JP4392922B2 - Preparation of alkali metal salt of α-hydroxycarboxylic acid titanium - Google Patents

Preparation of alkali metal salt of α-hydroxycarboxylic acid titanium Download PDF

Info

Publication number
JP4392922B2
JP4392922B2 JP36635599A JP36635599A JP4392922B2 JP 4392922 B2 JP4392922 B2 JP 4392922B2 JP 36635599 A JP36635599 A JP 36635599A JP 36635599 A JP36635599 A JP 36635599A JP 4392922 B2 JP4392922 B2 JP 4392922B2
Authority
JP
Japan
Prior art keywords
titanium
water
alkali metal
hydroxycarboxylic acid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36635599A
Other languages
Japanese (ja)
Other versions
JP2001181231A (en
Inventor
豊量 稲葉
Original Assignee
小松屋株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小松屋株式会社 filed Critical 小松屋株式会社
Priority to JP36635599A priority Critical patent/JP4392922B2/en
Publication of JP2001181231A publication Critical patent/JP2001181231A/en
Application granted granted Critical
Publication of JP4392922B2 publication Critical patent/JP4392922B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば繊維加工、樹脂、塗料添加物等に可燃防止、品質改良剤として用いられる、α―ヒドロキシカルボン酸化合物及びそのナトリウム塩、カリウム塩等の塩類の水溶液にチタン酸金属塩又はテトラアルコキシチタン化合物を反応させて得られるα―ヒドロキシカルボン酸チタンアルカリ金属塩に係り、特に水に易溶で安定なα―ヒドロキシカルボン酸チタンアルカリ金属塩の製法に関する。
【0002】
【従来の技術】
チタン(4+)有機化合物の多くは有機溶剤に可溶であるが、水中では加水分解を起こし、チタンとアルコール等の有機化合物となるので水溶媒で使用することは不可能であった。一方、繊維加工、塗料、インキ、接着剤、皮革柔軟剤等チタンの優位さを必要とする需要が増加しているため、安全な水溶媒での使用が必要となっている。そのために、有機化合物の内で特に分子内にヒドロキシル基及びカルボキシル基を有するものとの錯塩とすることが必要である(例えば、特開昭56−46835号などの報参照)。
【0003】
【発明が解決しようとする課題】
本発明者は、有機酸及びそのアルカリ金属塩のチタン誘導体としてはクエン酸、酒石酸、乳酸、リンゴ酸等のヒドロキシル基とカルボキシル基を有する有機酸があげられる。これらの殆どは水和物又は無水和物として存在する。特にα―ヒドロキシカルボン酸及びそのナトリウム塩、カリウム塩等アルカリ金属塩はチタン化合物となって水に対する溶解度がよく、しかも溶液が安定であることを発見し、本発明を完成するに至った。
【0004】
【課題を解決するための手段】
本発明は、α―ヒドロキシカルボン化合物の水溶液又は懸濁液にチタン酸ナトリウム又はチタン酸カリウムを添加して加熱反応させた後、生成した反応水溶液を濃縮、乾燥するか、水に溶解して精製ろ過後、濃縮,乾燥して目的物を得る。この場合、添加する原料の割合によって生成物の構造が異なり、従って分子式も違って来る。一般にチタン含量(5〜15%)、結晶水3〜14水和物(水分10〜30%)のものが多い。
【0005】
【発明の実施の形態】
本発明によるα―ヒドロキシカルボン酸チタンアルカリ金属塩は、前記のように、α―ヒドロキシカルボン酸化合物の水溶液又は懸濁液にチタン酸ナトリウム又はチタン酸カリウムを添加して加熱反応するが、その際添加する各原料の割合によって生成する化合物の分子式、構造式が異なってくる。一般にはα―ヒドロキシルカルボン酸をR,アルカリ金属をMとするとMnTiORm・xH2Oの分子式で表現できる(n&mは整数、xは製造,乾燥等の条件により異なる値を示す)。又このような分子式を有する化合物は、反応の溶媒に水を使用する場合は生成物が水和物となるが、加熱によって無水和物にすることも出来る。
【0006】
本発明に用いられたα―ヒドロキシカルボン化合物は前述のように、クエン酸、酒石酸、乳酸、リンゴ酸等のヒドロキシル基とカルボキシル基を有する有機化合物の総称であり、例えばクエン酸ではクエン酸、無水クエン酸、イソクエン酸、及びその無水物ラクトンも含み、又酒石酸ではd−酒石酸、l−酒石酸、dl−酒石酸、メゾ酒石酸、も含まれる。同様に乳酸もL(+)−乳酸、D(−)−乳酸、Dl−乳酸及びリンゴ酸に於いてもl−体、d−体及びdl−体等天然物、化学合成物も含まれる。
【0007】
本発明に於いては、α―ヒドロキシカルボン酸の水溶液又は懸濁液(以下懸濁水溶液(1)という)を攪拌しながら、チタン酸ナトリウム又はチタン酸カリウムを添加する方法を採るが、この方法は水溶液ないし懸濁液(以下、懸濁水溶液(2)という)で反応を行うことが出来る。
【0008】
即ち、本発明に用いられるチタン塩類は塩化物、硫酸塩、硝酸塩等を水酸化ナトリウムまたは炭酸ナトリウム及び水酸化カリウムまたは炭酸カリウム等の水溶液で強塩基性とすることによって製造することが出来る。
【0009】
詳述すると、チタン酸ナトリウム、カリウム等のアルカリ金属塩は通常の製法により、四塩化チタン、硫酸チタン等のチタン無機化合物の水溶液に水酸化ナトリウム、水酸化カリウム等前述のアルカリ金属又はその水溶液を添加して加水分解を行い懸濁水溶液を作る。例えば、50部の四塩化チタンに200部以下の水を加え溶解する。次工程での反応率を上げ、生成物の仕上を良くするためには、液量を少なくすることが望ましく、100部の水で反応することも出来る。又中和後の液のpHを10以上することが好ましく、さらに好ましくはpH13以上にすることが望ましい。このためには、チタン1.0モルに対して好ましくはアルカリ金属4.5モル以上、pH13以上に保つためには、5.5モル以上使用することが望ましい。又反応速度が比較的遅く常温(25±5℃)では数日を要することがあるが、反応率をよくするためには低温で反応して、微粒子で活性な粒子とすることが好ましく15℃以下で反応することが望ましい。上記の方法で生成したチタン酸のアルカリ金属塩は反応液のまゝ次工程で使用しても良いが、ろ過して使用しても良い。反応率を上げるためには、加水分解で生成した塩類を除去することが望ましく、静置して上澄液を除き、水を加えて洗浄するか、遠心分離、ろ過等により精製することが出来る。このようにして得られた懸濁状ペーストは、TiO2含量が、10〜15%のものであり、その上澄液はpH13以上である。
【0010】
このようにして得られたTiO2の懸濁状ペーストにα―ヒドロキシカルボン酸化合物の水溶液または懸濁液を添加して反応する。添加するα−ヒドロキシカルボン酸化合物の量は必要とするチタンの含量に応じて決めてよい。例えば、クエン酸一水和物500部、水300部の水溶液に195部のTiO2(含量100%換算)の懸濁液を徐々に添加し、70℃で反応することによって得た溶液を濃縮し、ろ過、乾燥して得られた粉末はTi含量は7.3%であり、その5%水溶液のpHは7.5であった
【0011】
本発明の反応に使用する溶剤は,水溶液の場合は不純物の含有量の少ないイオン交換水を使用する。この場合の反応は溶解した溶液状態、分散した懸濁状態、両者の中間状態に分けられるが、反応が完結した状態でろ過又はを蒸発等で分離すれば、反応生成物が固体で容易に得ることが出来る。
【0012】
本発明の反応生成物は反応系の仕込み割合、反応溶剤、反応条件、乾燥条件により、異なった化合物を得ることが出来る。例えば、水、α−ヒドロキシカルボン酸、チタン酸ナトリウムチタン酸カリウムの量により、一般式MnTiORm・xH2Oの内で Mnのアルカリ金属は1〜6原子,Rmのα―ヒドロキシカルボン酸は2〜6分子の分子式をもつことが可能である。又結晶水は反応溶剤、乾燥条件等により異なるが、無水物から14水和物までが存在する。
【0013】
尚、α−ヒドロキシカルボン酸化合物の水溶液又は懸濁液(懸濁水溶液(1))は、その全量が水に溶解した状態であってもよく、一部が懸濁した状態であってもよく、それらの状態が混在した状態であってもよい。しかし、反応を円滑に進めるためには、α―ヒドロキシカルボン酸化合物に完全に溶解した状態で反応する方がよい。そのため、45℃以上にすることがよく、好ましくは55℃の温度で完全に溶解する水の量が必要である。そのためには40℃に、好ましくは30℃において溶解する水の量が必要である。例えばクエン酸(M.W=210.14)の場合は、210部のクエン酸一水和物に80部の水を加え、50℃に加熱することが必要である。
【0014】
又、α―ヒドロキシカルボン酸の塩類に関しては、塩類を水に溶解してもよく、α―ヒドロキシカルボン酸を水に溶解した溶液にアルカル金属の水酸化物又は炭酸塩を加えて中和してもよい。前述の懸濁水溶液(1)場合にアルカリ金属を加えて中和し、塩類の水溶液とする。例えば、クエン酸では、前者の場合、クエン酸モノナトリウム(M.W=214.11)214部に水を120部加えて70℃に加熱することが好ましいが、より好ましくは加熱中の水の蒸発を減らして50℃で溶解することが望ましい。後者の場合はクエン酸210部に水80部を加えて懸濁水溶液(1)として、この溶液に40部の水酸化ナトリウムを徐々に添加して反応し均一な溶液とするが、発熱反応であるため、内温を70℃以下にすることが好ましく、高温での分解を防ぐため、50℃以下にすることがより好ましい
【0015】
本発明で得られた化合物は、種々の分子結晶水を持つ。それは前述の化学式MnTiORm・xH2Oに於いてn,mの数によって異なり、又反応時の仕込み原料の割合、反応系の溶剤の種類、量、反応温度等が種々の要因となる。又α−ヒドロキシカルボン酸とその塩類、その割合、によっても異なるが、生成物に対して0〜30%の巾で(即ち0〜14水和物)化合物を得ることが出来る。これらの化合物は水に対する溶解度は各々異なる。即ち、水和物の数が多いほど水に対する溶解度が大きくなるが、目的のチタン含量が低くなる。従って使用目的によってそれに適した生成物の錯塩に作ることが出来る。この場合は仕込み割合を調整しなければならない。又これらの水和物は加熱(減圧にするとより効果的である。)によって変化し無水物に近づいて行くが、水に対する溶解度は小さくる。
【0016】
本発明では、α−ヒドロキシカルボン酸化合物とチタン酸アルカリ金属塩から水に易溶性のチタン錯塩を造ることが主目的である。更に使用目的に合った化合物、主としてチタン含量、結晶水の数、アルカリ原子の数等の選定によりそれらの条件に適した化合物を製造することが出来る。
【0017】
次に、本発明のα―ヒドロキシカルボン酸チタンアルカリ金属塩の製法を、下記の実施例に基づいて更に詳しく説明するが、本発明はかかる実施例に限定されるものではない。
【0018】
【実施例】
施例1.
クエン酸一水和物505gにイオン交換水303gを加えて加熱、攪拌して溶解した。この溶液を70℃に保ちながらチタン酸ナトリウム(TiO2 13.7%、Na換算含量 3.4%、pH 14.0)1400gを加えた。総液量2000mlとして70℃で48時間攪拌した。溶液のpH=2.35となった。この反応液を数日間静置して未反応物を沈降させた。上澄液から遠心沈降器で反応液を分離した。分離した溶液を減圧で加熱濃縮し、70℃で送風乾燥して350gのクエン酸チタンナトリウムを得た。この実施例により得た粉末5%の濃度で水に溶かし、24時間静置したが、沈殿は生じなかった。又その溶液のpHは3であった。この粉末の水分は、平沼産業(株)社製AQV−5S,水分自動測定装置(RdHLaborcheikalien GmbH & Co.KG社製水分測定用 カールフイッシャー試薬ハイドラナール・コンポジット5)で測定して16.4%であった。又チタン含量は原子吸光光度計(日本ジャーレルアッシュ株式会社製、AAS−890、波長 3643nm,アセチレンーNOガス、高温バーナ)により測定して7.32%であり、クエン酸モノナトリウムの含量は80.5%であり(N−NaOHによる中和滴定)、ナトリウム含量は7.6%であった。このことからn=2.5,m=2.5で分子式は[Na2.5TiO(Citrate)2.55H2O]となる。また得られた粉末の2%水溶液を、後述と同じHPLC条件によりHPLCで分析した結果を図3に示す。
【0019】
尚、参考として、テトライソプロポキシチタンを用いた、本発明とは別の製法により得られた粉末のX線解析を、以下の条件によって測定した。その結果を図1に示す。
・機 種 :デスクトップX線解析装置MiniFlex[理学電機株式会社]
・ターゲット :銅
・電圧及び電流:30KV,15mA
・走査速度 :2°/min
又得られた粉末の2%水溶液のHPLCを以下の条件に従って測定した。その結果を図2に示す。
・機 種 :LC−10システム HPLC(島津製作所株式会社)
カラム STR-ODS-2ガードカラム付き(信和化学工業株式会社)
・分析条件 :移動相 100mM 過塩素酸ソーダ
5mM リン酸水素ナトリウム
5mM リン酸
流 量 0.8ml/min
カラム温度 40℃
試 料 濃度 2w/w%
量 5μl
【0020】
【発明の効果】
以上詳述したように、チタン(4+)有機化合物の多くは有機溶剤に可溶であるが水に対しては、溶解性が小さいか又は加水分解を起こして、チタンとアルコール等の有機化合物となるため水溶媒での使用は困難であった。しかし水を溶媒とした工業的使用を満足させるために、クエン酸チタンナトリウムで代表される、α−ヒドロキシカルボン酸化合物のチタン錯塩が水によく溶解することからこれら一連の化合物の開発を行った。これらの化合物は様々な分子式を持つことが出来る。その化合物は添加する原料、即ち 有機酸、アルカリ金属、チタン化合物の量比、反応溶剤の種類、反応条件、乾燥条件等によって変わる。この化合物分子式は一般式をMnTiORm・xH2Oで、Mnはアルカリ金属で1〜6原子、Rmはヒドロキシカルボン酸で2〜6分子、xは0〜14の値で表すことが出来る。しかし水に対する溶解性は無水物よりも水和物の方が良く10〜12の値が好ましく、又チタン(4+)1原子に対して例えばナトリウム金属で3原子、ヒドロキシカルボン酸も3分子のものが良い。この様にして得られたα―ヒドロキシカルボン酸チタンアルカリ金属は水に対する溶解性が高く、しかも溶解した状態で安定である。従って各種の繊維加工、樹脂、塗料、接着剤、皮革柔軟剤等での水溶剤で加工を行うことが可能であり、技術的、経済性、作業性に優れた化合物である。
【0021】
又、本発明、製法によれば、α―ヒドロキシカルボン酸化合物を使用することにより、これまで達し得なかった水に対する溶解性を良くすることが出来た。又その製法から見ても、収率が良く、品質も安定したものが得られ、加えて、使用目的に合った溶解度、チタン含量化合物等容易に作ることが可能である。
【図面の簡単な説明】
【図1】テトライソプロポキシチタンを用いた、本発明とは別の製法により得られた粉末のX線解析スペクトルである。
【図2】テトライソプロポキシチタンを用いた、本発明とは別の製法により得られた粉末のHPLCによる分析例である。
【図3】本発明の実施例で得られた粉末のHPLCによる分析例である。
[0001]
BACKGROUND OF THE INVENTION
The present invention is applicable to an aqueous solution of an α-hydroxycarboxylic acid compound and a salt thereof such as a sodium salt or a potassium salt thereof used as an anti-flammability and quality improver, for example, in fiber processing, resin, paint additives, etc. The present invention relates to an alkali metal salt of an α-hydroxycarboxylic acid titanium obtained by reacting an alkoxytitanium compound, and particularly to a method for producing an alkali metal salt of an α-hydroxycarboxylic acid titanium that is easily soluble in water and stable.
[0002]
[Prior art]
Although most of the titanium (4+) organic compounds are soluble in organic solvents, they are hydrolyzed in water and become organic compounds such as titanium and alcohol, so that they cannot be used in aqueous solvents. On the other hand, the demand for the superiority of titanium, such as fiber processing, paints, inks, adhesives, leather softeners, etc., is increasing, and it is necessary to use them in a safe aqueous solvent. Therefore, it is necessary that the complex of as having a hydroxyl group and a carboxyl group in particular in the molecule of the organic compound (see, for example, Gazette of such JP 56-46835).
[0003]
[Problems to be solved by the invention]
The present inventor includes organic acids having a hydroxyl group and a carboxyl group, such as citric acid, tartaric acid, lactic acid and malic acid, as titanium derivatives of organic acids and alkali metal salts thereof. Most of these exist as hydrates or anhydrides. In particular, it has been found that α-hydroxycarboxylic acid and its alkali metal salts such as sodium salt and potassium salt are titanium compounds and have good solubility in water, and the solution is stable, and the present invention has been completed.
[0004]
[Means for Solving the Problems]
The present invention, alpha-after the aqueous solution or suspension of the hydroxycarboxylic acid compound is heated reaction by adding a titanate or sodium titanate potassium, the resulting reaction solution concentrated or dried, and dissolved in water After purification and filtration, it is concentrated and dried to obtain the desired product. In this case, the structure of the product differs depending on the ratio of the raw material to be added, and thus the molecular formula also differs. In general, there are many titanium contents (5 to 15%) and crystal water 3 to 14 hydrate (water 10 to 30%).
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Alpha-hydroxy carboxylic acid titanium alkali metal salts according to the present invention, as described above in, alpha-aqueous solution or suspension liquid of a hydroxycarboxylic acid compound heats the reaction by addition of sodium titanate or titanic acid potassium, the The molecular formula and the structural formula of the compound to be produced vary depending on the ratio of each raw material to be added. In general, when α-hydroxylcarboxylic acid is R and alkali metal is M, it can be expressed by a molecular formula of M n TiOR m · xH 2 O (n & m is an integer, x is a different value depending on conditions such as production and drying). The compound having such a molecular formula, if the the reaction solvent that use water is the product ing hydrate, it can also be in the anhydrate by heating.
[0006]
As described above, the α-hydroxycarboxylic acid compound used in the present invention is a general term for organic compounds having a hydroxyl group and a carboxyl group, such as citric acid, tartaric acid, lactic acid, and malic acid. anhydrous citric acid, include isocitrate, and also their anhydrides lactone, also the tartaric acid d- tartaric acid, l-tartaric acid, dl-tartaric acid, meso-tartaric acid, are also included. Similarly, L (+)-lactic acid, D (-)-lactic acid, Dl-lactic acid and malic acid also include natural products such as l-form, d-form and dl-form, and chemical synthesis products.
[0007]
In the present invention, a method of adding sodium titanate or potassium titanate while stirring an aqueous solution or suspension of α-hydroxycarboxylic acid (hereinafter referred to as suspension aqueous solution (1)) is employed. the aqueous solution or suspension (hereinafter, aqueous suspension (2) hereinafter) reaction can be performed in.
[0008]
That is, the titanium salts used in the present invention can be produced by making chlorides, sulfates, nitrates and the like strongly basic with an aqueous solution of sodium hydroxide or sodium carbonate and potassium hydroxide or potassium carbonate.
[0009]
More specifically, alkali metal salts such as sodium titanate and potassium are prepared by an ordinary method, and the above-mentioned alkali metal such as sodium hydroxide and potassium hydroxide or an aqueous solution thereof is added to an aqueous solution of titanium inorganic compound such as titanium tetrachloride and titanium sulfate. Add and hydrolyze to make an aqueous suspension. For example, 200 parts or less of water is added to 50 parts of titanium tetrachloride and dissolved. In order to increase the reaction rate in the next step and improve the finish of the product, it is desirable to reduce the liquid volume, and it is possible to react with 100 parts of water. Also it is preferable that the pH of the liquid after the neutralization to 10 or more, still more preferably be at least pH 13. For this purpose, it is desirable to use 5.5 mol or more with respect to 1.0 mol of titanium, preferably 4.5 mol or more of alkali metal and pH 13 or more. In addition, the reaction rate is relatively slow and it may take several days at room temperature (25 ± 5 ° C.). However, in order to improve the reaction rate, it is preferable to react at a low temperature to obtain fine particles and active particles. It is desirable to react with: The alkali metal salt of titanic acid produced by the above method may be used in the subsequent step of the reaction solution, or may be used after filtration. In order to increase the reaction rate, it is desirable to remove the salt produced by hydrolysis, and it can be left standing to remove the supernatant, washed with water, or purified by centrifugation, filtration, etc. . The suspension paste thus obtained has a TiO 2 content of 10 to 15%, and the supernatant has a pH of 13 or more.
[0010]
An aqueous solution or suspension of an α-hydroxycarboxylic acid compound is added to the TiO 2 suspension paste thus obtained and reacted. The amount of the α-hydroxycarboxylic acid compound to be added may be determined according to the required content of titanium. For example, 195 parts of a TiO 2 (100% content equivalent) suspension is gradually added to an aqueous solution of 500 parts of citric acid monohydrate and 300 parts of water, and the solution obtained by reacting at 70 ° C. is concentrated. The powder obtained by filtration and drying had a Ti content of 7.3%, and the pH of its 5% aqueous solution was 7.5 .
[0011]
The solvent used for the reaction of the present invention, in the case of aqueous solutions that use fewer ion-exchanged water of content of impurities. The reaction in this case can be divided into a dissolved solution state, a dispersed suspension state, and an intermediate state between the two. If the reaction is completed, filtration or water is separated by evaporation or the like, and the reaction product is easily a solid. Can be obtained.
[0012]
The reaction product of the present invention can give different compounds depending on the charging ratio of the reaction system, the reaction solvent, the reaction conditions, and the drying conditions. For example, water, alpha-hydroxy carboxylic acid, sodium titanate, the amount of titanate potassium, among the general formula MnTiORm · xH 2 O M n alkali metal 1-6 atoms, the R m alpha-hydroxycarboxylic The acid can have a molecular formula of 2 to 6 molecules. Crystallized water varies depending on the reaction solvent, drying conditions, etc., and there are anhydrides to 14 hydrates.
[0013]
Incidentally, the aqueous solution or suspension (suspension aqueous solution (1)) of α- hydroxy carboxylic acid compound may be a state in which the entire amount was dissolved in water, even if a part is suspended Of course, a state in which these states are mixed may be used. However, in order to advance the reaction smoothly, it is better to react in a state where the α-hydroxycarboxylic acid compound is completely dissolved in water . Therefore, the temperature is preferably 45 ° C. or higher, and preferably an amount of water that completely dissolves at a temperature of 55 ° C. is required. This requires an amount of water that dissolves at 40 ° C., preferably at 30 ° C. For example, in the case of citric acid (M.W = 210.14), it is necessary to add 80 parts of water to 210 parts of citric acid monohydrate and heat to 50 ° C.
[0014]
As for the salt of α-hydroxycarboxylic acid, the salt may be dissolved in water, and a solution of α-hydroxycarboxylic acid in water is neutralized by adding a hydroxide or carbonate of alkane metal. Also good. In the case of the above-mentioned suspension aqueous solution (1) , an alkali metal is added for neutralization to obtain a salt aqueous solution. For example, in the case of citric acid, in the former case, it is preferable to add 120 parts of water to 214 parts of monosodium citrate (M.W = 214.11) and heat to 70 ° C. More preferably, It is desirable to reduce evaporation and dissolve at 50 ° C. In the latter case, 80 parts of water is added to 210 parts of citric acid to form a suspension aqueous solution (1), and 40 parts of sodium hydroxide is gradually added to this solution to react to form a homogeneous solution. Therefore, the internal temperature is preferably 70 ° C. or lower, and more preferably 50 ° C. or lower in order to prevent decomposition at a high temperature .
[0015]
The compound obtained in the present invention has various molecular crystallization waters. This depends on the number of n and m in the above-mentioned chemical formula MnTiORm · xH 2 O, and the ratio of the raw materials charged during the reaction, the type and amount of the solvent in the reaction system, the reaction temperature, and the like are various factors. Moreover, although it changes also with (alpha) -hydroxycarboxylic acid, its salts, and the ratio, a compound can be obtained in the range of 0-30% with respect to a product (namely, 0-14 hydrate). These compounds have different solubility in water. That is, the greater the number of hydrates, the greater the solubility in water, but the lower the target titanium content. Therefore, it can be made into a complex salt of a product suitable for the purpose of use. In this case, the charging ratio must be adjusted. The hydrates of these compounds is approaches the anhydride was changed by heating (it is more effective to a vacuum.), Water solubility that a small.
[0016]
The main object of the present invention is to produce a titanium complex salt that is easily soluble in water from an α-hydroxycarboxylic acid compound and an alkali metal titanate. Furthermore, a compound suitable for these conditions can be produced by selecting a compound suitable for the purpose of use, mainly the titanium content, the number of crystal waters, the number of alkali atoms and the like.
[0017]
Next, the production method of the alkali metal salt of α-hydroxycarboxylic acid titanium of the present invention will be described in more detail based on the following examples, but the present invention is not limited to such examples.
[0018]
【Example】
Real Example 1.
To 505 g of citric acid monohydrate, 303 g of ion-exchanged water was added and dissolved by heating and stirring. While maintaining this solution at 70 ° C., 1400 g of sodium titanate (TiO 2 13.7%, Na equivalent content 3.4%, pH 14.0) was added. The solution was stirred at 70 ° C. for 48 hours with a total liquid volume of 2000 ml. The pH of the solution was 2.35. This reaction solution was allowed to stand for several days to precipitate unreacted materials. The reaction solution was separated from the supernatant with a centrifugal sedimentator. The separated solution was heated and concentrated under reduced pressure, and blown and dried at 70 ° C. to obtain 350 g of sodium titanium citrate. The powder obtained by Example 1 was dissolved in water at a concentration of 5%, was allowed to stand for 24 hours, no precipitation occurred. The pH of the solution was 3. The moisture content of this powder was 16.4% as measured with Hiranuma Sangyo Co., Ltd. AQV-5S, an automatic moisture analyzer (RdH Laborcheikalien GmbH & Co. KG, Karl Fischer Reagent Hydranal Composite 5 for moisture measurement). Met. The titanium content was 7.32 % as measured by an atomic absorption photometer (manufactured by Nippon Jarrel Ash Co., Ltd., AAS-890, wavelength 3643 nm, acetylene-NO gas, high-temperature burner) , and the content of monosodium citrate was 80 It was 0.5% (neutralization titration with N-NaOH) , and the sodium content was 7.6%. Therefore, when n = 2.5 and m = 2.5, the molecular formula is [Na 2.5 TiO (Citrate) 2.5 5H 2 O]. Moreover, the result of having analyzed 2% aqueous solution of the obtained powder by HPLC on the same HPLC conditions as the below-mentioned is shown in FIG.
[0019]
For reference, X-ray analysis of powder obtained by a production method different from the present invention using tetraisopropoxytitanium was measured under the following conditions. The result is shown in FIG.
・ Model: Desktop X-ray analyzer MiniFlex [Rigaku Corporation]
-Target: Copper-Voltage and current: 30 KV, 15 mA
・ Scanning speed: 2 ° / min
The HPLC of a 2% aqueous solution of the obtained powder was measured according to the following conditions. The result is shown in FIG.
-Model: LC-10 system HPLC (Shimadzu Corporation)
Column STR-ODS-2 with guard column (Shinwa Chemical Co., Ltd.)
Analysis conditions: Mobile phase 100 mM sodium perchlorate
5 mM sodium hydrogen phosphate
5 mM phosphoric acid
Flow rate 0.8ml / min
Column temperature 40 ° C
Sample concentration 2w / w%
5 μl
[0020]
【The invention's effect】
As described above in detail, most of the titanium (4+) organic compounds are soluble in organic solvents, but are less soluble in water or cause hydrolysis, resulting in organic compounds such as titanium and alcohol. Therefore, it was difficult to use in an aqueous solvent. However, in order to satisfy industrial use using water as a solvent, the titanium complex salt of α-hydroxycarboxylic acid compound, represented by sodium titanium citrate, was well dissolved in water, so a series of these compounds was developed. . These compounds can have various molecular formulas. The compound varies depending on the raw materials to be added, that is, the amount ratio of organic acid, alkali metal, and titanium compound, the type of reaction solvent, reaction conditions, drying conditions and the like. The compounds molecular formula of general formula M n TiOR m · xH 2 O , M n is 1-6 atoms with an alkali metal, Rm is 2-6 molecules hydroxycarboxylic acid, x is be represented by a value of 0-14 I can do it. However, the solubility in water is better with hydrates than with anhydrides, preferably between 10 and 12, and for example 3 atoms of sodium metal and 3 molecules of hydroxycarboxylic acid per 1 atom of titanium (4+) Is good. The α-hydroxycarboxylic acid titanium alkali metal salt thus obtained has a high solubility in water and is stable in a dissolved state. Accordingly, it can be processed with various fiber processing, resins, paints, adhesives, leather softeners and the like with an aqueous solvent, and is a compound excellent in technical, economic and workability.
[0021]
Further, according to the present invention and the production method, the use of an α-hydroxycarboxylic acid compound has improved the solubility in water that could not be achieved so far. In view of the production method, a product having a good yield and stable quality can be obtained. In addition, it is possible to easily prepare a solubility, a titanium content compound and the like suitable for the purpose of use.
[Brief description of the drawings]
FIG. 1 is an X-ray analysis spectrum of a powder obtained by a production method different from the present invention using tetraisopropoxytitanium .
FIG. 2 is an analysis example by HPLC of powder obtained by a production method different from the present invention using tetraisopropoxytitanium .
FIG. 3 is a HPLC analysis example of the powder obtained in Example 1 of the present invention .

Claims (1)

α―ヒドロキシカルボン酸化合物の水溶液又は懸濁液にチタン酸ナトリウム又はチタン酸カリウムを添加して反応させ、生成した反応水溶液をろ過、加熱、濃縮することにより、α―ヒドロキシカルボン酸ナトリウムのチタン錯塩又はα―ヒドロキシカルボン酸カリウムのチタン錯塩を得るα―ヒドロキシカルボン酸チタンアルカリ金属塩の製法。an aqueous solution or suspension of the α- hydroxy carboxylic acid compound by the addition of sodium or potassium titanate titanate is reacted, the resulting reaction solution is filtered, heated and concentrated, alpha - hydroxy carboxylic Sanna sodium preparation of titanium complexes or α- hydroxy carboxylic acid potassium obtain beam titanium complex salts α- hydroxy carboxylic acid titanium alkali metal salts.
JP36635599A 1999-12-24 1999-12-24 Preparation of alkali metal salt of α-hydroxycarboxylic acid titanium Expired - Lifetime JP4392922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36635599A JP4392922B2 (en) 1999-12-24 1999-12-24 Preparation of alkali metal salt of α-hydroxycarboxylic acid titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36635599A JP4392922B2 (en) 1999-12-24 1999-12-24 Preparation of alkali metal salt of α-hydroxycarboxylic acid titanium

Publications (2)

Publication Number Publication Date
JP2001181231A JP2001181231A (en) 2001-07-03
JP4392922B2 true JP4392922B2 (en) 2010-01-06

Family

ID=18486585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36635599A Expired - Lifetime JP4392922B2 (en) 1999-12-24 1999-12-24 Preparation of alkali metal salt of α-hydroxycarboxylic acid titanium

Country Status (1)

Country Link
JP (1) JP4392922B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196576B2 (en) * 2002-04-01 2008-12-17 ダイソー株式会社 Titanium salt, method for producing the same, and method for producing epoxide using the same
JP5838643B2 (en) * 2010-08-09 2016-01-06 Toto株式会社 Titanium complex and aqueous coating solution containing the same
JPWO2019138989A1 (en) * 2018-01-12 2020-12-24 日本化学工業株式会社 Method for producing titanium chelate compound

Also Published As

Publication number Publication date
JP2001181231A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
JP2003525923A (en) Method for recovering organic acid from aqueous solution
TWI481561B (en) Non-caking salt composition, preparation process and use thereof
JP4392922B2 (en) Preparation of alkali metal salt of α-hydroxycarboxylic acid titanium
TWI480259B (en) Process for the preparation of a composition comprising meso-tartaric acid
JPS62502683A (en) chemical purification method
US6232497B1 (en) Method for producing alkali metal and alkaline earth metal pyruvates
US20230295351A1 (en) Preparation method for acetylated sodium hyaluronate
JP2870183B2 (en) Process for producing 1,3-phenylenedioxydiacetic acid
JPH0276836A (en) Production of metal ether carboxylate
JP3208458B2 (en) Method for producing 1,4-dihydroxy-2-naphthoic acid
JP3199618B2 (en) Method for producing 1,4-dihydroxy-2-naphthoic acid
JP3117949B2 (en) Crystals of L-ascorbic acid-2-phosphate sodium salt
JP2006036699A (en) alpha-HYDROXYCARBOXYLIC ACID ALUMINUM SALT, ITS COMPLEX SALT AND METHOD FOR PRODUCING THE SAME
JP3229658B2 (en) Method for producing N-acetyl-DL-tryptophan
JP2000309596A (en) L-ascorbic acid-2-phosphoric acid sodium salt crystal
US5068409A (en) Bis(4-halo-phthalic acid) quarter salt, process for their preparation and their use
JPH0513938B2 (en)
CN117777044A (en) Preparation method of sodium combo Qu Gai and intermediate thereof
JP2006036698A (en) Citric acid aluminum salt and complex salt, and method for producing the same
EP0167651A1 (en) Process for producing 3-cephem-4-carboxylic acid derivatives substituted in 3-position
SU1000399A1 (en) Process for producing barium hydroxide
JPS6245590A (en) Novel antibiotic and production thereof
JP3965787B2 (en) Process for producing 2-chloro-5-hydroxypyridine
US2826608A (en) Production of 2-hydroxy and 2-keto glutaric acid and alkyl derivatives thereof
JPS6165885A (en) Novel synthetic intermediate and production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R150 Certificate of patent or registration of utility model

Ref document number: 4392922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term