably reduced, and the design can be arbitrarily made according to the activity of the catalyst. Therefore, it can be set as the selective membrane reactor which can be industrially produced.
[0032]
As the rectifying plate, a material with a thermal conductivity of 5 Wm -1 K -1 or more is used, and if air is passed through the porous ceramic tube, hydrogen that permeates the palladium film burns, and the combustion heat is rectified. Heat is transferred to the plate, and the entire catalyst layer is heated uniformly to activate the catalytic reaction.
It is preferable to insert the air inflow pipe 10 and blow it to the bottom of the ceramic porous tube while preheating the air flowing in the pipe, because the thermal shock to the ceramic tube is small and smooth combustion and discharge are performed.
[0033]
Further, as shown in FIG. 2, it is preferable that the ceramic porous tube and the reaction tube are formed in a taber shape so that the rectifying plate can be easily inserted together with the catalyst in contact with the inner wall of the reaction tube or the outer wall of the ceramic porous tube. Since the palladium film is formed on the inner wall of the ceramic porous tube, the palladium film and the catalyst are not in contact with each other, and deterioration of the palladium film due to the catalyst is avoided.
[0034]
In addition, this invention is not limited to the said embodiment, Various embodiments are possible. For example, the reaction cylinder may be a rectangular or polygonal cylinder. The same applies to ceramic porous tubes. Depending on the type of by-product gas, catalyst, and permeable membrane, the film may be formed on the outer surface of the porous tube. The porous tube is preferably ceramic because of its heat resistance and corrosion resistance, but may be a metal. The rectifying plate may be a plate in which divided plates are combined. Or a spiral may be sufficient. In the case of a spiral body, it is necessary that the outer edge of the spiral body is in contact with the outer wall of the reaction tube and the outer wall of the ceramic porous tube.
[0035]
Further, as shown in FIG. 3, the outer diameter of the first rectifying plate 7 may be the same so as to be in contact with the inner diameter 4 a of the reaction cylinder, and the notch portion 7 c may be used as the first gas reversing flow path portion 11. Similarly, as shown in FIG. 4, the second rectifying plate 8 has the same inner diameter that can contact the outer diameter of the ceramic porous tube 6, and the notch portion 8 c serves as the second gas reversal flow path portion 12. Also good. Further, a support (not shown) for supporting the current plate may be provided between the current plates or at the bottom of the reaction tube.
[0036]
Furthermore, a so-called multi-tube selective permeation membrane reactor with a rectifying plate is also possible, in which a plurality of porous ceramic tubes with palladium membranes are installed in a reaction tube and the reaction is carried out while controlling the gas flow path with the rectifying plate. It is. In this case, it is preferable to determine the number and position of the ceramic porous tubes so that the hydrogen mole fraction on the reaction side becomes zero at all positions.
[0037]
【Example】
Regarding the dehydrogenation reaction of cyclohexane shown in Chemical Formula 1, the reaction rate when using the selective membrane reactor of FIG. 1 was determined by computer simulation. The result is shown in FIG.
[0038]
[Chemical 1]
C 6 H 12 = C 6 H 6 + 3H 2
[0039]
As preconditions, the outer diameter of the ceramic porous tube is 17 mm, the length is 1 m, the inner diameter of the reaction cylinder is 85 mm, the catalyst is 5% Pd / Al 2 O 3 , the reaction temperature is 473 K, the total pressure is 0.1 MPa, and the raw material gas is pure cyclohexane. The inlet molar flow rate is 1.0 × 10 −4 mol / s. The air that flows through the ceramic porous tube and the hydrogen that has permeated the Pd membrane is immediately burned. That is, the hydrogen partial pressure on the sweep side was set to zero. As a gas flow induction effect of the rectifying plate, the hydrogen diffusion coefficient Dt in the radial direction in the reaction chamber (doughnut-shaped) filled with the catalyst layer was set to 10 times the hydrogen diffusion coefficient Dh in the radial direction without the rectifying plate.
[0040]
The chemical reaction rate equation using the catalyst was expressed by Equation 1 (see N. Itoh, AIChJ, Vol 33, pp1576-1578, (1987)). Formula 2 was used for the hydrogen permeation rate of the ceramic porous tube formed with the palladium film.
[0041]
[Expression 1]
Figure 0004392938
r A ; reaction rate k = 0.221 exp (−4270 / T) [mol / s · Pa · m 3 ]
K P = 4.89 × 10 35 exp (−26490 / T) [Pa 3 ]
P A ; partial pressure of cyclohexane P E ; partial pressure of benzene P H ; partial pressure of hydrogen [Pa]
K A = 2.03 × 10 −10 exp (6270 / T) [Pa −1 ]
[0042]
[Expression 2]
Q H = α H ((P HR / P O ) 0.5- (P HS / P O ) 0.5 ) [mol / s]
Q H ; hydrogen velocity α H in a ceramic porous tube formed with a palladium membrane; hydrogen permeability coefficient in the palladium membrane (Herman's equation (Herman et al., J. Membr.
According to Sci., Vol.136, pp161-172 (1997). )
P HR ; Hydrogen partial pressure on the reaction chamber side [Pa]
P O : Reference pressure [Pa]
P HS ; hydrogen partial pressure on the sweep side, P HS = 0 [Pa]
[0043]
As is clear from FIG. 5, which is a computer simulation result, the hydrogen mole fraction near the inner wall of the reaction cylinder is not much different from the hydrogen mole fraction near the ceramic porous tube, and is 0.15 (ie, 15%) near the inlet. However, it gradually decreases in the direction of the exit and reaches about 0.04. As a result, even in the catalyst layer of each layer, the inhibitory action by hydrogen is small, the reaction increases in proportion to the length, and the reaction rate reaches 85%. It can be seen that this value is much greater than the equilibrium reaction rate of 0.06 (6%) for a normal fixed bed reactor without a membrane. FIG. 5 shows Example 1.
[0044]
Assuming that the effect of the rectifying plate is the highest, there is no difference in the hydrogen mole fraction in the radial direction, and the hydrogen mole fraction near the inner wall of the reaction cylinder is assumed to be the same as the hydrogen mole fraction near the ceramic porous tube. The computer simulation results for are shown together in FIG. The reaction rate in this case is 0.98 (98%), which is not so improved. This is shown as Example 2 in FIG.
[0045]
Furthermore, assuming that the hydrogen permeation rate of the palladium membrane has been improved to the limit, the computer simulation results when the hydrogen partial pressure in the reactor is always zero are also shown in FIG. In this case, the reaction is greatly improved and the reaction is already completed in the vicinity of the entrance. This indicates that a selectively permeable membrane reactor having a remarkably high reaction rate can be obtained by a synergistic effect if a selectively permeable membrane having excellent permeability is used together with gas induction by the current plate of the present invention. This is shown as Example 3 in FIG.
[0046]
As a comparative example, FIG. 6 shows the result of computer simulation for the case where the current plate is not used. The simulation was performed in the same manner as in the above example except that the hydrogen diffusion coefficient in the radial direction was set as a precondition.
[0047]
As shown in FIG. 6, the hydrogen mole fraction in the vicinity of the inner wall of the reactor has already reached an equilibrium state of 0.15 (15%) in the vicinity of the inlet, then gradually decreases, and is still as high as 0.06 in the vicinity of the outlet. It is a level. The reaction rate is about 0.53 (53%).
[0048]
【The invention's effect】
As described above, the selectively permeable membrane reactor of the present invention has a configuration in which hydrogen generated in the vicinity of the inner wall of the reaction cylinder is guided to the vicinity of the palladium membrane by the rectifying plate and flows through the catalyst layer again while the hydrogen mole fraction is lowered. Therefore, the reaction rate is remarkably improved. Further, the flow path of the raw material gas flowing through the catalyst layer is remarkably long, and the same effect as when a large amount of catalyst is used can be obtained. Further, the ceramic porous tube for forming the palladium film may have a small diameter, the manufacturing cost is remarkably reduced, and the design can be arbitrarily made according to the activity of the catalyst. Therefore, it can be set as the selectively permeable membrane reactor which can be produced industrially.
[Brief description of the drawings]
FIG. 1 shows a cross-sectional view of an externally packed selectively permeable membrane reactor with a current plate according to the present invention.
FIG. 2 shows an example of an embodiment of an externally packed selectively permeable membrane reactor of the present invention.
FIG. 3 shows an example of an embodiment of a current plate that abuts a porous tube.
FIG. 4 shows an example of an embodiment of a current plate that abuts against the inner wall of a reaction cylinder.
FIG. 5 shows the results of calculating the reaction rate in cyclohexane dehydrogenation reaction by computer simulation using the selectively permeable membrane reactor of the present invention.
FIG. 6 shows, as a comparative example, results obtained by computer simulation for a reaction rate when a rectifying plate is not used.
FIG. 7 shows a conventional internally packed permselective membrane reactor.
FIG. 8 shows two types of hydrogen permeation modes (CP mode and PC mode) in a ceramic porous tube with a palladium film formed thereon.
FIG. 9 shows a conventional externally packed permselective membrane reactor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... External filling type selective permeable membrane reactor with baffle plate, 2 ... Raw material gas inlet, 3 ... Product gas outlet, 4 ... Reaction cylinder, 4a ... Inner wall of reaction cylinder side part, 5 ... Palladium membrane, 6 ... Ceramic porous 6a: outer wall of the ceramic porous tube, 6b ... inner wall of the ceramic porous tube, 6c ... bottom of the ceramic porous tube, 7 ... first rectifying plate, 7a ... inner peripheral surface of the first rectifying plate, 7b ... first 1 outer peripheral surface of the current plate, 7c ... notched portion of the first current plate, 8 ... second current plate, 8a ... inner peripheral surface of the second current plate, 8b ... outer peripheral surface of the second current plate, 8c ... second Notch portion of rectifying plate, 9 ... catalyst layer, 10 ... pipe for air inflow, 11 ... first gas reversal flow passage portion, 12 ... second gas reversal flow passage portion, 13 ... source gas, 14 ... product gas, 15 ... hydrogen gas, 16 ... air, 17 ... combustion gas, 30 ... palladium thin film, 31 ... porous ceramic tube, 32 ... Cylinder, 33 ... Catalyst, 34 ... Selective membrane reactor of internal filling type, 35 ... Raw gas, 36 ... Product gas, 37 ... Hydrogen gas, 38 ... Sweep gas, 39 ... Palladium membrane, 40 ... Ceramic porous tube, DESCRIPTION OF SYMBOLS 41 ... Outer cylinder, 42 ... Catalyst, 43 ... External permeation type selective permeable membrane reactor, 44 ... Hydrogen, 45 ... Sweep gas, 46 ... Raw material gas, 47 ... Product gas

Claims (7)

選択透過膜反応器であって、該反応器の入口より流入した原料ガスが該反応器内の触媒を充填した反応室内で反応し、生成した製品ガスを該反応器の出口より流出させ、副生成ガスを選択透過膜を透過させて該反応室外へと流出させる選択透過膜反応器において、該反応器が選択透過膜を内表面又は外表面に成膜した多孔質管を内設し、該反応器の内壁と該多孔質管との空隙に形成された反応室の構成が、円形状の開口部を有する整流板であって、開口部内周面が該多孔質管と当接し、該整流板の外縁部が該反応室内壁近傍にあって、該整流板の一方の面側から流入するガス流を他方の面側へ反転し流出する第1ガス反転流路部を有する第1整流板と円形状の開口部を有する整流板であって、該整流板の外縁部が反応器内壁と当接し、該開口部の内周面が多孔質管外壁の近傍にあって、該整流板の一方の面から流入するガス流を他方の面側へ反転流出する第2ガス反転流路部を有する第2整流板とが交互に上下方向に棚組みされると共に各整流板間に触媒が充填された構成であることを特徴とする選択透過膜反応器。  A permselective membrane reactor, in which a raw material gas flowing in from the inlet of the reactor reacts in a reaction chamber filled with a catalyst in the reactor, and the produced product gas flows out from the outlet of the reactor. In the selectively permeable membrane reactor for allowing the product gas to permeate through the selectively permeable membrane and out of the reaction chamber, the reactor includes a porous tube having the selectively permeable membrane formed on the inner surface or the outer surface, and The structure of the reaction chamber formed in the space between the inner wall of the reactor and the porous tube is a rectifying plate having a circular opening, and the inner peripheral surface of the opening contacts the porous tube, and the rectifying A first rectifying plate having a first gas reversing flow path section in which an outer edge portion of the plate is in the vicinity of the reaction chamber wall and reverses and flows out a gas flow flowing in from one surface side of the rectifying plate to the other surface side; A rectifying plate having a circular opening, the outer edge of the rectifying plate abutting against the inner wall of the reactor, And a second rectifying plate having a second gas reversing flow path section for reversing and flowing out the gas flow flowing in from one surface of the rectifying plate to the other surface side in the vicinity of the outer wall of the porous tube Are selectively laid up and down in the vertical direction, and the catalyst is filled between the rectifying plates. 該反応器が円筒体であることを特徴とする請求項に記載の選択透過膜反応器。The selectively permeable membrane reactor according to claim 1 , wherein the reactor is a cylindrical body. 該多孔質管が袋管であって、倒立状態で該反応器に内設されていることを特徴とする請求項に記載の選択透過膜反応器。The selectively permeable membrane reactor according to claim 1 , wherein the porous tube is a bag tube and is installed in the reactor in an inverted state. 該多孔質管の外径が連続的又は段階的に長さ方向に変化していることを特徴とする請求項に記載の選択透過膜反応器。The permselective membrane reactor according to claim 1 , wherein the outer diameter of the porous tube changes in the length direction continuously or stepwise. 該反応器の巾方向の寸法が連続的又は段階的に高さ方向に変化していることを特徴とする請求項に記載の選択透過膜反応器。2. The permselective membrane reactor according to claim 1 , wherein the dimension in the width direction of the reactor changes in the height direction continuously or stepwise. 該第1ガス反転流路部が該反応器内壁の全周にわたって形成されていることを特徴とする請求項に記載の選択透過膜反応器。2. The permselective membrane reactor according to claim 1 , wherein the first gas reversal flow path is formed over the entire circumference of the inner wall of the reactor. 該第2ガス反転流路部が多孔質管の外周の全周にわたって形成されていることを特徴とする請求項に記載の選択透過膜反応器。2. The permselective membrane reactor according to claim 1 , wherein the second gas reversal flow path is formed over the entire circumference of the outer periphery of the porous tube.
JP2000018825A 2000-01-27 2000-01-27 Permselective membrane reactor Expired - Lifetime JP4392938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000018825A JP4392938B2 (en) 2000-01-27 2000-01-27 Permselective membrane reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000018825A JP4392938B2 (en) 2000-01-27 2000-01-27 Permselective membrane reactor

Publications (2)

Publication Number Publication Date
JP2001213611A JP2001213611A (en) 2001-08-07
JP4392938B2 true JP4392938B2 (en) 2010-01-06

Family

ID=18545616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000018825A Expired - Lifetime JP4392938B2 (en) 2000-01-27 2000-01-27 Permselective membrane reactor

Country Status (1)

Country Link
JP (1) JP4392938B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4367694B2 (en) * 2003-08-13 2009-11-18 日本碍子株式会社 Permselective membrane reactor
WO2005070519A1 (en) * 2004-01-26 2005-08-04 Ngk Insulators, Ltd. Selectively permeable membrane type reactor
WO2005085127A1 (en) * 2004-03-09 2005-09-15 Nippon Oil Corporation Method for producing hydrogen and system therefor
JP5015766B2 (en) * 2005-02-04 2012-08-29 日本碍子株式会社 Permselective membrane reactor
JP5227706B2 (en) * 2008-09-08 2013-07-03 本田技研工業株式会社 Reformer
WO2011152408A1 (en) * 2010-05-31 2011-12-08 Jx日鉱日石エネルギー株式会社 Hydrogen separation membrane module and hydrogen separation method using same
NL2006245C2 (en) * 2011-02-18 2012-08-21 Stichting Energie MEMBRANE REACTOR AND PROCESS FOR THE PRODUCTION OF A GASEOUS PRODUCT WITH SUCH REACTOR.
BE1026312B1 (en) * 2018-05-25 2019-12-23 Ajinomoto Omnichem Flow-through reactor and use thereof

Also Published As

Publication number Publication date
JP2001213611A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
KR101862320B1 (en) Membrane reactor and process for the production of a gaseous product with such reactor
JP2014515693A5 (en)
KR101395994B1 (en) Reactor for carrying out a continuous oxide hydrogenation, and method
JP4673223B2 (en) Permselective membrane reactor
US20070269356A1 (en) Reactor of selective-permeation membrane type
JP4392938B2 (en) Permselective membrane reactor
JP2012521960A (en) Steam reformer with passive heat flux control element
WO2023013419A1 (en) Reactor and method for producing ammonia decomposition mixture using same
KR102184495B1 (en) 7 normal cubic meter per hour hydrogen production apparatus
JP2021147304A5 (en)
KR20060031935A (en) Micro channel heater for even heating
JPH06345405A (en) Hydrogen production device
JP3839598B2 (en) Hydrogen production equipment
JP2000072405A (en) Reaction furnace for generating water
JP2000143203A (en) Hydrogen producing device
JP4163657B2 (en) Fuel reformer
JPH06211501A (en) Reformer
JPH092801A (en) Hydrogen manufacturing apparatus
JP2000128504A (en) Hydrogen producing device
JPH092802A (en) Hydrogen manufacturing apparatus
JPH06263405A (en) Hydrogen producing device
RU2006122333A (en) TUBULAR-MEMBRANE-SLOT REACTOR
JPH0421501A (en) Steam-reforming apparatus
JPH092805A (en) Hydrogen manufacturing apparatus
JP2011105557A (en) Hydrogen production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R150 Certificate of patent or registration of utility model

Ref document number: 4392938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

EXPY Cancellation because of completion of term