JP4389806B2 - Control device for vehicle drive device - Google Patents

Control device for vehicle drive device Download PDF

Info

Publication number
JP4389806B2
JP4389806B2 JP2005040653A JP2005040653A JP4389806B2 JP 4389806 B2 JP4389806 B2 JP 4389806B2 JP 2005040653 A JP2005040653 A JP 2005040653A JP 2005040653 A JP2005040653 A JP 2005040653A JP 4389806 B2 JP4389806 B2 JP 4389806B2
Authority
JP
Japan
Prior art keywords
continuously variable
transmission
variable transmission
stepped
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005040653A
Other languages
Japanese (ja)
Other versions
JP2005337491A (en
Inventor
淳 田端
豊 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005040653A priority Critical patent/JP4389806B2/en
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to KR1020067024795A priority patent/KR20070015211A/en
Priority to EP05728659A priority patent/EP1746309B1/en
Priority to DE602005026646T priority patent/DE602005026646D1/en
Priority to CN2008101727484A priority patent/CN101451608B/en
Priority to KR1020087025092A priority patent/KR100954713B1/en
Priority to CN2005800135243A priority patent/CN1950628B/en
Priority to PCT/JP2005/006688 priority patent/WO2005106290A1/en
Priority to KR1020087006884A priority patent/KR20080032011A/en
Priority to KR1020087025091A priority patent/KR101031198B1/en
Priority to US11/092,819 priority patent/US7396316B2/en
Publication of JP2005337491A publication Critical patent/JP2005337491A/en
Priority to US11/898,851 priority patent/US7513847B2/en
Application granted granted Critical
Publication of JP4389806B2 publication Critical patent/JP4389806B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device, restraining a change in the stepwise engine rotating speed even when a stepped shifting of automatic transmission is performed in a driving device for a vehicle including a stepless transmission and a stepped automatic transmission. <P>SOLUTION: In the shifting control of the stepped transmission part 20, the gear ratio of the stepped transmission part 20 is changed stepwise, the gear ratio of the stepless transmission part 11 is changed to restrain the stepwise change by a hybrid control means 52, whereby the total gear ratio &gamma;T of a transmission mechanism 10 formed on the gear ratio of the stepless transmission part 11 and the gear ratio of the stepped transmission part 20 is continuously changed. As a result, before and after shifting of the stepped transmission part 20, the stepwise change of the engine rotating speed NE is restrained to restrain a shifting shock. The overall transmission mechanism 10 is allowed to function as the continuously variable transmission, so that fuel economy can be improved. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、無段変速機と変速機との2つの変速機を備える車両用駆動装置に係り、特に、無段変速機の変速比と変速機の変速比とに基づいて形成される車両用駆動装置の総合変速比の制御に関するものである。   The present invention relates to a vehicle drive device including two transmissions of a continuously variable transmission and a transmission, and more particularly, for a vehicle formed based on a transmission ratio of a continuously variable transmission and a transmission gear ratio. The present invention relates to the control of the overall gear ratio of the drive device.

無段変速機と変速機との2つの変速機構を備え、その2つの変速機構を介して駆動力源の出力を駆動輪へ伝達する車両用駆動装置が知られている。このような車両用駆動装置では、一般的にはそれらの変速機構の各変速比に基づいてその駆動装置の総合変速比が形成される。   2. Description of the Related Art There is known a vehicle drive device that includes two transmission mechanisms, a continuously variable transmission and a transmission, and transmits the output of a driving force source to drive wheels via the two transmission mechanisms. In such a vehicle drive device, generally, the overall gear ratio of the drive device is formed based on the respective gear ratios of the transmission mechanisms.

上記無段変速機の一例として、エンジンの出力を第1電動機および出力軸へ分配する差動機構と、その差動機構の出力軸と駆動輪との間に設けられた第2電動機とを有し電気的な無段変速機として機能する駆動装置が知られている。例えば、特許文献1に記載されたハイブリッド車両用駆動装置がそれである。このようなハイブリッド車両用駆動装置では差動機構が例えば遊星歯車装置で構成され、その差動作用によりエンジンからの動力の主部を駆動輪へ機械的に伝達し、そのエンジンからの動力の残部を第1電動機から第2電動機への電気パスを用いて電気的に伝達することにより、電気的に変速比が連続して変更される電気的な無段変速機として機能させられエンジンを最適な作動状態に維持しつつ車両を走行させるように制御装置により制御され、燃費が向上させられる。   As an example of the continuously variable transmission, there is provided a differential mechanism that distributes engine output to the first electric motor and the output shaft, and a second electric motor provided between the output shaft of the differential mechanism and the drive wheels. A drive device that functions as an electric continuously variable transmission is known. For example, this is a hybrid vehicle drive device described in Patent Document 1. In such a hybrid vehicle drive device, the differential mechanism is constituted by, for example, a planetary gear device, and the main part of the power from the engine is mechanically transmitted to the drive wheels by the differential action, and the remaining part of the power from the engine Is electrically transmitted using an electric path from the first motor to the second motor, so that the engine can be made to function as an electric continuously variable transmission in which the gear ratio is continuously changed. Control is performed by the control device so that the vehicle travels while maintaining the operating state, and fuel efficiency is improved.

また、上記2つの変速機構を備える車両用駆動装置の一例として、上記第2電動機の小型化等を目的として電気的な無段変速機の出力部材と駆動輪との間の動力伝達経路に変速機として例えば有段の自動変速機(以下、有段変速機と表す)が設けられた車両用駆動装置が知られている。例えば、特許文献2に記載されたハイブリッド車両用駆動装置がそれである。このようなハイブリッド車両用駆動装置では電気的な無段変速機の変速比と有段変速機の変速比とに基づいて駆動装置の総合変速比が決定される。そして、電気的な無段変速機が単独で変速制御される場合には、電気的な無段変速機のみが備えられた駆動装置と同様に駆動装置全体として電気的な無段変速機として機能させられエンジンを最適な作動状態に維持しつつ車両を走行させるように制御される。   In addition, as an example of a vehicle drive device including the two speed change mechanisms, a gear shift is performed on a power transmission path between an output member of an electric continuously variable transmission and a drive wheel for the purpose of downsizing the second electric motor. For example, a vehicular drive device provided with a stepped automatic transmission (hereinafter referred to as a stepped transmission) is known. For example, this is the hybrid vehicle drive device described in Patent Document 2. In such a hybrid vehicle drive device, the overall gear ratio of the drive device is determined based on the gear ratio of the electric continuously variable transmission and the gear ratio of the stepped transmission. When the electric continuously variable transmission is controlled independently, the drive device as a whole functions as an electric continuously variable transmission in the same manner as the drive device provided with only the electric continuously variable transmission. The vehicle is controlled to run while maintaining the engine in an optimum operating state.

特開2003−301731号公報JP 2003-301731 A 特開2003−130203号公報JP 2003-130203 A 特開2003−127681号公報JP 2003-127681 A

しかしながら、電気的な無段変速機の変速中に、或いは単独で、有段変速機が変速された場合には、変速比の段階的な変化に伴ってエンジン回転速度が段階的に変化させられることになり有段変速機の変速前後では駆動装置全体として変速比の連続性が確保されない可能性があった。言い換えれば、有段変速機の変速前後では駆動装置全体として無段変速機として機能させられない可能性があった。このため、変速ショックが発生したり、要求されたエンジントルクを発生させる場合に最適燃費曲線に沿うようにエンジン回転速度を制御できず燃費が悪化する可能性があった。   However, when the stepped transmission is changed during the electric continuously variable transmission or independently, the engine rotation speed is changed stepwise with the step change of the gear ratio. As a result, there is a possibility that the continuity of the gear ratio as a whole of the drive device may not be ensured before and after the gear change of the stepped transmission. In other words, there is a possibility that the entire drive unit cannot be functioned as a continuously variable transmission before and after the step change of the stepped transmission. For this reason, there is a possibility that the engine rotation speed cannot be controlled along the optimum fuel consumption curve when the shift shock occurs or the required engine torque is generated, and the fuel consumption may deteriorate.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、無段変速機と変速機とを備える車両用駆動装置において、変速機の変速が実行された場合であっても段階的なエンジン回転速度の変化が抑制される制御装置を提供することにある。   The present invention has been made in the background of the above circumstances, and the object of the present invention is when a shift of a transmission is executed in a vehicle drive device including a continuously variable transmission and a transmission. It is an object of the present invention to provide a control device that can suppress a stepwise change in engine rotational speed.

すなわち、請求項1にかかる発明の要旨とするところは、(a) エンジンに連結された第1要素と第1電動機に連結された第2要素と伝達部材に連結された第3要素とを有する差動機構と、その伝達部材と駆動輪との間の動力伝達経路に設けられた第2電動機とを有し電気的な無段変速機として機能する無段変速部と、前記動力伝達経路の一部を構成し有段の自動変速機として機能する有段変速部とを備えた車両用駆動装置の制御装置であって、(b) 前記差動機構に備えられて、その差動機構の差動作用を制限することにより前記無段変速部の電気的な無段変速機としての作動を制限する差動制限装置と、(c) 前記有段変速部の有段変速の際には、前記無段変速部とその有段変速部とで形成される変速比を連続させるように、その有段変速に伴うその有段変速部の入力回転速度変化に起因するイナーシャ相中にその有段変速に同期してその無段変速部の変速を実行する無段変速制御手段とを含み、(d) 前記無段変速部は、車両状態に基づいて前記差動制限装置により前記電気的な無段変速機として作動可能な無段変速状態とその電気的な無段変速機としての作動が制限される有段変速状態とに切り換えられるものであり、(e) 前記無段変速制御手段は、前記無段変速部が前記無段変速状態とされているときは前記有段変速部の有段変速に同期させてその有段変速前後でエンジン回転速度を一定とするその無段変速部の変速を実施する一方で、その無段変速部が前記有段変速状態とされているときはその有段変速部の有段変速に同期させるその無段変速部の変速を実施せずにその無段変速部の変速比を固定のままエンジン回転速度の変化を許容することにある。 Specifically, the gist of the invention according to claim 1 includes: (a) a first element coupled to the engine, a second element coupled to the first electric motor, and a third element coupled to the transmission member. A continuously variable transmission that has a differential mechanism and a second electric motor provided in a power transmission path between the transmission member and the drive wheel and functions as an electrical continuously variable transmission; and a control device for a vehicular drive system including a step-variable shifting portion which functions as an automatic transmission form part stepped, provided in (b) the differential mechanism, the differential mechanism A differential limiting device that limits the operation of the continuously variable transmission unit as an electrical continuously variable transmission by limiting the differential action; and (c) during the stepped shift of the stepped transmission unit, the so as to continuously change gear ratio to be formed by the continuously variable transmission unit and its step-variable shifting portion, its associated with that step-variable The inertia phase due to input rotation speed variation of the step-variable shifting portion in synchronism with the step-variable shifting and a continuously variable transmission control means for performing shifting of the continuously variable transmission unit, (d) the continuously variable transmission The section is a continuously variable transmission state operable as the electric continuously variable transmission by the differential limiting device based on a vehicle state, and a stepped transmission state in which the operation as the electric continuously variable transmission is limited is intended to be switched to the preparative, (e) the continuously variable shifting control means, the in synchronism with the step-variable shifting of the step-variable shifting portion when said continuously-variable transmission portion is to the continuously-variable shifting state the engine rotational speed before and after the stepped shift while carrying out the shifting of the fixed and be Rusono continuously-variable transmission portion, when the continuously variable transmission unit is to the step-variable shifting state Yes its geared transmission unit varying the continuously-variable transmission portion without performing shift of the continuously variable transmission unit which makes synchronization with variable The purpose is to allow the engine speed to change with the speed ratio fixed .

このようにすれば、有段変速部の有段変速に際してその有段変速部の変速比が段階的に変化させられたとしても、無段変速部と有段変速部とで形成される変速比すなわち無段変速部の変速比と有段変速部の変速比とに基づいて形成される変速比である総合変速比が変化させられないように、すなわち有段変速部の有段変速前後でエンジン回転速度が一定とされるように、無段変速制御手段により有段変速部の有段変速の際にはその有段変速に同期して無段変速部の変速が実行されるので、有段変速部の有段変速前後でエンジン回転速度の変化が可及的に抑制されて変速ショックが抑制される。また、駆動装置全体として無段変速機として機能させることが可能となるので、燃費が向上させられる。特に、このような有段変速部の有段変速に同期させる無段変速部の変速は、無段変速部が無段変速状態とされているときに実施され、有段変速状態とされているときには実施されずに無段変速部の変速比を固定のままエンジン回転速度の変化が許容されることから、有段変速状態に比べて元々燃費が良くされる無段変速状態では有段変速部の有段変速が実行されたとしても燃費が悪化することが抑制されると共に、無段変速状態に比べて元々連続的ではなく段階的に(速やかに)変速比を変化させられる有段変速状態では有段変速部の有段変速が実行されたことに伴い速やかに駆動トルクが変化させられたり、ユーザがその有段変速に伴うリズミカルなエンジン回転速度の変化を楽しむことができる。 Thus, the speed ratio speed ratio of the step-variable transmission portion during the step-variable shifting of the step-variable shifting portion even been gradually changed, which is formed in the continuously-variable shifting portion and the step-variable transmission portion that is, as an overall speed ratio is a gear ratio is formed based on the transmission ratio of the transmission ratio and the step-variable transmission portion of the continuously variable transmission portion is not allowed to change, that is, the step-variable shifting before and after the step-variable shifting portion as the engine rotational speed is constant, since the shift of the continuously-variable transmission portion in synchronization in the step-variable shifting during the step-variable shifting of the step-variable transmission portion by the continuously variable transmission control means is executed, Yes changes in engine rotational speed before and after the step-variable shifting of the variable transmission unit is shifting shock is suppressed is suppressed as much as possible. Further, since the entire drive device can function as a continuously variable transmission, fuel efficiency is improved. In particular, the shift of the continuously variable transmission unit for synchronizing the step-variable shifting of such step-variable shifting portion is performed when the continuously variable transmission portion is placed in the continuously-variable shifting state, there is a step-variable shifting state Since the change of the engine speed is allowed while the gear ratio of the continuously variable transmission unit is fixed without being executed sometimes , the continuously variable transmission unit in the continuously variable transmission state where the fuel efficiency is originally improved compared to the stepped transmission state. Even if a stepped gear shift is executed, deterioration of fuel consumption is suppressed and a stepped gear shift state in which the gear ratio is changed stepwise (rapidly) rather than originally continuously compared to the stepless gear shift state. in the multi-stage or rapidly drive torque due to the step-variable shifting is performed in the shifting portion is varied, the user can enjoy a change in the rhythmic engine rotational speed caused by the step-variable shifting.

ここで、請求項2にかかる発明の要旨とするところは、(a) エンジンの出力を駆動輪へ伝達する動力伝達経路に設けられた無段変速機として機能する無段変速部と、その動力伝達経路の一部を構成しその無段変速部に連結された有段の自動変速機として機能する有段変速部とを備えた車両用駆動装置の制御装置であって、(b) 前記有段変速部の有段変速の際には、前記無段変速部とその有段変速部とで形成される変速比を連続させるように、その有段変速に伴うその有段変速部の入力回転速度変化に起因するイナーシャ相中にその有段変速に同期してその無段変速部の変速を実行する無段変速制御手段を含み、(c) 前記無段変速部は、車両状態に基づいて前記無段変速機として作動可能な無段変速状態とその無段変速機としての作動が制限される有段変速状態とに切り換えられるものであり、(d) 前記無段変速制御手段は、前記無段変速部が前記無段変速状態とされているときは前記有段変速部の有段変速に同期させてその有段変速前後でエンジン回転速度を一定とするその無段変速部の変速を実施する一方で、その無段変速部が前記有段変速状態とされているときはその有段変速部の有段変速に同期させるその無段変速部の変速を実施せずにその無段変速部の変速比を固定のままエンジン回転速度の変化を許容することにある。 Here, the gist of the invention according to claim 2 is that: (a) a continuously variable transmission section functioning as a continuously variable transmission provided in a power transmission path for transmitting engine output to driving wheels; A control device for a vehicle drive device comprising a stepped transmission unit that functions as a stepped automatic transmission that constitutes a part of a transmission path and is connected to the continuously variable transmission unit. during the step-variable shifting of the step-variable transmission portion, it said so as to continuously change gear ratio to be formed by the continuously variable transmission unit and its step-variable shifting portion, the input rotation of the geared transmission unit associated with the step-variable A continuously variable transmission control means for executing a shift of the continuously variable transmission portion in synchronism with the stepped shift during the inertia phase caused by the speed change, and (c) the continuously variable transmission portion is based on a vehicle state. The continuously variable transmission state operable as the continuously variable transmission and the operation as the continuously variable transmission are limited. It is intended to be switched between variable shifting state, (d) the continuously variable shifting control means, when the continuously-variable transmission portion is to the continuously-variable shifting state is synchronized with the step-variable shifting of the step-variable shifting portion by while carrying out the shifting of the fixed and be Rusono continuously-variable transmission portion the engine rotational speed before and after the stepped shift, when the continuously variable transmission unit is to the step-variable shifting state its step-variable shifting It is to permit a change in the engine rotational speed remains fixed gear ratio of the continuously variable transmission unit without performing shift of the continuously variable transmission unit which makes synchronous step-variable shifting parts.

このようにすれば、有段変速部の有段変速に際してその有段変速部の変速比が段階的に変化させられたとしても、無段変速部の変速比と有段変速部の変速比とに基づいて形成される総合変速比が変化させられないように、すなわち有段変速部の有段変速前後でエンジン回転速度が一定とされるように、無段変速制御手段により有段変速部の有段変速の際にはその有段変速に同期して無段変速部の変速が実行されるので、有段変速部の有段変速前後でエンジン回転速度の変化が可及的に抑制されて変速ショックが抑制される。また、駆動装置全体として無段変速機として機能させることが可能となるので、燃費が向上させられる。特に、このような有段変速部の有段変速に同期させる無段変速部の変速は、無段変速部が無段変速状態とされているときに実施され、有段変速状態とされているときには実施されずに無段変速部の変速比を固定のままエンジン回転速度の変化が許容されることから、有段変速状態に比べて元々燃費が良くされる無段変速状態では有段変速部の有段変速が実行されたとしても燃費が悪化することが抑制されると共に、無段変速状態に比べて元々連続的ではなく段階的に(速やかに)変速比を変化させられる有段変速状態では有段変速部の有段変速が実行されたことに伴い速やかに駆動トルクが変化させられたり、ユーザがその有段変速に伴うリズミカルなエンジン回転速度の変化を楽しむことができる。 In this way, even if the speed ratio of the step-variable transmission portion during the step-variable shifting of the step-variable shifting portion is gradually changed, and the transmission ratio of the transmission ratio and the step-variable transmission portion of the continuously variable transmission unit as not to overall speed ratio change to be formed based on, i.e., as the engine rotational speed is constant before and after the step-variable shifting of the step-variable shifting portion, the step-variable shifting portion by the continuously variable transmission control means since the time of the step-variable shifting in synchronism with the step-variable shifting gear of the continuously variable transmission unit is executed, suppressed as much as possible changes in the engine rotational speed before and after the step-variable shifting of the step-variable shifting portion Thus, the shift shock is suppressed. Further, since the entire drive device can function as a continuously variable transmission, fuel efficiency is improved. In particular, the shift of the continuously variable transmission unit for synchronizing the step-variable shifting of such step-variable shifting portion is performed when the continuously variable transmission portion is placed in the continuously-variable shifting state, there is a step-variable shifting state Since the change of the engine speed is allowed while the gear ratio of the continuously variable transmission unit is fixed without being executed sometimes , the continuously variable transmission unit in the continuously variable transmission state where the fuel efficiency is originally improved compared to the stepped transmission state. Even if a stepped gear shift is executed, deterioration of fuel consumption is suppressed and a stepped gear shift state in which the gear ratio is changed stepwise (rapidly) rather than originally continuously compared to the stepless gear shift state. in the multi-stage or rapidly drive torque due to the step-variable shifting is performed in the shifting portion is varied, the user can enjoy a change in the rhythmic engine rotational speed caused by the step-variable shifting.

また、好適には、前記有段変速部は、有段の自動変速機である。このようにすれば、有段変速部の変速に伴って無段変速部の変速比と有段変速部の変速比とに基づいて形成される総合変速比が段階的に変化させられ得るので、総合変速比が連続的に変化させられることに比較して速やかに変化させられ得る。よって、前記無段変速制御手段により駆動装置全体として無段変速機として機能させて滑らかに駆動トルクを変化させることが可能であると共に、段階的に変速比を変化させて速やかに駆動トルクを得ることも可能となる。 Preferably, the stepped transmission unit is a stepped automatic transmission. Thus, since the overall speed ratio which is formed based on the transmission ratio of the transmission ratio and the step-variable transmission portion of the continuously variable transmission unit in accordance with the shift of the step-variable shifting portion may be gradually changed, Compared with the fact that the overall gear ratio is continuously changed, it can be changed quickly. Therefore, the continuously variable transmission control means can function as a continuously variable transmission as the entire drive device to smoothly change the drive torque, and change the gear ratio stepwise to obtain the drive torque quickly. It is also possible.

また、好適には、前記無段変速制御手段は、前記無段変速部と前記有段変速部とで形成される変速比の変化が抑制されるように、前記有段変速に同期してその有段変速部の変速比の変化方向とは反対方向へその無段変速部の変速比を変化させるものである。このようにすれば、有段変速部の有段変速前後でエンジン回転速度の変化が抑制されて変速ショックが一層抑制される。 Preferably, the continuously variable transmission control means is synchronized with the stepped shift so that a change in a gear ratio formed by the continuously variable transmission and the stepped transmission is suppressed. The gear ratio of the continuously variable transmission unit is changed in the direction opposite to the direction of change of the gear ratio of the stepped transmission unit. Thus, shift shock can be more suppressed is suppressed change in the engine rotational speed before and after the step-variable shifting of the step-variable shifting portion.

また、好適には、前記無段変速制御手段は、前記有段変速部の有段変速に伴うその有段変速部の入力回転速度変化に起因するイナーシャ相中に前記無段変速部の変速を実行するものである。このようにすれば、前記有段変速部の変速の際にその有段変速に同期して、無段変速制御手段により無段変速部の変速を実行することができる。 Also, preferably, the continuously variable shifting control means, a shift of the continuously-variable transmission portion the inertia phase due to input rotation speed variation of the step-variable shifting portion due to the step-variable shifting of the step-variable shifting portion It is something to execute. Thus, in synchronism with the step-variable shifting during shifting of the step-variable transmission portion, by the continuously variable transmission control means it can perform the shift of the continuously variable transmission unit.

また、好適には、前記有段変速部の入力トルクを低減するトルクダウン制御手段を備え、そのトルクダウン制御手段は、前記有段変速部の有段変速の際に前記入力トルクを低減するものである。このようにすれば、有段変速部の有段変速に伴って発生する有段変速部内の回転要素の回転速度変化によるイナーシャトルクや無段変速部内の回転要素の回転速度変化によるイナーシャトルクに相当するトルク分を相殺するように、トルクダウン制御手段により入力トルクが低減されるので、変速ショックが抑制される。例えば、トルクダウン制御手段は、入力トルクの低減をエンジントルクの低減や第2電動機によるトルクダウン制御によって実行する。 Preferably, a torque down control means for reducing the input torque of the stepped transmission unit is provided, and the torque down control unit reduces the input torque at the time of the stepped transmission of the stepped transmission unit. It is. Thus, corresponding to the inertia torque due to the rotational speed change of the rotation element in the inertia torque and the continuously variable transmission unit according to the rotational speed change of the rotation elements stepped in transmission portion generated due to the step-variable shifting of the step-variable shifting portion Since the input torque is reduced by the torque-down control means so as to cancel out the torque to be shifted, the shift shock is suppressed. For example, the torque down control means executes the reduction of the input torque by the reduction of the engine torque or the torque down control by the second electric motor.

また、請求項にかかる発明の要旨とするところは、(a) エンジンに連結された第1要素と第1電動機に連結された第2要素と伝達部材に連結された第3要素とを有する差動機構と、その伝達部材と駆動輪との間の動力伝達経路に設けられた第2電動機とを有し電気的な無段変速機として機能する無段変速部と、前記動力伝達経路の一部を構成し有段の自動変速機として機能する有段変速部とを備えた車両用駆動装置の制御装置であって、(b) 前記差動機構に備えられて、その差動機構の差動作用を制限することにより前記無段変速部の電気的な無段変速機としての作動を制限する差動制限装置と、(c) 前記有段変速部の有段変速の際には、その有段変速に伴うその有段変速部の入力回転速度変化に起因するイナーシャ相中にその有段変速に同期してその有段変速部の変速比の変化方向とは反対方向の変速比の変化となるように前記無段変速部の変速を実行する無段変速制御手段とを含み、(d) 前記無段変速部は、車両状態に基づいて前記差動制限装置により前記電気的な無段変速機として作動可能な無段変速状態とその電気的な無段変速機としての作動が制限される有段変速状態とに切り換えられるものであり、(e) 前記無段変速制御手段は、前記無段変速部が前記無段変速状態とされているときは前記有段変速部の有段変速に同期させてその有段変速前後でエンジン回転速度を一定とするその無段変速部の変速を実施する一方で、その無段変速部が前記有段変速状態とされているときはその有段変速部の有段変速に同期させるその無段変速部の変速を実施せずにその無段変速部の変速比を固定のままエンジン回転速度の変化を許容することにある。 Further, the gist of the invention according to claim 5 includes: (a) a first element coupled to the engine, a second element coupled to the first electric motor, and a third element coupled to the transmission member. A continuously variable transmission that has a differential mechanism and a second electric motor provided in a power transmission path between the transmission member and the drive wheel and functions as an electrical continuously variable transmission; and A control device for a vehicle drive device comprising a stepped transmission unit that constitutes a part and functions as a stepped automatic transmission, (b) provided in the differential mechanism, A differential limiting device that limits the operation of the continuously variable transmission unit as an electrical continuously variable transmission by limiting the differential action; and (c) during the stepped shift of the stepped transmission unit, the inertia phase due to input rotation speed variation of the step-variable shifting portion due to the stepped shift in synchronism with the step-variable shifting And a continuously variable transmission control means for performing a shift of the continuously variable transmission so that the transmission ratio changes in a direction opposite to the direction of change of the transmission ratio of the stepped transmission. The transmission unit includes a continuously variable transmission state operable as the electric continuously variable transmission by the differential limiting device based on a vehicle state, and a stepped transmission in which operation as the electric continuously variable transmission is limited. is intended to be switched between states, (e) the continuously variable shifting control means in synchronization with the step-variable shifting of the step-variable shifting portion when said continuously-variable transmission portion is to the continuously-variable shifting state while carrying out the shifting of the fixed and be Rusono continuously-variable transmission portion the engine rotational speed before and after the step-variable, when the continuously variable transmission unit is to the step-variable shifting state of the step-variable shifting portion speed ratio of the continuously variable transmission unit without performing shift of the continuously variable transmission unit which makes synchronous step-variable shifting This is to allow the engine speed to change while the engine is fixed .

このようにすれば、有段変速部の有段変速に際してその有段変速部の変速比が段階的に変化させられても無段変速制御手段により有段変速部の有段変速前後でエンジン回転速度が一定とされるように無段変速部の変速比が変化させられるので、無段変速部の変速比と有段変速部の変速比とに基づいて形成される駆動装置の総合変速比の変化が可及的に抑制される。この結果、有段変速部の有段変速前後でエンジン回転速度の変化が可及的に抑制されて変速ショックが抑制される。また、駆動装置全体として無段変速機として機能させることが可能となるので、燃費が向上させられる。特に、このような有段変速部の有段変速に同期させる無段変速部の変速は、無段変速部が無段変速状態とされているときに実施され、有段変速状態とされているときには実施されずに無段変速部の変速比を固定のままエンジン回転速度の変化が許容されることから、有段変速状態に比べて元々燃費が良くされる無段変速状態では有段変速部の有段変速が実行されたとしても燃費が悪化することが抑制されると共に、無段変速状態に比べて元々連続的ではなく段階的に(速やかに)変速比を変化させられる有段変速状態では有段変速部の有段変速が実行されたことに伴い速やかに駆動トルクが変化させられたり、ユーザがその有段変速に伴うリズミカルなエンジン回転速度の変化を楽しむことができる。 In this way, the engine rotation before and after the step-variable shifting of the step-variable shifting portion by geared transmission unit that geared transmission unit of the transmission ratio is stepwise be varied continuously variable control means during the step-variable shifting of Since the gear ratio of the continuously variable transmission unit is changed so that the speed is constant, the overall gear ratio of the drive device formed based on the gear ratio of the continuously variable transmission unit and the gear ratio of the stepped transmission unit Change is suppressed as much as possible . As a result, changes in the engine rotational speed before and after the step-variable shifting of the geared transmission unit is shifting shock is suppressed is suppressed as much as possible. Further, since the entire drive device can function as a continuously variable transmission, fuel efficiency is improved. In particular, the speed of the continuously variable transmission unit synchronized with the stepped transmission of the stepped transmission unit is performed when the continuously variable transmission unit is in the continuously variable transmission state, and is in the stepped transmission state. Since the change of the engine speed is allowed while the gear ratio of the continuously variable transmission unit is fixed without being executed sometimes , the continuously variable transmission unit in the continuously variable transmission state where the fuel efficiency is originally improved compared to the stepped transmission state. Even if a stepped gear shift is executed, deterioration of fuel consumption is suppressed and a stepped gear shift state in which the gear ratio is changed stepwise (rapidly) rather than originally continuously compared to the stepless gear shift state. in the multi-stage or rapidly drive torque due to the step-variable shifting is performed in the shifting portion is varied, the user can enjoy a change in the rhythmic engine rotational speed caused by the step-variable shifting.

また、請求項にかかる発明の要旨とするところは、(a) エンジンの出力を駆動輪へ伝達する動力伝達経路に設けられた無段変速機として機能する無段変速部と、その動力伝達経路の一部を構成しその無段変速部に連結された有段の自動変速機として機能する有段変速部とを備えた車両用駆動装置の制御装置であって、(b) 前記有段変速部の有段変速の際には、その有段変速に伴うその有段変速部の入力回転速度変化に起因するイナーシャ相中にその有段変速に同期してその有段変速部の変速比の変化方向とは反対方向の変速比の変化となるように前記無段変速部の変速を実行する無段変速制御手段を含み、(c) 前記無段変速部は、車両状態に基づいて前記無段変速機として作動可能な無段変速状態とその無段変速機としての作動が制限される有段変速状態とに切り換えられるものであり、(d) 前記無段変速制御手段は、前記無段変速部が前記無段変速状態とされているときは前記有段変速部の有段変速に同期させてその有段変速前後でエンジン回転速度を一定とするその無段変速部の変速を実施する一方で、その無段変速部が前記有段変速状態とされているときはその有段変速部の有段変速に同期させるその無段変速部の変速を実施せずにその無段変速部の変速比を固定のままエンジン回転速度の変化を許容することにある。 The gist of the invention according to claim 6 is that: (a) a continuously variable transmission portion functioning as a continuously variable transmission provided in a power transmission path for transmitting engine output to drive wheels; And a stepped transmission unit that functions as a stepped automatic transmission that forms a part of a path and is connected to the stepless transmission unit. during the step-variable shifting of the shifting portion, the gear ratio of the step-variable shifting portion in synchronism with the inertia phase due to input rotation speed variation of the step-variable shifting portion due to the stepped shift to the step-variable shifting A continuously variable transmission control means for performing a shift of the continuously variable transmission unit so as to change the speed ratio in a direction opposite to the change direction of (c), (c) the continuously variable transmission unit is based on the vehicle state The continuously variable transmission state that can operate as a continuously variable transmission and the operation as a continuously variable transmission are limited. It is intended to be switched and shifting state, (d) the continuously variable shifting control means in synchronization with the step-variable shifting of the step-variable shifting portion when said continuously-variable transmission portion is to the continuously-variable shifting state as in the step-variable shifting back and forth of the engine rotational speed while implementing a shift constant and to Rusono continuously-variable transmission portion, when the continuously variable transmission unit is to the step-variable shifting state its step-variable shifting portion Te in the step-variable shifting of allowing a change in the engine rotational speed remains fixed gear ratio of the continuously variable transmission unit without performing shift of the continuously variable transmission unit which makes synchronization.

このようにすれば、有段変速部の有段変速に際してその有段変速部の変速比が段階的に変化させられても無段変速制御手段により有段変速部の有段変速前後でエンジン回転速度が一定とされるように無段変速部の変速比が変化させられるので、無段変速部の変速比と有段変速部の変速比とに基づいて形成される駆動装置の総合変速比の変化が可及的に抑制される。この結果、有段変速部の有段変速前後でエンジン回転速度の変化が可及的に抑制されて変速ショックが抑制される。また、駆動装置全体として無段変速機として機能させることが可能となるので、燃費が向上させられる。特に、このような有段変速部の有段変速に同期させる無段変速部の変速は、無段変速部が無段変速状態とされているときに実施され、有段変速状態とされているときには実施されずに無段変速部の変速比を固定のままエンジン回転速度の変化が許容されることから、有段変速状態に比べて元々燃費が良くされる無段変速状態では有段変速部の有段変速が実行されたとしても燃費が悪化することが抑制されると共に、無段変速状態に比べて元々連続的ではなく段階的に(速やかに)変速比を変化させられる有段変速状態では有段変速部の有段変速が実行されたことに伴い速やかに駆動トルクが変化させられたり、ユーザがその有段変速に伴うリズミカルなエンジン回転速度の変化を楽しむことができる。 In this way, the engine rotation before and after the step-variable shifting of the step-variable shifting portion by geared transmission unit that geared transmission unit of the transmission ratio is stepwise be varied continuously variable control means during the step-variable shifting of Since the gear ratio of the continuously variable transmission unit is changed so that the speed is constant, the overall gear ratio of the drive device formed based on the gear ratio of the continuously variable transmission unit and the gear ratio of the stepped transmission unit Change is suppressed as much as possible . As a result, changes in the engine rotational speed before and after the step-variable shifting of the geared transmission unit is shifting shock is suppressed is suppressed as much as possible. Further, since the entire drive device can function as a continuously variable transmission, fuel efficiency is improved. In particular, the speed of the continuously variable transmission unit synchronized with the stepped transmission of the stepped transmission unit is performed when the continuously variable transmission unit is in the continuously variable transmission state, and is in the stepped transmission state. Since the change of the engine speed is allowed while the gear ratio of the continuously variable transmission unit is fixed without being executed sometimes , the continuously variable transmission unit in the continuously variable transmission state where the fuel efficiency is originally improved compared to the stepped transmission state. Even if a stepped gear shift is executed, deterioration of fuel consumption is suppressed and a stepped gear shift state in which the gear ratio is changed stepwise (rapidly) rather than originally continuously compared to the stepless gear shift state. in the multi-stage or rapidly drive torque due to the step-variable shifting is performed in the shifting portion is varied, the user can enjoy a change in the rhythmic engine rotational speed caused by the step-variable shifting.

また、好適には、前記無段変速制御手段は、前記有段変速部の有段変速に伴うその有段変速部の入力回転速度変化に起因するイナーシャ相中に前記無段変速部の変速を実行するものである。このようにすれば、前記有段変速部の有段変速の際にその有段変速に同期して、無段変速制御手段により無段変速部の変速を実行することができる。 Preferably, the continuously variable transmission control means shifts the continuously variable transmission during the inertia phase caused by the input rotational speed change of the stepped transmission associated with the stepped transmission of the stepped transmission. It is something to execute. In this way, it is said in synchronism with the time of the step-variable shifting action of the step-variable transmission portion in the step-variable shifting, it executes the shift of the continuously variable transmission unit by the continuously variable transmission control means.

また、好適には、前記有段変速部の入力トルクを低減するトルクダウン制御手段を備え、そのトルクダウン制御手段は、前記有段変速部の有段変速の際に前記入力トルクを低減するものである。このようにすれば、有段変速部の有段変速に伴って発生する有段変速部内の回転要素の回転速度変化によるイナーシャトルクや無段変速部内の回転要素の回転速度変化によるイナーシャトルクに相当するトルク分を相殺するようにトルクダウン制御手段により入力トルクが低減されるので、変速ショックが抑制される。例えば、トルクダウン制御手段は、入力トルクの低減をエンジントルクの低減や第2電動機によるトルクダウン制御によって実行する。 Preferably, a torque down control means for reducing the input torque of the stepped transmission unit is provided, and the torque down control unit reduces the input torque at the time of the stepped transmission of the stepped transmission unit. It is. Thus, corresponding to the inertia torque due to the rotational speed change of the rotation elements of the inertia torque and the continuously variable transmission unit according to the rotational speed change of the rotation elements stepped in transmission portion generated due to the step-variable shifting of the geared transmission unit Since the input torque is reduced by the torque down control means so as to cancel out the torque to be changed, the shift shock is suppressed. For example, the torque down control means executes the reduction of the input torque by the reduction of the engine torque or the torque down control by the second electric motor.

また、好適には、前記無段変速制御手段は、前記無段変速部と前記有段変速部とで形成される変速比の変化を抑制させるときに、その有段変速部の変速比の変化方向とは反対方向の変速比の変化となるようにその無段変速部の変速を実行するものである。このようにすれば、有段変速部の有段変速前後でエンジン回転速度の変化が抑制されて変速ショックが一層抑制される。 Preferably, when the continuously variable transmission control means suppresses a change in the transmission ratio formed by the continuously variable transmission and the stepped transmission, the change in the transmission ratio of the stepped transmission is changed. The continuously variable transmission is shifted so as to change the gear ratio in the direction opposite to the direction. In this way, the shift shock is further suppressed before and after the step-variable shifting action of the step-variable transmission portion is suppressed change in the engine rotational speed.

ここで、好適には、前記無段変速部は、エンジンの出力を第1電動機および伝達部材へ分配する差動機構とその伝達部材から駆動輪への動力伝達経路に設けられた第2電動機とを有して電気的な無段変速機として作動可能なものである。このようにすれば、エンジンを最適な作動状態に維持しつつ車両を走行させるように、変速比が変更されて燃費が向上される。   Preferably, the continuously variable transmission unit includes a differential mechanism that distributes engine output to the first electric motor and the transmission member, and a second electric motor provided in a power transmission path from the transmission member to the drive wheels. It can operate as an electric continuously variable transmission. If it does in this way, a gear ratio will be changed and fuel consumption will be improved so that vehicles may run, maintaining an engine in the optimal operating state.

また、好適には、前記差動機構は、その差動機構を差動作用が働く差動状態とその差動作用をしないロック状態とに選択的に切り換えるための差動状態切換装置を備えるものである。このようにすれば、差動状態切換装置により差動作用が働く差動状態とその差動作用をしないロック状態とに差動機構が選択的に切り換えられることから、電気的に変速比が変更させられる変速機の燃費改善効果と機械的に動力を伝達する歯車式伝動装置の高い伝達効率との両長所を兼ね備えた駆動装置が得られる。例えば、車両の低中速走行および低中出力走行となるようなエンジンの常用出力域において、上記差動機構が差動状態とされると車両の燃費性能が確保されるが、高速走行においてその差動機構がロック状態とされると専ら機械的な動力伝達経路でエンジンの出力が駆動輪へ伝達されて電気的に変速比が変更させられる変速機として作動させる場合に発生する動力と電気エネルギとの間の変換損失が抑制されるので、燃費が向上させられる。また、例えば、高出力走行において差動機構がロック状態とされると、電気的に変速比が変更させられる変速機として作動させる領域が車両の低中速走行および低中出力走行となって、電動機が発生すべき電気的エネルギの最大値換言すれば電動機が伝える電気的エネルギの最大値を小さくできてその電動機或いはそれを含む車両の駆動装置が一層小型化される。   Preferably, the differential mechanism includes a differential state switching device for selectively switching the differential mechanism between a differential state in which the differential action is performed and a lock state in which the differential action is not performed. It is. In this way, the differential mechanism is selectively switched between the differential state in which the differential action is performed by the differential state switching device and the locked state in which the differential action is not performed. Thus, a drive device having both the advantages of the improved fuel efficiency of the transmission to be transmitted and the high transmission efficiency of the gear transmission that mechanically transmits power can be obtained. For example, in the normal output range of the engine where the vehicle is running at low and medium speeds and low and medium power running, if the differential mechanism is in a differential state, the fuel efficiency of the vehicle is ensured. When the differential mechanism is in the locked state, the power and electric energy generated when the engine is operated as a transmission in which the output of the engine is transmitted to the drive wheels exclusively through the mechanical power transmission path and the gear ratio is electrically changed. Since the conversion loss between the two is suppressed, the fuel efficiency is improved. Further, for example, when the differential mechanism is locked in high output traveling, the region to be operated as a transmission in which the gear ratio is electrically changed is low and medium output traveling of the vehicle, In other words, the maximum value of the electric energy that the electric motor should generate, in other words, the maximum value of the electric energy transmitted by the electric motor can be reduced, and the motor or the drive device of the vehicle including the electric motor can be further downsized.

また、好適には、前記無段変速部は、前記差動状態切換装置により前記差動機構が差動作用が働く差動状態とされることで電気的な無段変速作動可能な無段変速状態とされ、その差動作用をしないロック状態とされることで電気的な無段変速作動しない変速状態例えば有段変速状態とされるものである。このようにすれば、無段変速部が、無段変速状態と有段変速状態とに切り換えられる。   Preferably, the continuously variable transmission unit is a continuously variable transmission that can be operated with an electrical continuously variable transmission by the differential state switching device being put into a differential state in which the differential mechanism operates. In this state, a shift state in which the electric continuously variable transmission is not operated, for example, a stepped shift state, is obtained by setting the lock state in which the differential action is not performed. If it does in this way, a continuously variable transmission part is switched to a continuously variable transmission state and a stepped transmission state.

また、好適には、前記差動機構は、前記エンジンに連結された第1要素と前記第1電動機に連結された第2要素と前記伝達部材に連結された第3要素とを有するものであり、前記差動状態切換装置は、前記差動状態とするためにその第1要素乃至第3要素を相互に相対回転可能とし、前記ロック状態とするためにその第1要素乃至第3要素を共に一体回転させるか或いはその第2要素を非回転状態とするものである。このようにすれば、差動機構が差動状態とロック状態とに切り換えられるように構成される。   Preferably, the differential mechanism includes a first element coupled to the engine, a second element coupled to the first electric motor, and a third element coupled to the transmission member. The differential state switching device allows the first element to the third element to rotate relative to each other in order to enter the differential state, and both the first element to the third element to enter the locked state. Either rotate integrally or place the second element in a non-rotating state. In this way, the differential mechanism is configured to be switched between the differential state and the lock state.

また、好適には、前記差動状態切換装置は、前記第1要素乃至第3要素を共に一体回転させるために前記第1要素乃至第3要素のうちの少なくとも2つを相互に連結するクラッチおよび/または前記第2要素を非回転状態とするために前記第2要素を非回転部材に連結するブレーキを備えたものである。このようにすれば、差動機構が差動状態とロック状態とに簡単に切り換えられるように構成される。   Preferably, the differential state switching device includes a clutch that connects at least two of the first to third elements with each other in order to rotate the first to third elements together. In order to put the second element in a non-rotating state, a brake for connecting the second element to the non-rotating member is provided. In this way, the differential mechanism can be easily switched between the differential state and the locked state.

また、好適には、前記差動機構は、前記クラッチおよび前記ブレーキの解放により前記第1回転要素乃至第3回転要素を相互に相対回転可能な差動状態とされて電気的な差動装置とされ、前記クラッチの係合により変速比が1である変速機とされるか、或いは前記ブレーキの係合により変速比が1より小さい増速変速機とされるものである。このようにすれば、差動機構が差動状態とロック状態とに切り換えられるように構成されるとともに、単段または複数段の定変速比を有する変速機としても構成され得る。   Preferably, the differential mechanism is configured to be in a differential state in which the first to third rotating elements can be rotated relative to each other by releasing the clutch and the brake. Then, the transmission is a transmission having a gear ratio of 1 by the engagement of the clutch, or the speed increasing transmission having a transmission ratio of less than 1 by the engagement of the brake. In this way, the differential mechanism can be configured to be switched between the differential state and the locked state, and can also be configured as a transmission having a single-stage or multiple-stage constant gear ratio.

また、好適には、前記差動機構動は遊星歯車装置であり、前記第1要素はその遊星歯車装置のキャリヤであり、前記第2要素はその遊星歯車装置のサンギヤであり、前記第3要素はその遊星歯車装置のリングギヤである。このようにすれば、前記差動機構の軸方向寸法が小さくなる。また、差動機構が1つの遊星歯車装置によって簡単に構成され得る。   Preferably, the differential mechanism movement is a planetary gear device, the first element is a carrier of the planetary gear device, the second element is a sun gear of the planetary gear device, and the third element. Is the ring gear of the planetary gear unit. In this way, the axial dimension of the differential mechanism is reduced. Further, the differential mechanism can be easily constituted by one planetary gear device.

また、好適には、前記遊星歯車装置はシングルピニオン型遊星歯車装置である。このようにすれば、前記差動機構の軸方向寸法が小さくなる。また、差動機構が1つのシングルピニオン型遊星歯車装置によって簡単に構成される。   Preferably, the planetary gear device is a single pinion type planetary gear device. In this way, the axial dimension of the differential mechanism is reduced. Further, the differential mechanism is simply constituted by one single pinion type planetary gear device.

また、好適には、前記無段変速部の変速比と前記変速部の変速比とに基づいて前記車両用駆動装置の総合変速比が形成されるものである。このようにすれば、変速部の変速比を利用することによって駆動力が幅広く得られるようになるので、無段変速部における電気的な無段変速制御の効率が一層高められる。   Preferably, the overall transmission ratio of the vehicle drive device is formed based on the transmission ratio of the continuously variable transmission unit and the transmission ratio of the transmission unit. In this way, a wide range of driving force can be obtained by using the gear ratio of the transmission unit, so that the efficiency of the electrical continuously variable transmission control in the continuously variable transmission unit is further enhanced.

また、好適には、前記無段変速部の変速比と前記有段変速部の変速比とに基づいて前記車両用駆動装置の総合変速比が形成されるものである。このようにすれば、有段変速部の変速比を利用することによって駆動力が幅広く得られるようになるので、無段変速部における電気的な無段変速制御の効率が一層高められる。   Preferably, the overall transmission ratio of the vehicle drive device is formed based on the transmission ratio of the continuously variable transmission section and the transmission ratio of the stepped transmission section. In this way, since the driving force can be widely obtained by using the gear ratio of the stepped transmission unit, the efficiency of the electric continuously variable transmission control in the continuously variable transmission unit is further enhanced.

また、無段変速部の無段変速状態において、無段変速部と有段変速部とで無段変速機が構成され、無段変速部の電気的な無段変速作動しない変速状態において、無段変速部と有段変速部とで有段変速機が構成される。   In the continuously variable transmission state of the continuously variable transmission unit, the continuously variable transmission unit and the stepped transmission unit constitute a continuously variable transmission. A stepped transmission is constituted by the stepped transmission unit and the stepped transmission unit.

以下、本発明の実施例を図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施例である制御装置が適用されるハイブリッド車両の駆動装置の一部を構成する変速機構10を説明する骨子図である。図1において、変速機構10は車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、ケース12という)内において共通の軸心上に配設された入力回転部材としての入力軸14と、この入力軸14に直接に或いは図示しない脈動吸収ダンパー(振動減衰装置)などを介して間接に連結された無段変速部11と、その無段変速部11と駆動輪38との間の動力伝達経路で伝達部材(伝動軸)18を介して直列に連結されている有段式の変速機として機能する有段変速部20と、この有段変速部20に連結されている出力回転部材としての出力軸22とを直列に備えている。この変速機構10は、例えば車両において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるものであり、入力軸14に直接に或いは図示しない脈動吸収ダンパーを介して直接的に連結された走行用の駆動力源として例えばガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン8と一対の駆動輪38との間に設けられて、図5に示すようにエンジン8からの動力を駆動装置の他の一部として動力伝達経路の一部を構成する差動歯車装置(終減速機)36および一対の車軸等を順次介して一対の駆動輪38へ伝達する。なお、変速機構10はその軸心に対して対称的に構成されているため、図1の骨子図においてはその下側が省略されている。以下の各実施例についても同様である。   FIG. 1 is a skeleton diagram illustrating a speed change mechanism 10 that constitutes a part of a drive device of a hybrid vehicle to which a control device according to an embodiment of the present invention is applied. In FIG. 1, a transmission mechanism 10 includes an input shaft 14 as an input rotation member disposed on a common axis in a transmission case 12 (hereinafter referred to as case 12) as a non-rotation member attached to a vehicle body, A continuously variable transmission 11 directly connected to the input shaft 14 or indirectly via a pulsation absorbing damper (vibration damping device) (not shown), and a power transmission path between the continuously variable transmission 11 and the drive wheel 38 And a stepped transmission 20 functioning as a stepped transmission connected in series via a transmission member (transmission shaft) 18, and an output as an output rotating member connected to the stepped transmission 20. A shaft 22 is provided in series. The speed change mechanism 10 is preferably used in, for example, an FR (front engine / rear drive) type vehicle vertically installed in a vehicle, and directly to the input shaft 14 or directly via a pulsation absorbing damper (not shown). As a driving power source for traveling, for example, an engine 8 which is an internal combustion engine such as a gasoline engine or a diesel engine is provided between a pair of driving wheels 38, and the power from the engine 8 is supplied as shown in FIG. The differential gear device (final reduction gear) 36 that constitutes a part of the power transmission path as another part of the drive device and the pair of axles are sequentially transmitted to the pair of drive wheels 38. Since the speed change mechanism 10 is configured symmetrically with respect to its axis, the lower side is omitted in the skeleton diagram of FIG. The same applies to each of the following embodiments.

無段変速部11は、第1電動機M1と、入力軸14に入力されたエンジン8の出力を機械的に分配する機械的機構であってエンジン8の出力を第1電動機M1および伝達部材18に分配する差動機構としての動力分配機構16と、伝達部材18と一体的に回転するように設けられている第2電動機M2とを備えている。なお、この第2電動機M2は伝達部材18から駆動輪38までの間の動力伝達経路を構成するいずれの部分に設けられてもよい。本実施例の第1電動機M1および第2電動機M2は発電機能をも有する所謂モータジェネレータであるが、第1電動機M1は反力を発生させるためのジェネレータ(発電)機能を少なくとも備え、第2電動機M2は走行用の駆動力源として駆動力を出力するためのモータ(電動機)機能を少なくとも備える。   The continuously variable transmission unit 11 is a mechanical mechanism that mechanically distributes the output of the engine 8 input to the first electric motor M1 and the input shaft 14, and outputs the output of the engine 8 to the first electric motor M1 and the transmission member 18. A power distribution mechanism 16 as a differential mechanism for distribution and a second electric motor M2 provided to rotate integrally with the transmission member 18 are provided. The second electric motor M2 may be provided in any part constituting the power transmission path from the transmission member 18 to the drive wheel 38. The first electric motor M1 and the second electric motor M2 of the present embodiment are so-called motor generators that also have a power generation function, but the first electric motor M1 has at least a generator (power generation) function for generating a reaction force, and the second electric motor. M2 has at least a motor (electric motor) function for outputting driving force as a driving force source for traveling.

動力分配機構16は、例えば「0.418」程度の所定のギヤ比ρ1を有するシングルピニオン型の第1遊星歯車装置24と、切換クラッチC0および切換ブレーキB0とを主体的に備えている。この第1遊星歯車装置24は、第1サンギヤS1、第1遊星歯車P1、その第1遊星歯車P1を自転および公転可能に支持する第1キャリヤCA1、第1遊星歯車P1を介して第1サンギヤS1と噛み合う第1リングギヤR1を回転要素(要素)として備えている。第1サンギヤS1の歯数をZS1、第1リングギヤR1の歯数をZR1とすると、上記ギヤ比ρ1はZS1/ZR1である。   The power distribution mechanism 16 mainly includes, for example, a single pinion type first planetary gear unit 24 having a predetermined gear ratio ρ1 of about “0.418”, a switching clutch C0, and a switching brake B0. The first planetary gear unit 24 includes a first sun gear S1, a first planetary gear P1, a first carrier CA1 that supports the first planetary gear P1 so as to rotate and revolve, and a first sun gear via the first planetary gear P1. A first ring gear R1 meshing with S1 is provided as a rotating element (element). When the number of teeth of the first sun gear S1 is ZS1 and the number of teeth of the first ring gear R1 is ZR1, the gear ratio ρ1 is ZS1 / ZR1.

この動力分配機構16においては、第1キャリヤCA1は入力軸14すなわちエンジン8に連結され、第1サンギヤS1は第1電動機M1に連結され、第1リングギヤR1は伝達部材18に連結されている。また、切換ブレーキB0は第1サンギヤS1とケース12との間に設けられ、切換クラッチC0は第1サンギヤS1と第1キャリヤCA1との間に設けられている。それら切換クラッチC0および切換ブレーキB0が解放されると、動力分配機構16は第1遊星歯車装置24の3要素である第1サンギヤS1、第1キャリヤCA1、第1リングギヤR1がそれぞれ相互に相対回転可能とされて差動作用が作動可能なすなわち差動作用が働く差動状態とされることから、エンジン8の出力が第1電動機M1と伝達部材18とに分配されるとともに、分配されたエンジン8の出力の一部で第1電動機M1から発生させられた電気エネルギで蓄電されたり第2電動機M2が回転駆動されるので、無段変速部11(動力分配機構16)は電気的な差動装置として機能させられて例えば無段変速部11は所謂無段変速状態(電気的CVT状態)とされて、エンジン8の所定回転に拘わらず伝達部材18の回転が連続的に変化させられる。すなわち、動力分配機構16が差動状態とされると無段変速部11も差動状態とされ、無段変速部11はその変速比γ0(入力軸14の回転速度/伝達部材18の回転速度)が最小値γ0min から最大値γ0max まで連続的に変化させられる電気的な無段変速機として機能する無段変速状態とされる。   In the power distribution mechanism 16, the first carrier CA1 is connected to the input shaft 14, that is, the engine 8, the first sun gear S1 is connected to the first electric motor M1, and the first ring gear R1 is connected to the transmission member 18. Further, the switching brake B0 is provided between the first sun gear S1 and the case 12, and the switching clutch C0 is provided between the first sun gear S1 and the first carrier CA1. When the switching clutch C0 and the switching brake B0 are released, the power distribution mechanism 16 causes the first sun gear S1, the first carrier CA1, and the first ring gear R1, which are the three elements of the first planetary gear device 24, to rotate relative to each other. Since the differential action is enabled, that is, the differential action is activated, the output of the engine 8 is distributed to the first electric motor M1 and the transmission member 18, and the distributed engine 8 is stored with electric energy generated from the first electric motor M1, and the second electric motor M2 is rotationally driven, so that the continuously variable transmission 11 (power distribution mechanism 16) is electrically differential. For example, the continuously variable transmission unit 11 is set to a so-called continuously variable transmission state (electric CVT state) by functioning as a device, and the rotation of the transmission member 18 is continuously performed regardless of the predetermined rotation of the engine 8. It is varied. That is, when the power distribution mechanism 16 is in the differential state, the continuously variable transmission unit 11 is also in the differential state, and the continuously variable transmission unit 11 has its speed ratio γ0 (the rotational speed of the input shaft 14 / the rotational speed of the transmission member 18). ) Is a continuously variable transmission state that functions as an electrical continuously variable transmission that is continuously changed from the minimum value γ0min to the maximum value γ0max.

この状態で、上記切換クラッチC0或いは切換ブレーキB0が係合させられると動力分配機構16は前記差動作用をしないすなわち差動作用が不能な非差動状態とされる。具体的には、上記切換クラッチC0が係合させられて第1サンギヤS1と第1キャリヤCA1とが一体的に係合させられると、動力分配機構16は第1遊星歯車装置24の3要素である第1サンギヤS1、第1キャリヤCA1、第1リングギヤR1が共に回転すなわち一体回転させられるロック状態とされて前記差動作用をしない第1非差動状態とされることから、無段変速部11も非差動状態とされる。また、エンジン8の回転と伝達部材18の回転速度とが一致する状態となるので、無段変速部11(動力分配機構16)は変速比γ0が「1」に固定された変速機として機能する定変速状態すなわち有段変速状態とされる。   In this state, when the switching clutch C0 or the switching brake B0 is engaged, the power distribution mechanism 16 does not perform the differential action, that is, enters a non-differential state where the differential action is impossible. Specifically, when the switching clutch C0 is engaged and the first sun gear S1 and the first carrier CA1 are integrally engaged, the power distribution mechanism 16 includes three elements of the first planetary gear device 24. Since the first sun gear S1, the first carrier CA1, and the first ring gear R1 are all in a locked state where they are rotated, that is, integrally rotated, the first non-differential state in which the differential action is not performed is established. 11 is also in a non-differential state. Further, since the rotation of the engine 8 and the rotation speed of the transmission member 18 coincide with each other, the continuously variable transmission unit 11 (power distribution mechanism 16) functions as a transmission in which the speed ratio γ0 is fixed to “1”. A constant shift state, that is, a stepped shift state is set.

次いで、上記切換クラッチC0に替えて切換ブレーキB0が係合させられて第1サンギヤS1がケース12に連結させられると、動力分配機構16は第1サンギヤS1が非回転状態とさせられるロック状態とされて前記差動作用をしない第2非差動状態とされることから、無段変速部11も非差動状態とされる。また、第1リングギヤR1は第1キャリヤCA1よりも増速回転されるので、動力分配機構16は増速機構として機能するものであり、無段変速部11(動力分配機構16)は変速比γ0が「1」より小さい値例えば0.7程度に固定された増速変速機として機能する定変速状態すなわち有段変速状態とされる。   Next, when the switching brake B0 is engaged instead of the switching clutch C0 and the first sun gear S1 is connected to the case 12, the power distribution mechanism 16 is in a locked state in which the first sun gear S1 is brought into a non-rotating state. Thus, since the second non-differential state in which the differential action is not performed is set, the continuously variable transmission unit 11 is also set in the non-differential state. Further, since the first ring gear R1 is rotated at a higher speed than the first carrier CA1, the power distribution mechanism 16 functions as a speed increase mechanism, and the continuously variable transmission 11 (power distribution mechanism 16) has a gear ratio γ0. Is set to a constant transmission state that functions as a speed-up transmission with a value smaller than “1”, for example, about 0.7, that is, a stepped transmission state.

このように、本実施例では、上記切換クラッチC0および切換ブレーキB0は、無段変速部11(動力分配機構16)を差動状態すなわち非ロック状態と非差動状態すなわちロック状態とに、すなわち無段変速部11(動力分配機構16)を電気的な差動装置として作動可能な差動状態例えば変速比が連続的変化可能な電気的な無段変速機として作動する無段変速作動可能な無段変速状態と、電気的な無段変速作動しない変速状態例えば電気的な無段変速機として作動させず無段変速作動を非作動として変速比変化を一定にロックするロック状態すなわち1または2種類以上の変速比の単段または複数段の変速機として作動する電気的な無段変速作動不能な定変速状態(非差動状態)、換言すれば変速比が一定の1段または複数段の変速機として作動する定変速状態とに選択的に切換える差動状態切換装置として機能している。   Thus, in the present embodiment, the switching clutch C0 and the switching brake B0 cause the continuously variable transmission 11 (power distribution mechanism 16) to enter a differential state, that is, a non-locked state and a non-differential state, that is, a locked state. A differential state in which the continuously variable transmission 11 (power distribution mechanism 16) can operate as an electrical differential device, for example, an infinitely variable operation that operates as an electrical continuously variable transmission in which the gear ratio can be continuously changed. A continuously variable transmission state and a shift state in which an electric continuously variable transmission is not operated, for example, a lock state in which a change in gear ratio is locked at a constant level while a continuously variable transmission operation is not operated without being operated as an electric continuously variable transmission, ie, 1 or 2. An electric continuously variable transmission operating as a single-stage or multiple-stage transmission with more than one type of speed ratio (non-differential state) incapable of operating, in other words, one or more stages with a constant gear ratio. With transmission Functions as a differential state switching device for selectively switching to a constant shifting state to operate Te.

有段変速部20は、シングルピニオン型の第2遊星歯車装置26、シングルピニオン型の第3遊星歯車装置28、およびシングルピニオン型の第4遊星歯車装置30を備えている。第2遊星歯車装置26は、第2サンギヤS2、第2遊星歯車P2、その第2遊星歯車P2を自転および公転可能に支持する第2キャリヤCA2、第2遊星歯車P2を介して第2サンギヤS2と噛み合う第2リングギヤR2を備えており、例えば「0.562」程度の所定のギヤ比ρ2を有している。第3遊星歯車装置28は、第3サンギヤS3、第3遊星歯車P3、その第3遊星歯車P3を自転および公転可能に支持する第3キャリヤCA3、第3遊星歯車P3を介して第3サンギヤS3と噛み合う第3リングギヤR3を備えており、例えば「0.425」程度の所定のギヤ比ρ3を有している。第4遊星歯車装置30は、第4サンギヤS4、第4遊星歯車P4、その第4遊星歯車P4を自転および公転可能に支持する第4キャリヤCA4、第4遊星歯車P4を介して第4サンギヤS4と噛み合う第4リングギヤR4を備えており、例えば「0.421」程度の所定のギヤ比ρ4を有している。第2サンギヤS2の歯数をZS2、第2リングギヤR2の歯数をZR2、第3サンギヤS3の歯数をZS3、第3リングギヤR3の歯数をZR3、第4サンギヤS4の歯数をZS4、第4リングギヤR4の歯数をZR4とすると、上記ギヤ比ρ2はZS2/ZR2、上記ギヤ比ρ3はZS3/ZR3、上記ギヤ比ρ4はZS4/ZR4である。   The stepped transmission unit 20 includes a single pinion type second planetary gear device 26, a single pinion type third planetary gear device 28, and a single pinion type fourth planetary gear device 30. The second planetary gear unit 26 includes a second sun gear S2 via a second sun gear S2, a second planetary gear P2, a second carrier CA2 that supports the second planetary gear P2 so as to rotate and revolve, and a second planetary gear P2. The second ring gear R2 that meshes with the second gear R2 and has a predetermined gear ratio ρ2 of about “0.562”, for example. The third planetary gear device 28 includes a third sun gear S3 via a third sun gear S3, a third planetary gear P3, a third carrier CA3 that supports the third planetary gear P3 so as to rotate and revolve, and a third planetary gear P3. A third ring gear R3 that meshes with the gear, and has a predetermined gear ratio ρ3 of, for example, about “0.425”. The fourth planetary gear unit 30 includes a fourth sun gear S4, a fourth planetary gear P4, a fourth carrier gear CA4 that supports the fourth planetary gear P4 so as to rotate and revolve, and a fourth sun gear S4 via the fourth planetary gear P4. And has a predetermined gear ratio ρ4 of about “0.421”, for example. The number of teeth of the second sun gear S2 is ZS2, the number of teeth of the second ring gear R2 is ZR2, the number of teeth of the third sun gear S3 is ZS3, the number of teeth of the third ring gear R3 is ZR3, the number of teeth of the fourth sun gear S4 is ZS4, When the number of teeth of the fourth ring gear R4 is ZR4, the gear ratio ρ2 is ZS2 / ZR2, the gear ratio ρ3 is ZS3 / ZR3, and the gear ratio ρ4 is ZS4 / ZR4.

有段変速部20では、第2サンギヤS2と第3サンギヤS3とが一体的に連結されて第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第2キャリヤCA2は第2ブレーキB2を介してケース12に選択的に連結され、第4リングギヤR4は第3ブレーキB3を介してケース12に選択的に連結され、第2リングギヤR2と第3キャリヤCA3と第4キャリヤCA4とが一体的に連結されて出力軸22に連結され、第3リングギヤR3と第4サンギヤS4とが一体的に連結されて第1クラッチC1を介して伝達部材18に選択的に連結されている。   In the stepped transmission unit 20, the second sun gear S2 and the third sun gear S3 are integrally connected and selectively connected to the transmission member 18 via the second clutch C2 and the case via the first brake B1. The second carrier CA2 is selectively connected to the case 12 via the second brake B2, the fourth ring gear R4 is selectively connected to the case 12 via the third brake B3, The second ring gear R2, the third carrier CA3, and the fourth carrier CA4 are integrally connected to the output shaft 22, and the third ring gear R3 and the fourth sun gear S4 are integrally connected to the first clutch C1. Is selectively connected to the transmission member 18.

前記切換クラッチC0、第1クラッチC1、第2クラッチC2、切換ブレーキB0、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3は従来の車両用自動変速機においてよく用いられている油圧式摩擦係合装置であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型や、回転するドラムの外周面に巻き付けられた1本または2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどにより構成され、それが介挿されている両側の部材を選択的に連結するためのものである。   The switching clutch C0, the first clutch C1, the second clutch C2, the switching brake B0, the first brake B1, the second brake B2, and the third brake B3 are hydraulic types that are often used in conventional automatic transmissions for vehicles. It is a friction engagement device, and a wet multi-plate type in which a plurality of friction plates stacked on each other are pressed by a hydraulic actuator, or one end of one or two bands wound around the outer peripheral surface of a rotating drum It is composed of a band brake or the like that is tightened by a hydraulic actuator, and is for selectively connecting members on both sides on which the brake is inserted.

以上のように構成された変速機構10では、例えば、図2の係合作動表に示されるように、前記切換クラッチC0、第1クラッチC1、第2クラッチC2、切換ブレーキB0、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3が選択的に係合作動させられることにより、第1速ギヤ段(第1変速段)乃至第5速ギヤ段(第5変速段)のいずれか或いは後進ギヤ段(後進変速段)或いはニュートラルが選択的に成立させられ、略等比的に変化する変速比γ(=入力軸回転速度NIN/出力軸回転速度NOUT)が各ギヤ段毎に得られるようになっている。特に、本実施例では動力分配機構16に切換クラッチC0および切換ブレーキB0が備えられており、切換クラッチC0および切換ブレーキB0の何れかが係合作動させられることによって、無段変速部11は前述した無段変速機として作動する無段変速状態に加え、変速比が一定の変速機として作動する定変速状態を構成することが可能とされている。したがって、変速機構10では、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで定変速状態とされた無段変速部11と有段変速部20とで有段変速機として作動する有段変速状態が構成され、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態とされた無段変速部11と有段変速部20とで電気的な無段変速機として作動する無段変速状態が構成される。言い換えれば、変速機構10は、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで有段変速状態に切り換えられ、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態に切り換えられる。また、無段変速部11も有段変速状態と無段変速状態とに切り換え可能な変速機であると言える。 In the speed change mechanism 10 configured as described above, for example, as shown in the engagement operation table of FIG. 2, the switching clutch C0, the first clutch C1, the second clutch C2, the switching brake B0, and the first brake B1. When the second brake B2 and the third brake B3 are selectively engaged, any one of the first gear (first gear) to the fifth gear (fifth gear) or A reverse gear stage (reverse gear stage) or neutral is selectively established, and a gear ratio γ (= input shaft rotational speed N IN / output shaft rotational speed N OUT ) that changes substantially in an equal ratio is determined for each gear stage. It has come to be obtained. In particular, in the present embodiment, the power distribution mechanism 16 is provided with a switching clutch C0 and a switching brake B0, and either one of the switching clutch C0 and the switching brake B0 is engaged to operate the continuously variable transmission unit 11 as described above. In addition to the continuously variable transmission state that operates as a continuously variable transmission, it is possible to configure a constant transmission state that operates as a transmission having a constant gear ratio. Therefore, the transmission mechanism 10 operates as a stepped transmission by the continuously variable transmission unit 11 and the stepped transmission unit 20 that are brought into a constant transmission state by engaging and operating either the switching clutch C0 or the switching brake B0. The stepless speed change state is constituted, and the stepless speed change portion 11 and the stepped speed change portion 20 which are set to the stepless speed change state by engaging neither the switching clutch C0 nor the changeover brake B0 are electrically stepless. A continuously variable transmission state operating as a machine is configured. In other words, the speed change mechanism 10 is switched to the stepped speed change state by engaging either the switching clutch C0 or the switching brake B0, and is not operated by engaging any of the switching clutch C0 or the switching brake B0. It is switched to the step shifting state. The continuously variable transmission unit 11 can also be said to be a transmission that can be switched between a stepped transmission state and a continuously variable transmission state.

例えば、変速機構10が有段変速機として機能する場合には、図2に示すように、切換クラッチC0、第1クラッチC1および第3ブレーキB3の係合により、変速比γ1が最大値例えば「3.357」程度である第1速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第2ブレーキB2の係合により、変速比γ2が第1速ギヤ段よりも小さい値例えば「2.180」程度である第2速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第1ブレーキB1の係合により、変速比γ3が第2速ギヤ段よりも小さい値例えば「1.424」程度である第3速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第2クラッチC2の係合により、変速比γ4が第3速ギヤ段よりも小さい値例えば「1.000」程度である第4速ギヤ段が成立させられ、第1クラッチC1、第2クラッチC2、および切換ブレーキB0の係合により、変速比γ5が第4速ギヤ段よりも小さい値例えば「0.705」程度である第5速ギヤ段が成立させられる。また、第2クラッチC2および第3ブレーキB3の係合により、変速比γRが第1速ギヤ段と第2速ギヤ段との間の値例えば「3.209」程度である後進ギヤ段が成立させられる。なお、ニュートラル「N」状態とする場合には、例えば切換クラッチC0のみが係合される。   For example, when the speed change mechanism 10 functions as a stepped transmission, as shown in FIG. 2, the gear ratio γ1 is set to a maximum value, for example, “by the engagement of the switching clutch C0, the first clutch C1, and the third brake B3” The first speed gear stage of about 3.357 "is established, and the gear ratio γ2 is smaller than the first speed gear stage by engagement of the switching clutch C0, the first clutch C1, and the second brake B2, for example,“ The second speed gear stage which is about 2.180 "is established, and the gear ratio γ3 is smaller than the second speed gear stage by engagement of the switching clutch C0, the first clutch C1 and the first brake B1, for example," The third speed gear stage which is about 1.424 "is established, and the gear ratio γ4 is smaller than the third speed gear stage by engagement of the switching clutch C0, the first clutch C1 and the second clutch C2, for example," The fourth speed gear stage that is about .000 "is established, and the engagement of the first clutch C1, the second clutch C2, and the switching brake B0 causes the gear ratio γ5 to be smaller than the fourth speed gear stage, for example," The fifth gear stage which is about 0.705 "is established. Further, by the engagement of the second clutch C2 and the third brake B3, the reverse gear stage in which the speed ratio γR is a value between the first speed gear stage and the second speed gear stage, for example, about “3.209” is established. Be made. When the neutral “N” state is set, for example, only the switching clutch C0 is engaged.

しかし、変速機構10が無段変速機として機能する場合には、図2に示される係合表の切換クラッチC0および切換ブレーキB0が共に解放される。これにより、無段変速部11が無段変速機として機能し、それに直列の有段変速部20が有段変速機として機能することにより、有段変速部20の第1速、第2速、第3速、第4速の各ギヤ段に対しその有段変速部20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって、無段変速部11と有段変速部20とで形成される変速比γT、すなわち無段変速部11の変速比γ0と有段変速部20の変速比γとに基づいて形成される変速機構10全体としての変速比γTである総合変速比(以下、トータル変速比という)γTが無段階に得られるようになる。   However, when the transmission mechanism 10 functions as a continuously variable transmission, both the switching clutch C0 and the switching brake B0 in the engagement table shown in FIG. 2 are released. As a result, the continuously variable transmission unit 11 functions as a continuously variable transmission, and the stepped transmission unit 20 in series functions as a stepped transmission, whereby the first speed, the second speed of the stepped transmission unit 20, For each gear stage of the third speed and the fourth speed, the rotational speed input to the stepped transmission unit 20, that is, the rotational speed of the transmission member 18 is changed steplessly, so that each gear stage shifts continuously. A specific width is obtained. Therefore, the gear ratio between the gears is continuously variable continuously, and the gear ratio γT formed by the continuously variable transmission unit 11 and the stepped transmission unit 20, that is, the continuously variable transmission unit 11 An overall transmission ratio (hereinafter referred to as a total transmission ratio) γT, which is a transmission ratio γT of the transmission mechanism 10 as a whole formed based on the transmission ratio γ0 and the transmission ratio γ of the stepped transmission unit 20, is obtained in a stepless manner. become.

図3は、差動部或いは第1変速部として機能する無段変速部11と変速部(自動変速部)或いは第2変速部として機能する有段変速部20とから構成される変速機構10において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。この図3の共線図は、各遊星歯車装置24、26、28、30のギヤ比ρの関係を示す横軸と、相対的回転速度を示す縦軸とから成る二次元座標であり、3本の横線のうちの下側の横線X1が回転速度零を示し、上側の横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン8の回転速度Nを示し、横線XGが伝達部材18の回転速度を示している。 FIG. 3 shows a transmission mechanism 10 including a continuously variable transmission 11 that functions as a differential unit or a first transmission, and a stepped transmission 20 that functions as a transmission (automatic transmission) or a second transmission. FIG. 5 is a collinear diagram that can represent on a straight line the relative relationship between the rotational speeds of the rotating elements that are connected in different gear stages. The collinear chart of FIG. 3 is a two-dimensional coordinate composed of a horizontal axis indicating the relationship of the gear ratio ρ of each planetary gear device 24, 26, 28, 30 and a vertical axis indicating the relative rotational speed. shows the lower horizontal line X1 rotational speed zero of the horizontal lines, the upper horizontal line X2 the rotational speed of "1.0", that represents the rotational speed N E of the engine 8 connected to the input shaft 14, horizontal line XG Indicates the rotational speed of the transmission member 18.

また、無段変速部11を構成する動力分配機構16の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素(第2要素)RE2に対応する第1サンギヤS1、第1回転要素(第1要素)RE1に対応する第1キャリヤCA1、第3回転要素(第3要素)RE3に対応する第1リングギヤR1の相対回転速度を示すものであり、それらの間隔は第1遊星歯車装置24のギヤ比ρ1に応じて定められている。さらに、有段変速部20の5本の縦線Y4、Y5、Y6、Y7、Y8は、左から順に、第4回転要素(第4要素)RE4に対応し且つ相互に連結された第2サンギヤS2および第3サンギヤS3を、第5回転要素(第5要素)RE5に対応する第2キャリヤCA2を、第6回転要素(第6要素)RE6に対応する第4リングギヤR4を、第7回転要素(第7要素)RE7に対応し且つ相互に連結された第2リングギヤR2、第3キャリヤCA3、第4キャリヤCA4を、第8回転要素(第8要素)RE8に対応し且つ相互に連結された第3リングギヤR3、第4サンギヤS4をそれぞれ表し、それらの間隔は第2、第3、第4遊星歯車装置26、28、30のギヤ比ρ2、ρ3、ρ4に応じてそれぞれ定められている。共線図の縦軸間の関係においてサンギヤとキャリヤとの間が「1」に対応する間隔とされるとキャリヤとリングギヤとの間が遊星歯車装置のギヤ比ρに対応する間隔とされる。すなわち、無段変速部11では縦線Y1とY2との縦線間が「1」に対応する間隔に設定され、縦線Y2とY3との間隔はギヤ比ρ1に対応する間隔に設定される。また、有段変速部20では各第2、第3、第4遊星歯車装置26、28、30毎にそのサンギヤとキャリヤとの間が「1」に対応する間隔に設定され、キャリヤとリングギヤとの間がρに対応する間隔に設定される。   In addition, three vertical lines Y1, Y2, Y3 corresponding to the three elements of the power distribution mechanism 16 constituting the continuously variable transmission unit 11 are in order from the left side to the second rotation element (second element) RE2. 1 shows a relative rotational speed of the first ring gear R1 corresponding to the sun gear S1, the first carrier CA1 corresponding to the first rotating element (first element) RE1, and the third rotating element (third element) RE3. Is determined in accordance with the gear ratio ρ1 of the first planetary gear unit 24. Further, the five vertical lines Y4, Y5, Y6, Y7, Y8 of the stepped transmission unit 20 correspond to the fourth rotating element (fourth element) RE4 in order from the left and are connected to each other. S2 and the third sun gear S3, the second carrier CA2 corresponding to the fifth rotation element (fifth element) RE5, the fourth ring gear R4 corresponding to the sixth rotation element (sixth element) RE6, the seventh rotation element (Seventh element) The second ring gear R2, the third carrier CA3, and the fourth carrier CA4 corresponding to RE7 and connected to each other correspond to the eighth rotating element (eighth element) RE8 and connected to each other. The third ring gear R3 and the fourth sun gear S4 are respectively represented, and the distance between them is determined according to the gear ratios ρ2, ρ3, and ρ4 of the second, third, and fourth planetary gear devices 26, 28, and 30, respectively. In the relationship between the vertical axes of the nomogram, when the distance between the sun gear and the carrier is set to an interval corresponding to “1”, the interval between the carrier and the ring gear is set to an interval corresponding to the gear ratio ρ of the planetary gear device. That is, in the continuously variable transmission 11, the interval between the vertical lines Y1 and Y2 is set to an interval corresponding to “1”, and the interval between the vertical lines Y2 and Y3 is set to an interval corresponding to the gear ratio ρ1. . Further, in the stepped transmission 20, the interval between the sun gear and the carrier is set at an interval corresponding to “1” for each of the second, third, and fourth planetary gear devices 26, 28, and 30. Is set to an interval corresponding to ρ.

上記図3の共線図を用いて表現すれば、本実施例の変速機構10は、動力分配機構16(無段変速部11)において、第1遊星歯車装置24の第1回転要素RE1(第1キャリヤCA1)が入力軸14すなわちエンジン8に連結されるとともに切換クラッチC0を介して第2回転要素(第1サンギヤS1)RE2と選択的に連結され、第2回転要素RE2が第1電動機M1に連結されるとともに切換ブレーキB0を介してケース12に選択的に連結され、第3回転要素(第1リングギヤR1)RE3が伝達部材18および第2電動機M2に連結されて、入力軸14の回転を伝達部材18を介して有段変速部20へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により第1サンギヤS1の回転速度と第1リングギヤR1の回転速度との関係が示される。   If expressed using the collinear diagram of FIG. 3 described above, the speed change mechanism 10 of the present embodiment includes the first rotating element RE1 (first speed) of the first planetary gear device 24 in the power distribution mechanism 16 (the continuously variable transmission portion 11). 1 carrier CA1) is connected to the input shaft 14, that is, the engine 8, and selectively connected to the second rotating element (first sun gear S1) RE2 via the switching clutch C0, and the second rotating element RE2 is connected to the first electric motor M1. Is connected to the case 12 via the switching brake B0, and the third rotating element (first ring gear R1) RE3 is connected to the transmission member 18 and the second electric motor M2 to rotate the input shaft 14. Is transmitted (inputted) to the stepped transmission 20 via the transmission member 18. At this time, the relationship between the rotational speed of the first sun gear S1 and the rotational speed of the first ring gear R1 is indicated by an oblique straight line L0 passing through the intersection of Y2 and X2.

例えば、上記切換クラッチC0および切換ブレーキB0の解放により無段変速状態(差動状態)に切換えられたときは、第1電動機M1の発電による反力を制御することによって直線L0と縦線Y1との交点で示される第1サンギヤS1の回転が上昇或いは下降させられると、直線L0と縦線Y3との交点で示される第1リングギヤR1の回転速度が下降或いは上昇させられる。また、切換クラッチC0の係合により第1サンギヤS1と第1キャリヤCA1とが連結されると、動力分配機構16は上記3回転要素が一体回転する第1非差動状態とされるので、直線L0は横線X2と一致させられ、エンジン回転速度Nと同じ回転で伝達部材18が回転させられる。或いは、切換ブレーキB0の係合によって第1サンギヤS1の回転が停止させられると動力分配機構16は増速機構として機能する第2非差動状態とされるので、直線L0は図3に示す状態となり、その直線L0と縦線Y3との交点で示される第1リングギヤR1すなわち伝達部材18の回転速度は、エンジン回転速度Nよりも増速された回転で有段変速部20へ入力される。 For example, when switching to the continuously variable transmission state (differential state) by releasing the switching clutch C0 and the switching brake B0, the reaction force generated by the first motor M1 is controlled to control the straight line L0 and the vertical line Y1. When the rotation of the first sun gear S1 indicated by the intersection point is raised or lowered, the rotational speed of the first ring gear R1 indicated by the intersection point between the straight line L0 and the vertical line Y3 is lowered or raised. When the first sun gear S1 and the first carrier CA1 are connected by the engagement of the switching clutch C0, the power distribution mechanism 16 is in the first non-differential state in which the three rotation elements rotate integrally. L0 is aligned with the horizontal line X2, whereby the power transmitting member 18 is rotated at the same rotation to the engine speed N E. Alternatively, when the rotation of the first sun gear S1 is stopped by the engagement of the switching brake B0, the power distribution mechanism 16 is brought into the second non-differential state that functions as the speed increasing mechanism, and therefore the straight line L0 is the state shown in FIG. next, the rotational speed of the first ring gear R1, i.e., the power transmitting member 18 represented by a point of intersection between the straight line L0 and the vertical line Y3 is input to the step-variable shifting portion 20 at a rotation speed higher than the engine speed N E .

また、有段変速部20において第4回転要素RE4は第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第5回転要素RE5は第2ブレーキB2を介してケース12に選択的に連結され、第6回転要素RE6は第3ブレーキB3を介してケース12に選択的に連結され、第7回転要素RE7は出力軸22に連結され、第8回転要素RE8は第1クラッチC1を介して伝達部材18に選択的に連結されている。   In the stepped transmission unit 20, the fourth rotating element RE4 is selectively connected to the transmission member 18 via the second clutch C2, and is selectively connected to the case 12 via the first brake B1, The rotating element RE5 is selectively connected to the case 12 via the second brake B2, the sixth rotating element RE6 is selectively connected to the case 12 via the third brake B3, and the seventh rotating element RE7 is connected to the output shaft. 22 and the eighth rotating element RE8 is selectively connected to the transmission member 18 via the first clutch C1.

有段変速部20では、図3に示すように、第1クラッチC1と第3ブレーキB3とが係合させられることにより、第8回転要素RE8の回転速度を示す縦線Y8と横線X2との交点と第6回転要素RE6の回転速度を示す縦線Y6と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第1速の出力軸22の回転速度が示される。同様に、第1クラッチC1と第2ブレーキB2とが係合させられることにより決まる斜めの直線L2と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第2速の出力軸22の回転速度が示され、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L3と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第3速の出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L4と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第4速の出力軸22の回転速度が示される。上記第1速乃至第4速では、切換クラッチC0が係合させられている結果、エンジン回転速度Nと同じ回転速度で第8回転要素RE8に無段変速部11すなわち動力分配機構16からの動力が入力される。しかし、切換クラッチC0に替えて切換ブレーキB0が係合させられると、無段変速部11からの動力がエンジン回転速度Nよりも高い回転速度で入力されることから、第1クラッチC1、第2クラッチC2、および切換ブレーキB0が係合させられることにより決まる水平な直線L5と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第5速の出力軸22の回転速度が示される。 In the stepped transmission unit 20, as shown in FIG. 3, the first clutch C1 and the third brake B3 are engaged, whereby the vertical line Y8 indicating the rotational speed of the eighth rotation element RE8 and the horizontal line X2 An oblique straight line L1 passing through the intersection and the intersection of the vertical line Y6 indicating the rotational speed of the sixth rotational element RE6 and the horizontal line X1, and a vertical line Y7 indicating the rotational speed of the seventh rotational element RE7 connected to the output shaft 22. The rotational speed of the output shaft 22 of the first speed is shown at the intersection with. Similarly, at an intersection of an oblique straight line L2 determined by engaging the first clutch C1 and the second brake B2 and a vertical line Y7 indicating the rotational speed of the seventh rotating element RE7 connected to the output shaft 22. The rotational speed of the output shaft 22 at the second speed is shown, and an oblique straight line L3 determined by engaging the first clutch C1 and the first brake B1 and the seventh rotational element RE7 connected to the output shaft 22 The rotation speed of the output shaft 22 of the third speed is indicated by the intersection with the vertical line Y7 indicating the rotation speed, and the horizontal straight line L4 and the output shaft determined by engaging the first clutch C1 and the second clutch C2. The rotation speed of the output shaft 22 of the fourth speed is indicated by the intersection with the vertical line Y7 indicating the rotation speed of the seventh rotation element RE7 connected to the motor 22. In the first speed through the fourth speed, as a result of the switching clutch C0 is engaged, the eighth rotary element RE8 at the same speed as the engine speed N E from the continuously variable transmission unit 11 or power distributing mechanism 16 Power is input. However, when the switching brake B0 in place of the switching clutch C0 is engaged, since the power from the continuously variable transmission unit 11 is input at a higher speed than the engine rotational speed N E, first clutch C1, the Output of the fifth speed at the intersection of the horizontal straight line L5 determined by the engagement of the two clutch C2 and the switching brake B0 and the vertical line Y7 indicating the rotation speed of the seventh rotation element RE7 connected to the output shaft 22 The rotational speed of the shaft 22 is shown.

図4は、本実施例の変速機構10を制御するための電子制御装置40に入力される信号及びその電子制御装置40から出力される信号を例示している。この電子制御装置40は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジン8、第1、第2電動機M1、M2に関するハイブリッド駆動制御、有段変速部20の変速制御等の駆動制御を実行するものである。   FIG. 4 illustrates a signal input to the electronic control device 40 for controlling the speed change mechanism 10 of the present embodiment and a signal output from the electronic control device 40. The electronic control unit 40 includes a so-called microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like, and performs signal processing in accordance with a program stored in advance in the ROM while using a temporary storage function of the RAM. By performing the above, drive control such as hybrid drive control relating to the engine 8, the first and second electric motors M1 and M2, and the shift control of the stepped transmission 20 is executed.

電子制御装置40には、図4に示すような各センサやスイッチなどから、エンジン水温TEMPを示す信号、シフトポジションPSHを表す信号、エンジン8の回転速度であるエンジン回転速度Nを表す信号、ギヤ比列設定値を示す信号、M(モータ走行)モードを指令する信号、エアコンの作動を示すエアコン信号、出力軸22の回転速度NOUTに対応する車速Vを表す信号、有段変速部20の作動油温を示す油温信号、サイドブレーキ操作を示す信号、フットブレーキ操作を示す信号、触媒温度を示す触媒温度信号、運転者の出力要求量に対応するアクセルペダルの操作量Accを示すアクセル開度信号、カム角信号、スノーモード設定を示すスノーモード設定信号、車両の前後加速度を示す加速度信号、オートクルーズ走行を示すオートクルーズ信号、車両の重量を示す車重信号、各車輪の車輪速を示す車輪速信号、変速機構10を有段変速機として機能させるために無段変速部11(動力分配機構16)を定変速状態(非差動状態)に切り換えるための有段スイッチ操作の有無を示す信号、変速機構10を無段変速機として機能させるために無段変速部11を無段変速状態(差動状態)に切り換えるための無段スイッチ操作の有無を示す信号、第1電動機M1の回転速度NM1(以下、第1電動機回転速度NM1という)を表す信号、第2電動機M2の回転速度NM2(以下、第2電動機回転速度NM2という)を表す信号などが、それぞれ供給される。 The electronic control unit 40, etc. Each sensor and switch, as shown in FIG. 4, represents the signal indicative of the engine coolant temperature TEMP W, the signal representing the shift position P SH, the engine rotational speed N E is the rotational speed of the engine 8 A signal indicating a gear ratio train set value, a signal for instructing an M (motor running) mode, an air conditioner signal indicating the operation of an air conditioner, a signal indicating a vehicle speed V corresponding to the rotational speed N OUT of the output shaft 22, a stepped shift The oil temperature signal indicating the hydraulic oil temperature of the unit 20, the signal indicating the side brake operation, the signal indicating the foot brake operation, the catalyst temperature signal indicating the catalyst temperature, and the accelerator pedal operation amount Acc corresponding to the driver's output request amount Accelerator opening signal, cam angle signal, snow mode setting signal indicating snow mode setting, acceleration signal indicating vehicle longitudinal acceleration, auto cruise traveling An auto-cruise signal, a vehicle weight signal indicating the weight of the vehicle, a wheel speed signal indicating the wheel speed of each wheel, and a continuously variable transmission 11 (power distribution mechanism 16) are defined in order to cause the transmission mechanism 10 to function as a stepped transmission. A signal indicating the presence / absence of stepped switch operation for switching to a shift state (non-differential state), and the continuously variable transmission unit 11 to be continuously variable (differential state) in order to cause the transmission mechanism 10 to function as a continuously variable transmission. A signal indicating the presence or absence of a stepless switch operation for switching to, a signal indicating the rotational speed N M1 of the first electric motor M1 (hereinafter referred to as the first electric motor rotational speed N M1 ), and a rotational speed N M2 of the second electric motor M2 (hereinafter referred to as the first electric motor M1 ). , The second motor rotation speed N M2 ) and the like are respectively supplied.

また、上記電子制御装置40からは、電子スロットル弁94の開度θTHを操作するスロットルアクチュエータへの駆動信号、燃料噴射装置96によるエンジン8への燃料供給量を制御する燃料供給量信号、過給圧を調整するための過給圧調整信号、電動エアコンを作動させるための電動エアコン駆動信号、点火装置98によるエンジン8の点火時期を指令する点火信号、電動機M1およびM2の作動を指令する指令信号、シフトインジケータを作動させるためのシフトポジション(操作位置)表示信号、ギヤ比を表示させるためのギヤ比表示信号、スノーモードであることを表示させるためのスノーモード表示信号、制動時の車輪のスリップを防止するABSアクチュエータを作動させるためのABS作動信号、Mモードが選択されていることを表示させるMモード表示信号、無段変速部11や有段変速部20の油圧式摩擦係合装置の油圧アクチュエータを制御するために油圧制御回路42(図5参照)に含まれる電磁弁を作動させるバルブ指令信号、この油圧制御回路42の油圧源である電動油圧ポンプを作動させるための駆動指令信号、電動ヒータを駆動するための信号、クルーズコントロール制御用コンピュータへの信号等が、それぞれ出力される。 The electronic control unit 40 also includes a drive signal to a throttle actuator for operating the opening θ TH of the electronic throttle valve 94, a fuel supply amount signal for controlling the fuel supply amount to the engine 8 by the fuel injection device 96, A supercharging pressure adjustment signal for adjusting the supply pressure, an electric air conditioner drive signal for operating the electric air conditioner, an ignition signal for instructing the ignition timing of the engine 8 by the ignition device 98, and an instruction for instructing the operation of the electric motors M1 and M2 Signal, a shift position (operation position) display signal for operating the shift indicator, a gear ratio display signal for displaying the gear ratio, a snow mode display signal for displaying the snow mode, and the wheel at the time of braking ABS operation signal for operating the ABS actuator to prevent slipping, M mode is selected And an electromagnetic valve included in the hydraulic control circuit 42 (see FIG. 5) for controlling the hydraulic actuator of the hydraulic friction engagement device of the continuously variable transmission unit 11 and the stepped transmission unit 20. The valve command signal to be operated, the drive command signal for operating the electric hydraulic pump that is the hydraulic pressure source of the hydraulic control circuit 42, the signal for driving the electric heater, the signal to the cruise control control computer, etc. are output respectively. Is done.

図5は、電子制御装置40による制御機能の要部を説明する機能ブロック線図である。図5において、有段変速制御手段54は、例えば記憶手段56に予め記憶された図6の実線および一点鎖線に示す変速線図(関係、変速マップ)から車速Vおよび有段変速部20の要求出力トルクTOUTで示される車両状態に基づいて、有段変速部20の変速を実行すべきか否かを判断し、すなわち有段変速部20の変速すべき変速段を判断し、その判断した変速段が得られるように有段変速部20の自動変速制御を実行する。このとき、有段変速制御手段54は、例えば図2に示す係合表に従って変速段が達成されるように切換クラッチC0および切換ブレーキB0を除いた油圧式摩擦係合装置を係合および/または解放させる指令(変速出力指令)を油圧制御回路42へ出力する。 FIG. 5 is a functional block diagram for explaining a main part of the control function by the electronic control unit 40. In FIG. 5, the stepped shift control means 54 is, for example, a vehicle speed V and a request from the stepped transmission unit 20 based on a shift diagram (relationship, shift map) indicated by a solid line and a dashed line in FIG. Based on the vehicle state indicated by the output torque T OUT , it is determined whether or not the shift of the stepped transmission unit 20 should be executed, that is, the shift stage of the stepped transmission unit 20 to be shifted is determined, and the determined shift is determined. The automatic transmission control of the stepped transmission unit 20 is executed so that a step can be obtained. At this time, the stepped shift control means 54 engages and / or engages the hydraulic friction engagement device excluding the switching clutch C0 and the switching brake B0 so that the shift stage is achieved according to the engagement table shown in FIG. A release command (shift output command) is output to the hydraulic control circuit 42.

ハイブリッド制御手段52は、無段変速制御手段として機能するものであり、変速機構10の前記無段変速状態すなわち無段変速部11の差動状態においてエンジン8を効率のよい作動域で作動させる一方で、エンジン8と第2電動機M2との駆動力の配分や第1電動機M1の発電による反力を最適になるように変化させて無段変速部11の電気的な無段変速機としての変速比γ0を制御する。例えば、そのときの走行車速において、運転者の出力要求量としてのアクセルペダル操作量Accや車速Vから車両の目標(要求)出力を算出し、その車両の目標出力と充電要求値から必要なトータル目標出力を算出し、そのトータル目標出力が得られるように伝達損失、補機負荷、第2電動機M2のアシストトルク等を考慮して目標エンジン出力を算出し、その目標エンジン出力が得られるエンジン回転速度NとエンジントルクTとなるようにエンジン8を制御するとともに第1電動機M1の発電量を制御する。 The hybrid control unit 52 functions as a continuously variable transmission control unit, and operates the engine 8 in an efficient operating range in the continuously variable transmission state of the transmission mechanism 10, that is, in the differential state of the continuously variable transmission unit 11. Thus, the transmission of the continuously variable transmission unit 11 as an electrical continuously variable transmission is changed by optimizing the distribution of driving force between the engine 8 and the second electric motor M2 and the reaction force generated by the power generation of the first electric motor M1. The ratio γ0 is controlled. For example, at the traveling vehicle speed at that time, the target (request) output of the vehicle is calculated from the accelerator pedal operation amount Acc and the vehicle speed V as the driver's output request amount, and the total required from the target output and the charge request value of the vehicle. Calculate the target output, calculate the target engine output in consideration of transmission loss, auxiliary load, assist torque of the second motor M2, etc. so as to obtain the total target output, and obtain the target engine output. so that the speed N E and engine torque T E to control the amount of power generated by the first electric motor M1 controls the engine 8.

ハイブリッド制御手段52は、その制御を動力性能や燃費向上などのために有段変速部20の変速段を考慮して実行する。このようなハイブリッド制御では、エンジン8を効率のよい作動域で作動させるために定まるエンジン回転速度Nと車速Vおよび有段変速部20の変速段で定まる伝達部材18の回転速度とを整合させるために、無段変速部11が電気的な無段変速機として機能させられる。すなわち、ハイブリッド制御手段52は、エンジン回転速度Nとエンジン8の出力トルク(エンジントルク)Tとで構成される二次元座標内において無段変速走行の時に運転性と燃費性とを両立するように予め実験的に求められて例えば記憶手段に記憶された図7の破線に示すようなエンジン8の最適燃費率曲線(燃費マップ、関係)に沿ってエンジン8が作動させられるように、例えば目標出力(トータル目標出力、要求駆動力)を充足するために必要なエンジン出力を発生するためのエンジントルクTとエンジン回転速度Nとなるように、変速機構10のトータル変速比γTの目標値を定め、その目標値が得られるように無段変速部11の変速比γ0を制御し、トータル変速比γTをその変速可能な変化範囲内例えば13〜0.5の範囲内で制御する。 The hybrid control means 52 executes the control in consideration of the gear position of the stepped transmission unit 20 in order to improve power performance and fuel consumption. In such a hybrid control, it aligns the rotational speed of the power transmitting member 18 determined by the gear position of the engine rotational speed N E and vehicle speed V and the step-variable transmission portion 20 determined to operate the engine 8 in an operating region at efficient Therefore, the continuously variable transmission unit 11 is caused to function as an electrical continuously variable transmission. That is, the hybrid control means 52, achieving both drivability and fuel efficiency when continuously-variable shifting control in a two-dimensional coordinate composed of the output torque (engine torque) T E of the engine rotational speed N E and the engine 8 For example, the engine 8 is operated in accordance with the optimum fuel consumption rate curve (fuel consumption map, relationship) of the engine 8 as shown by the broken line in FIG. target output (total target output, required driving force) so that the engine torque T E and the engine rotational speed N E for generating the engine output necessary to meet the target of overall speed ratio γT of the transmission mechanism 10 The gear ratio γ0 of the continuously variable transmission unit 11 is controlled so that the target value is obtained, and the total gear ratio γT falls within a changeable range of the gear, for example, 13 to 0. Control within the range of 5.

このとき、ハイブリッド制御手段52は、第1電動機M1により発電された電気エネルギをインバータ58を通して蓄電装置60や第2電動機M2へ供給するので、エンジン8の動力の主要部は機械的に伝達部材18へ伝達されるが、エンジン8の動力の一部は第1電動機M1の発電のために消費されてそこで電気エネルギに変換され、インバータ58を通してその電気エネルギが第2電動機M2へ供給され、その第2電動機M2が駆動されて第2電動機M2から伝達部材18へ伝達される。この電気エネルギの発生から第2電動機M2で消費されるまでに関連する機器により、エンジン8の動力の一部を電気エネルギに変換し、その電気エネルギを機械的エネルギに変換するまでの電気パスが構成される。   At this time, the hybrid control means 52 supplies the electric energy generated by the first electric motor M1 to the power storage device 60 and the second electric motor M2 through the inverter 58, so that the main part of the power of the engine 8 is mechanically transmitted. However, a part of the motive power of the engine 8 is consumed for power generation of the first electric motor M1 and converted into electric energy there, and the electric energy is supplied to the second electric motor M2 through the inverter 58. The second electric motor M2 is driven and transmitted from the second electric motor M2 to the transmission member 18. An electric path from conversion of a part of the power of the engine 8 into electric energy and conversion of the electric energy into mechanical energy by a device related from the generation of the electric energy to consumption by the second electric motor M2 Composed.

特に、前記有段変速制御手段54により有段変速部20の変速制御が実行される場合には、有段変速部20の変速比が段階的に変化させられることに伴ってその変速前後で変速機構10のトータル変速比γTが段階的に変化させられる。トータル変速比γTが段階的に変化することにより、すなわち変速比が連続的ではなく飛ぶことにより、連続的なトータル変速比γTの変化に比較して速やかに駆動トルクを変化させることが可能となる。その反面、変速ショックが発生したり、最適燃費率曲線に沿うようにエンジン回転速度Nを制御できず燃費が悪化する可能性がある。 In particular, when the step change control of the stepped transmission unit 20 is executed by the stepped transmission control means 54, the gear ratio of the stepped transmission unit 20 is changed stepwise, and the speed change is performed before and after the shift. The total gear ratio γT of the mechanism 10 is changed stepwise. By changing the total speed ratio γT stepwise, that is, by changing the speed ratio rather than continuously, it becomes possible to change the drive torque more quickly than the continuous change of the total speed ratio γT. . On the other hand, there is a possibility that the shift shock may occur, fuel economy can not control the engine rotational speed N E along the optimum fuel consumption curve deteriorate.

そこで、ハイブリッド制御手段52は、そのトータル変速比γTの段階的変化が抑制されるように、有段変速部20の変速に同期して有段変速部20の変速比の変化方向とは反対方向の変速比の変化となるように無段変速部11の変速を実行する。言い換えれば、有段変速部20の変速前後で変速機構10のトータル変速比γTが連続的に変化するようにハイブリッド制御手段52は有段変速部20の変速制御に同期して無段変速部11の変速制御を実行する。例えば、ハイブリッド制御手段52は、有段変速部20の変速前後で過渡的に変速機構10のトータル変速比γTが変化しないために有段変速部20の変速制御に同期して、有段変速部20の変速比の段階的な変化に相当する変化分だけその変化方向とは反対方向に変速比を段階的に変化させるように無段変速部11の変速制御を実行する。   Therefore, the hybrid control means 52 is in a direction opposite to the direction of change of the gear ratio of the stepped transmission unit 20 in synchronization with the shift of the stepped transmission unit 20 so that the step change of the total gear ratio γT is suppressed. Shifting of the continuously variable transmission unit 11 is executed so as to change the speed ratio. In other words, the hybrid control means 52 synchronizes with the shift control of the stepped transmission unit 20 so that the total transmission ratio γT of the transmission mechanism 10 continuously changes before and after the step change of the stepped transmission unit 20. The shift control is executed. For example, the hybrid control unit 52 synchronizes with the gear shift control of the stepped transmission unit 20 so that the total gear ratio γT of the transmission mechanism 10 does not change transiently before and after the gear shift of the stepped transmission unit 20. The speed change control of the continuously variable transmission unit 11 is executed so that the speed ratio is changed stepwise in the direction opposite to the direction of change by the change corresponding to the step change of the speed change ratio of 20.

別の見方をすれば、一般的に有段変速機では図7の一点鎖線に示すようにエンジン8が作動させられ、無段変速機では例えば図7の破線に示すエンジン8の最適燃費率曲線に沿って或いは有段変速機に比較して最適燃費率曲線により近いところでエンジン8が作動させられる。従って、要求される駆動トルク(駆動力)に対してその駆動トルクを得るためのエンジントルクTが無段変速機の方が有段変速機に比較して上記最適燃費率曲線により近くなるエンジン回転速度Nで実現されるので、無段変速機の方が有段変速機より燃費が良いとされている。そこで、ハイブリッド制御手段52は有段変速部20の変速が実行されて有段変速部20の変速比が段階的に変化させられたとしても、燃費が悪化しないように例えば図7の破線に示す最適燃費率曲線に沿ってエンジン8が作動させられるように無段変速部11の変速比γ0を制御するのである。 From another point of view, in general, in a stepped transmission, the engine 8 is operated as indicated by a one-dot chain line in FIG. 7, and in a continuously variable transmission, for example, an optimum fuel consumption rate curve of the engine 8 indicated by a broken line in FIG. Or the engine 8 is operated at a position closer to the optimum fuel consumption rate curve as compared with the stepped transmission. Accordingly, the required driving torque the engine torque T E for obtaining the driving torque to the (driving force) is closer to the optimum fuel consumption curve towards the continuously variable transmission in comparison to the step-variable transmission engine since realized at a rotational speed N E, towards the continuously variable transmission fuel efficiency than the step-variable transmission is good. Therefore, the hybrid control means 52 is shown by, for example, a broken line in FIG. 7 so that the fuel efficiency does not deteriorate even when the gear change of the stepped transmission unit 20 is executed and the gear ratio of the stepped transmission unit 20 is changed stepwise. The speed ratio γ0 of the continuously variable transmission 11 is controlled so that the engine 8 is operated along the optimum fuel consumption rate curve.

上述したようにハイブリッド制御手段52は有段変速部20の変速制御に同期して無段変速部11の変速制御すなわち同期変速制御を実行する。この無段変速部11の同期変速制御開始時期は、有段変速制御手段54による有段変速部20の変速判断から実際に油圧式摩擦係合装置の作動により有段変速部20の入力回転速度すなわち伝達部材18(第2電動機M2)の回転速度が変化させられるまでの応答遅れ、すなわち有段変速部20の変速過程において変速に伴って伝達部材18の回転速度の変化に起因する所謂イナーシャ相が開始するまでの応答遅れが考慮されている。例えば、予め実験等によりその応答遅れが求められて記憶されていてもよいし、或いは実際に伝達部材18の回転速度変化が発生したことで、ハイブリッド制御手段52は無段変速部11の同期変速制御を開始してもよい。また、無段変速部11の同期変速制御終了時期は、有段変速部20の変速過程におけるイナーシャ相が終了した時点である。例えば予め実験等により有段変速部20の変速制御時間が求められて記憶されていてもよいし、或いは実際に伝達部材18の回転速度変化が無くなったことで、ハイブリッド制御手段52は無段変速部11の同期変速制御を終了してもよい。このように、ハイブリッド制御手段52は、有段変速部20の変速過程におけるイナーシャ相の期間内(区間内)すなわちイナーシャ相中に、例えば予め実験的に求められた期間中に或いは実際に伝達部材18の回転速度変化が発生してから伝達部材18の回転速度変化が無くなるまでの間に、無段変速部11を変速して上記同期変速制御を実行する。   As described above, the hybrid control unit 52 executes the shift control of the continuously variable transmission unit 11, that is, the synchronous shift control in synchronization with the shift control of the stepped transmission unit 20. The synchronous transmission control start timing of the continuously variable transmission unit 11 is determined based on the input rotational speed of the stepped transmission unit 20 by the operation of the hydraulic friction engagement device from the shift determination of the stepped transmission unit 20 by the stepped transmission control unit 54. That is, a response delay until the rotational speed of the transmission member 18 (second electric motor M2) is changed, that is, a so-called inertia phase caused by a change in the rotational speed of the transmission member 18 accompanying a shift in the speed change process of the stepped transmission 20. Response delay until the start is taken into account. For example, the response delay may be obtained in advance by experiments or the like, or may be stored, or the hybrid control means 52 may perform the synchronous shift of the continuously variable transmission unit 11 when the rotational speed change of the transmission member 18 actually occurs. Control may be started. Further, the synchronous transmission control end timing of the continuously variable transmission unit 11 is a point in time when the inertia phase in the shifting process of the stepped transmission unit 20 is completed. For example, the shift control time of the stepped transmission unit 20 may be obtained and stored in advance by experiment or the like, or the hybrid control unit 52 may continuously change without changing the rotational speed of the transmission member 18 in practice. The synchronous shift control of the unit 11 may be terminated. In this way, the hybrid control means 52 can transmit the transmission member within the inertia phase period (in the section), that is, during the inertia phase in the speed change process of the stepped transmission unit 20, for example, during a period obtained experimentally in advance or actually. Between the time when the rotational speed change of 18 occurs and the time when the rotational speed change of the transmission member 18 disappears, the continuously variable transmission section 11 is shifted to execute the synchronous speed control.

また、ハイブリッド制御手段52は、スロットル制御のためにスロットルアクチュエータにより電子スロットル弁94を開閉制御させる他、燃料噴射制御のために燃料噴射装置96による燃料噴射量や噴射時期を制御させ、点火時期制御のためにイグナイタ等の点火装置98による点火時期を制御させる指令を単独で或いは組み合わせて、必要なエンジン出力を発生するようにエンジン8の出力制御を実行するエンジン出力制御手段を機能的に備えている。例えば、ハイブリッド制御手段52は、基本的には図示しない予め記憶された関係からアクセル開度信号Accに基づいてスロットルアクチュエータを駆動し、アクセル開度Accが増加するほどスロットル弁開度θTHを増加させるようにスロットル制御を実行する。 The hybrid control means 52 controls the fuel injection amount and the injection timing by the fuel injection device 96 for the fuel injection control in addition to controlling the opening and closing of the electronic throttle valve 94 by the throttle actuator for the throttle control, and the ignition timing control. For this purpose, an engine output control means for controlling the output of the engine 8 so as to generate a necessary engine output by singly or in combination with a command for controlling the ignition timing by the ignition device 98 such as an igniter is functionally provided. Yes. For example, the hybrid control means 52 drives the throttle actuator based basically pre-stored relationship (not shown) to the accelerator opening signal Acc, increasing the throttle valve opening theta TH as the accelerator opening Acc is increased Throttle control is executed so that

また、ハイブリッド制御手段52は、エンジン8の停止又はアイドル状態に拘わらず、無段変速部11の電気的CVT機能によってモータ走行させることができる。例えば、前記図6の実線Aは、車両の発進/走行用(以下、走行用という)の駆動力源をエンジン8と電動機例えば第2電動機M2とで切り換えるための、言い換えればエンジン8を走行用の駆動力源として車両を発進/走行(以下、走行という)させる所謂エンジン走行と第2電動機M2を走行用の駆動力源として車両を走行させる所謂モータ走行とを切り換えるための、エンジン走行領域とモータ走行領域との境界線である。この図6に示すエンジン走行とモータ走行とを切り換えるための境界線(実線A)を有する予め記憶された関係は、車速Vと駆動力関連値である出力トルクTOUTとをパラメータとする二次元座標で構成された駆動力源切換線図(駆動力源マップ)の一例である。この駆動力源切換線図は、例えば同じ図6中の実線および一点鎖線に示す変速線図(変速マップ)と共に記憶手段56に予め記憶されている。 Further, the hybrid control means 52 can drive the motor by the electric CVT function of the continuously variable transmission unit 11 regardless of whether the engine 8 is stopped or in an idle state. For example, the solid line A in FIG. 6 indicates that the driving force source for starting / running the vehicle (hereinafter referred to as running) is switched between the engine 8 and the electric motor, for example, the second electric motor M2, in other words, the engine 8 is used for running. An engine travel region for switching between so-called engine travel for starting / running (hereinafter referred to as travel) the vehicle as a driving force source and so-called motor travel for traveling the vehicle using the second electric motor M2 as a driving power source for travel; It is a boundary line with a motor travel area. The pre-stored relationship having a boundary line (solid line A) for switching between engine running and motor running shown in FIG. 6 is a two-dimensional parameter using vehicle speed V and output torque T OUT as a driving force related value as parameters. It is an example of the driving force source switching diagram (driving force source map) comprised by the coordinate. The driving force source switching diagram is stored in advance in the storage unit 56 together with a shift diagram (shift map) indicated by, for example, the solid line and the alternate long and short dash line in FIG.

そして、ハイブリッド制御手段52は、例えば図6の駆動力源切換線図から車速Vと要求出力トルクTOUTとで示される車両状態に基づいてモータ走行領域とエンジン走行領域との何れであるかを判断してモータ走行或いはエンジン走行を実行する。このように、ハイブリッド制御手段52によるモータ走行は、図6から明らかなように一般的にエンジン効率が高トルク域に比較して悪いとされる比較的低出力トルクTOUT域すなわち低エンジントルクT域、或いは車速Vの比較的低車速域すなわち低負荷域で実行される。よって、通常はモータ発進がエンジン発進に優先して実行されるが、例えば車両発進時に図6の駆動力源切換線図のモータ走行領域を超える要求出力トルクTOUTすなわち要求エンジントルクTとされる程大きくアクセルペダルが踏込操作されるような車両状態によってはエンジン発進も通常実行されるものである。 Then, the hybrid control means 52 determines whether the motor travel region or the engine travel region is based on the vehicle state indicated by the vehicle speed V and the required output torque T OUT from the driving force source switching diagram of FIG. Judgment is made and motor running or engine running is executed. As described above, the motor travel by the hybrid control means 52 is relatively low output torque T OUT region, that is, low engine torque T, which is generally considered to be poor in engine efficiency as compared with the high torque region, as is apparent from FIG. It is executed in the E range or a relatively low vehicle speed range of the vehicle speed V, that is, a low load range. Therefore, usually but motor starting is performed in preference to engine starting, for example, is the required output torque T OUT ie the required engine torque T E exceeds the motor drive region of the drive power source switching diagram of Fig. 6 when the vehicle starts Depending on the vehicle state in which the accelerator pedal is depressed as much as possible, the engine is normally started.

ハイブリッド制御手段52は、このモータ走行時には、停止しているエンジン8の引き摺りを抑制して燃費を向上させるために、無段変速部11の電気的CVT機能(差動作用)によって、第1電動機回転速度NM1を負の回転速度で制御例えば空転させて、無段変速部11の差動作用により必要に応じてエンジン回転速度Nを零乃至略零に維持する。 The hybrid control means 52 uses the electric CVT function (differential action) of the continuously variable transmission unit 11 to suppress the drag of the stopped engine 8 and improve fuel consumption during the motor running. the rotational speed N M1 controlled for example by idling a negative rotational speed, to maintain the engine speed N E at zero or substantially zero as needed by the differential action of the continuously variable transmission unit 11.

また、ハイブリッド制御手段52は、エンジン走行領域であっても、上述した電気パスによる第1電動機M1からの電気エネルギおよび/または蓄電装置60からの電気エネルギを第2電動機M2へ供給し、その第2電動機M2を駆動して駆動輪38にトルクを付与することにより、エンジン8の動力を補助するための所謂トルクアシストが可能である。よって、本実施例のエンジン走行には、エンジン走行+モータ走行も含むものとする。   Further, even in the engine travel region, the hybrid control means 52 supplies the second motor M2 with the electric energy from the first electric motor M1 and / or the electric energy from the power storage device 60 by the electric path described above. The so-called torque assist for assisting the power of the engine 8 is possible by driving the two electric motor M2 and applying torque to the drive wheels 38. Therefore, the engine travel of this embodiment includes engine travel + motor travel.

また、ハイブリッド制御手段52は、車両の停止状態又は低車速状態に拘わらず、無段変速部11の電気的CVT機能によってエンジン8の運転状態を維持させられる。例えば、車両停止時に蓄電装置60の充電容量SOCが低下して第1電動機M1による発電が必要となった場合には、エンジン8の動力により第1電動機M1が発電させられてその第1電動機M1の回転速度が引き上げられ、車速Vで一意的に決められる第2電動機回転速度NM2が車両停止状態により零(略零)となっても動力分配機構16の差動作用によってエンジン回転速度Nが自律回転可能な回転速度以上に維持される。 Further, the hybrid control means 52 can maintain the operating state of the engine 8 by the electric CVT function of the continuously variable transmission unit 11 regardless of whether the vehicle is stopped or in a low vehicle speed state. For example, when the charging capacity SOC of the power storage device 60 is reduced when the vehicle is stopped and the first motor M1 needs to generate power, the first motor M1 is generated by the power of the engine 8, and the first motor M1 is generated. Even if the second motor rotation speed N M2 uniquely determined by the vehicle speed V becomes zero (substantially zero) due to the vehicle stop state, the engine rotation speed N E is caused by the differential action of the power distribution mechanism 16. Is maintained at a speed higher than the autonomous rotation speed.

また、ハイブリッド制御手段52は、車両の停止中又は走行中に拘わらず、無段変速部11の電気的CVT機能によって第1電動機回転速度NM1および/または第2電動機回転速度NM2を制御してエンジン回転速度Nを一定に維持したり任意の回転速度に回転制御させられる。言い換えれば、ハイブリッド制御手段52は、エンジン回転速度Nを一定に維持したり任意の回転速度に制御しつつ第1電動機回転速度NM1および/または第2電動機回転速度NM2を任意の回転速度に回転制御することができる。例えば、図3の共線図からもわかるようにハイブリッド制御手段52は車両走行中にエンジン回転速度Nを引き上げる場合には、車速V(駆動輪38)に拘束される第2電動機回転速度NM2を略一定に維持しつつ第1電動機回転速度NM1の引き上げを実行する。 Further, the hybrid control means 52 controls the first motor rotation speed N M1 and / or the second motor rotation speed N M2 by the electric CVT function of the continuously variable transmission unit 11 regardless of whether the vehicle is stopped or traveling. Thus, the engine rotation speed NE can be maintained constant or the rotation can be controlled to an arbitrary rotation speed. In other words, the hybrid control means 52 maintains the engine rotation speed NE at a constant value or controls it to an arbitrary rotation speed while changing the first motor rotation speed N M1 and / or the second motor rotation speed N M2 to an arbitrary rotation speed. The rotation can be controlled. For example, the hybrid control means 52 as can be seen from the diagram of FIG. 3 when raising the engine rotation speed N E during running of the vehicle, the second electric motor rotation speed N which depends on the vehicle speed V (driving wheels 38) The first motor rotation speed N M1 is increased while maintaining M2 substantially constant.

増速側ギヤ段判定手段62は、変速機構10を有段変速状態とする際に切換クラッチC0および切換ブレーキB0のいずれを係合させるかを判定するために、例えば車両状態に基づいて記憶手段56に予め記憶された前記図6に示す変速線図に従って変速機構10の変速されるべき変速段が増速側ギヤ段例えば第5速ギヤ段であるか否かを判定する。   The speed-increasing gear stage determining means 62 stores, for example, a storage means based on the vehicle state in order to determine which of the switching clutch C0 and the switching brake B0 is engaged when the transmission mechanism 10 is in the stepped speed change state. In accordance with the shift diagram shown in FIG. 6 stored in advance in FIG. 56, it is determined whether or not the gear position to be shifted of the transmission mechanism 10 is the speed increasing side gear stage, for example, the fifth speed gear stage.

切換制御手段50は、車両状態に基づいて前記係合装置(切換クラッチC0、切換ブレーキB0)の係合/解放を切り換えることにより、前記無段変速状態と前記有段変速状態とを、すなわち前記差動状態と前記ロック状態とを選択的に切り換える。例えば、切換制御手段50は、記憶手段56に予め記憶された前記図6の破線および二点鎖線に示す切換線図(切換マップ、関係)から車速Vおよび要求出力トルクTOUTで示される車両状態に基づいて、変速機構10(無段変速部11)の切り換えるべき変速状態を判断して、すなわち変速機構10を無段変速状態とする無段制御領域内であるか或いは変速機構10を有段変速状態とする有段制御領域内であるかを判定して、変速機構10を前記無段変速状態と前記有段変速状態とのいずれかに選択的に切り換える。 The switching control means 50 switches between the continuously variable transmission state and the stepped transmission state by switching the engagement / release of the engagement device (switching clutch C0, switching brake B0) based on the vehicle state, that is, The differential state and the lock state are selectively switched. For example, the switching control means 50 is a vehicle state indicated by the vehicle speed V and the required output torque T OUT from the switching diagram (switching map, relationship) indicated by the broken line and the two-dot chain line in FIG. On the basis of the shift mechanism 10 (the continuously variable transmission unit 11) to determine the shift state to be switched, that is, within the continuously variable control region where the transmission mechanism 10 is in the continuously variable transmission state or the transmission mechanism 10 is stepped. It is determined whether the speed change state is within the stepped control region, and the speed change mechanism 10 is selectively switched between the stepless speed change state and the stepped speed change state.

具体的には、切換制御手段50は有段変速制御領域内であると判定した場合は、ハイブリッド制御手段52に対してハイブリッド制御或いは無段変速制御を不許可すなわち禁止とする信号を出力するとともに、有段変速制御手段54に対しては、予め設定された有段変速時の変速を許可する。このときの有段変速制御手段54は、記憶手段56に予め記憶された例えば図6に示す変速線図に従って有段変速部20の自動変速制御を実行する。例えば記憶手段56に予め記憶された図2は、このときの変速において選択される油圧式摩擦係合装置すなわちC0、C1、C2、B0、B1、B2、B3の作動の組み合わせを示している。すなわち、変速機構10全体すなわち無段変速部11および有段変速部20が所謂有段式自動変速機として機能し、図2に示す係合表に従って変速段が達成される。   Specifically, when it is determined that the switching control means 50 is within the stepped shift control region, the hybrid control means 52 outputs a signal that disables or prohibits the hybrid control or continuously variable shift control. The step-variable shift control means 54 is allowed to shift at a preset step-change. At this time, the stepped shift control means 54 executes automatic shift control of the stepped transmission unit 20 in accordance with, for example, the shift diagram shown in FIG. For example, FIG. 2 preliminarily stored in the storage means 56 shows a combination of operations of the hydraulic friction engagement devices, that is, C0, C1, C2, B0, B1, B2, and B3 that are selected in the shifting at this time. That is, the transmission mechanism 10 as a whole, that is, the continuously variable transmission unit 11 and the stepped transmission unit 20 function as a so-called stepped automatic transmission, and the shift stage is achieved according to the engagement table shown in FIG.

例えば、増速側ギヤ段判定手段62により第5速ギヤ段が判定される場合には、変速機構10全体として変速比が1.0より小さな増速側ギヤ段所謂オーバードライブギヤ段が得られるために切換制御手段50は無段変速部11が固定の変速比γ0例えば変速比γ0が0.7の副変速機として機能させられるように切換クラッチC0を解放させ且つ切換ブレーキB0を係合させる指令を油圧制御回路42へ出力する。また、増速側ギヤ段判定手段62により第5速ギヤ段でないと判定される場合には、変速機構10全体として変速比が1.0以上の減速側ギヤ段が得られるために切換制御手段50は無段変速部11が固定の変速比γ0例えば変速比γ0が1の副変速機として機能させられるように切換クラッチC0を係合させ且つ切換ブレーキB0を解放させる指令を油圧制御回路42へ出力する。このように、切換制御手段50によって変速機構10が有段変速状態に切り換えられるとともに、その有段変速状態における2種類の変速段のいずれかとなるように選択的に切り換えられて、無段変速部11が副変速機として機能させられ、それに直列の有段変速部20が有段変速機として機能することにより、変速機構10全体が所謂有段式自動変速機として機能させられる。   For example, when the fifth gear is determined by the acceleration-side gear determination means 62, the so-called overdrive gear that has a gear ratio smaller than 1.0 is obtained for the entire transmission mechanism 10. Therefore, the switching control means 50 disengages the switching clutch C0 and engages the switching brake B0 so that the continuously variable transmission 11 can function as a sub-transmission having a fixed gear ratio γ0, for example, a gear ratio γ0 of 0.7. The command is output to the hydraulic control circuit 42. Further, when it is determined by the acceleration side gear stage determination means 62 that the gear ratio is not the fifth speed gear stage, the speed change gear 10 as a whole can obtain a reduction side gear stage having a gear ratio of 1.0 or more, so that the switching control means. 50 indicates a command to the hydraulic pressure control circuit 42 to engage the switching clutch C0 and release the switching brake B0 so that the continuously variable transmission unit 11 can function as a sub-transmission with a fixed gear ratio γ0, for example, a gear ratio γ0 of 1. Output. In this way, the speed change mechanism 10 is switched to the stepped speed change state by the switching control means 50 and is selectively switched to be one of the two types of speed steps in the stepped speed change state. 11 is made to function as a sub-transmission, and the stepped transmission unit 20 in series therewith functions as a stepped transmission, whereby the entire transmission mechanism 10 is made to function as a so-called stepped automatic transmission.

しかし、切換制御手段50は、変速機構10を無段変速状態に切り換える無段変速制御領域内であると判定した場合は、変速機構10全体として無段変速状態が得られるために無段変速部11を無段変速状態として無段変速可能とするように切換クラッチC0および切換ブレーキB0を解放させる指令を油圧制御回路42へ出力する。同時に、ハイブリッド制御手段52に対してハイブリッド制御を許可する信号を出力するとともに、有段変速制御手段54には、予め設定された無段変速時の変速段に固定する信号を出力するか、或いは記憶手段56に予め記憶された例えば図6に示す変速線図に従って有段変速部20を自動変速することを許可する信号を出力する。この場合、有段変速制御手段54により、図2の係合表内において切換クラッチC0および切換ブレーキB0の係合を除いた作動により自動変速が行われる。このように、切換制御手段50により無段変速状態に切り換えられた無段変速部11が無段変速機として機能し、それに直列の有段変速部20が有段変速機として機能することにより、適切な大きさの駆動力が得られると同時に、有段変速部20の第1速、第2速、第3速、第4速の各ギヤ段に対しその有段変速部20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって変速機構10全体として無段変速状態となりトータル変速比γTが無段階に得られるようになる。   However, when the switching control means 50 determines that it is within the continuously variable transmission control region for switching the transmission mechanism 10 to the continuously variable transmission state, the continuously variable transmission unit 10 can obtain the continuously variable transmission state as a whole. A command for releasing the switching clutch C0 and the switching brake B0 is output to the hydraulic pressure control circuit 42 so that the stepless speed change is possible with the step 11 being in a continuously variable speed state. At the same time, a signal for permitting hybrid control is output to the hybrid control means 52, and a signal for fixing to a preset gear position at the time of continuously variable transmission is output to the stepped shift control means 54, or For example, a signal permitting automatic shifting of the stepped transmission 20 is output in accordance with the shift diagram shown in FIG. In this case, the stepped shift control means 54 performs an automatic shift by an operation excluding the engagement of the switching clutch C0 and the switching brake B0 in the engagement table of FIG. Thus, the continuously variable transmission unit 11 switched to the continuously variable transmission state by the switching control means 50 functions as a continuously variable transmission, and the stepped transmission unit 20 in series functions as a stepped transmission. An appropriate magnitude of driving force can be obtained, and at the same time, the first, second, third, and fourth gears of the stepped transmission unit 20 are input to the stepped transmission unit 20. The rotational speed, that is, the rotational speed of the transmission member 18 is changed steplessly, and a stepless speed ratio width is obtained for each gear stage. Therefore, the gear ratio between the gear stages can be continuously changed continuously and the transmission mechanism 10 as a whole is in a continuously variable transmission state, and the total gear ratio γT can be obtained continuously.

差動状態判定手段80は、有段変速部20の変速の実行が判断された場合例えば有段変速制御手段54により図6に示す変速線図から車両状態に基づいて有段変速部20の変速すべき変速段が判断された場合は、動力分配機構16が差動状態すなわち無段変速部11が無段変速状態とされているか否かを判定する。例えば、差動状態判定手段80は、切換制御手段50により変速機構10が有段変速状態に切換制御される有段制御領域内か或いは変速機構10が無段変速状態に切換制御される無段制御領域内であるかの判定のための例えば図6に示す切換線図から車速Vおよび出力トルクTOUTで示される車両状態に基づいて変速機構10を無段変速状態とする無段制御領域内であるか否かによって無段変速部11が無段変速状態となっているか否かを判定する。 When it is determined that the stepped transmission 20 is to be shifted, for example, the differential state determination unit 80 may change the speed of the stepped transmission 20 based on the vehicle state from the shift diagram shown in FIG. When the gear position to be determined is determined, it is determined whether or not the power distribution mechanism 16 is in the differential state, that is, the continuously variable transmission unit 11 is in the continuously variable transmission state. For example, the differential state determination means 80 is in a stepless control region in which the speed change mechanism 10 is controlled to be switched to the stepped speed change state by the switch control means 50 or continuously variable in which the speed change mechanism 10 is controlled to be switched to the stepless speed change state. For example, in the continuously variable control region where the transmission mechanism 10 is in a continuously variable transmission state based on the vehicle state indicated by the vehicle speed V and the output torque T OUT from the switching diagram shown in FIG. Whether or not the continuously variable transmission unit 11 is in a continuously variable transmission state is determined.

この差動状態判定手段80は、無段変速部11の差動状態において有段変速部20の変速の実行が判断された場合に変速機構の11トータル変速比γTの段階的変化が抑制されために、有段変速部20の変速に同期して無段変速部11の変速を実行させるように無段変速部11の差動状態を判定するのである。   This differential state determination means 80 suppresses a step change in the 11 total gear ratio γT of the speed change mechanism when it is determined that the speed change of the stepped speed change portion 20 is determined in the differential state of the continuously variable speed change portion 11. In addition, the differential state of the continuously variable transmission unit 11 is determined so as to execute the shift of the continuously variable transmission unit 11 in synchronization with the shift of the stepped transmission unit 20.

トルクダウン制御手段82は、駆動輪38へ伝達されるトルクを低減する。例えば、トルクダウン制御手段82は、電子スロットル弁94の開度を絞ったり、燃料噴射装置96による燃料供給量を減少させたり、点火装置98によるエンジン8の点火時期を遅角させたりして、エンジントルクTを低下させるエンジントルクダウン制御により、駆動輪38へ伝達されるトルクとしての有段変速部20の入力トルクTINを低減する。また、トルクダウン制御手段82は、一時的に逆駆動トルクや蓄電装置60に充電が行われる回生制動トルクを発生させるようにインバータ58により第2電動機M2を制御させる電動機トルクダウン制御を、上記エンジントルクダウン制御に加えて或いは単独で実行することにより入力トルクTINを低減する。 Torque down control means 82 reduces the torque transmitted to drive wheel 38. For example, the torque down control means 82 reduces the opening degree of the electronic throttle valve 94, decreases the fuel supply amount by the fuel injection device 96, retards the ignition timing of the engine 8 by the ignition device 98, the engine torque reduction control for reducing the engine torque T E, reducing the input torque T iN of the geared transmission unit 20 as the torque transmitted to the drive wheels 38. Further, the torque down control means 82 performs motor torque down control in which the inverter 58 controls the second motor M2 so as to temporarily generate reverse drive torque or regenerative braking torque for charging the power storage device 60. In addition to the torque down control or by executing it alone, the input torque TIN is reduced.

ところで、切換制御手段50によって変速機構10が有段変速状態に切り換えられて変速機構10全体が有段式自動変速機として機能させられる場合において、例えば、有段変速制御手段54により有段変速部20のアップシフトが実行されると、その変速過程においてアップシフトに伴って有段変速部20の入力回転速度すなわち伝達部材18の回転速度が変化する所謂イナーシャ相では、エンジン回転速度Nの回転速度の減少に伴ってエンジン8から一時的に放出されたエネルギが入力トルクTINのトルク増加分言い換えれば出力トルクTOUTのトルク増加分として発生する所謂イナーシャトルクにより変速ショックが発生する可能性がある。 By the way, when the transmission mechanism 10 is switched to the stepped transmission state by the switching control unit 50 and the entire transmission mechanism 10 is caused to function as a stepped automatic transmission, for example, the stepped transmission control unit 54 uses the stepped transmission unit. When 20 of the up-shift is executed, the so-called inertia phase the rotational speed of the input rotation speed, i.e., the power transmitting member 18 of the geared transmission unit 20 with the upshift in the shifting process is changed, the rotation of the engine rotational speed N E There is a possibility that a shift shock may occur due to the so-called inertia torque that is generated as the torque increase of the input torque T IN in other words, the energy temporarily released from the engine 8 as the speed decreases, in other words, as the torque increase of the output torque T OUT. is there.

また、切換制御手段50によって変速機構10が無段変速状態に切り換えられて変速機構10全体が無段変速機として機能させられる場合において、例えば、有段変速制御手段54により有段変速部20の変速制御が実行されると、ハイブリッド制御手段52により有段変速部20の変速前後で変速機構10のトータル変速比γTが変化しないように或いはその変化が抑制されて連続的になるように無段変速部11の変速が実行されるので、その変速過程ではエンジン回転速度Nの回転速度は変化しないか或いはその回転速度変化が抑制される。しかし、この場合でも有段変速部20の変速が実行されると、その変速過程において変速に伴って有段変速部20の入力回転速度すなわち伝達部材18の回転速度の変化に起因する所謂イナーシャ相では、有段変速部20の第4回転要素RE4乃至第8回転要素RE8の各回転要素の少なくとも1つの回転要素の回転速度の減少に伴って出力トルクTOUTのトルク増加分として発生するイナーシャトルクにより変速ショックが発生する可能性がある。 When the transmission mechanism 10 is switched to the continuously variable transmission state by the switching control means 50 and the entire transmission mechanism 10 is caused to function as a continuously variable transmission, for example, the variable transmission control means 54 may When the speed change control is executed, the hybrid control means 52 is continuously variable so that the total speed ratio γT of the speed change mechanism 10 does not change before and after the speed change of the stepped speed change unit 20 or is continuously reduced and suppressed. since shifting of the shifting portion 11 is executed, or whether does not change the rotational speed of the engine rotational speed N E is in the shifting process the rotational speed variation is suppressed. However, even in this case, when a shift of the stepped transmission unit 20 is performed, a so-called inertia phase caused by a change in the input rotational speed of the stepped transmission unit 20, that is, the rotational speed of the transmission member 18, during the shift process. Then, an inertia torque generated as a torque increase of the output torque T OUT with a decrease in the rotation speed of at least one of the rotation elements of the fourth rotation element RE4 to the eighth rotation element RE8 of the stepped transmission unit 20. May cause a shift shock.

また、同様に、有段変速部20の変速が実行されると、その変速過程におけるイナーシャ相では、無段変速部11の第2回転要素RE2や第3回転要素RE3の回転速度の減少に伴って出力トルクTOUTのトルク増加分として発生するイナーシャトルクにより変速ショックが発生する可能性がある。 Similarly, when a shift of the stepped transmission 20 is executed, in the inertia phase in the shift process, the rotation speed of the second rotation element RE2 and the third rotation element RE3 of the continuously variable transmission 11 decreases. Therefore, there is a possibility that a shift shock will occur due to the inertia torque generated as a torque increase of the output torque T OUT .

そこで、前記トルクダウン制御手段82は、有段変速制御手段54による有段変速部20の変速の際に有段変速部20の入力トルクTINを低減する。具体的には、トルクダウン制御手段82は、上記イナーシャトルクに相当するトルク分を有段変速部20の入力トルクTINにおいてある程度相殺してイナーシャトルクによる変速ショックを抑制するために、前記エンジントルクダウン制御や前記電動機トルクダウン制御を単独で或いは組み合わせて実行することにより入力トルクTINを低減する。また、このトルクダウン制御手段82による入力トルクTINの低減は、前述したハイブリッド制御手段52による無段変速部11の同期変速制御開始時期と同様に、有段変速部20の変速過程におけるイナーシャ相中にて実行されればよい。或いはまた、トルクダウン制御手段82は、有段変速制御手段54による有段変速部20の変速の際に、有段変速部20の摩擦係合装置の係合完了に伴うトルク振動をある程度相殺して係合ショックを抑制するように、有段変速部20の入力トルクTINを低減する。 Therefore, the torque-reduction control means 82, during the shifting action of the step-variable transmission portion 20 by the step-variable shifting control means 54 to reduce the input torque T IN of the step-variable transmission portion 20. Specifically, the torque-reduction control means 82, in order to suppress the shift shock due to offset to some extent to the inertia torque in the input torque T IN of the geared transmission unit 20 a torque component corresponding to the inertia torque, the engine torque The input torque TIN is reduced by executing the down control or the motor torque down control alone or in combination. Further, reduction of the input torque T IN by the torque-reduction control means 82, like the synchronous shifting control start timing of the continuously-variable transmission portion 11 by the hybrid control means 52 described above, the inertia phase in the shift process of the geared transmission unit 20 It only has to be executed inside. Alternatively, the torque-down control means 82 cancels torque torque accompanying the completion of engagement of the friction engagement device of the stepped transmission 20 to some extent when the stepped transmission 20 is shifted by the stepped transmission control 54. so as to suppress the engagement shock Te, reducing the input torque T iN of the geared transmission unit 20.

ここで前記図6について詳述すると、図6は有段変速部20の変速判断の基となる記憶手段56に予め記憶された変速線図(関係、変速マップ)であり、車速Vと駆動力関連値である要求出力トルクTOUTとをパラメータとする二次元座標で構成された変速線図の一例である。図6の実線はアップシフト線であり一点鎖線はダウンシフト線である。 Here, FIG. 6 will be described in detail. FIG. 6 is a shift diagram (relationship, shift map) stored in advance in the storage means 56 that is the basis of the shift determination of the stepped transmission unit 20. It is an example of a shift diagram composed of two-dimensional coordinates with a required output torque T OUT as a related value as a parameter. The solid line in FIG. 6 is an upshift line, and the alternate long and short dash line is a downshift line.

また、図6の破線は切換制御手段50による有段制御領域と無段制御領域との判定のための判定車速V1および判定出力トルクT1を示している。つまり、図6の破線はハイブリッド車両の高速走行を判定するための予め設定された高速走行判定値である判定車速V1の連なりである高車速判定線と、ハイブリッド車両の駆動力に関連する駆動力関連値例えば有段変速部20の出力トルクTOUTが高出力となる高出力走行を判定するための予め設定された高出力走行判定値である判定出力トルクT1の連なりである高出力走行判定線とを示している。さらに、図6の破線に対して二点鎖線に示すように有段制御領域と無段制御領域との判定にヒステリシスが設けられている。つまり、この図6は判定車速V1および判定出力トルクT1を含む、車速Vと出力トルクTOUTとをパラメータとして切換制御手段50により有段制御領域と無段制御領域とのいずれであるかを領域判定するための予め記憶された切換線図(切換マップ、関係)である。なお、この切換線図を含めて変速マップとして記憶手段56に予め記憶されてもよい。また、この切換線図は判定車速V1および判定出力トルクT1の少なくとも1つを含むものであってもよいし、車速Vおよび出力トルクTOUTの何れかをパラメータとする予め記憶された切換線であってもよい。 6 indicates the determination vehicle speed V1 and the determination output torque T1 for determining the stepped control region and the stepless control region by the switching control means 50. That is, the broken line in FIG. 6 indicates a high vehicle speed determination line that is a series of determination vehicle speeds V1 that are preset high-speed traveling determination values for determining high-speed traveling of the hybrid vehicle, and a driving force related to the driving force of the hybrid vehicle. A high output travel determination line that is a series of determination output torque T1 that is a preset high output travel determination value for determining a high output travel in which the output torque T OUT of the stepped transmission unit 20 is a high output, for example. It shows. Further, as indicated by a two-dot chain line with respect to the broken line in FIG. 6, hysteresis is provided for the determination of the stepped control region and the stepless control region. In other words, the area or FIG. 6 includes a vehicle-speed limit V1 and the upper output torque T1, which one of the step-variable control region and the continuously variable control region by switching control means 50 and an output torque T OUT with the vehicle speed V as a parameter It is the switching diagram (switching map, relationship) memorize | stored beforehand for determination. In addition, you may memorize | store in the memory | storage means 56 previously as a shift map including this switching diagram. Further, this switching diagram may include at least one of the determination vehicle speed V1 and the determination output torque T1, or is a switching line stored in advance using either the vehicle speed V or the output torque T OUT as a parameter. There may be.

上記変速線図、切換線図、或いは駆動力源切換線図等は、マップとしてではなく実際の車速Vと判定車速V1とを比較する判定式、出力トルクTOUTと判定出力トルクT1とを比較する判定式等として記憶されてもよい。この場合には、切換制御手段50は、車両状態例えば実際の車速が判定車速V1を越えたときに変速機構10を有段変速状態とする。また、切換制御手段50は、車両状態例えば有段変速部20の出力トルクTOUTが判定出力トルクT1を越えたときに変速機構10を有段変速状態とする。 The shift diagram, the switching diagram, or the driving force source switching diagram is not a map but a judgment formula for comparing the actual vehicle speed V with the judgment vehicle speed V1, and comparing the output torque T OUT with the judgment output torque T1. May be stored as a determination formula or the like. In this case, the switching control means 50 sets the speed change mechanism 10 to the stepped speed change state when the vehicle state, for example, the actual vehicle speed exceeds the determination vehicle speed V1. Further, the switching control means 50 sets the speed change mechanism 10 to the stepped speed change state when the vehicle state, for example, the output torque T OUT of the stepped speed change unit 20 exceeds the judgment output torque T1.

また、無段変速部11を電気的な無段変速機として作動させるための電動機等の電気系の制御機器の故障や機能低下時、例えば第1電動機M1における電気エネルギの発生からその電気エネルギが機械的エネルギに変換されるまでの電気パスに関連する機器の機能低下すなわち第1電動機M1、第2電動機M2、インバータ58、蓄電装置60、それらを接続する伝送路などの故障(フェイル)や、故障とか低温による機能低下が発生したような車両状態となる場合には、無段制御領域であっても車両走行を確保するために切換制御手段50は変速機構10を優先的に有段変速状態としてもよい。   Further, when the control device of the electric system such as the electric motor for operating the continuously variable transmission 11 as an electric continuously variable transmission has failed or the function is reduced, for example, the electric energy is generated from the generation of electric energy in the first electric motor M1. Functional degradation of equipment related to the electrical path until it is converted into mechanical energy, that is, failure (fail) of the first motor M1, the second motor M2, the inverter 58, the power storage device 60, the transmission path connecting them, When the vehicle state is such that a failure or a functional deterioration due to low temperature occurs, the switching control means 50 preferentially switches the speed change mechanism 10 to the stepped speed change state in order to ensure vehicle travel even in the continuously variable control region. It is good.

前記駆動力関連値とは、車両の駆動力に1対1に対応するパラメータであって、駆動輪38での駆動トルク或いは駆動力のみならず、例えば有段変速部20の出力トルクTOUT、エンジントルクT、車両加速度Gや、例えばアクセル開度Acc或いはスロットル弁開度θTH(或いは吸入空気量、空燃比、燃料噴射量)とエンジン回転速度Nとに基づいて算出されるエンジントルクTなどの実際値や、アクセル開度Acc或いはスロットル弁開度θTH等に基づいて算出される要求(目標)エンジントルクT、有段変速部20の要求(目標)出力トルクTOUT、要求駆動力等の推定値であってもよい。また、上記駆動トルクは出力トルクTOUT等からデフ比、駆動輪38の半径等を考慮して算出されてもよいし、例えばトルクセンサ等によって直接検出されてもよい。上記他の各トルク等も同様である。 The driving force-related value is a parameter corresponding to the driving force of the vehicle on a one-to-one basis, and includes not only the driving torque or driving force at the driving wheels 38 but also the output torque T OUT of the stepped transmission 20, for example. engine torque T E, and the vehicle acceleration G, for example, an accelerator opening Acc or the throttle valve opening theta TH (or intake air quantity, air-fuel ratio, fuel injection amount) and the engine torque calculated based on the engine rotational speed N E A required (target) engine torque T E calculated based on an actual value such as T E , the accelerator opening Acc or the throttle valve opening θ TH , the required (target) output torque T OUT of the stepped transmission unit 20, It may be an estimated value such as a required driving force. The driving torque may be calculated from the output torque T OUT or the like in consideration of the differential ratio, the radius of the driving wheel 38, or may be directly detected by, for example, a torque sensor or the like. The same applies to the other torques described above.

また、前記判定車速V1は、例えば高速走行において変速機構10が無段変速状態とされるとかえって燃費が悪化するのを抑制するように、その高速走行において変速機構10が有段変速状態とされるように設定されている。また、前記判定トルクT1は、例えば車両の高出力走行において第1電動機M1の反力トルクをエンジン8の高出力域まで対応させないで第1電動機M1を小型化するために、第1電動機M1からの電気エネルギの最大出力を小さくして配設可能とされた第1電動機M1の特性に応じて設定されている。   Further, the determination vehicle speed V1 is set such that the transmission mechanism 10 is set to the stepped transmission state at the high speed so that the fuel consumption is prevented from deteriorating, for example, when the transmission mechanism 10 is set to the continuously variable transmission state at the high speed. Is set to Further, the determination torque T1 is obtained from the first electric motor M1 in order to reduce the size of the first electric motor M1 without causing the reaction torque of the first electric motor M1 to correspond to the high output range of the engine 8, for example, during high output traveling of the vehicle. It is set according to the characteristics of the first electric motor M1 that can be arranged with a smaller maximum output of electrical energy.

図8は、エンジン回転速度NとエンジントルクTとをパラメータとして切換制御手段50により有段制御領域と無段制御領域とのいずれであるかを領域判定するための境界線としてのエンジン出力線を有し、例えば記憶手段56に予め記憶された切換線図(切換マップ、関係)である。切換制御手段50は、図6の切換線図に替えてこの図8の切換線図からエンジン回転速度NとエンジントルクTとに基づいて、それらのエンジン回転速度NとエンジントルクTとで表される車両状態が無段制御領域内であるか或いは有段制御領域内であるかを判定してもよい。また、この図8は図6の破線を作るための概念図でもある。言い換えれば、図6の破線は図8の関係図(マップ)に基づいて車速Vと出力トルクTOUTとをパラメータとする二次元座標上に置き直された切換線でもある。 8, the engine output as a boundary for the area determining which of the step-variable control region and the continuously variable control region by switching control means 50 and the engine rotational speed N E and engine torque T E as a parameter For example, a switching diagram (switching map, relationship) stored in advance in the storage unit 56 is provided. Switching control means 50, based on the switching diagram of FIG. 8 on the engine rotational speed N E and engine torque T E in place of the switching diagram of Figure 6, those of the engine speed N E and engine torque T E It may be determined whether the vehicle state represented by is in the stepless control region or in the stepped control region. FIG. 8 is also a conceptual diagram for making a broken line in FIG. In other words, the broken line in FIG. 6 is also a switching line relocated on the two-dimensional coordinates using the vehicle speed V and the output torque T OUT as parameters based on the relationship diagram (map) in FIG.

図6の関係に示されるように、出力トルクTOUTが予め設定された判定出力トルクT1以上の高トルク領域、或いは車速Vが予め設定された判定車速V1以上の高車速領域が、有段制御領域として設定されているので有段変速走行がエンジン8の比較的高トルクとなる高駆動トルク時、或いは車速の比較的高車速時において実行され、無段変速走行がエンジン8の比較的低トルクとなる低駆動トルク時、或いは車速の比較的低車速時すなわちエンジン8の常用出力域において実行されるようになっている。 As shown in the relationship of FIG. 6, stepped control is performed in a high torque region where the output torque T OUT is equal to or higher than the predetermined determination output torque T1, or a high vehicle speed region where the vehicle speed V is equal to or higher than the predetermined determination vehicle speed V1. Since it is set as a region, the stepped variable speed travel is executed at the time of a high driving torque at which the engine 8 has a relatively high torque or at a relatively high vehicle speed, and the continuously variable speed travel is performed at a relatively low torque of the engine 8. The engine 8 is executed at a low driving torque or at a relatively low vehicle speed, that is, in a normal output range of the engine 8.

同様に、図8の関係に示されるように、エンジントルクTが予め設定された所定値TE1以上の高トルク領域、エンジン回転速度Nが予め設定された所定値NE1以上の高回転領域、或いはそれらエンジントルクTおよびエンジン回転速度Nから算出されるエンジン出力が所定以上の高出力領域が、有段制御領域として設定されているので、有段変速走行がエンジン8の比較的高トルク、比較的高回転速度、或いは比較的高出力時において実行され、無段変速走行がエンジン8の比較的低トルク、比較的低回転速度、或いは比較的低出力時すなわちエンジン8の常用出力域において実行されるようになっている。図8における有段制御領域と無段制御領域との間の境界線は、高車速判定値の連なりである高車速判定線および高出力走行判定値の連なりである高出力走行判定線に対応している。 Similarly, as indicated by the relationship shown in FIG. 8, the engine torque T E is a predetermined value TE1 more high torque region, the engine speed N E preset predetermined value NE1 or a high-speed drive region in which, or high output region where the engine output is higher than the predetermined calculated from engine torque T E and the engine speed N E, because it is set as a step-variable control region, relatively high torque of the step-variable shifting running the engine 8 This is executed at a relatively high rotational speed or at a relatively high output, and continuously variable speed travel is performed at a relatively low torque, a relatively low rotational speed, or a relatively low output of the engine 8, that is, in a normal output range of the engine 8. It is supposed to be executed. The boundary line between the stepped control region and the stepless control region in FIG. 8 corresponds to a high vehicle speed determination line that is a sequence of high vehicle speed determination values and a high output travel determination line that is a sequence of high output travel determination values. ing.

これによって、例えば、車両の低中速走行および低中出力走行では、変速機構10が無段変速状態とされて車両の燃費性能が確保されるが、実際の車速Vが前記判定車速V1を越えるような高速走行では変速機構10が有段の変速機として作動する有段変速状態とされ専ら機械的な動力伝達経路でエンジン8の出力が駆動輪38へ伝達されて電気的な無段変速機として作動させる場合に発生する動力と電気エネルギとの間の変換損失が抑制されて燃費が向上させられる。   As a result, for example, in low-medium speed traveling and low-medium power traveling of the vehicle, the speed change mechanism 10 is set to a continuously variable transmission state to ensure fuel efficiency of the vehicle, but the actual vehicle speed V exceeds the determination vehicle speed V1. In such high speed running, the transmission mechanism 10 is in a stepped transmission state in which it operates as a stepped transmission, and the output of the engine 8 is transmitted to the drive wheels 38 exclusively through a mechanical power transmission path, so that the electric continuously variable transmission. As a result, the conversion loss between the power and the electric energy generated when the power is operated is suppressed, and the fuel efficiency is improved.

また、出力トルクTOUTなどの前記駆動力関連値が判定トルクT1を越えるような高出力走行では変速機構10が有段の変速機として作動する有段変速状態とされ専ら機械的な動力伝達経路でエンジン8の出力が駆動輪38へ伝達されて電気的な無段変速機として作動させる領域が車両の低中速走行および低中出力走行となって、第1電動機M1が発生すべき電気的エネルギ換言すれば第1電動機M1が伝える電気的エネルギの最大値を小さくできて第1電動機M1或いはそれを含む車両の駆動装置が一層小型化される。 Further, in high-power running such that the driving force-related value such as the output torque T OUT exceeds the determination torque T1, the transmission mechanism 10 is in a stepped transmission state in which it operates as a stepped transmission, and is exclusively a mechanical power transmission path. Thus, the region in which the output of the engine 8 is transmitted to the drive wheels 38 to operate as an electric continuously variable transmission is the low / medium speed travel and the low / medium power travel of the vehicle. In other words, the maximum value of the electric energy transmitted by the first electric motor M1 can be reduced, and the first electric motor M1 or a vehicle drive device including the first electric motor M1 can be further downsized.

つまり、前記所定値TE1が第1電動機M1が反力トルクを受け持つことができるエンジントルクTの切換判定値として予め設定されると、エンジントルクTがその所定値TE1を超えるような高出力走行では、無段変速部11が有段変速状態とされるため、第1電動機M1は無段変速部11が無段変速状態とされているときのようにエンジントルクTに対する反力トルクを受け持つ必要が無いので、第1電動機M1の大型化が防止されつつその耐久性の低下が抑制される。言い換えれば、本実施例の第1電動機M1は、その最大出力がエンジントルクTの最大値に対して必要とされる反力トルク容量に比較して小さくされることで、すなわちその最大出力を上記所定値TE1を超えるようなエンジントルクTに対する反力トルク容量に対応させないことで、小型化が実現されている。 That is, when the predetermined value TE1 is the first electric motor M1 is preset as switching threshold value of the engine torque T E that can withstand the reaction torque, high power, such as the engine torque T E exceeds the predetermined value TE1 in running, since the continuously-variable transmission portion 11 is placed in the step-variable shifting state, the reaction force torque with respect to the engine torque T E, as when the first electric motor M1 is the continuously variable transmission portion 11 is placed in the continuously-variable shifting state Since there is no need to take charge of, the increase in the size of the first electric motor M1 is prevented, and a decrease in durability is suppressed. In other words, the first electric motor M1 in the present embodiment, by the maximum output is smaller than the reaction torque capacity corresponding to the maximum value of the engine torque T E, i.e. its maximum output by not correspond to the reaction torque capacity for the engine torque T E that exceeds the predetermined value TE1, downsizing is realized.

尚、上記第1電動機M1の最大出力は、この第1電動機M1の使用環境に許容されるように実験的に求められて設定されている第1電動機M1の定格値である。また、上記エンジントルクTの切換判定値は、第1電動機M1が反力トルクを受け持つことができるエンジントルクTの最大値またはそれよりも所定値低い値であって、第1電動機M1の耐久性の低下が抑制されるように予め実験的に求められた値である。 The maximum output of the first electric motor M1 is a rated value of the first electric motor M1 that is experimentally obtained and set so as to be allowed in the usage environment of the first electric motor M1. Moreover, switching threshold value of the engine torque T E, the first electric motor M1 is a maximum value or a predetermined value lower than that of the engine torque T E that can withstand the reaction torque, the first electric motor M1 This is a value obtained experimentally in advance so as to suppress a decrease in durability.

また、他の考え方として、この高出力走行においては燃費に対する要求より運転者の駆動力に対する要求が重視されるので、無段変速状態より有段変速状態(定変速状態)に切り換えられるのである。これによって、ユーザは、例えば図9に示すような有段自動変速走行におけるアップシフトに伴うエンジン回転速度Nの変化すなわち変速に伴うリズミカルなエンジン回転速度Nの変化が楽しめる。 As another concept, in this high-power running, the demand for the driver's driving force is more important than the demand for fuel consumption, so that the stepless speed change state is switched to the stepped speed change state (constant speed change state). Thus, the user, for example, changes i.e. changes in the rhythmic engine rotational speed N E due to the shift of the engine speed N E with the stepped up-shift of the automatic shifting control, as shown in FIG. 9 can enjoy.

図10は複数種類のシフトポジションを人為的操作により切り換える切換装置90の一例を示す図である。この切換装置90は、例えば運転席の横に配設され、複数種類のシフトポジションを選択するために操作されるシフトレバー92を備えている。そのシフトレバー92は、例えば図2の係合作動表に示されるように第1クラッチC1および第2クラッチC2のいずれの係合装置も係合されないような変速機構10内つまり有段変速部20内の動力伝達経路が遮断されたニュートラル状態すなわち中立状態とし且つ有段変速部20の出力軸22をロックするための駐車ポジション「P(パーキング)」、後進走行のための後進走行ポジション「R(リバース)」、変速機構10内の動力伝達経路が遮断された中立状態とする中立ポジション「N(ニュートラル)」、前進自動変速走行ポジション「D(ドライブ)」、または前進手動変速走行ポジション「M(マニュアル)」へ手動操作されるように設けられている。   FIG. 10 is a diagram illustrating an example of a switching device 90 that switches a plurality of types of shift positions by an artificial operation. The switching device 90 includes, for example, a shift lever 92 that is disposed beside the driver's seat and is operated to select a plurality of types of shift positions. For example, as shown in the engagement operation table of FIG. 2, the shift lever 92 is provided in the speed change mechanism 10, that is, the stepped speed change portion 20 in which neither of the first clutch C <b> 1 and the second clutch C <b> 2 is engaged. The parking position “P (parking)” for locking the output shaft 22 of the stepped transmission 20 and the reverse traveling position “R ( Reverse) ”, a neutral position“ N (neutral) ”in which the power transmission path in the transmission mechanism 10 is interrupted, a forward automatic shift travel position“ D (drive) ”, or a forward manual shift travel position“ M ( Manual) ”is provided for manual operation.

例えば、上記シフトレバー92の各シフトポジションへの手動操作に連動してそのシフトレバー92に機械的に連結された油圧制御回路42内のマニュアル弁が切り換えられて、図2の係合作動表に示す後進ギヤ段「R」、ニュートラル「N」、前進ギヤ段「D」等が成立するように油圧制御回路42が機械的に切り換えられる。また、「D」または「M」ポジションにおける図2の係合作動表に示す1st乃至5thの各変速段は、油圧制御回路42内の電磁弁が電気的に切り換えられることにより成立させられる。   For example, the manual valve in the hydraulic control circuit 42 mechanically connected to the shift lever 92 is switched in conjunction with the manual operation of the shift lever 92 to each shift position, and the engagement operation table of FIG. The hydraulic control circuit 42 is mechanically switched so that the reverse gear stage “R”, the neutral “N”, the forward gear stage “D”, and the like are established. Further, the first to fifth shift stages shown in the engagement operation table of FIG. 2 at the “D” or “M” position are established by electrically switching the electromagnetic valve in the hydraulic control circuit 42.

上記「P」乃至「M」ポジションに示す各シフトポジションにおいて、「P」ポジションおよび「N」ポジションは、車両を走行させないときに選択される非走行ポジションであって、例えば図2の係合作動表に示されるように第1クラッチC1および第2クラッチC2のいずれもが解放されるような有段変速部20内の動力伝達経路が遮断された車両を駆動不能とする第1クラッチC1および第2クラッチC2による動力伝達経路の動力伝達遮断状態へ切換えを選択するための非駆動ポジションである。また、「R」ポジション、「D」ポジションおよび「M」ポジションは、車両を走行させるときに選択される走行ポジションであって、例えば図2の係合作動表に示されるように第1クラッチC1および第2クラッチC2の少なくとも一方が係合されるような有段変速部20内の動力伝達経路が連結された車両を駆動可能とする第1クラッチC1および/または第2クラッチC2による動力伝達経路の動力伝達可能状態へ切換えを選択するための駆動ポジションでもある。   In each of the shift positions indicated by the “P” to “M” positions, the “P” position and the “N” position are non-traveling positions that are selected when the vehicle is not traveling, for example, the engagement operation of FIG. As shown in the table, the first clutch C1 and the first clutch C1 and the first clutch C1 are configured such that the vehicle in which the power transmission path in the stepped transmission 20 is disconnected so that both the first clutch C1 and the second clutch C2 are disengaged. This is a non-driving position for selecting switching to the power transmission cutoff state of the power transmission path by the two clutch C2. The “R” position, the “D” position, and the “M” position are travel positions that are selected when the vehicle travels. For example, as shown in the engagement operation table of FIG. And a power transmission path by the first clutch C1 and / or the second clutch C2 capable of driving a vehicle to which a power transmission path in the stepped transmission 20 is connected so that at least one of the second clutch C2 is engaged. It is also a drive position for selecting switching to a power transmission enabled state.

具体的には、シフトレバー92が「P」ポジション或いは「N」ポジションから「R」ポジションへ手動操作されることで、第2クラッチC2が係合されて有段変速部20内の動力伝達経路が動力伝達遮断状態から動力伝達可能状態とされ、シフトレバー92が「N」ポジションから「D」ポジションへ手動操作されることで、少なくとも第1クラッチC1が係合されて有段変速部20内の動力伝達経路が動力伝達遮断状態から動力伝達可能状態とされる。また、「D」ポジションは最高速走行ポジションでもあり、「M」ポジションにおける例えば「4」レンジ乃至「L」レンジはエンジンブレーキ効果が得られるエンジンブレーキレンジでもある。   Specifically, when the shift lever 92 is manually operated from the “P” position or the “N” position to the “R” position, the second clutch C2 is engaged and the power transmission path in the stepped transmission unit 20 is achieved. Is changed from the power transmission cut-off state to the power transmission enabled state, and the shift lever 92 is manually operated from the “N” position to the “D” position, so that at least the first clutch C1 is engaged and the inside of the stepped transmission 20 The power transmission path is changed from the power transmission cutoff state to the power transmission enabled state. Further, the “D” position is also the fastest running position, and the “M” position, for example, the “4” range to the “L” range is also an engine brake range in which an engine brake effect can be obtained.

上記「M」ポジションは、例えば車両の前後方向において上記「D」ポジションと同じ位置において車両の幅方向に隣接して設けられており、シフトレバー92が「M」ポジションへ操作されることにより、「D」レンジ乃至「L」レンジの何れかがシフトレバー92の操作に応じて変更される。具体的には、この「M」ポジションには、車両の前後方向にアップシフト位置「+」、およびダウンシフト位置「−」が設けられており、シフトレバー92がそれ等のアップシフト位置「+」またはダウンシフト位置「−」へ操作されると、「D」レンジ乃至「L」レンジの何れかが選択される。例えば、「M」ポジションにおいて選択される「D」レンジ乃至「L」レンジの5つの変速レンジは、変速機構10の自動変速制御が可能なトータル変速比γTの変化範囲における高速側(変速比が最小側)のトータル変速比γTが異なる複数種類の変速レンジであり、また有段変速部20の変速が可能な最高速側変速段が異なるように変速段(ギヤ段)の変速範囲を制限するものである。また、シフトレバー92はスプリング等の付勢手段により上記アップシフト位置「+」およびダウンシフト位置「−」から、「M」ポジションへ自動的に戻されるようになっている。また、切換装置90にはシフトレバー92の各シフトポジションを検出するための図示しないシフトポジションセンサが備えられており、そのシフトレバー92のシフトポジションPSHを表す信号や「M」ポジションにおける操作回数等を電子制御装置40へ出力する。 The “M” position is provided adjacent to the width direction of the vehicle at the same position as the “D” position in the longitudinal direction of the vehicle, for example, and when the shift lever 92 is operated to the “M” position, Any of the “D” range to the “L” range is changed according to the operation of the shift lever 92. Specifically, at the “M” position, an upshift position “+” and a downshift position “−” are provided in the front-rear direction of the vehicle, and the shift lever 92 has their upshift position “+”. ”Or the downshift position“ − ”, one of the“ D ”range to the“ L ”range is selected. For example, the five shift ranges from the “D” range to the “L” range selected at the “M” position are the high speed side (the shift ratio is less than the total shift ratio γT in which the automatic shift control of the transmission mechanism 10 is possible). The shift range of the gear stage (gear stage) is limited so that there are a plurality of types of shift ranges having different total speed ratios γT on the minimum side and the maximum speed side gear stage at which the stepped transmission unit 20 can change gears. Is. The shift lever 92 is automatically returned from the upshift position “+” and the downshift position “−” to the “M” position by a biasing means such as a spring. Further, the switching device 90 is provided with a shift position sensor (not shown) for detecting each shift position of the shift lever 92, and a signal indicating the shift position P SH of the shift lever 92 and the number of operations at the “M” position. Are output to the electronic control unit 40.

例えば、「D」ポジションがシフトレバー92の操作により選択された場合には、図6に示す予め記憶された変速マップや切換マップに基づいて切換制御手段50により変速機構10の変速状態の自動切換制御が実行され、ハイブリッド制御手段52により動力分配機構16の無段変速制御が実行され、有段変速制御手段54により有段変速部20の自動変速制御が実行される。例えば、変速機構10が有段変速状態に切り換えられる有段変速走行時には変速機構10が例えば図2に示すような第1速ギヤ段乃至第5速ギヤ段の範囲で自動変速制御され、或いは変速機構10が無段変速状態に切り換えられる無段変速走行時には変速機構10が動力分配機構16の無段的な変速比幅と有段変速部20の第1速ギヤ段乃至第4速ギヤ段の範囲で自動変速制御される各ギヤ段とで得られる変速機構10の変速可能なトータル変速比γTの変化範囲内で自動変速制御される。この「D」ポジションは変速機構10の自動変速制御が実行される制御様式である自動変速走行モード(自動モード)を選択するシフトポジションでもある。   For example, when the “D” position is selected by operating the shift lever 92, the shift control means 50 automatically switches the shift state of the transmission mechanism 10 based on the shift map and the switch map stored in advance as shown in FIG. The control is executed, the continuously variable transmission control of the power distribution mechanism 16 is executed by the hybrid control unit 52, and the automatic transmission control of the stepped transmission unit 20 is executed by the stepped transmission control unit 54. For example, when the speed change mechanism 10 is switched to the stepped speed change state, the speed change mechanism 10 is automatically controlled in the range of the first to fifth speed gears as shown in FIG. When the mechanism 10 is switched to the continuously variable transmission state, the speed change mechanism 10 is connected to the continuously variable transmission ratio width of the power distribution mechanism 16 and the first to fourth gears of the stepped transmission 20. The automatic transmission control is performed within the change range of the total speed ratio γT that can be changed by the transmission mechanism 10 obtained by each gear stage that is automatically controlled within the range. This “D” position is also a shift position for selecting an automatic shift traveling mode (automatic mode) which is a control mode in which automatic shift control of the transmission mechanism 10 is executed.

或いは、「M」ポジションがシフトレバー92の操作により選択された場合には、変速レンジの最高速側変速段或いは変速比を越えないように、切換制御手段50、ハイブリッド制御手段52、および有段変速制御手段54により変速機構10の各変速レンジで変速可能なトータル変速比γTの範囲で自動変速制御される。例えば、変速機構10が有段変速状態に切り換えられる有段変速走行時には変速機構10が各変速レンジで変速機構10が変速可能なトータル変速比γTの範囲で自動変速制御され、或いは変速機構10が無段変速状態に切り換えられる無段変速走行時には変速機構10が動力分配機構16の無段的な変速比幅と各変速レンジに応じた有段変速部20の変速可能な変速段の範囲で自動変速制御される各ギヤ段とで得られる変速機構10の各変速レンジで変速可能なトータル変速比γTの範囲で自動変速制御される。この「M」ポジションは変速機構10の手動変速制御が実行される制御様式である手動変速走行モード(手動モード)を選択するシフトポジションでもある。   Alternatively, when the “M” position is selected by operating the shift lever 92, the switching control means 50, the hybrid control means 52, and the stepped gear are set so as not to exceed the maximum speed side shift speed or gear ratio of the shift range. The shift control means 54 performs automatic shift control within the range of the total gear ratio γT that can be shifted in each shift range of the transmission mechanism 10. For example, when the transmission mechanism 10 is switched to the stepped transmission state, the transmission mechanism 10 is automatically controlled to shift within the range of the total transmission ratio γT at which the transmission mechanism 10 can shift in each shift range, or the transmission mechanism 10 During continuously variable speed driving that can be switched to a continuously variable speed state, the speed change mechanism 10 automatically operates within the range of the stepless speed ratio range of the power distribution mechanism 16 and the shift speed range of the stepped speed changer 20 corresponding to each speed range. Automatic shift control is performed within the range of the total gear ratio γT that can be shifted in each shift range of the transmission mechanism 10 obtained by each gear stage subjected to shift control. This “M” position is also a shift position for selecting a manual shift traveling mode (manual mode) which is a control mode in which manual shift control of the transmission mechanism 10 is executed.

図11は、電子制御装置40の制御作動の要部すなわち有段変速部20の変速制御の際の無段変速部11の変速制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行されるものである。また、図12は、その制御作動を説明するタイムチャートであり、変速機構10の無段変速状態において有段変速部20の2速→3速アップシフトが実行された場合での制御作動を示している。   FIG. 11 is a flowchart for explaining the main part of the control operation of the electronic control unit 40, that is, the shift control operation of the continuously variable transmission unit 11 during the shift control of the stepped transmission unit 20, for example, about several msec to several tens of msec. It is repeatedly executed with an extremely short cycle time. FIG. 12 is a time chart for explaining the control operation, and shows the control operation when the second-speed → third-speed upshift of the stepped transmission 20 is executed in the continuously variable transmission state of the transmission mechanism 10. ing.

先ず、前記有段変速制御手段54に対応するステップ(以下、ステップを省略する)S1において、有段変速部20の変速が実行されるか否かが例えば図6に示す変速線図から車速Vおよび有段変速部20の出力トルクTOUTで示される車両状態に基づいて有段変速部20の変速すべき変速段が判断されたかにより判定される。図12のt時点は、有段変速部20の2速→3速アップシフトが判断されたことを示している。 First, in step (hereinafter, step is omitted) S1 corresponding to the stepped shift control means 54, whether or not the shift of the stepped transmission unit 20 is executed is determined from the shift diagram shown in FIG. Further, the determination is made based on whether the gear position to be shifted of the stepped transmission unit 20 is determined based on the vehicle state indicated by the output torque T OUT of the stepped transmission unit 20. Time point t 1 in FIG. 12 shows that the second speed → 3-speed upshift geared transmission unit 20 is determined.

上記S1の判断が肯定される場合は前記差動状態判定手段80に対応するS2において、動力分配機構16が差動状態すなわち無段変速部11が無段変速状態とされているか否かが、例えば図6に示す切換線図から車両状態に基づいて変速機構10を無段変速状態とする無段制御領域内であるか否かによって無段変速部11が無段変速状態となっているか否かが判定される。   If the determination in S1 is affirmative, in S2 corresponding to the differential state determination means 80, whether or not the power distribution mechanism 16 is in the differential state, that is, whether or not the continuously variable transmission unit 11 is in the continuously variable transmission state, For example, from the switching diagram shown in FIG. 6, whether or not the continuously variable transmission unit 11 is in a continuously variable transmission state depending on whether or not it is within a continuously variable control region in which the transmission mechanism 10 is in a continuously variable transmission state based on the vehicle state. Is determined.

上記S2の判断が否定される場合は前記有段変速制御手段54に対応するS6において、S1にて判断された有段変速部20の変速段への変速制御が単独で実行される。しかし、S2の判断が肯定される場合は同じく有段変速制御手段54に対応するS3において、S1で判断された有段変速部20の変速段への変速制御が実行され、前記ハイブリッド制御手段52に対応するS4において、S3における有段変速部20の変速に同期して有段変速部20の変速比の変化方向とは反対方向の変速比の変化となるように無段変速部11の変速が実行される(図12のt時点乃至t時点)。例えば、有段変速部20の変速前後で過渡的に変速機構10のトータル変速比γTが変化しないためにS3における有段変速部20の変速に同期して、有段変速部20の変速比の段階的な変化に相当する変化分だけその変化方向とは反対方向に変速比を段階的に変化させるように無段変速部11の変速が実行される。 If the determination in S2 is negative, in S6 corresponding to the stepped shift control means 54, the shift control to the shift stage of the stepped transmission unit 20 determined in S1 is executed independently. However, if the determination in S2 is affirmative, the shift control to the shift stage of the stepped transmission unit 20 determined in S1 is executed in S3 corresponding to the stepped shift control means 54, and the hybrid control means 52 is executed. In step S4 corresponding to, the speed of the continuously variable transmission unit 11 is changed so as to change the speed ratio in the direction opposite to the direction of change of the speed ratio of the stepped transmission unit 20 in synchronization with the speed change of the stepped transmission unit 20 in S3. There is executed (t 1 time to t 3 time points in FIG. 12). For example, since the total speed ratio γT of the speed change mechanism 10 does not change transiently before and after the speed change of the stepped speed change part 20, the speed ratio of the stepped speed change part 20 is synchronized with the speed change of the stepped speed change part 20 in S3. The continuously variable transmission 11 is shifted so that the gear ratio is changed stepwise in a direction opposite to the direction of change corresponding to the step change.

そして、上記S3およびS4における変速制御中或いは上記S6における変速制御中には前記トルクダウン制御手段82に対応するS5において、有段変速部20の入力トルクTINが低減されるトルクダウン制御が実行される(図12のt時点乃至t時点)。例えば、S3およびS4における変速制御中には、図12に示されるようにエンジン回転速度Nの変化が発生しないが、有段変速部20の回転要素の回転速度の減少や無段変速部11の回転要素の回転速度の減少に伴って出力トルクTOUTのトルク増加分としてイナーシャトルクが発生する。また、S6におけるアップシフト中には、エンジン回転速度Nの減少に伴って出力トルクTOUTのトルク増加分としてイナーシャトルクが発生する。そこで、このS5では、そのイナーシャトルクに相当するトルク分が有段変速部20の入力トルクTINにおいてある程度相殺されるように、例えばエンジントルクTを低下させるエンジントルクダウン制御や第2電動機M2を用いた電動機トルクダウン制御が実行されて、入力トルクTINが低減される。 Then, in the above corresponding S5 is the torque-reduction control means 82, the torque down control is executed by the input torque T IN of the geared transmission unit 20 is reduced during the shift control in the shift control in or the above-described Step S6 in the S3 and S4 It is the (t 2 time to t 3 time points in FIG. 12). For example, S3 and during the shift control in S4, although the change in the engine rotational speed N E is not generated as shown in FIG. 12, the step-variable shifting portion rotational speed of the decrease and the continuously variable transmission unit 11 of the rotary element 20 inertia torque is generated as with the reduction of the rotational speed of the rotary element torque increase of the output torque T OUT. Further, during an upshift in S6, the inertia torque is generated as the torque increase of the output torque T OUT with the decrease of the engine rotational speed N E. Therefore, in the S5, so torque component corresponding to the inertia torque is offset to some extent in the input torque T IN of the geared transmission unit 20, for example, the engine torque reduction control and the second electric motor to lower the engine torque T E M2 It is running motor torque reduction control using the input torque T iN is reduced.

また、前記S1の判断が否定される場合はS7において、有段変速部20における変速が実行されない場合の制御装置40の各種制御手段による制御作動が実行されるか或いは本ルーチンが終了させられる。例えば、変速機構10が無段変速状態である場合には、ハイブリッド制御手段52により車両状態に基づく無段変速部11の変速制御が実行される。   If the determination in S1 is negative, in S7, the control operation by the various control means of the control device 40 when the shift in the stepped transmission 20 is not executed is executed, or this routine is ended. For example, when the transmission mechanism 10 is in a continuously variable transmission state, the hybrid control unit 52 executes shift control of the continuously variable transmission unit 11 based on the vehicle state.

上述のように、本実施例によれば、有段変速部20の変速制御に際して有段変速部20の変速比が段階的に変化させられてもハイブリッド制御手段52(無段変速制御手段)によりその段階的な変化を抑制するように無段変速部11の変速比が変化させられるので、無段変速部11の変速比と有段変速部20の変速比とに基づいて形成される変速機構10(駆動装置)のトータル変速比(総合変速比)γTが連続的に変化させられる。この結果、有段変速部20の変速前後でエンジン回転速度Nの段階的な変化が抑制されて変速ショックが抑制される。また、変速機構10全体として無段変速機として機能させることが可能となるので、燃費が向上させられる。 As described above, according to the present embodiment, even when the gear ratio of the stepped transmission unit 20 is changed stepwise during the shift control of the stepped transmission unit 20, the hybrid control unit 52 (stepless transmission control unit). Since the transmission ratio of the continuously variable transmission unit 11 is changed so as to suppress the stepwise change, a transmission mechanism formed based on the transmission ratio of the continuously variable transmission unit 11 and the transmission ratio of the stepped transmission unit 20. The total gear ratio (total gear ratio) γT of 10 (drive device) is continuously changed. As a result, shift shock is suppressed before and after shifting of the geared transmission unit 20 is suppressed gradual change of the engine speed N E. Further, since the transmission mechanism 10 as a whole can function as a continuously variable transmission, fuel efficiency is improved.

また、このとき、ハイブリッド制御手段52は、有段変速部20の変速に伴うイナーシャ相中に無段変速部11の変速を実行するので、有段変速部20の変速に同期して無段変速部11の変速を実行することができる。また、ハイブリッド制御手段52は、有段変速部20の変速比の段階的な変化に相当する変化分だけその変化方向とは反対方向に変速比を変化させるように無段変速部11の変速を実行して、変速機構10のトータル変速比γTの変化を抑制させるので、有段変速部20の変速前後でエンジン回転速度Nの変化が抑制されて変速ショックが一層抑制される。 At this time, the hybrid control means 52 executes the shift of the continuously variable transmission unit 11 during the inertia phase accompanying the shift of the stepped transmission unit 20, so that the continuously variable transmission is synchronized with the shift of the stepped transmission unit 20. The shift of the part 11 can be executed. Further, the hybrid control means 52 changes the speed of the continuously variable transmission unit 11 so as to change the speed ratio in a direction opposite to the direction of change by a change corresponding to the stepwise change of the speed ratio of the stepped speed change unit 20. run so to suppress the change of the overall speed ratio γT of the transmission mechanism 10, the shift shock is further suppressed before and after shifting of the geared transmission unit 20 is suppressed change in the engine speed N E.

また、本実施例によれば、有段変速部20の変速制御の際に、その有段変速部20の変速制御に伴って発生する有段変速部20内の回転要素の回転速度変化によるイナーシャトルクや無段変速部11内の回転要素の回転速度変化によるイナーシャトルクに相当するトルク分を相殺するように、トルクダウン制御手段82により入力トルクTINが低減されるので変速ショックが抑制される。 In addition, according to the present embodiment, when the shift control of the stepped transmission unit 20 is performed, the inertia due to the change in the rotational speed of the rotating element in the stepped transmission unit 20 generated in association with the shift control of the stepped transmission unit 20 is achieved. so as to offset the torque component corresponding to the inertia torque due to the rotational speed change of the rotation element in the torque and a continuously variable section 11, the shift shock is suppressed since the input torque T iN is reduced by the torque-reduction control means 82 .

次に、本発明の他の実施例を説明する。なお、以下の説明において前述の実施例と共通する部分には同一の符号を付して説明を省略する。   Next, another embodiment of the present invention will be described. In the following description, parts common to those in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.

前述の実施例において、ハイブリッド制御手段52は有段変速部20の変速前後で変速機構10のトータル変速比γTが連続的に変化するように、有段変速部20の変速に同期して、すなわち有段変速部20の変速過程におけるイナーシャ相中に、無段変速部11の変速を実行した。そこで、本実施例では、有段変速部20の変速前後で変速機構10のトータル変速比γTを連続的に変化させるためのこの無段変速部11の変速が、有段変速部20の変速過程におけるイナーシャ相中に実行されることを、一例を挙げてより明確に説明する。   In the above-described embodiment, the hybrid control means 52 synchronizes with the shift of the stepped transmission unit 20 so that the total transmission ratio γT of the transmission mechanism 10 continuously changes before and after the shift of the stepped transmission unit 20, that is, During the inertia phase in the shifting process of the stepped transmission unit 20, the continuously variable transmission unit 11 is shifted. Therefore, in the present embodiment, the shifting of the continuously variable transmission unit 11 for continuously changing the total transmission ratio γT of the transmission mechanism 10 before and after the shifting of the stepped transmission unit 20 is the shifting process of the stepped transmission unit 20. This will be explained more clearly with an example.

また、前述の実施例では、有段変速部20の変速前後で変速機構10のトータル変速比γTを連続的に変化させるために、ハイブリッド制御手段52は有段変速部20の変速比の変化方向とは反対方向の変速比の変化となるように無段変速部11の変速を実行した。有段変速部20の変速前後で過渡的に変速機構10のトータル変速比γTが変化しないためには、有段変速部20の変速比の変化方向とは反対方向に無段変速部11の変速比を変化させる必要があるが、単に有段変速部20の変速前後で変速機構10のトータル変速比γTを連続的に変化させるだけであれば、その限りではない。   In the above-described embodiment, in order to continuously change the total speed ratio γT of the speed change mechanism 10 before and after the speed change of the stepped speed change unit 20, the hybrid control means 52 changes the speed change direction of the stepped speed change part 20. Shifting of the continuously variable transmission unit 11 was performed so that the speed ratio in the opposite direction was changed. In order for the total transmission ratio γT of the transmission mechanism 10 not to change transiently before and after the stepped transmission unit 20 is shifted, the speed of the continuously variable transmission unit 11 is changed in the direction opposite to the direction of change of the transmission ratio of the stepped transmission unit 20. It is necessary to change the ratio, but this is not necessary as long as the total speed ratio γT of the speed change mechanism 10 is continuously changed before and after the speed change of the stepped transmission 20.

つまり、有段変速部20の変速前後で変速機構10のトータル変速比γTを連続的に変化させるための無段変速部11の変速において、ハイブリッド制御手段52は、有段変速部20の変速比の変化方向と同じ方向に無段変速部11の変速比を変化させてもよい。そこで、本実施例では、有段変速部20の変速比の変化方向と同じ方向に無段変速部11の変速比を変化させる制御作動の一例を説明する。   That is, in the shift of the continuously variable transmission unit 11 for continuously changing the total transmission ratio γT of the transmission mechanism 10 before and after the shift of the stepped transmission unit 20, the hybrid control unit 52 performs the transmission ratio of the stepped transmission unit 20. The speed ratio of the continuously variable transmission unit 11 may be changed in the same direction as the change direction. Therefore, in the present embodiment, an example of a control operation for changing the speed ratio of the continuously variable transmission unit 11 in the same direction as the change direction of the speed ratio of the stepped transmission unit 20 will be described.

図13は、電子制御装置40による制御機能の要部を説明する機能ブロック線図であって、図5に相当する本発明の別の実施例である。この図13は、有段変速部20の変速過程におけるイナーシャ相の開始を判定するイナーシャ相開始判定手段84が加えられている点が、図5と主に相違する。   FIG. 13 is a functional block diagram illustrating the main part of the control function by the electronic control unit 40, and is another embodiment of the present invention corresponding to FIG. FIG. 13 is mainly different from FIG. 5 in that an inertia phase start determining means 84 for determining the start of the inertia phase in the speed change process of the stepped transmission 20 is added.

イナーシャ相開始判定手段84は、有段変速部20の変速過程においてイナーシャ相が開始したか否かを、有段変速制御手段54による有段変速部20の変速判断に伴って解放側係合装置が解放された後、係合側係合装置が係合トルク容量を持ち始めたことにより伝達部材18(第2電動機M2)の回転速度が変化し始めたか否かで判定する。   The inertia phase start determination means 84 determines whether or not the inertia phase has started in the shifting process of the stepped transmission unit 20 according to the shift determination of the stepped transmission unit 20 by the stepped transmission control unit 54. After the release, the determination is made based on whether or not the rotational speed of the transmission member 18 (second electric motor M2) has started to change due to the engagement-side engagement device having an engagement torque capacity.

例えば、イナーシャ相開始判定手段84は、有段変速制御手段54による有段変速部20の変速過程において、実際の伝達部材18の回転速度すなわち第2電動機回転速度NM2がイナーシャ相の開始を判定するために予め実験的に定められた所定量変化したか否か、有段変速制御手段54による有段変速部20の変速判断から係合側係合装置が係合トルク容量を持ち始める時間として予め実験的に求められて定められた所定時間経過したか否か、或いは係合側係合装置の係合油圧が係合トルク容量を持ち始める油圧(指令)値として予め実験的に求められて定められた係合過渡油圧(指令)値Pとなったか否かなどに基づいて、係合側係合装置が係合トルク容量を持ち始めたことにより第2電動機回転速度NM2が変化し始めたか否かを判定する。 For example, the inertia phase start determination unit 84 determines that the actual rotation speed of the transmission member 18, that is, the second motor rotation speed NM2 is the start of the inertia phase in the shifting process of the stepped transmission unit 20 by the stepped shift control unit 54. Whether the engagement-side engagement device starts to have the engagement torque capacity from the shift determination of the stepped transmission 20 by the stepped shift control means 54, whether or not a predetermined amount determined experimentally in advance has changed. It is experimentally determined in advance as a hydraulic pressure (command) value whether or not a predetermined time that has been experimentally determined in advance has elapsed or the engagement hydraulic pressure of the engagement side engagement device starts to have the engagement torque capacity. a defined based on such whether a engagement transition pressure (command) value P C, the engagement side engagement device and the second electric motor rotation speed N M2 is changed by began to have an engaging torque capacity Whether it started Judges.

図14は、電子制御装置40の制御作動の要部すなわち有段変速部20の変速制御の際の無段変速部11の変速制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行されるものである。また、この図14は、前記図11のフローチャートに相当する図であり、有段変速部20の変速過程におけるイナーシャ相の開始が判定されるS3’が加えられていることが、その図11と主に相違する。   FIG. 14 is a flowchart for explaining the main part of the control operation of the electronic control unit 40, that is, the shift control operation of the continuously variable transmission unit 11 during the shift control of the stepped transmission unit 20, for example, about several msec to several tens of msec. It is repeatedly executed with an extremely short cycle time. FIG. 14 is a diagram corresponding to the flowchart of FIG. 11, and that S3 ′ for determining the start of the inertia phase in the shifting process of the stepped transmission 20 is added. Mainly different.

また、図15は、図14のフローチャートに示す制御作動を説明するタイムチャートであり、変速機構10の無段変速状態において有段変速部20の2速→3速アップシフトが実行された場合での制御作動を示している。この図15は、前記図12のタイムチャートに相当する図であり、有段変速部20の変速に関する油圧信号出力(油圧値)が加えられていることが、その図12と主に相違する。   FIG. 15 is a time chart for explaining the control operation shown in the flowchart of FIG. 14 in the case where the second-speed → third-speed upshift of the stepped transmission unit 20 is executed in the continuously variable transmission state of the transmission mechanism 10. The control operation is shown. FIG. 15 is a diagram corresponding to the time chart of FIG. 12 and is mainly different from FIG. 12 in that a hydraulic signal output (hydraulic value) relating to the shift of the stepped transmission 20 is added.

また、図16は、図14のフローチャートに示す制御作動を説明するタイムチャートであって、変速機構10の無段変速状態において有段変速部20の3速→2速コーストダウンシフトが実行された場合での制御作動を示しており、前記図12のタイムチャートに相当する図である。   FIG. 16 is a time chart for explaining the control operation shown in the flowchart of FIG. 14, and the third speed → second speed coast downshift of the stepped transmission unit 20 is executed in the continuously variable transmission state of the transmission mechanism 10. FIG. 13 shows a control operation in a case and corresponds to the time chart of FIG. 12.

また、図17は、図14のフローチャートに示す制御作動を説明するタイムチャートであり、変速機構10の無段変速状態において有段変速部20の2速→3速アップシフトが実行された場合での制御作動を示している。この図17は、前記図15のタイムチャートに相当する図であり、有段変速部20の変速比の変化方向と同じ方向に無段変速部11の変速比が変化させられていることが、その図15と主に相違する。   FIG. 17 is a time chart for explaining the control operation shown in the flowchart of FIG. 14 in the case where the second-speed → third-speed upshift of the stepped transmission unit 20 is executed in the continuously variable transmission state of the transmission mechanism 10. The control operation is shown. FIG. 17 is a diagram corresponding to the time chart of FIG. 15, in which the transmission ratio of the continuously variable transmission unit 11 is changed in the same direction as the change direction of the transmission ratio of the stepped transmission unit 20. This is mainly different from FIG.

また、図18は、図14のフローチャートに示す制御作動を説明するタイムチャートであり、変速機構10の無段変速状態において有段変速部20の3速→2速コーストダウンシフトが実行された場合での制御作動を示している。この図18は、前記図16のタイムチャートに相当する図であり、有段変速部20の変速比の変化方向と同じ方向に無段変速部11の変速比が変化させられていることが、その図16と主に相違する。   FIG. 18 is a time chart for explaining the control operation shown in the flowchart of FIG. 14 in the case where the third speed → second speed coast downshift of the stepped transmission unit 20 is executed in the continuously variable transmission state of the transmission mechanism 10. The control operation is shown in FIG. FIG. 18 is a diagram corresponding to the time chart of FIG. 16, in which the transmission ratio of the continuously variable transmission unit 11 is changed in the same direction as the change direction of the transmission ratio of the stepped transmission unit 20. This is mainly different from FIG.

図14乃至図18において、前記図11および図12と相違する部分について以下に主に説明し、その他の部分についてはその説明を省略する。   In FIGS. 14 to 18, portions different from those in FIGS. 11 and 12 are mainly described below, and descriptions of other portions are omitted.

先ず、前記有段変速制御手段54に対応するS1において、有段変速部20の変速が実行されるか否かが、例えば図6に示す変速線図から車速Vおよび有段変速部20の出力トルクTOUTで示される車両状態に基づいて有段変速部20の変速すべき変速段が判断されたかにより判定される。 First, in S1 corresponding to the stepped shift control means 54, whether or not the shift of the stepped shift unit 20 is executed is determined based on, for example, the vehicle speed V and the output of the stepped shift unit 20 from the shift diagram shown in FIG. The determination is made based on whether the gear position to be shifted of the stepped transmission 20 is determined based on the vehicle state indicated by the torque T OUT .

図15のt時点および図17のt時点は、有段変速部20の2速→3速アップシフトが判断されたことを示している。また、図16のt時点および図18のt時点は、有段変速部20の3速→2速ダウンシフトが判断されたことを示している。 Time point t 1 of time point t 1 and 17 of FIG. 15 shows that the second speed → 3-speed upshift geared transmission unit 20 is determined. Further, time point t 1 of time point t 1 and 18 of FIG. 16 shows that the third speed → 2 gear downshift geared transmission unit 20 is determined.

前記S1の判断が肯定される場合は前記差動状態判定手段80に対応するS2において、動力分配機構16が差動状態すなわち無段変速部11が無段変速状態とされているか否かが、例えば図6に示す切換線図から車両状態に基づいて変速機構10を無段変速状態とする無段制御領域内であるか否かによって無段変速部11が無段変速状態となっているか否かが判定される。   If the determination in S1 is affirmative, in S2 corresponding to the differential state determination means 80, whether or not the power distribution mechanism 16 is in the differential state, that is, whether or not the continuously variable transmission unit 11 is in the continuously variable transmission state, For example, from the switching diagram shown in FIG. 6, whether or not the continuously variable transmission unit 11 is in a continuously variable transmission state depending on whether or not it is within a continuously variable control region in which the transmission mechanism 10 is in a continuously variable transmission state based on the vehicle state. Is determined.

上記S2の判断が否定される場合は前記有段変速制御手段54に対応するS6において、S1にて判断された有段変速部20の変速段への変速制御が単独で実行される。   If the determination in S2 is negative, in S6 corresponding to the stepped shift control means 54, the shift control to the shift stage of the stepped transmission unit 20 determined in S1 is executed independently.

しかし、前記S2の判断が肯定される場合は同じく有段変速制御手段54に対応するS3において、S1で判断された有段変速部20の変速段への変速制御が実行される。図15のt時点および図17のt時点は、有段変速部20の3速への変速指令が出力されて、解放側係合装置となる第2ブレーキB2の解放油圧PB2の低下が開始されたことを示している。図16のt時点および図18のt時点は、有段変速部20の2速への変速指令が出力されて、解放側係合装置となる第1ブレーキB1の解放油圧PB1の低下が開始されたことを示している。 However, if the determination in S2 is affirmative, in S3 corresponding to the stepped shift control means 54, the shift control to the shift stage of the stepped transmission unit 20 determined in S1 is executed. Time point t 1 of time point t 1 and 17 in FIG. 15 is a shift command to third speed geared transmission unit 20 is output, reduction of the release pressure P B2 of the second brake B2 as a release-side engagement device Indicates that has started. Time point t 1 of time point t 1 and 18 in FIG. 16, shift command to the second speed of the geared transmission unit 20 is output, reduction of the release pressure P B1 of the first brake B1 as a release-side engagement device Indicates that has started.

続いて、前記イナーシャ相開始判定手段84に対応するS3’において、有段変速部20の変速過程においてイナーシャ相が開始したか否かが判定される。例えば、実際第2電動機回転速度NM2がイナーシャ相の開始を判定するために予め実験的に定められた所定量変化したか否か、係合側係合装置が係合トルク容量を持ち始める時間として予め実験的に求められて定められた所定時間経過したか否か、或いは係合側係合装置の係合油圧が係合トルク容量を持ち始める油圧(指令)値として予め実験的に求められて定められた係合過渡油圧(指令)値Pとなったか否かなどに基づいて、係合側係合装置が係合トルク容量を持ち始めたことにより第2電動機回転速度NM2が変化し始めてイナーシャ相が開始したか否かが判定される。 Subsequently, in S3 ′ corresponding to the inertia phase start determining means 84, it is determined whether or not the inertia phase has started in the shifting process of the stepped transmission unit 20. For example, whether or not the actual second motor rotation speed NM2 has changed by a predetermined amount experimentally determined in order to determine the start of the inertia phase, the time when the engagement-side engagement device starts to have the engagement torque capacity As a hydraulic pressure (command) value at which the engagement hydraulic pressure of the engagement-side engagement device starts to have the engagement torque capacity or not. etc. based whether a engagement transition pressure (command) value P C defined Te, the second electric motor rotation speed N M2 is changed by the engagement side engagement device is beginning to have an engaging torque capacity Whether or not the inertia phase has started is determined.

図15のt時点、図16のt時点、図17のt時点、および図18のt時点は、実際第2電動機回転速度NM2がイナーシャ相の開始を判定するために予め実験的に定められた所定量変化したか、係合側係合装置が係合トルク容量を持ち始める時間として予め実験的に求められて定められた所定時間経過したか、或いは係合側係合装置の係合油圧が係合トルク容量を持ち始める油圧(指令)値として予め実験的に求められて定められた係合過渡油圧(指令)値Pとなったことによりイナーシャ相の開始が判断されたことを示している。尚、図15および図17においては、係合側係合装置は第1ブレーキB1でありその係合油圧はPB1である。また、図16および図18においては、係合側係合装置は第2ブレーキB2でありその係合油圧はPB2である。 T 2 time points Figure 15, t 2 time points Figure 16, t 2 time point t 2 time points, and 18 of FIG. 17, actually pre-experiment to the second electric motor rotation speed N M2 to determine the start of the inertia phase Whether the engagement-side engagement device has changed by a predetermined amount, or the engagement-side engagement device has been determined experimentally in advance as the time when the engagement-side engagement device begins to have the engagement torque capacity, or the engagement-side engagement device has elapsed. engagement oil pressure start of the inertia phase is determined by became engagement transition pressure (command) value P C defined by experimentally obtained in advance as a hydraulic (command) value begin to have engagement torque capacity of the It shows that. In FIGS. 15 and 17, the engagement side engagement device is the first brake B1, and the engagement hydraulic pressure is P B1 . In FIGS. 16 and 18, the engagement-side engagement device is the second brake B2, and the engagement hydraulic pressure is P B2 .

上記S3’の判断が否定される場合はこのS3’が繰り返し実行されるが、肯定される場合は前記ハイブリッド制御手段52に対応するS4において、有段変速部20の変速前後で変速機構10のトータル変速比γTを連続的に変化させるように、前記S3における有段変速部20の変速に同期して、無段変速部11の変速が実行される。   If the determination in S3 ′ is negative, this S3 ′ is repeatedly executed. If the determination is positive, in S4 corresponding to the hybrid control means 52, the transmission mechanism 10 is changed before and after the gear change of the stepped transmission unit 20. The continuously variable transmission unit 11 is shifted in synchronization with the shift of the stepped transmission unit 20 in S3 so that the total transmission ratio γT is continuously changed.

図15のt時点乃至t時点や図16のt時点乃至t時点は、有段変速部20の変速前後で変速機構10のトータル変速比γTが変化しないように、すなわち有段変速部20の変速前後でエンジン回転速度Nが変化しないように、有段変速部20の変速過程におけるイナーシャ相中に、有段変速部20の変速比の段階的な変化に相当する変化分だけその変化方向とは反対方向に無段変速部11の変速比が段階的に変化させられたことを示している。 T 2 time to t 4 time points t 2 time to t 3 time points and 16 in FIG. 15, as the overall speed ratio γT of the transmission mechanism 10 does not change before and after shifting of the geared transmission unit 20, i.e. step-variable shifting as the engine rotational speed N E is not changed in speed before and after the section 20, the inertia phase in the shift process of the geared transmission unit 20, only the change amount corresponding to a step change in the transmission ratio of the geared transmission unit 20 This shows that the gear ratio of the continuously variable transmission unit 11 is changed stepwise in a direction opposite to the changing direction.

図17のt時点乃至t時点や図18のt時点乃至t時点は、有段変速部20の変速前後で変速機構10のトータル変速比γTが連続するように、有段変速部20の変速過程におけるイナーシャ相中に、有段変速部20の変速比の変化方向と同じ方向に無段変速部11の変速比が変化させられたことを示している。よって、図15や図16の実施例と異なり、エンジン回転速度Nが変速機構10のトータル変速比γTの変化に伴って変化させられている。 T 2 time to t 4 time points t 2 time to t 3 time points and 18 in FIG. 17, as the overall speed ratio γT of the transmission mechanism 10 is continuously before and after shifting of the geared transmission unit 20, step-variable shifting portion It is shown that the gear ratio of the continuously variable transmission unit 11 is changed in the same direction as the direction of change of the gear ratio of the stepped transmission unit 20 during the inertia phase in the gear shifting process 20. Thus, unlike the example of FIGS. 15 and 16, the engine rotational speed N E is varied with the change of the overall speed ratio γT of the transmission mechanism 10.

前記S3およびS4における変速制御中或いは上記S6における変速制御中には前記トルクダウン制御手段82に対応するS5において、有段変速部20の入力トルクTINが低減されるトルクダウン制御が実行される。例えば、有段変速部20の回転要素の回転速度の減少や無段変速部11の回転要素の回転速度の減少に伴って出力トルクTOUTのトルク増加分としてイナーシャトルクが発生する。或いはまた、アップシフトの際のエンジン回転速度Nの減少に伴って出力トルクTOUTのトルク増加分としてイナーシャトルクが発生する。そこで、このS5では、そのイナーシャトルクに相当するトルク分が有段変速部20の入力トルクTINにおいてある程度相殺されるように、例えばエンジントルクTを低下させるエンジントルクダウン制御や第2電動機M2を用いた電動機トルクダウン制御が実行されて、入力トルクTINが低減される。或いはまた、有段変速部20の変速の際の摩擦係合装置の係合完了に伴うトルク振動をある程度相殺して係合ショックが抑制されるように、入力トルクTINが低減される。但し、アクセルオフとなる減速走行時のダウンシフトすなわちコーストダウンの場合には、イナーシャトルクに相当するトルク分がある程度相殺されるようなトルクダウン制御が実行される必要はない。 In S5, during the shifting control corresponding to the torque-reduction control means 82 in the shift control in or the above-described Step S6 in the S3 and S4, the torque down control of input torque T IN of the geared transmission unit 20 is reduced is performed . For example, an inertia torque is generated as a torque increase of the output torque T OUT with a decrease in the rotation speed of the rotating element of the stepped transmission unit 20 or a decrease in the rotation speed of the rotation element of the continuously variable transmission unit 11. Alternatively, with a decrease in the engine rotational speed N E during the upshift inertia torque is generated as the torque increase of the output torque T OUT. Therefore, in the S5, so torque component corresponding to the inertia torque is offset to some extent in the input torque T IN of the geared transmission unit 20, for example, the engine torque reduction control and the second electric motor to lower the engine torque T E M2 It is running motor torque reduction control using the input torque T iN is reduced. Alternatively, the input torque TIN is reduced so that the torque shock accompanying the completion of the engagement of the friction engagement device at the time of shifting of the stepped transmission 20 is offset to some extent and the engagement shock is suppressed. However, in the case of a downshift at the time of decelerating when the accelerator is off, that is, a coast down, it is not necessary to execute torque down control that cancels out the torque corresponding to the inertia torque to some extent.

図15のt時点乃至t時点は、エンジン回転速度Nの変化が発生しないので、有段変速部20の回転要素の回転速度の減少や無段変速部11の回転要素の回転速度の減少に伴う出力トルクTOUTのトルク増加分としてのイナーシャトルクに相当するトルク分がある程度相殺されるように、入力トルクTINが低減されたことを示している。 T 2 time to t 3 time points in FIG. 15, since the change in the engine rotational speed N E is not generated, the rotational speeds of the rotating elements of the rotating elements of the rotation speed of the decrease and the continuously variable transmission unit 11 of the geared transmission unit 20 This shows that the input torque T IN has been reduced so that the torque equivalent to the inertia torque as the torque increase of the output torque T OUT accompanying the decrease is offset to some extent.

図16のt時点乃至t時点は、エンジン回転速度Nの変化が発生しないので、有段変速部20の摩擦係合装置の係合完了に伴うトルク振動をある程度相殺して係合ショックが抑制されるように、入力トルクTINが低減されたことを示している。この図16は、コーストダウンシフトの実施例であるため、イナーシャトルクに相当するトルク分がある程度相殺されるようなトルクダウン制御が実行されないが、パワーオンダウンシフトのときには図15の実施例と同様に、イナーシャトルク分を相殺するトルクダウン制御が実行される。 T 3 time to t 5 the time in FIG. 16, since the change in the engine rotational speed N E is not generated, geared transmission unit 20 frictional engagement device offset to some extent to engagement shock torque oscillations caused by the completion of engagement of the It is shown that the input torque TIN is reduced so that is suppressed. Since FIG. 16 is an embodiment of the coast downshift, torque down control is not executed so that the torque corresponding to the inertia torque is offset to some extent, but in the case of a power-on downshift, the same as in the embodiment of FIG. In addition, torque-down control that cancels the inertia torque is executed.

図17のt時点乃至t時点は、エンジン回転速度Nの変化や有段変速部20の回転要素の回転速度の減少や無段変速部11の回転要素の回転速度の減少に伴う出力トルクTOUTのトルク増加分としてのイナーシャトルクに相当するトルク分がある程度相殺されるように、入力トルクTINが低減されたことを示している。 T 2 time to t 3 time points in FIG. 17, the output with decreasing rotational speeds of the rotating elements of the engine rotational speed decrease of the rotational speeds of the rotating elements of the change and geared transmission unit 20 of the N E and the continuously variable transmission unit 11 This shows that the input torque T IN has been reduced so that the torque corresponding to the inertia torque as the torque increase of the torque T OUT is offset to some extent.

図18は、コーストダウンシフトの実施例であるため、イナーシャトルクに相当するトルク分がある程度相殺されるようなトルクダウン制御が実行されてないことを示している。但し、パワーオンダウンシフトのときには図17の実施例と同様に、イナーシャトルク分を相殺するトルクダウン制御が実行される。   Since FIG. 18 is an example of coast downshift, it is shown that torque down control is not executed so that the torque corresponding to the inertia torque is offset to some extent. However, during the power-on downshift, torque-down control that cancels the inertia torque is executed as in the embodiment of FIG.

また、前記S1の判断が否定される場合はS7において、有段変速部20における変速が実行されない場合の制御装置40の各種制御手段による制御作動が実行されるか或いは本ルーチンが終了させられる。例えば、変速機構10が無段変速状態である場合には、ハイブリッド制御手段52により車両状態に基づく無段変速部11の変速制御が実行される。   If the determination in S1 is negative, in S7, the control operation by the various control means of the control device 40 when the shift in the stepped transmission 20 is not executed is executed, or this routine is ended. For example, when the transmission mechanism 10 is in a continuously variable transmission state, the hybrid control unit 52 executes shift control of the continuously variable transmission unit 11 based on the vehicle state.

上述のように、本実施例によれば、前述の実施例と同様の効果が得られる。例えば、有段変速部20の変速制御に際して有段変速部20の変速比が段階的に変化させられたとしても、無段変速部11の変速比と有段変速部20の変速比とに基づいて形成される変速機構10(駆動装置)のトータル変速比(総合変速比)γTが連続的に変化させられるように、すなわち有段変速部20の変速に伴うその段階的な変化が抑制されるように、ハイブリッド制御手段52(無段変速制御手段)により有段変速部20の変速に同期して、すなわち有段変速部20の変速に伴うイナーシャ相中に無段変速部11の変速が実行されるので、有段変速部20の変速前後でエンジン回転速度Nの段階的な変化が抑制されて変速ショックが抑制される。また、変速機構10全体として無段変速機として機能させることが可能となるので、燃費が向上させられる。 As described above, according to this embodiment, the same effect as that of the above-described embodiment can be obtained. For example, even when the gear ratio of the stepped transmission unit 20 is changed stepwise during the shift control of the stepped transmission unit 20, it is based on the gear ratio of the continuously variable transmission unit 11 and the gear ratio of the stepped transmission unit 20. So that the total speed ratio (total speed ratio) γT of the speed change mechanism 10 (driving device) formed in a continuous manner is changed, that is, the stepwise change associated with the speed change of the stepped transmission 20 is suppressed. As described above, the shift of the continuously variable transmission unit 11 is executed by the hybrid control unit 52 (continuously variable transmission control unit) in synchronization with the shift of the stepped transmission unit 20, that is, during the inertia phase accompanying the shift of the stepped transmission unit 20. since the, shift shock is suppressed before and after shifting of the geared transmission unit 20 is suppressed gradual change of the engine speed N E. Further, since the transmission mechanism 10 as a whole can function as a continuously variable transmission, fuel efficiency is improved.

図19は本発明の他の実施例における変速機構70の構成を説明する骨子図、図20はその変速機構70の変速段と油圧式摩擦係合装置の係合の組み合わせとの関係を示す係合表、図21はその変速機構70の変速作動を説明する共線図である。   FIG. 19 is a skeleton diagram illustrating the configuration of the speed change mechanism 70 according to another embodiment of the present invention, and FIG. 20 is a view showing the relationship between the gear position of the speed change mechanism 70 and the engagement combination of the hydraulic friction engagement device. FIG. 21 is an alignment chart for explaining the speed change operation of the speed change mechanism 70.

変速機構70は、前述の実施例と同様に第1電動機M1、動力分配機構16、および第2電動機M2を備えている無段変速部11と、その無段変速部11と出力軸22との間で伝達部材18を介して直列に連結されている前進3段の有段変速部72とを備えている。動力分配機構16は、例えば「0.418」程度の所定のギヤ比ρ1を有するシングルピニオン型の第1遊星歯車装置24と切換クラッチC0および切換ブレーキB0とを有している。有段変速部72は、例えば「0.532」程度の所定のギヤ比ρ2を有するシングルピニオン型の第2遊星歯車装置26と例えば「0.418」程度の所定のギヤ比ρ3を有するシングルピニオン型の第3遊星歯車装置28とを備えている。第2遊星歯車装置26の第2サンギヤS2と第3遊星歯車装置28の第3サンギヤS3とが一体的に連結されて第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第2遊星歯車装置26の第2キャリヤCA2と第3遊星歯車装置28の第3リングギヤR3とが一体的に連結されて出力軸22に連結され、第2リングギヤR2は第1クラッチC1を介して伝達部材18に選択的に連結され、第3キャリヤCA3は第2ブレーキB2を介してケース12に選択的に連結されている。   As in the above-described embodiment, the speed change mechanism 70 includes a continuously variable transmission portion 11 including the first electric motor M1, the power distribution mechanism 16, and the second electric motor M2, and the continuously variable transmission portion 11 and the output shaft 22. And a forward three-stage stepped transmission 72 connected in series via the transmission member 18 therebetween. The power distribution mechanism 16 includes, for example, a single pinion type first planetary gear unit 24 having a predetermined gear ratio ρ1 of about “0.418”, a switching clutch C0, and a switching brake B0. The stepped transmission unit 72 includes a single pinion type second planetary gear unit 26 having a predetermined gear ratio ρ2 of about “0.532”, for example, and a single pinion having a predetermined gear ratio ρ3 of about “0.418”, for example. And a third planetary gear device 28 of the type. The second sun gear S2 of the second planetary gear unit 26 and the third sun gear S3 of the third planetary gear unit 28 are integrally connected and selectively connected to the transmission member 18 via the second clutch C2. The second carrier CA2 of the second planetary gear device 26 and the third ring gear R3 of the third planetary gear device 28 are integrally connected to the output shaft 22 by being selectively connected to the case 12 via one brake B1. The second ring gear R2 is selectively connected to the transmission member 18 via the first clutch C1, and the third carrier CA3 is selectively connected to the case 12 via the second brake B2.

以上のように構成された変速機構70では、例えば、図20の係合作動表に示されるように、前記切換クラッチC0、第1クラッチC1、第2クラッチC2、切換ブレーキB0、第1ブレーキB1、および第2ブレーキB2が選択的に係合作動させられることにより、第1速ギヤ段(第1変速段)乃至第4速ギヤ段(第4変速段)のいずれか或いは後進ギヤ段(後進変速段)或いはニュートラルが選択的に成立させられ、略等比的に変化する変速比γ(=入力軸回転速度NIN/出力軸回転速度NOUT)が各ギヤ段毎に得られるようになっている。特に、本実施例では動力分配機構16に切換クラッチC0および切換ブレーキB0が備えられており、切換クラッチC0および切換ブレーキB0の何れかが係合作動させられることによって、無段変速部11は前述した無段変速機として作動する無段変速状態に加え、変速比が一定の変速機として作動する定変速状態を構成することが可能とされている。したがって、変速機構70では、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで定変速状態とされた無段変速部11と有段変速部72とで有段変速機として作動する有段変速状態が構成され、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態とされた無段変速部11と有段変速部72とで電気的な無段変速機として作動する無段変速状態が構成される。言い換えれば、変速機構70は、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで有段変速状態に切り換えられ、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態に切り換えられる。 In the speed change mechanism 70 configured as described above, for example, as shown in the engagement operation table of FIG. 20, the switching clutch C0, the first clutch C1, the second clutch C2, the switching brake B0, and the first brake B1. , And the second brake B2 is selectively engaged and operated, so that one of the first gear (first gear) to the fourth gear (fourth gear) or the reverse gear (reverse) Gear ratio) or neutral is selectively established, and a gear ratio γ (= input shaft rotational speed N IN / output shaft rotational speed N OUT ) that changes substantially in an equal ratio can be obtained for each gear stage. ing. In particular, in the present embodiment, the power distribution mechanism 16 is provided with a switching clutch C0 and a switching brake B0, and either one of the switching clutch C0 and the switching brake B0 is engaged to operate the continuously variable transmission unit 11 as described above. In addition to the continuously variable transmission state that operates as a continuously variable transmission, it is possible to configure a constant transmission state that operates as a transmission having a constant gear ratio. Accordingly, the transmission mechanism 70 operates as a stepped transmission by the continuously variable transmission unit 11 and the stepped transmission unit 72 that are brought into a constant transmission state by engaging and operating either the switching clutch C0 or the switching brake B0. The stepless speed change state is constituted, and the stepless speed change portion 11 and the stepped speed change portion 72 which are set to the stepless speed change state by engaging neither the switching clutch C0 nor the changeover brake B0 are electrically stepless. A continuously variable transmission state operating as a machine is configured. In other words, the speed change mechanism 70 is switched to the stepped speed change state by engaging one of the switching clutch C0 and the switching brake B0, and is disabled by not operating the switching clutch C0 and the switching brake B0. It is switched to the step shifting state.

例えば、変速機構70が有段変速機として機能する場合には、図20に示すように、切換クラッチC0、第1クラッチC1および第2ブレーキB2の係合により、変速比γ1が最大値例えば「2.804」程度である第1速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第1ブレーキB1の係合により、変速比γ2が第1速ギヤ段よりも小さい値例えば「1.531」程度である第2速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第2クラッチC2の係合により、変速比γ3が第2速ギヤ段よりも小さい値例えば「1.000」程度である第3速ギヤ段が成立させられ、第1クラッチC1、第2クラッチC2、および切換ブレーキB0の係合により、変速比γ4が第3速ギヤ段よりも小さい値例えば「0.705」程度である第4速ギヤ段が成立させられる。また、第2クラッチC2および第2ブレーキB2の係合により、変速比γRが第1速ギヤ段と第2速ギヤ段との間の値例えば「2.393」程度である後進ギヤ段が成立させられる。なお、ニュートラル「N」状態とする場合には、例えば切換クラッチC0のみが係合される。   For example, when the speed change mechanism 70 functions as a stepped transmission, as shown in FIG. 20, the gear ratio γ1 is set to a maximum value, for example, “by the engagement of the switching clutch C0, the first clutch C1, and the second brake B2,” A first gear that is approximately 2.804 "is established, and the gear ratio γ2 is smaller than that of the first gear by engaging the switching clutch C0, the first clutch C1, and the first brake B1, for example,“ The second speed gear stage of about 1.531 "is established, and the gear ratio γ3 is smaller than the second speed gear stage by engagement of the switching clutch C0, the first clutch C1, and the second clutch C2, for example," For example, a third speed gear stage of about 1.000 "is established, and the gear ratio γ4 is smaller than that of the third speed gear stage due to engagement of the first clutch C1, the second clutch C2, and the switching brake B0. Fourth gear is approximately "0.705", is established. Further, by the engagement of the second clutch C2 and the second brake B2, a reverse gear stage in which the speed ratio γR is a value between the first speed gear stage and the second speed gear stage, for example, about “2.393” is established. Be made. When the neutral “N” state is set, for example, only the switching clutch C0 is engaged.

しかし、変速機構70が無段変速機として機能する場合には、図20に示される係合表の切換クラッチC0および切換ブレーキB0が共に解放される。これにより、無段変速部11が無段変速機として機能し、それに直列の有段変速部72が有段変速機として機能することにより、有段変速部72の第1速、第2速、第3速の各ギヤ段に対しその有段変速部72に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって変速機構70全体としてのトータル変速比γTが無段階に得られるようになる。   However, when transmission mechanism 70 functions as a continuously variable transmission, both switching clutch C0 and switching brake B0 in the engagement table shown in FIG. 20 are released. Thereby, the continuously variable transmission unit 11 functions as a continuously variable transmission, and the stepped transmission unit 72 in series functions as a stepped transmission, whereby the first speed, the second speed of the stepped transmission unit 72, The rotational speed input to the stepped transmission 72, that is, the rotational speed of the transmission member 18 is changed steplessly for each gear stage of the third speed, so that each gear stage has a stepless speed ratio width. It is done. Therefore, the gear ratio between the gear stages can be continuously changed continuously, and the total gear ratio γT of the transmission mechanism 70 as a whole can be obtained continuously.

図21は、差動部或いは第1変速部として機能する無段変速部11と変速部(自動変速部)或いは第2変速部として機能する有段変速部72から構成される変速機構70において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。切換クラッチC0および切換ブレーキB0が解放される場合、および切換クラッチC0または切換ブレーキB0が係合させられる場合の動力分配機構16の各要素の回転速度は前述の場合と同様である。   FIG. 21 shows a transmission mechanism 70 including a continuously variable transmission 11 that functions as a differential unit or a first transmission, and a stepped transmission 72 that functions as a transmission (automatic transmission) or a second transmission. The alignment chart which can represent on a straight line the relative relationship of the rotational speed of each rotation element from which a connection state differs for every gear stage is shown. When the switching clutch C0 and the switching brake B0 are released and when the switching clutch C0 or the switching brake B0 is engaged, the rotational speeds of the elements of the power distribution mechanism 16 are the same as those described above.

図21における自動変速機72の4本の縦線Y4、Y5、Y6、Y7は、左から順に、第4回転要素(第4要素)RE4に対応し且つ相互に連結された第2サンギヤS2および第3サンギヤS3を、第5回転要素(第5要素)RE5に対応する第3キャリヤCA3を、第6回転要素(第6要素)RE6に対応し且つ相互に連結された第2キャリヤCA2および第3リングギヤR3を、第7回転要素(第7要素)RE7に対応する第2リングギヤR2をそれぞれ表している。また、自動変速機72において第4回転要素RE4は第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第5回転要素RE5は第2ブレーキB2を介してケース12に選択的に連結され、第6回転要素RE6は自動変速機72の出力軸22に連結され、第7回転要素RE7は第1クラッチC1を介して伝達部材18に選択的に連結されている。   In FIG. 21, the four vertical lines Y4, Y5, Y6, Y7 of the automatic transmission 72 correspond to the fourth rotation element (fourth element) RE4 and are connected to each other in order from the left. The third sun gear S3, the third carrier CA3 corresponding to the fifth rotating element (fifth element) RE5, the second carrier CA2 corresponding to the sixth rotating element (sixth element) RE6 and connected to each other and the second carrier CA2 The three ring gear R3 represents the second ring gear R2 corresponding to the seventh rotation element (seventh element) RE7. Further, in the automatic transmission 72, the fourth rotating element RE4 is selectively connected to the transmission member 18 via the second clutch C2, and is also selectively connected to the case 12 via the first brake B1, so that the fifth rotation. The element RE5 is selectively connected to the case 12 via the second brake B2, the sixth rotating element RE6 is connected to the output shaft 22 of the automatic transmission 72, and the seventh rotating element RE7 is connected via the first clutch C1. It is selectively connected to the transmission member 18.

有段変速部72では、図21に示すように、第1クラッチC1と第2ブレーキB2とが係合させられることにより、第7回転要素RE7(R2)の回転速度を示す縦線Y7と横線X2との交点と第5回転要素RE5(CA3)の回転速度を示す縦線Y5と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第6回転要素RE6(CA2,R3)の回転速度を示す縦線Y6との交点で第1速の出力軸22の回転速度が示される。同様に、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L2と出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第2速の出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L3と出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第3速の出力軸22の回転速度が示される。上記第1速乃至第3速では、切換クラッチC0が係合させられている結果、エンジン回転速度Nと同じ回転速度で第7回転要素RE7に無段変速部11からの動力が入力される。しかし、切換クラッチC0に替えて切換ブレーキB0が係合させられると、無段変速部11からの動力がエンジン回転速度Nよりも高い回転速度で入力されることから、第1クラッチC1、第2クラッチC2、および切換ブレーキB0が係合させられることにより決まる水平な直線L4と出力軸22と連結された第6回転要素RE6の回転速度を示す縦線Y6との交点で第4速の出力軸22の回転速度が示される。 In the stepped transmission unit 72, as shown in FIG. 21, when the first clutch C1 and the second brake B2 are engaged, the vertical line Y7 and the horizontal line that indicate the rotational speed of the seventh rotation element RE7 (R2). An oblique line L1 passing through the intersection of X2 and the intersection of the vertical line Y5 and the horizontal line X1 indicating the rotation speed of the fifth rotation element RE5 (CA3), and the sixth rotation element RE6 (CA2) connected to the output shaft 22 , R3), the rotational speed of the first-speed output shaft 22 is shown at the intersection with the vertical line Y6 indicating the rotational speed. Similarly, at an intersection of an oblique straight line L2 determined by engaging the first clutch C1 and the first brake B1, and a vertical line Y6 indicating the rotational speed of the sixth rotating element RE6 connected to the output shaft 22. The rotation speed of the output shaft 22 at the second speed is shown, and the horizontal straight line L3 determined by engaging the first clutch C1 and the second clutch C2 and the sixth rotation element RE6 connected to the output shaft 22 The rotation speed of the third-speed output shaft 22 is shown at the intersection with the vertical line Y6 indicating the rotation speed. In the first speed to third speed, as a result of the switching clutch C0 is engaged, power from the continuously variable transmission unit 11 to the seventh rotary element RE7 at the same speed as the engine speed N E is input . However, when the switching brake B0 in place of the switching clutch C0 is engaged, since the power from the continuously variable transmission unit 11 is input at a higher speed than the engine rotational speed N E, first clutch C1, the Output of the fourth speed at the intersection of the horizontal straight line L4 determined by the engagement of the two clutch C2 and the switching brake B0 and the vertical line Y6 indicating the rotational speed of the sixth rotating element RE6 connected to the output shaft 22 The rotational speed of the shaft 22 is shown.

本実施例の変速機構70においても、差動部或いは第1変速部として機能する無段変速部11と、変速部(自動変速部)或いは第2変速部として機能する有段変速部72とから構成されるので、前述の実施例と同様の効果が得られる。   Also in the transmission mechanism 70 of the present embodiment, the continuously variable transmission unit 11 that functions as a differential unit or a first transmission unit, and the stepped transmission unit 72 that functions as a transmission unit (automatic transmission unit) or a second transmission unit. Since it is configured, the same effect as the above-described embodiment can be obtained.

図22は、手動操作により動力分配機構16の差動状態(非ロック状態)と非差動状態(ロック状態)すなわち変速機構10の無段変速状態と有段変速状態との切換えを選択するための変速状態手動選択装置としてのシーソー型スイッチ44(以下、スイッチ44と表す)の一例でありユーザにより手動操作可能に車両に備えられている。このスイッチ44は、ユーザが所望する変速状態での車両走行を選択可能とするものであり、無段変速走行に対応するスイッチ44の無段と表示された無段変速走行指令釦或いは有段変速走行に対応する有段と表示された有段変速走行指令釦がユーザにより押されることで、それぞれ無段変速走行すなわち変速機構10を電気的な無段変速機として作動可能な無段変速状態とするか、或いは有段変速走行すなわち変速機構10を有段変速機として作動可能な有段変速状態とするかが選択可能とされる。   FIG. 22 shows a manual operation for selecting a differential state (non-locked state) and a non-differential state (locked state) of the power distribution mechanism 16, that is, switching between the continuously variable transmission state and the stepped transmission state of the transmission mechanism 10. This is an example of a seesaw type switch 44 (hereinafter referred to as a switch 44) as a shift state manual selection device, and is provided in a vehicle so that it can be manually operated by a user. This switch 44 allows the user to select vehicle travel in a speed change state desired by the user. The switch 44 corresponding to continuously variable speed travel indicates a continuously variable speed travel command button or stepped speed variable. When the user presses the step-variable speed change command button displayed as stepped corresponding to the travel, the stepless speed change traveling state, that is, the stepless speed change state in which the speed change mechanism 10 can be operated as an electric continuously variable transmission, It is possible to select whether to make a stepped speed change, that is, a stepped speed change state in which the speed change mechanism 10 can operate as a stepped transmission.

前述の実施例では、例えば図6の関係図から車両状態の変化に基づく変速機構10の変速状態の自動切換制御作動を説明したが、その自動切換制御作動に替えて或いは加えて例えばスイッチ44が手動操作されたことにより変速機構10の変速状態が手動切換制御される。つまり、切換制御手段50は、スイッチ44の無段変速状態とするか或いは有段変速状態とするかの選択操作に従って優先的に変速機構10を無段変速状態と有段変速状態とに切り換える。例えば、ユーザは無段変速機のフィーリングや燃費改善効果が得られる走行を所望すれば変速機構10が無段変速状態とされるように手動操作により選択する。またユーザは有段変速機の変速に伴うリズミカルなエンジン回転速度の変化によるフィーリング向上を所望すれば変速機構10が有段変速状態とされるように手動操作により選択する。   In the above-described embodiment, for example, the automatic switching control operation of the shift state of the transmission mechanism 10 based on the change of the vehicle state has been described from the relationship diagram of FIG. 6, but the switch 44 is replaced or added to the automatic switching control operation, for example. As a result of manual operation, the shift state of the transmission mechanism 10 is manually switched. In other words, the switching control means 50 preferentially switches the transmission mechanism 10 between the continuously variable transmission state and the continuously variable transmission state in accordance with the selection operation of the switch 44 for the continuously variable transmission state or the stepped transmission state. For example, if the user desires a travel that can achieve the feeling of the continuously variable transmission and the fuel efficiency improvement effect, the user selects the transmission mechanism 10 by a manual operation so as to be in a continuously variable transmission state. In addition, if the user desires to improve the feeling due to a rhythmic change in the engine rotational speed associated with the speed change of the stepped transmission, the user selects the speed change mechanism 10 by manual operation so as to be in the stepped speed change state.

また、スイッチ44に無段変速走行或いは有段変速走行の何れも選択されない状態である中立位置が設けられる場合には、スイッチ44がその中立位置の状態であるときすなわちユーザによって所望する変速状態が選択されていないときや所望する変速状態が自動切換のときには、変速機構10の変速状態の自動切換制御作動が実行されればよい。   Further, when the switch 44 is provided with a neutral position in which neither continuously variable speed traveling nor stepped speed variable traveling is selected, when the switch 44 is in the neutral position, that is, the speed change state desired by the user is determined. When it is not selected or when the desired shift state is automatic switching, the automatic shift control operation of the shift state of the transmission mechanism 10 may be executed.

例えば、自動切換制御作動に替えてスイッチ44が手動操作されたことにより変速機構10の変速状態が手動切換制御される場合には、前述の実施例の図11、図14に示すフローチャートのステップS2において、スイッチ44が手動操作によって動力分配機構16の差動状態すなわち変速機構10の無段変速状態が選択されていることに基づいて動力分配機構16が差動状態すなわち無段変速部11が無段変速状態とされているか否かが判定される。   For example, when the switch 44 is manually operated instead of the automatic switching control operation and the shift state of the transmission mechanism 10 is manually switched, step S2 of the flowchart shown in FIGS. 11 and 14 of the above-described embodiment is performed. The power distribution mechanism 16 is in the differential state, that is, the continuously variable transmission unit 11 is not operated, based on the fact that the switch 44 is manually operated to select the differential state of the power distribution mechanism 16, that is, the continuously variable transmission state of the transmission mechanism 10. It is determined whether or not a step shift state is set.

以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。   As mentioned above, although the Example of this invention was described in detail based on drawing, this invention is applied also in another aspect.

例えば、前述の実施例の変速機構10、70は、動力分配機構16が差動状態と非差動状態とに切り換えられることで電気的な無段変速機として機能する無段変速状態と有段変速機として機能する有段変速状態とに切換可能に構成されたが、変速機構10、70が有段変速状態に切換可能に構成されない変速機構すなわち無段変速部11が切換クラッチC0および切換ブレーキB0を備えず電気的な無段変速機(電気的な差動装置)としての機能のみを有する無段変速部(差動部)11であっても本実施例は適用され得る。この場合には切換制御手段50、増速側ギヤ段判定手段62、および差動状態判定手段80は備えられる必要はなく、また図11、図14に示すフローチャートにおいて動力分配機構16の差動状態の判定が実行されるステップS2も必要がなく、それに伴ってステップS6も必要がない。また、無段変速部11が例えば良く知られた無段変速機(CVT)であっても本実施例は適用され得る。   For example, the speed change mechanisms 10 and 70 of the above-described embodiment have a stepless speed change state and a stepped speed which function as an electric continuously variable transmission by switching the power distribution mechanism 16 between a differential state and a non-differential state. A transmission mechanism that is configured to be able to switch to a stepped transmission state that functions as a transmission, but the transmission mechanisms 10, 70 are not configured to be capable of switching to a stepped transmission state, that is, a continuously variable transmission unit 11 includes a switching clutch C0 and a switching brake. The present embodiment can also be applied to a continuously variable transmission (differential unit) 11 that does not include B0 and has only a function as an electrical continuously variable transmission (electrical differential device). In this case, it is not necessary to provide the switching control means 50, the acceleration side gear stage determination means 62, and the differential state determination means 80, and the differential state of the power distribution mechanism 16 in the flowcharts shown in FIGS. There is no need for step S2 in which this determination is executed, and accordingly, step S6 is also unnecessary. Further, the present embodiment can be applied even when the continuously variable transmission unit 11 is, for example, a well-known continuously variable transmission (CVT).

また、前述の実施例の変速機構10、70は、無段変速部11(動力分配機構16)が電気的な無段変速機として作動可能な差動状態とそれを非作動とする非差動状態(ロック状態)とに切り換えられることで無段変速状態と有段変速状態とに切り換え可能に構成され、この無段変速状態と有段変速状態との切換えは無段変速部11が差動状態と非差動状態とに切換えられることによって行われていたが、例えば無段変速部11が差動状態のままであっても無段変速部11の変速比を連続的ではなく段階的に変化させることにより有段変速機として機能させられ得る。言い換えれば、無段変速部11の差動状態/非差動状態と、変速機構10、70の無段変速状態/有段変速状態とは必ずしも一対一の関係にある訳ではないので、無段変速部11は必ずしも無段変速状態と有段変速状態とに切換可能に構成される必要はなく、変速機構10、70(無段変速部11、動力分配機構16)が差動状態と非差動状態とに切換え可能に構成されれば本発明は適用され得る。   Further, the transmission mechanisms 10 and 70 of the above-described embodiment are in a differential state in which the continuously variable transmission unit 11 (power distribution mechanism 16) can operate as an electrical continuously variable transmission and a non-differential in which it is not operated. By switching to the state (locked state), it is possible to switch between a continuously variable transmission state and a stepped transmission state, and the continuously variable transmission unit 11 is differentially switched between the continuously variable transmission state and the stepped transmission state. For example, even if the continuously variable transmission 11 remains in the differential state, the gear ratio of the continuously variable transmission 11 is changed stepwise instead of continuously. It can be made to function as a stepped transmission by changing. In other words, the differential state / non-differential state of the continuously variable transmission unit 11 and the continuously variable transmission state / stepped transmission state of the transmission mechanisms 10 and 70 are not necessarily in a one-to-one relationship. The transmission unit 11 is not necessarily configured to be switchable between the continuously variable transmission state and the stepped transmission state, and the transmission mechanisms 10 and 70 (the continuously variable transmission unit 11 and the power distribution mechanism 16) are not different from the differential state. The present invention can be applied as long as it can be switched to a moving state.

また、前述の実施例では図12、図15、図16のタイムチャートに示すように有段変速部20の変速前後でエンジン回転速度Nが変化しないようにすなわち変速機構10のトータル変速比が変化しないように無段変速部11の変速制御が実行されたが、必ずしもエンジン回転速度Nが変化しないようにする必要はなく、エンジン回転速度Nの段階的な変化が抑制されて連続的にエンジン回転速度Nが変化させられればばよい。このようにしても一応の効果は得られる。 Further, FIG. 12 in the illustrated embodiment, FIG. 15, the total speed ratio of the engine speed N E so as not to be changed i.e. the transmission mechanism 10 before and after shifting of the step-variable shifting portion 20 as shown in the time chart of FIG. 16 While the shift control of the continuously variable transmission portion 11 so as not to change is executed, it is not always necessary to the engine rotational speed N E is not changed, a continuous gradual change in the engine rotational speed N E is suppressed It suffices if the engine speed NE is changed. Even if it does in this way, a temporary effect is acquired.

また、前述の実施例では差動状態判定手段80(図11、図14のステップS2)は、動力分配機構16が差動状態とされているか否かを例えば図6に示す切換線図から車両状態に基づいて無段制御領域内であるか否かによって判定したが、切換制御手段50による変速機構10が有段制御領域内か或いは無段制御領域内であるかの判定に基づいて動力分配機構16が差動状態とされているか否かを判定してもよい。   In the above-described embodiment, the differential state determination means 80 (step S2 in FIGS. 11 and 14) determines whether the power distribution mechanism 16 is in the differential state from the switching diagram shown in FIG. Although it is determined based on whether or not it is within the continuously variable control region based on the state, the power distribution is based on whether the speed change mechanism 10 by the switching control means 50 is within the stepped control region or the continuously variable control region. It may be determined whether or not the mechanism 16 is in a differential state.

また、前述の実施例の動力分配機構16では、第1キャリヤCA1がエンジン8に連結され、第1サンギヤS1が第1電動機M1に連結され、第1リングギヤR1が伝達部材18に連結されていたが、それらの連結関係は、必ずしもそれに限定されるものではなく、エンジン8、第1電動機M1、伝達部材18は、第1遊星歯車装置24の3要素CA1、S1、R1のうちのいずれと連結されていても差し支えない。   In the power distribution mechanism 16 of the above-described embodiment, the first carrier CA1 is connected to the engine 8, the first sun gear S1 is connected to the first electric motor M1, and the first ring gear R1 is connected to the transmission member 18. However, the connection relationship is not necessarily limited thereto, and the engine 8, the first electric motor M1, and the transmission member 18 are connected to any of the three elements CA1, S1, and R1 of the first planetary gear device 24. It can be done.

また、前述の実施例では、エンジン8は入力軸14と直結されていたが、例えばギヤ、ベルト等を介して作動的に連結されておればよく、共通の軸心上に配置される必要もない。   In the above-described embodiment, the engine 8 is directly connected to the input shaft 14. However, the engine 8 only needs to be operatively connected via, for example, a gear, a belt, or the like, and needs to be disposed on a common shaft center. Absent.

また、前述の実施例では、第1電動機M1および第2電動機M2は、入力軸14に同心に配置されて第1電動機M1は第1サンギヤS1に連結され第2電動機M2は伝達部材18に連結されていたが、必ずしもそのように配置される必要はなく、例えばギヤ、ベルト等を介して作動的に第1電動機M1は第1サンギヤS1に連結され、第2電動機M2は伝達部材18に連結されてもよい。   In the above-described embodiment, the first motor M1 and the second motor M2 are arranged concentrically with the input shaft 14, the first motor M1 is connected to the first sun gear S1, and the second motor M2 is connected to the transmission member 18. However, it is not necessarily arranged as such, and for example, the first electric motor M1 is operatively connected to the first sun gear S1 and the second electric motor M2 is connected to the transmission member 18 through a gear, a belt, or the like. May be.

また、前述の動力分配機構16には切換クラッチC0および切換ブレーキB0が備えられていたが、切換クラッチC0および切換ブレーキB0は必ずしも両方備えられる必要はない。また、上記切換クラッチC0は、サンギヤS1とキャリヤCA1とを選択的に連結するものであったが、サンギヤS1とリングギヤR1との間や、キャリヤCA1とリングギヤR1との間を選択的に連結するものであってもよい。要するに、第1遊星歯車装置24の3要素のうちのいずれか2つを相互に連結するものであればよい。   In addition, although the power distribution mechanism 16 is provided with the switching clutch C0 and the switching brake B0, both the switching clutch C0 and the switching brake B0 are not necessarily provided. The switching clutch C0 selectively connects the sun gear S1 and the carrier CA1, but selectively connects the sun gear S1 and the ring gear R1 or between the carrier CA1 and the ring gear R1. It may be a thing. In short, what is necessary is just to connect any two of the three elements of the first planetary gear unit 24 to each other.

また、前述の実施例の変速機構10、70では、ニュートラル「N」とする場合には切換クラッチC0が係合されていたが、必ずしも係合される必要はない。   Further, in the transmission mechanisms 10 and 70 of the above-described embodiment, the switching clutch C0 is engaged when the neutral "N" is set, but it is not always necessary to be engaged.

また、前述の実施例では、切換クラッチC0および切換ブレーキB0などの油圧式摩擦係合装置は、パウダー(磁粉)クラッチ、電磁クラッチ、噛み合い型のドグクラッチなどの磁粉式、電磁式、機械式係合装置から構成されていてもよい。   In the above-described embodiments, the hydraulic friction engagement devices such as the switching clutch C0 and the switching brake B0 are magnetic powder type, electromagnetic type, mechanical type engagement such as powder (magnetic powder) clutch, electromagnetic clutch, and meshing type dog clutch. You may be comprised from the apparatus.

また、前述の実施例では、第2電動機M2が伝達部材18に連結されていたが、出力軸22に連結されていてもよいし、有段変速部20、72内の回転部材に連結されていてもよい。   In the above-described embodiment, the second electric motor M2 is connected to the transmission member 18. However, the second electric motor M2 may be connected to the output shaft 22 or connected to the rotating members in the stepped transmission units 20 and 72. May be.

また、前述の実施例では、無段変速部11すなわち動力分配機構16の出力部材である伝達部材18と駆動輪38との間の動力伝達経路に、有段変速部20、72が介挿されていたが、例えば自動変速機の一種である無段変速機(CVT)、手動変速機としてよく知られた常時噛合式平行2軸型ではあるがセレクトシリンダおよびシフトシリンダによりギヤ段が自動的に切り換えられることが可能な自動変速機、手動操作により変速段が切り換えられる同期噛み合い式の手動変速機等の他の形式の動力伝達装置(変速機)が設けられていてもよい。その無段変速機(CVT)の場合には、動力分配機構16が定変速状態とされることで全体として有段変速状態とされる。有段変速状態とは、電気パスを用いないで専ら機械的伝達経路で動力伝達することである。或いは、上記無段変速機は有段変速機における変速段に対応するように予め複数の固定された変速比が記憶され、その複数の固定された変速比を用いて有段変速部20、72の変速が実行されてもよい。   Further, in the above-described embodiment, the stepped transmission units 20 and 72 are inserted in the power transmission path between the continuously variable transmission unit 11, that is, the transmission member 18 that is an output member of the power distribution mechanism 16 and the drive wheel 38. However, for example, a continuously variable transmission (CVT), which is a kind of automatic transmission, and a continuously meshing parallel twin shaft type well known as a manual transmission, the gear stage is automatically set by a select cylinder and a shift cylinder. Other types of power transmission devices (transmissions) such as an automatic transmission that can be switched and a synchronous mesh type manual transmission that can be switched by manual operation may be provided. In the case of the continuously variable transmission (CVT), the power distribution mechanism 16 is brought into a constant speed change state, whereby the stepped speed change state is made as a whole. The stepped speed change state means that power is transmitted exclusively through a mechanical transmission path without using an electric path. Alternatively, in the continuously variable transmission, a plurality of fixed gear ratios are stored in advance so as to correspond to the gear positions in the stepped transmission, and the stepped transmission units 20 and 72 are used using the plurality of fixed gear ratios. May be executed.

また、前述の実施例では、有段変速部20、72は伝達部材18を介して無段変速部11と直列に連結されていたが、入力軸14と平行にカウンタ軸が設けられそのカウンタ軸上に同心に有段変速部20、72が配設されてもよい。この場合には、無段変速部11と有段変速部20、72とは、例えば伝達部材18としてのカウンタギヤ対、スプロケットおよびチェーンで構成される1組の伝達部材などを介して動力伝達可能に連結される。   In the above-described embodiment, the stepped transmission units 20 and 72 are connected in series with the continuously variable transmission unit 11 via the transmission member 18, but a counter shaft is provided in parallel with the input shaft 14, and the counter shaft The stepped transmission units 20 and 72 may be arranged concentrically on the top. In this case, the continuously variable transmission unit 11 and the stepped transmission units 20 and 72 can transmit power via, for example, a pair of transmission members composed of a counter gear pair as a transmission member 18, a sprocket and a chain, and the like. Connected to

また、前述の実施例の差動機構としての動力分配機構16は、例えばエンジンによって回転駆動されるピニオンと、そのピニオンに噛み合う一対のかさ歯車が第1電動機M1および第2電動機M2に作動的に連結された差動歯車装置であってもよい。   Further, the power distribution mechanism 16 as the differential mechanism of the above-described embodiment is configured such that, for example, a pinion rotated by an engine and a pair of bevel gears meshing with the pinion are operatively connected to the first electric motor M1 and the second electric motor M2. A connected differential gear device may be used.

また、前述の実施例の動力分配機構16は、1組の遊星歯車装置から構成されていたが、2以上の遊星歯車装置から構成されて、非差動状態(定変速状態)では3段以上の変速機として機能するものであってもよい。   In addition, the power distribution mechanism 16 of the above-described embodiment is composed of one set of planetary gear devices, but is composed of two or more planetary gear devices, and has three or more stages in the non-differential state (constant speed change state). It may function as a transmission.

また、前述の実施例の切換装置90は、複数種類のシフトポジションを選択するために操作されるシフトレバー92を備えていたが、そのシフトレバー92に替えて、例えば押しボタン式のスイッチやスライド式スイッチ等の複数種類のシフトポジションを選択可能なスイッチ、或いは手動操作に因らず運転者の音声に反応して複数種類のシフトポジションを切り換えられる装置や足の操作により複数種類のシフトポジションを切り換えられる装置等であってもよい。また、シフトレバー92が「M」ポジションへ操作されることにより、変速レンジが設定されるものであったが変速段が設定されることすなわち各変速レンジの最高速変速段が変速段として設定されてもよい。この場合、有段変速部20、72では変速段が切り換えられて変速が実行される。例えば、シフトレバー92が「M」ポジションにおけるアップシフト位置「+」またはダウンシフト位置「−」へ手動操作されると、有段変速部20では第1速ギヤ段乃至第4速ギヤ段の何れかがシフトレバー92の操作に応じて設定される。   The switching device 90 of the above-described embodiment includes the shift lever 92 operated to select a plurality of types of shift positions. Instead of the shift lever 92, for example, a push button switch or a slide A switch that can select multiple types of shift positions, such as a type switch, or a device that can switch between multiple types of shift positions in response to the driver's voice regardless of manual operation, or multiple types of shift positions by foot operation It may be a device that can be switched. Further, when the shift lever 92 is operated to the “M” position, the shift range is set, but the shift stage is set, that is, the highest speed shift stage of each shift range is set as the shift stage. May be. In this case, in the stepped transmission units 20 and 72, the shift stage is switched and the shift is executed. For example, when the shift lever 92 is manually operated to the upshift position “+” or the downshift position “−” in the “M” position, the stepped transmission unit 20 can select any of the first to fourth gear positions. Is set according to the operation of the shift lever 92.

また、前述の実施例のスイッチ44はシーソー型のスイッチであったが、例えば押しボタン式のスイッチ、択一的にのみ押した状態が保持可能な2つの押しボタン式のスイッチ、レバー式スイッチ、スライド式スイッチ等の少なくとも無段変速走行(差動状態)と有段変速走行(非差動状態)とが択一的に切り換えられるスイッチであればよい。また、スイッチ44に中立位置が設けられる場合にその中立位置に替えて、スイッチ44の選択状態を有効或いは無効すなわち中立位置相当が選択可能なスイッチがスイッチ44とは別に設けられてもよい。また、スイッチ44に替えて或いは加えて、手動操作に因らず運転者の音声に反応して少なくとも無段変速走行(差動状態)と有段変速走行(非差動状態)とが択一的に切り換えられる装置や足の操作により切り換えられる装置等であってもよい。   In addition, the switch 44 of the above-described embodiment is a seesaw type switch. For example, a push button type switch, two push button type switches that can be held only alternatively, a lever type switch, Any switch that can selectively switch between at least continuously variable speed travel (differential state) and stepped speed variable travel (non-differential state), such as a slide switch. In addition, when the switch 44 is provided with a neutral position, a switch capable of selecting whether the selection state of the switch 44 is valid or invalid, that is, equivalent to the neutral position, may be provided separately from the switch 44 instead of the neutral position. Further, instead of or in addition to the switch 44, at least continuously variable speed travel (differential state) and stepped speed variable travel (non-differential state) are selected in response to the driver's voice regardless of manual operation. For example, a device that can be switched automatically or a device that can be switched by operating a foot may be used.

なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   The above description is only an embodiment, and the present invention can be implemented in variously modified and improved forms based on the knowledge of those skilled in the art.

本発明の一実施例であるハイブリッド車両の駆動装置の構成を説明する骨子図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a skeleton diagram illustrating a configuration of a hybrid vehicle drive device according to an embodiment of the present invention. 図1の実施例のハイブリッド車両の駆動装置が無段或いは有段変速作動させられる場合における変速作動とそれに用いられる油圧式摩擦係合装置の作動の組み合わせとの関係を説明する作動図表である。FIG. 2 is an operation chart for explaining the relationship between a speed change operation and a combination of operations of a hydraulic friction engagement device used therefor when the hybrid vehicle drive device of the embodiment of FIG. 図1の実施例のハイブリッド車両の駆動装置が有段変速作動させられる場合における各ギヤ段の相対的回転速度を説明する共線図である。FIG. 6 is a collinear diagram illustrating the relative rotational speed of each gear when the drive device for the hybrid vehicle of the embodiment of FIG. 図1の実施例の駆動装置に設けられた電子制御装置の入出力信号を説明する図である。It is a figure explaining the input-output signal of the electronic controller provided in the drive device of the Example of FIG. 図4の電子制御装置の制御作動の要部を説明する機能ブロック線図である。It is a functional block diagram explaining the principal part of the control action of the electronic controller of FIG. 車速と出力トルクとをパラメータとする同じ二次元座標に構成された、有段変速部の変速判断の基となる予め記憶された変速線図の一例と、変速機構の変速状態の切換判断の基となる予め記憶された切換線図の一例と、エンジン走行とモータ走行とを切り換えるためのエンジン走行領域とモータ走行領域との境界線を有する予め記憶された駆動力源切換線図の一例とを示す図であって、それぞれの関係を示す図でもある。An example of a pre-stored shift diagram that is based on the same two-dimensional coordinates with the vehicle speed and output torque as parameters and is a basis for determining the shift of the stepped transmission unit, and a basis for determining the shift state of the transmission mechanism. An example of a switching diagram that is stored in advance and an example of a driving force source switching diagram that is stored in advance and has a boundary line between the engine traveling region and the motor traveling region for switching between engine traveling and motor traveling. It is a figure shown, Comprising: It is also a figure which shows each relationship. 図7の破線はエンジン8の最適燃費率曲線であって燃費マップの一例である。また、無段変速機でのエンジン作動(破線)と有段変速機でのエンジン作動(一点鎖線)の違いを説明する図でもある。A broken line in FIG. 7 is an optimum fuel consumption rate curve of the engine 8 and is an example of a fuel consumption map. Moreover, it is a figure explaining the difference of the engine operation | movement with a continuously variable transmission (dashed line) and the engine operation | movement with a stepped transmission (dashed line). 無段制御領域と有段制御領域との境界線を有する予め記憶された関係を示す図であって、図6の破線に示す無段制御領域と有段制御領域との境界をマップ化するための概念図でもある。FIG. 7 is a diagram showing a pre-stored relationship having a boundary line between a stepless control region and a stepped control region, in order to map the boundary between the stepless control region and the stepped control region indicated by a broken line in FIG. 6. It is also a conceptual diagram. 有段式変速機におけるアップシフトに伴うエンジン回転速度の変化の一例である。It is an example of the change of the engine rotational speed accompanying the upshift in a stepped transmission. シフトレバーを備えた複数種類のシフトポジションを選択するために操作される切換装置の一例である。It is an example of the switching device operated in order to select a plurality of kinds of shift positions provided with a shift lever. 図5の電子制御装置の制御作動すなわち有段変速部の変速制御の際の無段変速部の変速制御作動を説明するフローチャートである。FIG. 6 is a flowchart for explaining a control operation of the electronic control unit of FIG. 図11の制御作動を説明するタイムチャートであり、変速機構の無段変速状態において有段変速部の2速→3速アップシフトが実行された場合での制御作動を示している。FIG. 12 is a time chart for explaining the control operation of FIG. 11, showing the control operation when the second-speed → third-speed upshift of the stepped transmission unit is executed in the continuously variable transmission state of the transmission mechanism. 図4の電子制御装置の制御作動の要部を説明する機能ブロック線図であって、図5に相当する本発明の別の実施例である。FIG. 6 is a functional block diagram for explaining a main part of the control operation of the electronic control device of FIG. 4, which is another embodiment of the present invention corresponding to FIG. 5. 図13の電子制御装置の制御作動すなわち有段変速部の変速制御の際の無段変速部の変速制御作動を説明するフローチャートであり、図11のフローチャートに相当する図である。FIG. 14 is a flowchart for explaining the control operation of the electronic control unit of FIG. 13, that is, the shift control operation of the continuously variable transmission unit during the shift control of the stepped transmission unit, and corresponds to the flowchart of FIG. 11. 図14のフローチャートに示す制御作動を説明するタイムチャートであって、変速機構の無段変速状態において有段変速部の2速→3速アップシフトが実行された場合での制御作動を示しており、図12のタイムチャートに相当する図である。FIG. 15 is a time chart for explaining the control operation shown in the flowchart of FIG. 14, and shows the control operation when the second-speed → third-speed upshift of the stepped transmission unit is executed in the continuously variable transmission state of the transmission mechanism. FIG. 13 is a diagram corresponding to the time chart of FIG. 12. 図14のフローチャートに示す制御作動を説明するタイムチャートであって、変速機構の無段変速状態において有段変速部の3速→2速ダウンシフトが実行された場合での制御作動を示しており、図12のタイムチャートに相当する図である。FIG. 15 is a time chart for explaining the control operation shown in the flowchart of FIG. 14, and shows the control operation in the case where the third speed → second speed downshift of the stepped transmission unit is executed in the continuously variable transmission state of the transmission mechanism. FIG. 13 is a diagram corresponding to the time chart of FIG. 12. 図14のフローチャートに示す制御作動を説明するタイムチャートであって、変速機構の無段変速状態において有段変速部の2速→3速アップシフトが実行された場合での制御作動を示しており、図15のタイムチャートに相当する図である。FIG. 15 is a time chart for explaining the control operation shown in the flowchart of FIG. 14, and shows the control operation when the second-speed → third-speed upshift of the stepped transmission unit is executed in the continuously variable transmission state of the transmission mechanism. FIG. 16 is a diagram corresponding to the time chart of FIG. 15. 図14のフローチャートに示す制御作動を説明するタイムチャートであって、変速機構の無段変速状態において有段変速部の3速→2速ダウンシフトが実行された場合での制御作動を示しており、図16のタイムチャートに相当する図である。FIG. 15 is a time chart for explaining the control operation shown in the flowchart of FIG. 14, and shows the control operation in the case where the third speed → second speed downshift of the stepped transmission unit is executed in the continuously variable transmission state of the transmission mechanism. FIG. 17 is a diagram corresponding to the time chart of FIG. 16. 本発明の他の実施例におけるハイブリッド車両の駆動装置の構成を説明する骨子図であって、図1に相当する図である。FIG. 3 is a skeleton diagram illustrating a configuration of a drive device for a hybrid vehicle according to another embodiment of the present invention, corresponding to FIG. 1. 図19の実施例のハイブリッド車両の駆動装置が無段或いは有段変速作動させられる場合における変速作動とそれに用いられる油圧式摩擦係合装置の作動の組み合わせとの関係を説明する作動図表であって、図2に相当する図である。FIG. 20 is an operation chart for explaining the relationship between the speed change operation and the operation of the hydraulic friction engagement device used in the case where the hybrid vehicle drive device of the embodiment of FIG. FIG. 3 is a diagram corresponding to FIG. 2. 図19の実施例のハイブリッド車両の駆動装置が有段変速作動させられる場合における各ギヤ段の相対的回転速度を説明する共線図であって、図3に相当する図である。FIG. 20 is a collinear diagram illustrating the relative rotational speeds of the respective gear stages when the hybrid vehicle drive device of the embodiment of FIG. 切換装置としてのシーソー型スイッチであって変速状態を選択するためにユーザによって操作される変速状態手動選択装置の一例である。It is an example of a shift state manual selection device that is a seesaw type switch as a switching device and is operated by a user to select a shift state.

符号の説明Explanation of symbols

8:エンジン
10、70:変速機構(駆動装置)
11:無段変速部
16:動力分配機構(差動機構)
18:伝達部材
20、72:有段変速部(変速部)
38:駆動輪
40:電子制御装置(制御装置)
52:ハイブリッド制御手段(無段変速制御手段)
82:トルクダウン制御手段
M1:第1電動機
M2:第2電動機
8: Engine 10, 70: Transmission mechanism (drive device)
11: continuously variable transmission 16: power distribution mechanism (differential mechanism)
18: Transmission member 20, 72: Stepped transmission unit (transmission unit)
38: Drive wheel 40: Electronic control device (control device)
52: Hybrid control means (continuously variable speed control means)
82: Torque down control means M1: first electric motor M2: second electric motor

Claims (8)

エンジンに連結された第1要素と第1電動機に連結された第2要素と伝達部材に連結された第3要素とを有する差動機構と、該伝達部材と駆動輪との間の動力伝達経路に設けられた第2電動機とを有し電気的な無段変速機として機能する無段変速部と、前記動力伝達経路の一部を構成し有段の自動変速機として機能する有段変速部とを備えた車両用駆動装置の制御装置であって、
前記差動機構に備えられて、該差動機構の差動作用を制限することにより前記無段変速部の電気的な無段変速機としての作動を制限する差動制限装置と、
前記有段変速部の有段変速の際には、前記無段変速部と該有段変速部とで形成される変速比を連続させるように、該有段変速に伴う該有段変速部の入力回転速度変化に起因するイナーシャ相中に有段変速に同期して該無段変速部の変速を実行する無段変速制御手段とを含み、
前記無段変速部は、車両状態に基づいて前記差動制限装置により前記電気的な無段変速機として作動可能な無段変速状態と該電気的な無段変速機としての作動が制限される有段変速状態とに切り換えられるものであり、
前記無段変速制御手段は、前記無段変速部が前記無段変速状態とされているときは前記有段変速部の有段変速に同期させて該有段変速前後でエンジン回転速度を一定とする該無段変速部の変速を実施する一方で、該無段変速部が前記有段変速状態とされているときは該有段変速部の有段変速に同期させる無段変速部の変速を実施せずに該無段変速部の変速比を固定のままエンジン回転速度の変化を許容することを特徴とする車両用駆動装置の制御装置。
A differential mechanism having a first element coupled to the engine, a second element coupled to the first electric motor, and a third element coupled to the transmission member, and a power transmission path between the transmission member and the drive wheel a continuously-variable transmission portion functioning as an electric continuously variable transmission and a second electric motor provided on, the step-variable shifting portion which functions as the automatic transmission portion constitutes a stepped in the power transmission path A vehicle drive device control device comprising:
A differential limiting device provided in the differential mechanism for limiting the operation of the continuously variable transmission as an electrical continuously variable transmission by limiting the differential action of the differential mechanism;
During the step-variable shifting of the step-variable transmission portion, said so as to continuously speed ratio formed by the continuously variable transmission portion and said step-variable shifting portion, of the organic-variable transmission portion due to organic variable in synchronism with the step-variable shifting into the inertia phase due to input rotation speed variation and a continuously variable transmission control means for executing the shift of the continuously variable section,
The continuously variable transmission unit is limited to a continuously variable transmission state operable as the electric continuously variable transmission and operation as the electric continuously variable transmission by the differential limiting device based on a vehicle state. It can be switched to the stepped speed change state,
The continuously variable transmission control means keeps the engine rotational speed constant before and after the stepped shift in synchronization with the stepped shift of the stepped shift unit when the continuously variable transmission is in the continuously variable shift state. while carrying out the shift of continuously variable section you, continuously variable unit is the step-variable shifting state and has been in the continuously-variable transmission portion that makes synchronization step-variable shifting of the geared transmission unit when that A control device for a vehicle drive device, wherein a change in engine rotational speed is allowed without changing gear speed while the gear ratio of the continuously variable transmission portion is fixed .
エンジンの出力を駆動輪へ伝達する動力伝達経路に設けられた無段変速機として機能する無段変速部と、該動力伝達経路の一部を構成し該無段変速部に連結された有段の自動変速機として機能する有段変速部とを備えた車両用駆動装置の制御装置であって、
前記有段変速部の有段変速の際には、前記無段変速部と該有段変速部とで形成される変速比を連続させるように、該有段変速に伴う該有段変速部の入力回転速度変化に起因するイナーシャ相中に有段変速に同期して該無段変速部の変速を実行する無段変速制御手段を含み、
前記無段変速部は、車両状態に基づいて前記無段変速機として作動可能な無段変速状態と該無段変速機としての作動が制限される有段変速状態とに切り換えられるものであり、
前記無段変速制御手段は、前記無段変速部が前記無段変速状態とされているときは前記有段変速部の有段変速に同期させて該有段変速前後でエンジン回転速度を一定とする該無段変速部の変速を実施する一方で、該無段変速部が前記有段変速状態とされているときは該有段変速部の有段変速に同期させる無段変速部の変速を実施せずに該無段変速部の変速比を固定のままエンジン回転速度の変化を許容することを特徴とする車両用駆動装置の制御装置。
A continuously-variable transmission portion functioning as the continuously variable transmission provided in a power transmission path for transmitting an output of an engine to a drive wheel, stepped linked to continuously variable portion constitutes a part of a power transmission path A control device for a vehicle drive device including a stepped transmission functioning as an automatic transmission of the vehicle,
During the step-variable shifting of the step-variable transmission portion, said so as to continuously speed ratio formed by the continuously variable transmission portion and said step-variable shifting portion, of the organic-variable transmission portion due to organic variable includes a continuously variable transmission control means for executing the shift of the continuously variable unit in synchronism with the step-variable shifting into the inertia phase due to input rotation speed variation,
The continuously variable transmission unit is switched based on a vehicle state between a continuously variable transmission state operable as the continuously variable transmission and a continuously variable transmission state in which operation as the continuously variable transmission is restricted,
The continuously variable transmission control means keeps the engine rotational speed constant before and after the stepped shift in synchronization with the stepped shift of the stepped shift unit when the continuously variable transmission is in the continuously variable shift state. while carrying out the shift of continuously variable section you, continuously variable unit is the step-variable shifting state and has been in the continuously-variable transmission portion that makes synchronization step-variable shifting of the geared transmission unit when that A control device for a vehicle drive device, wherein a change in engine rotational speed is allowed without changing gear speed while the gear ratio of the continuously variable transmission portion is fixed .
前記無段変速制御手段は、前記無段変速部と前記有段変速部とで形成される変速比の変化が抑制されるように、前記有段変速に同期して該有段変速部の変速比の変化方向とは反対方向へ該無段変速部の変速比を変化させるものである請求項1または2の車両用駆動装置の制御装置。 The continuously variable transmission control means such that said change in the transmission ratio is formed in the continuously-variable shifting portion and the step-variable shifting portion is suppressed, the shifting of the step-variable transmission portion in synchronization with the stepped shift The control device for a vehicle drive device according to claim 1 or 2 , wherein the gear ratio of the continuously variable transmission unit is changed in a direction opposite to the direction of change of the ratio. 前記有段変速部の入力トルクを低減するトルクダウン制御手段を備え、
該トルクダウン制御手段は、前記有段変速部の有段変速の際に前記入力トルクを低減するものである請求項1乃至のいずれか1の車両用駆動装置の制御装置。
A torque down control means for reducing the input torque of the stepped transmission unit;
The control device for a vehicle drive device according to any one of claims 1 to 3 , wherein the torque down control means is configured to reduce the input torque when the stepped shift portion is stepped .
エンジンに連結された第1要素と第1電動機に連結された第2要素と伝達部材に連結された第3要素とを有する差動機構と、該伝達部材と駆動輪との間の動力伝達経路に設けられた第2電動機とを有し電気的な無段変速機として機能する無段変速部と、前記動力伝達経路の一部を構成し有段の自動変速機として機能する有段変速部とを備えた車両用駆動装置の制御装置であって、
前記差動機構に備えられて、該差動機構の差動作用を制限することにより前記無段変速部の電気的な無段変速機としての作動を制限する差動制限装置と、
前記有段変速部の有段変速の際には、該有段変速に伴う該有段変速部の入力回転速度変化に起因するイナーシャ相中に有段変速に同期して該有段変速部の変速比の変化方向とは反対方向の変速比の変化となるように前記無段変速部の変速を実行する無段変速制御手段とを含み、
前記無段変速部は、車両状態に基づいて前記差動制限装置により前記電気的な無段変速機として作動可能な無段変速状態と該電気的な無段変速機としての作動が制限される有段変速状態とに切り換えられるものであり、
前記無段変速制御手段は、前記無段変速部が前記無段変速状態とされているときは前記有段変速部の有段変速に同期させて該有段変速前後でエンジン回転速度を一定とする該無段変速部の変速を実施する一方で、該無段変速部が前記有段変速状態とされているときは該有段変速部の有段変速に同期させる無段変速部の変速を実施せずに該無段変速部の変速比を固定のままエンジン回転速度の変化を許容することを特徴とする車両用駆動装置の制御装置。
A differential mechanism having a first element coupled to the engine, a second element coupled to the first electric motor, and a third element coupled to the transmission member, and a power transmission path between the transmission member and the drive wheel And a stepless transmission unit that functions as an electric continuously variable transmission and a stepped transmission unit that constitutes a part of the power transmission path and functions as a stepped automatic transmission. A vehicle drive device control device comprising:
A differential limiting device provided in the differential mechanism for limiting the operation of the continuously variable transmission as an electrical continuously variable transmission by limiting the differential action of the differential mechanism;
Wherein when the step-variable shifting of the step-variable shifting portion, organic variable transmission portion in synchronization with the step-variable shifting into the inertia phase due to input rotation speed variation of the organic-variable transmission portion due to organic variable Continuously variable transmission control means for performing a shift of the continuously variable transmission unit so as to change the transmission ratio in the direction opposite to the change direction of the transmission ratio of
The continuously variable transmission unit is limited to a continuously variable transmission state operable as the electric continuously variable transmission and operation as the electric continuously variable transmission by the differential limiting device based on a vehicle state. It can be switched to the stepped speed change state,
The continuously variable transmission control means keeps the engine rotational speed constant before and after the stepped shift in synchronization with the stepped shift of the stepped shift unit when the continuously variable transmission is in the continuously variable shift state. while carrying out the shift of continuously variable section you, continuously variable unit is the step-variable shifting state and has been in the continuously-variable transmission portion that makes synchronization step-variable shifting of the geared transmission unit when that A control device for a vehicle drive device, wherein a change in engine rotational speed is allowed without changing gear speed while the gear ratio of the continuously variable transmission portion is fixed .
エンジンの出力を駆動輪へ伝達する動力伝達経路に設けられた無段変速機として機能する無段変速部と、該動力伝達経路の一部を構成し該無段変速部に連結された有段の自動変速機として機能する有段変速部とを備えた車両用駆動装置の制御装置であって、
前記有段変速部の有段変速の際には、該有段変速に伴う該有段変速部の入力回転速度変化に起因するイナーシャ相中に有段変速に同期して該有段変速部の変速比の変化方向とは反対方向の変速比の変化となるように前記無段変速部の変速を実行する無段変速制御手段を含み、
前記無段変速部は、車両状態に基づいて前記無段変速機として作動可能な無段変速状態と該無段変速機としての作動が制限される有段変速状態とに切り換えられるものであり、
前記無段変速制御手段は、前記無段変速部が前記無段変速状態とされているときは前記有段変速部の有段変速に同期させて該有段変速前後でエンジン回転速度を一定とする該無段変速部の変速を実施する一方で、該無段変速部が前記有段変速状態とされているときは該有段変速部の有段変速に同期させる無段変速部の変速を実施せずに該無段変速部の変速比を固定のままエンジン回転速度の変化を許容することを特徴とする車両用駆動装置の制御装置。
A continuously variable transmission that functions as a continuously variable transmission provided in a power transmission path that transmits the output of the engine to drive wheels, and a stepped portion that constitutes a part of the power transmission path and is connected to the continuously variable transmission A control device for a vehicle drive device including a stepped transmission functioning as an automatic transmission of the vehicle,
Wherein when the step-variable shifting of the step-variable shifting portion, organic variable transmission portion in synchronization with the step-variable shifting into the inertia phase due to input rotation speed variation of the organic-variable transmission portion due to organic variable A continuously variable transmission control means for performing a shift of the continuously variable transmission unit so as to change the transmission ratio in a direction opposite to the direction in which the transmission ratio changes.
The continuously variable transmission unit is switched based on a vehicle state between a continuously variable transmission state operable as the continuously variable transmission and a continuously variable transmission state in which operation as the continuously variable transmission is restricted,
The continuously variable transmission control means keeps the engine rotational speed constant before and after the stepped shift in synchronization with the stepped shift of the stepped shift unit when the continuously variable transmission is in the continuously variable shift state. while carrying out the shift of continuously variable section you, continuously variable unit is the step-variable shifting state and has been in the continuously-variable transmission portion that makes synchronization step-variable shifting of the geared transmission unit when that A control device for a vehicle drive device, wherein a change in engine rotational speed is allowed without changing gear speed while the gear ratio of the continuously variable transmission portion is fixed .
前記有段変速部の入力トルクを低減するトルクダウン制御手段を備え、
該トルクダウン制御手段は、前記有段変速部の有段変速の際に前記入力トルクを低減するものである請求項5または6の車両用駆動装置の制御装置。
A torque down control means for reducing the input torque of the stepped transmission unit;
The control device for a vehicle drive device according to claim 5 or 6 , wherein the torque-down control means reduces the input torque at the time of stepped shift of the stepped transmission unit.
前記無段変速制御手段は、前記無段変速部と前記有段変速部とで形成される変速比の変化を抑制させるときに、該有段変速部の変速比の変化方向とは反対方向の変速比の変化となるように該無段変速部の変速を実行するものである請求項乃至のいずれか1の車両用駆動装置の制御装置。 The continuously variable transmission control means suppresses a change in the gear ratio formed by the continuously variable transmission and the stepped transmission in a direction opposite to the change direction of the gear ratio of the stepped transmission. The vehicle drive device control device according to any one of claims 5 to 7 , wherein the continuously variable transmission portion is shifted so as to change the gear ratio.
JP2005040653A 2004-04-27 2005-02-17 Control device for vehicle drive device Expired - Fee Related JP4389806B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2005040653A JP4389806B2 (en) 2004-04-27 2005-02-17 Control device for vehicle drive device
KR1020087006884A KR20080032011A (en) 2004-04-27 2005-03-28 Control device for vehicular drive system
DE602005026646T DE602005026646D1 (en) 2004-04-27 2005-03-28 VEHICLE CONTROL SPEED STEPS
CN2008101727484A CN101451608B (en) 2004-04-27 2005-03-28 Control device for vehicular drive system
KR1020087025092A KR100954713B1 (en) 2004-04-27 2005-03-28 Control device for vehicular drive system
CN2005800135243A CN1950628B (en) 2004-04-27 2005-03-28 Control device of driving device for vehicle
KR1020067024795A KR20070015211A (en) 2004-04-27 2005-03-28 Controller of driving gear for vehicle
EP05728659A EP1746309B1 (en) 2004-04-27 2005-03-28 Controller of driving gear for vehicle
KR1020087025091A KR101031198B1 (en) 2004-04-27 2005-03-28 Control device for vehicular drive system
PCT/JP2005/006688 WO2005106290A1 (en) 2004-04-27 2005-03-28 Controller of driving gear for vehicle
US11/092,819 US7396316B2 (en) 2004-04-27 2005-03-30 Control device for vehicular drive system
US11/898,851 US7513847B2 (en) 2004-04-27 2007-09-17 Control device for vehicular drive system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004132029 2004-04-27
JP2005040653A JP4389806B2 (en) 2004-04-27 2005-02-17 Control device for vehicle drive device

Publications (2)

Publication Number Publication Date
JP2005337491A JP2005337491A (en) 2005-12-08
JP4389806B2 true JP4389806B2 (en) 2009-12-24

Family

ID=35491274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005040653A Expired - Fee Related JP4389806B2 (en) 2004-04-27 2005-02-17 Control device for vehicle drive device

Country Status (1)

Country Link
JP (1) JP4389806B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4229165B2 (en) 2006-10-13 2009-02-25 トヨタ自動車株式会社 Vehicle and control method thereof
JP4967634B2 (en) * 2006-12-12 2012-07-04 トヨタ自動車株式会社 Control device for vehicle drive device
JP4224098B2 (en) 2006-12-18 2009-02-12 トヨタ自動車株式会社 Powertrain control device, control method, program for realizing the method, and recording medium recording the program
JP4962000B2 (en) 2006-12-25 2012-06-27 トヨタ自動車株式会社 Control device for vehicle drive device
JP5098402B2 (en) 2007-04-06 2012-12-12 トヨタ自動車株式会社 Control device for vehicle drive device
JP4301331B2 (en) 2007-09-11 2009-07-22 トヨタ自動車株式会社 Control device for vehicle drive device
JP5338465B2 (en) * 2009-05-08 2013-11-13 日産自動車株式会社 Vehicle control device
JP5691534B2 (en) * 2011-01-13 2015-04-01 トヨタ自動車株式会社 Control device for hybrid vehicle

Also Published As

Publication number Publication date
JP2005337491A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4438689B2 (en) Control device for vehicle drive device
JP4192911B2 (en) Control device for vehicle drive device
JP4244961B2 (en) Control device for vehicle drive device
JP4165526B2 (en) Control device for vehicle drive device
JP4238845B2 (en) Control device for vehicle drive device
JP4155244B2 (en) Control device for vehicle drive device
JP4581855B2 (en) Control device for vehicle drive device
JP4277806B2 (en) Control device for vehicle drive device
JP4434079B2 (en) Control device for vehicle drive device
JP4438574B2 (en) Control device for vehicle drive device
JP2005344850A (en) Control device for vehicular running gear
JP2007001390A (en) Controller for drive unit for vehicle
JP4192916B2 (en) Control device for vehicle drive device
JP4134954B2 (en) Control device for vehicle drive device
JP4215027B2 (en) Control device for vehicle drive device
JP4389806B2 (en) Control device for vehicle drive device
JP4274150B2 (en) Control device for vehicle drive device
JP4069903B2 (en) Control device for vehicle drive device
JP4301211B2 (en) Control device for vehicle drive device
JP4410655B2 (en) Control device for vehicle drive device
JP4214963B2 (en) Control device for vehicle drive device
JP4483892B2 (en) Control device for drive device for hybrid vehicle
JP4192855B2 (en) Control device for vehicle drive device
JP4293070B2 (en) Control device for vehicle drive device
JP2006103541A (en) Controller for vehicle drive unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4389806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees