JP4389327B2 - How to recover hydrochloric acid - Google Patents

How to recover hydrochloric acid Download PDF

Info

Publication number
JP4389327B2
JP4389327B2 JP2000074213A JP2000074213A JP4389327B2 JP 4389327 B2 JP4389327 B2 JP 4389327B2 JP 2000074213 A JP2000074213 A JP 2000074213A JP 2000074213 A JP2000074213 A JP 2000074213A JP 4389327 B2 JP4389327 B2 JP 4389327B2
Authority
JP
Japan
Prior art keywords
hydrochloric acid
tower
benzene
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000074213A
Other languages
Japanese (ja)
Other versions
JP2001261308A (en
Inventor
明生 佐藤
智津 勝尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2000074213A priority Critical patent/JP4389327B2/en
Publication of JP2001261308A publication Critical patent/JP2001261308A/en
Application granted granted Critical
Publication of JP4389327B2 publication Critical patent/JP4389327B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gas Separation By Absorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はベンゼン、トルエン等の芳香族炭化水素の塩素化反応において副生する塩化水素ガスから塩酸を回収する方法に関する。
【0002】
【従来の技術】
ベンゼンを塩素化して得られるジクロロベンゼン(DCB)は工業的に重要な化合物である。ジクロロベンゼンには、オルトジクロロベンゼン(o−DCB)、メタジクロロベンゼン(m−DCB)、パラジクロロベンゼン(p−DCB)の3異性体がある。これらの3異性体の内、PDCBは最も需要が多く、防虫剤等に利用され、またエンジニアリングプラスチックであるポリフェニレンサルファイドの原料として注目されている。
【0003】
従来、ジクロロベンゼンは、塩化第二鉄等のフリーデルクラフト型触媒を用いてベンゼン(BZ)またはクロロベンゼン(CB)を塩素化することにより製造されている。
【0004】
製造時にパラジクロロベンゼンの選択率を高めるため、硫黄、セレン系の無機または有機化合物と塩化第二鉄とを触媒として併用する方法も提案されている。
【0005】
更に、ゼオライトを触媒として用いることにより、ベンゼンまたはモノクロロベンゼンの塩素化反応において、パラジクロロベンゼンの選択率を高める技術も提案されている(特開昭57ー77631号公報、特開昭59ー163329号公報)
また更に、触媒として活性アルミナを使用することにより従来技術の有する問題を解決する技術も開示されている(特開平1ー93550号公報)。
【0006】
これらの製造方法においては、何れもベンゼンは気相または液相中で触媒の存在下に塩素化されるが、この塩素化反応においては、塩化水素が副生され、これが副生塩化水素ガスとして外部に取出される。前記外部に取出される副生塩化水素ガス中には、塩素化反応の原料であるベンゼン、及び反応生成物であるクロロベンゼン、ジクロロベンゼン、トリクロロベンゼン(TCB)等の各種塩素化ベンゼンが少なくともその蒸気圧に応じて含有されているので、前記副生塩化水素ガスを予め冷却してベンゼンや塩素化ベンゼンを凝縮し、回収、利用することが行われている。
【0007】
しかし、前記凝縮による回収は完全なものではなく、冷却温度におけるベンゼン等の各有機化合物の蒸気圧に相当する量は依然として副生塩化水素ガス中に残存しており、このためこの副生塩化水素ガスを塩酸回収塔に送り、ここで水と接触させて得られる塩酸中には、これらの塩素化ベンゼン等が含まれている。
【0008】
また、塩酸回収塔の塔頂側から取出される排出ガスには、水と塩化水素以外にベンゼンや塩素化ベンゼンが含まれており、これらは冷却されることにより凝縮し、ベンゼンを主成分とする有機層と塩酸層とに層分離する。通常、層分離したこれらの有機層と塩酸層とは液液分離される。しかし、前記有機層は、塩素化ベンゼンを含有しているため比重が塩酸に近い。このため塩酸層と有機層との液液分離は困難であり、その結果その後の塩酸精製工程に支障をもたらすようになると共に、前記有機層を回収して再度製造原料として用いることも困難になる等の問題がある。
【0009】
【発明が解決しようとする課題】
本発明者等は、上記問題を解決するために種々検討した結果、ベンゼンの塩素化反応で発生する副生塩化水素ガスをベンゼンと接触させることにより、副生塩化水素ガス中に含有される塩素化ベンゼンをベンゼンと置換させた後、断熱吸収式回収塔に送って粗塩酸を製造するようにすると、回収塔の塔底から取出される粗塩酸中の有機物含有量を大幅に減少させ得ると共に、塔頂から取出される排出ガスは、冷却することにより凝縮して塩酸層と有機層とに分離するが、有機層はベンゼンを主成分とするため比重が塩酸層よりも充分小さく、このため簡単に上記2層は液液分離でき、このようにして得られた各層はそれぞれ有効利用できることを知得した。更に、上記方法はベンゼンに限られず、各種の芳香族化合物一般にも適用できることを知得した。本発明は、上記知見に基づき完成するに至ったものである。
【0010】
従って、本発明の目的とするところは、従来の問題点を解決する塩酸の回収方法を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するための本発明は以下に記載するものである。
【0012】
〔1〕 芳香族炭化水素の塩素化反応により塩素化芳香族炭化水素を製造するに当り、前記塩素化反応において発生する塩化水素ガスを含む反応ガスを原料の芳香族炭化水素と接触させて前記反応ガス中に含まれる該芳香族炭化水素よりも高沸点の塩素化芳香族炭化水素を該芳香族炭化水素に吸収除去させ、次いで吸収除去後の反応ガスを断熱吸収式塩酸回収塔に送り、塔底から粗塩酸を得ると共に、塔頂から排出ガスを抜出すことを特徴とする塩酸の回収方法。
【0013】
〔2〕 排出ガスを凝縮させ、原料の芳香族炭化水素を主成分とする有機層と塩酸層とに液液分離し、前記有機層を脱水後、塩素化反応に再利用する〔1〕に記載の塩酸の回収方法。
【0014】
〔3〕 排出ガスを凝縮させ、原料の芳香族炭化水素を主成分とする有機層と塩酸層とに液液分離し、前記塩酸層を断熱吸収式塩酸回収塔に返送する〔1〕に記載の塩酸の回収方法。
【0015】
以下、図面を参照して本発明を詳細に説明する。
【0016】
【発明の実施の形態】
図1は本発明の塩酸の回収方法を組込んだp−ジクロロベンゼンの製造装置の一例を示すフロー図である。
【0017】
図1中、2は塩素化反応塔で、内部に触媒が充填されている。触媒としては、公知の活性アルミナ、シリカ・アルミナ、結晶性アルミノシリケート等の固体酸触媒や、塩化鉄、塩化アルミニウム等のフリーデルクラフト型触媒等が例示される。前記塩素化反応塔2には、原料の芳香族炭化水素であるベンゼン及び塩素等が供給され、塩素化反応塔2内でこれらが反応して、p−ジクロロベンゼンを主成分とする塩素化ベンゼンが反応生成物として取出される。この反応自体は公知のものである。
【0018】
前記塩素化反応においては、反応ガスが発生するが、この反応ガスには塩化水素ガスを主成分とし、その他の成分として、原料ベンゼン、及びモノクロロベンゼン、o−、m−、p−ジクロロベンゼン、トリクロロベンゼン等の塩素化ベンゼンが含まれている。
【0019】
この反応ガスは、塩素化反応塔2の塔頂から取出され、必要により熱交換器(不図示)を通ってここで前記塩素化ベンゼンの一部を凝縮除去された後、洗浄塔4の塔底側に送られる。
【0020】
前記洗浄塔4内においては、塔頂側から供給される洗浄液ベンゼンが洗浄塔4内を流下しながら、塔底側から供給され洗浄塔内を上昇する反応ガスと向流状態で気液接触を繰返し、これにより反応ガス中のベンゼンよりも高沸点の有機化合物(CB、DCB、TCB、テトラクロロベンゼン、ヘキサクロロベンゼン等の塩素化ベンゼン)が流下するベンゼンによって抽出除去される。
【0021】
ベンゼンよりも高沸点の有機化合物を抽出しながら洗浄塔4内を流下したベンゼン溶液(洗浄液)は、次いで塩素化反応塔2の塔底側に返送され、塩素化反応の原料として再利用される。
【0022】
洗浄塔4は、充填塔、棚段塔、濡れ壁塔、スプレー塔、気泡塔等の一般的ガス吸収装置として用いられている装置が利用できる。これらの内、充填塔は圧損失が比較的小さく、ガス吸収効率が高いので、好ましいものである。充填塔の液/ガス流量の運転条件としては、フラッディング速度以下、特にフラッディング速度の50%前後が好ましい。
【0023】
塩化水素ガスの発生量が大きく、洗浄塔の塔径が大きくなる場合は、棚段塔の使用が好ましい。
【0024】
スプレー塔は反応ガス中に洗浄液ベンゼンが飛沫同伴により持込まれるので、この点に注意すれば使用できる。
【0025】
洗浄塔4の操作温度は、一般に低温であるほど洗浄後の反応ガス中のベンゼン含有量が少なくなるので、低温の方が好ましい。しかし、洗浄液ベンゼンの凝固点(5℃)以上で操作する必要があるので、5〜30℃が好ましく、特に7〜10℃が望ましい。
【0026】
洗浄塔4の操作圧力は、高圧の方が好ましい。高圧であるほど洗浄液ベンゼンの蒸気圧が低くなり、その結果洗浄後の反応ガス中のベンゼン含有量が減少する。
しかし、高圧装置は高価であるので、1MPa以下の圧力で操作することが好ましい。また、減圧にすると、ベンゼンや塩素化ベンゼン等の有機化合物の分圧が大きくなり、その結果、洗浄後の反応ガス中のベンゼンや有機化合物の含有量が増加するので好ましくない。従って、洗浄塔の操作圧力は、常圧〜1MPaが好ましい。
【0027】
洗浄塔4内を上昇して、塩素化ベンゼンのほとんどすべてが除去された反応ガスは、次いで断熱吸収式塩酸回収塔6に送られ、ここで反応ガス中の塩化水素が塔内を流下する水に吸収されて粗塩酸となり、回収塔6の塔底側から取出される。
【0028】
断熱吸収式塩酸回収塔6は、構造的には、前記洗浄塔4とほぼ同一構造のものである。機能的には、回収塔6内で、反応ガス中の塩化水素が水に断熱吸収され、その際に発生する大きな溶解熱に基づく温度上昇により水が蒸発させられ、また反応ガス中に含有されているベンゼンや微量に存在する塩素化ベンゼンの凝縮が妨げられる結果、それらの有機物が粗塩酸中に混入することが避けられる。
【0029】
前記断熱吸収式塩酸回収塔6の塔底側から取出される粗塩酸は、その後塩酸濃度調整工程16、活性炭処理等による塩酸精製工程18を順次通過して、製品塩酸として取出される。
【0030】
一方、断熱吸収式塩酸回収塔6の塔頂側からは、排出ガスが取出される。この排出ガスは、回収塔6内で水と反応ガスとが向流接触することにより、反応ガス中の塩化水素ガスの大部分が吸収除去されたガスで、主として、大部分を占める水蒸気及びわずかな塩化水素ガスとベンゼンガスとからなる。
【0031】
前記排出ガスは、先ずコンデンサー8を通過する際に冷却されて凝縮液になり、液液分離器10に送られ、ここで有機層12と塩酸層14とに分離される。
【0032】
分離された前記塩酸層は、その後断熱吸収式塩酸回収塔6の塔頂と塔底との中間部に返送される。また、分離された前記有機層12は蒸留法や、シリカゲル、モレキュラーシーブ、無水硫酸ナトリウム等の固体脱水剤等を用いて脱水処理がなされた後、塩素化反応塔2に返送され、再利用される。
上記実施の形態においては、原料の芳香族炭化水素としてベンゼンが用いられたが、これに限られず、塩素化反応塔2で塩素化することの出来る全ての芳香族炭化水素が原料として用いられる。特に好ましい原料の芳香族炭化水素としては、ベンゼン以外に、トルエン、キシレン、エチルベンゼン等が例示され、製造目的物としては、p−ジクロロベンゼンの他に、モノクロロベンゼンおよびジクロロトルエン等が挙げられる。この場合、塩素化反応塔2の反応条件は、使用される原料の芳香族炭化水素に応じて適宜選択される。反応条件自体は公知である。また、洗浄塔4の洗浄液としては、原料の芳香族炭化水素が使用される。原料の芳香族炭化水素が洗浄液として用いられることにより、反応ガス中のより沸点の高い塩素化芳香族炭化水素類が効率よく抽出除去されると共に、この洗浄液が塩素化反応塔に返送されることにより、塩素化反応の原料として再利用される。洗浄塔4の運転条件も、上記実施の形態の場合と同様の考え方が適用される。更に、断熱吸収塔6及びその他の装置、運転条件等も上記実施の形態と同様の考え方が適用されるので、その説明を省略する。
【0033】
なお、本発明の塩酸の回収方法が組込まれるp−ジクロロベンゼン等の塩素化芳香族炭化水素の製造装置は、上記実施の形態の構成のものに限られず、現存する全ての装置に組込まれることができる。このような装置として、例えば、塩素化工程後生成する塩素化ベンゼン中のベンゼン及びモノクロロベンゼンを分離して塩素化工程に返送する工程を具備するもの、更には高次塩素化ベンゼンを分離してトランスクロロ化反応を行った後、塩素化工程に返送する工程を具備するもの等が挙げられる。
【0034】
【実施例】
実施例1〜3、比較例1
実施例1〜3として、図1に示す構成のp−ジクロロベンゼンの製造装置を用いて塩酸の回収を行った。
【0035】
比較例として、塩素化反応塔2の塔頂から取出される反応ガスを洗浄塔4に送らず、直接断熱吸収式塩酸回収塔6に送る以外は実施例と同様にして、塩酸の回収を行った。
【0036】
得られた結果を表1に示した。
【0037】
【表1】

Figure 0004389327
【0038】
実施例1においては、塩素化反応により得られる反応ガスを洗浄塔に送ってベンゼンによる洗浄操作を行った後、断熱吸収式塩酸回収塔で塩化水素の回収を行った。表1から明らかなように、断熱吸収式塩酸回収塔入口ガス(洗浄後の反応ガス)中の全有機化合物含有量は比較例1よりも多い。しかし、断熱吸収式塩酸回収塔排出ガスの凝縮液における、塩酸層と、有機層との比重差は比較例の比重差よりも大きい。このため、実施例1の場合は塩酸層と有機層との液液分離が容易になり、塩酸回収塔に返送する塩酸層中に混入する有機化合物量が少なくなる。その結果、回収塔の塔底から取出して塩酸濃度調整工程で濃度を調整した後の塩酸に含まれる全有機化合物濃度は比較例1のそれよりも少なくなっている。
【0039】
実施例2においては、洗浄塔の操作温度を実施例1よりも低下させた。表1から明らかなように、操作温度を下げると、洗浄液であるベンゼンを含めて全ての有機化合物の蒸気圧が減少するため、実施例1と比較し、洗浄後の反応ガス中の全有機化合物含有量が減少し、その結果濃度調整後の塩酸中の全有機化合物含有量も減少している。
【0040】
実施例3においては、洗浄塔の操作圧力を実施例1よりも高めた。表1から明らかなように、操作圧力を高めると、有機化合物の分圧が減少するため、実施例1と比較し、洗浄後の反応ガス中の全有機化合物含有量が減少し、その結果濃度調整後の塩酸中の全有機化合物含有量も減少している。
【0041】
比較例1においては、洗浄塔を経由して洗浄操作をすることなく、塩素化反応により得られる反応ガスを直接断熱吸収式塩酸回収塔に送り、塩酸の回収を行った。断熱吸収式塩酸回収塔入口ガス(反応ガス)中の全有機化合物含有量は実施例1〜3と比較して少ない。しかし、断熱吸収式塩酸回収塔排出ガスの凝縮液の有機層と塩酸層との比重差が小さいため、液液分離効率が悪い。また、高沸点の塩素化芳香族炭化水素が洗浄除去されないまま前記回収塔に供給され、それが該回収塔において気化せずに塩酸に混入される結果、濃度調整後の塩酸中の全有機化合物含有量は実施例1〜3と比較し遥かに多くなる。
【0042】
【発明の効果】
本発明においては、原料の芳香族炭化水素を塩素化する際に生成する塩素化芳香族炭化水素等の有機化合物を含有する塩化水素ガスを、塩素化芳香族炭化水素よりも低沸点の芳香族炭化水素で洗浄し、塩化水素ガス中のより高沸点の塩素化芳香族炭化水素を沸点の低い芳香族炭化水素に置換することにより、断熱吸収式塩酸回収塔において有機化合物の凝縮を防止し、塔底から取出される粗塩酸中の有機化合物含有量を低減させる。更に、回収塔の塔頂から取出される排出ガスの凝縮液は、有機層と塩酸層とに分離されるが、前記有機層は塩素化芳香族炭化水素の含有量が少ないので比重が小さく、このため有機層と塩酸層との液液分離は容易で、互いに他層が混入することなく分離され、分離効率が高い。このようにして分離された有機層、及び塩酸層は互いの混入が避けられているので純度が高く、このためこれらは有効に再利用でき、その結果得られる製品塩酸の純度も高い。
【図面の簡単な説明】
【図1】本発明の塩酸の回収方法を組込んだ塩素化ベンゼンの製造装置の一例を示すフロー図である。
【符号の説明】
2 塩素化反応塔
4 洗浄塔
6 断熱吸収式塩酸回収塔
8 コンデンサー
10 液液分離器
12 有機層
14 塩酸層
16 塩酸濃度調整工程
18 塩酸精製工程[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recovering hydrochloric acid from hydrogen chloride gas by-produced in a chlorination reaction of aromatic hydrocarbons such as benzene and toluene.
[0002]
[Prior art]
Dichlorobenzene (DCB) obtained by chlorinating benzene is an industrially important compound. Dichlorobenzene has three isomers: orthodichlorobenzene (o-DCB), metadichlorobenzene (m-DCB), and paradichlorobenzene (p-DCB). Among these three isomers, PDCB has the highest demand, is used as an insect repellent and the like, and is attracting attention as a raw material for polyphenylene sulfide, which is an engineering plastic.
[0003]
Conventionally, dichlorobenzene is produced by chlorinating benzene (BZ) or chlorobenzene (CB) using a Friedel-Craft type catalyst such as ferric chloride.
[0004]
In order to increase the selectivity of paradichlorobenzene during production, a method in which sulfur or a selenium inorganic or organic compound and ferric chloride are used in combination as a catalyst has also been proposed.
[0005]
Further, a technique for increasing the selectivity of paradichlorobenzene in the chlorination reaction of benzene or monochlorobenzene by using zeolite as a catalyst has been proposed (Japanese Patent Laid-Open Nos. 57-76631 and 59-163329). (Publication)
Furthermore, a technique for solving the problems of the prior art by using activated alumina as a catalyst is also disclosed (Japanese Patent Laid-Open No. 1-93550).
[0006]
In any of these production methods, benzene is chlorinated in the gas phase or liquid phase in the presence of a catalyst. In this chlorination reaction, hydrogen chloride is produced as a by-product, which is used as a by-product hydrogen chloride gas. Take out outside. In the by-product hydrogen chloride gas taken out to the outside, at least benzene as a raw material for chlorination reaction and various chlorinated benzenes such as chlorobenzene, dichlorobenzene, and trichlorobenzene (TCB) as vapors thereof are vaporized. Since it is contained according to the pressure, the by-product hydrogen chloride gas is cooled in advance to condense, collect and use benzene and chlorinated benzene.
[0007]
However, the recovery by the condensation is not complete, and the amount corresponding to the vapor pressure of each organic compound such as benzene at the cooling temperature still remains in the by-product hydrogen chloride gas. The chlorinated benzene and the like are contained in the hydrochloric acid obtained by sending the gas to the hydrochloric acid recovery tower and contacting it with water.
[0008]
The exhaust gas extracted from the top of the hydrochloric acid recovery tower contains benzene and chlorinated benzene in addition to water and hydrogen chloride, which condenses when cooled and contains benzene as the main component. Separate the organic layer and the hydrochloric acid layer. Usually, these organic layers and hydrochloric acid layer which have been separated into layers are subjected to liquid-liquid separation. However, since the organic layer contains chlorinated benzene, the specific gravity is close to hydrochloric acid. For this reason, liquid-liquid separation between the hydrochloric acid layer and the organic layer is difficult. As a result, the subsequent hydrochloric acid purification process is hindered, and it is difficult to recover the organic layer and use it again as a production raw material. There are problems such as.
[0009]
[Problems to be solved by the invention]
As a result of various investigations to solve the above problems, the present inventors have made contact with the benzene by-product hydrogen chloride gas generated in the chlorination reaction of benzene, and thereby the chlorine contained in the by-product hydrogen chloride gas. After replacing fluorinated benzene with benzene and sending it to an adiabatic absorption type recovery tower to produce crude hydrochloric acid, the content of organic matter in the crude hydrochloric acid taken out from the bottom of the recovery tower can be greatly reduced. The exhaust gas taken out from the top of the tower is condensed by cooling and separated into a hydrochloric acid layer and an organic layer. The organic layer is mainly composed of benzene, so the specific gravity is sufficiently smaller than that of the hydrochloric acid layer. It was found that the two layers could be easily separated into liquid and liquid, and that each layer thus obtained could be used effectively. Furthermore, it has been found that the above method is not limited to benzene but can be applied to various aromatic compounds in general. The present invention has been completed based on the above findings.
[0010]
Accordingly, an object of the present invention is to provide a hydrochloric acid recovery method that solves the conventional problems.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is described below.
[0012]
[1] In producing chlorinated aromatic hydrocarbons by chlorination reaction of aromatic hydrocarbons, the reaction gas containing hydrogen chloride gas generated in the chlorination reaction is brought into contact with the raw material aromatic hydrocarbons to The chlorinated aromatic hydrocarbon having a boiling point higher than that of the aromatic hydrocarbon contained in the reaction gas is absorbed and removed by the aromatic hydrocarbon, and then the reaction gas after absorption and removal is sent to the adiabatic absorption type hydrochloric acid recovery tower, A method for recovering hydrochloric acid, characterized in that crude hydrochloric acid is obtained from the tower bottom and exhaust gas is extracted from the tower top.
[0013]
[2] Condensing the exhaust gas, liquid-liquid separation into an organic layer mainly composed of aromatic hydrocarbon as a raw material and a hydrochloric acid layer, dehydrating the organic layer, and then reusing it in the chlorination reaction [1] The method for recovering hydrochloric acid as described.
[0014]
[3] The exhaust gas is condensed, liquid-liquid separated into an organic layer mainly composed of aromatic hydrocarbon as a raw material and a hydrochloric acid layer, and the hydrochloric acid layer is returned to an adiabatic absorption type hydrochloric acid recovery tower. Of recovering hydrochloric acid.
[0015]
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a flow chart showing an example of an apparatus for producing p-dichlorobenzene incorporating the hydrochloric acid recovery method of the present invention.
[0017]
In FIG. 1, 2 is a chlorination reaction tower, and the inside is filled with a catalyst. Examples of the catalyst include known solid acid catalysts such as activated alumina, silica / alumina, and crystalline aluminosilicate, and Friedel-Craft type catalysts such as iron chloride and aluminum chloride. The chlorination reaction tower 2 is supplied with benzene, chlorine, etc., which are aromatic hydrocarbons as raw materials, and these react with each other in the chlorination reaction tower 2 to make chlorinated benzene mainly composed of p-dichlorobenzene. Is removed as a reaction product. This reaction itself is known.
[0018]
In the chlorination reaction, a reaction gas is generated. This reaction gas is mainly composed of hydrogen chloride gas, and other components include raw material benzene, monochlorobenzene, o-, m-, p-dichlorobenzene, Chlorinated benzene such as trichlorobenzene is included.
[0019]
This reaction gas is taken out from the top of the chlorination reaction tower 2, and if necessary, a part of the chlorinated benzene is condensed and removed through a heat exchanger (not shown), and then the tower of the washing tower 4. Sent to the bottom.
[0020]
In the cleaning tower 4, the cleaning liquid benzene supplied from the tower top side flows down in the cleaning tower 4, and makes a gas-liquid contact in a countercurrent state with the reaction gas supplied from the tower bottom side and rising in the cleaning tower. Repeatedly, organic compounds having a boiling point higher than that of benzene in the reaction gas (chlorinated benzenes such as CB, DCB, TCB, tetrachlorobenzene, hexachlorobenzene, etc.) are extracted and removed by the flowing benzene.
[0021]
The benzene solution (cleaning liquid) flowing down in the cleaning tower 4 while extracting organic compounds having a boiling point higher than that of benzene is then returned to the bottom of the chlorination reaction tower 2 and reused as a raw material for the chlorination reaction. .
[0022]
The washing tower 4 may be an apparatus used as a general gas absorption apparatus such as a packed tower, a plate tower, a wet wall tower, a spray tower, or a bubble tower. Among these, the packed tower is preferable because the pressure loss is relatively small and the gas absorption efficiency is high. The operating conditions for the liquid / gas flow rate in the packed tower are preferably below the flooding speed, particularly around 50% of the flooding speed.
[0023]
When the amount of hydrogen chloride gas generated is large and the diameter of the washing tower becomes large, it is preferable to use a plate tower.
[0024]
The spray tower can be used with attention to this point because the cleaning liquid benzene is brought into the reaction gas by entrainment.
[0025]
The operating temperature of the cleaning tower 4 is generally lower, since the lower the temperature, the lower the benzene content in the reaction gas after cleaning. However, since it is necessary to operate above the freezing point (5 ° C.) of the cleaning liquid benzene, 5 to 30 ° C. is preferable, and 7 to 10 ° C. is particularly desirable.
[0026]
The operating pressure of the washing tower 4 is preferably higher. The higher the pressure, the lower the vapor pressure of the cleaning liquid benzene, and as a result, the benzene content in the reaction gas after cleaning decreases.
However, since the high-pressure apparatus is expensive, it is preferable to operate at a pressure of 1 MPa or less. Further, if the pressure is reduced, the partial pressure of organic compounds such as benzene and chlorinated benzene increases, and as a result, the content of benzene and organic compounds in the reaction gas after washing increases, which is not preferable. Therefore, the operation pressure of the washing tower is preferably normal pressure to 1 MPa.
[0027]
The reaction gas from which almost all of the chlorinated benzene has been removed in the washing tower 4 is then sent to the adiabatic absorption type hydrochloric acid recovery tower 6 where water chloride in the reaction gas flows down the tower. And is taken out from the bottom side of the recovery tower 6.
[0028]
The adiabatic absorption type hydrochloric acid recovery tower 6 is structurally substantially the same as the washing tower 4 in terms of structure. Functionally, in the recovery tower 6, hydrogen chloride in the reaction gas is adiabatic and absorbed by the water, and the water is evaporated by the temperature rise based on the large heat of dissolution generated at that time, and is contained in the reaction gas. As a result of preventing the condensation of benzene and chlorinated benzene present in trace amounts, it is avoided that these organic substances are mixed in crude hydrochloric acid.
[0029]
Crude hydrochloric acid taken out from the bottom side of the adiabatic absorption type hydrochloric acid recovery tower 6 is subsequently taken out as product hydrochloric acid through a hydrochloric acid concentration adjusting step 16 and a hydrochloric acid refining step 18 by activated carbon treatment in order.
[0030]
On the other hand, exhaust gas is taken out from the top side of the adiabatic absorption type hydrochloric acid recovery tower 6. This exhaust gas is a gas in which most of the hydrogen chloride gas in the reaction gas has been absorbed and removed by the countercurrent contact of water and the reaction gas in the recovery tower 6, mainly water vapor and a little It consists of hydrogen chloride gas and benzene gas.
[0031]
The exhaust gas is first cooled when passing through the condenser 8 to become a condensed liquid, which is sent to the liquid-liquid separator 10 where it is separated into the organic layer 12 and the hydrochloric acid layer 14.
[0032]
The separated hydrochloric acid layer is then returned to an intermediate portion between the top and bottom of the adiabatic absorption type hydrochloric acid recovery tower 6. The separated organic layer 12 is dehydrated using a distillation method or a solid dehydrating agent such as silica gel, molecular sieve, anhydrous sodium sulfate, etc., and then returned to the chlorination reactor 2 for reuse. The
In the above embodiment, benzene is used as the raw material aromatic hydrocarbon. However, the present invention is not limited to this, and all aromatic hydrocarbons that can be chlorinated in the chlorination reaction tower 2 are used as the raw material. Particularly preferred raw material aromatic hydrocarbons include toluene, xylene, ethylbenzene and the like in addition to benzene, and examples of the production target include monochlorobenzene and dichlorotoluene in addition to p-dichlorobenzene. In this case, the reaction conditions of the chlorination reaction tower 2 are appropriately selected according to the aromatic hydrocarbon used as a raw material. The reaction conditions themselves are known. As the cleaning liquid for the cleaning tower 4, aromatic hydrocarbon as a raw material is used. By using the aromatic hydrocarbon as the cleaning liquid, chlorinated aromatic hydrocarbons with higher boiling points in the reaction gas can be efficiently extracted and removed, and this cleaning liquid can be returned to the chlorination reaction tower. Thus, it is reused as a raw material for the chlorination reaction. The same concept as in the above embodiment is applied to the operating conditions of the cleaning tower 4. Furthermore, since the same idea as the above embodiment is applied to the adiabatic absorption tower 6 and other devices, operating conditions, etc., the description thereof is omitted.
[0033]
In addition, the manufacturing apparatus of chlorinated aromatic hydrocarbons, such as p-dichlorobenzene, in which the method for recovering hydrochloric acid according to the present invention is incorporated is not limited to the one in the configuration of the above embodiment, and is incorporated in all existing apparatuses. Can do. As such an apparatus, for example, a device comprising a step of separating benzene and monochlorobenzene in chlorinated benzene produced after the chlorination step and returning them to the chlorination step, and further separating high-order chlorinated benzene Examples include those having a step of returning to the chlorination step after the transchlorination reaction.
[0034]
【Example】
Examples 1-3, Comparative Example 1
As Examples 1 to 3, hydrochloric acid was recovered using an apparatus for producing p-dichlorobenzene having the configuration shown in FIG.
[0035]
As a comparative example, hydrochloric acid is recovered in the same manner as in Example except that the reaction gas taken out from the top of the chlorination reaction tower 2 is not sent to the washing tower 4 but directly to the adiabatic absorption type hydrochloric acid recovery tower 6. It was.
[0036]
The obtained results are shown in Table 1.
[0037]
[Table 1]
Figure 0004389327
[0038]
In Example 1, after the reaction gas obtained by the chlorination reaction was sent to the washing tower and washed with benzene, hydrogen chloride was collected in the adiabatic absorption type hydrochloric acid collection tower. As is clear from Table 1, the total organic compound content in the adiabatic absorption type hydrochloric acid recovery tower inlet gas (reaction gas after washing) is larger than that in Comparative Example 1. However, the specific gravity difference between the hydrochloric acid layer and the organic layer in the condensate of the adiabatic absorption hydrochloric acid recovery tower exhaust gas is larger than the specific gravity difference of the comparative example. For this reason, in the case of Example 1, the liquid-liquid separation of the hydrochloric acid layer and the organic layer becomes easy, and the amount of the organic compound mixed in the hydrochloric acid layer returned to the hydrochloric acid recovery tower decreases. As a result, the concentration of the total organic compounds contained in hydrochloric acid after taking out from the bottom of the recovery tower and adjusting the concentration in the hydrochloric acid concentration adjusting step is lower than that in Comparative Example 1.
[0039]
In Example 2, the operation temperature of the washing tower was lowered from that in Example 1. As is apparent from Table 1, when the operating temperature is lowered, the vapor pressure of all organic compounds including benzene as a cleaning liquid is reduced. Therefore, compared with Example 1, all organic compounds in the reaction gas after cleaning are used. The content has decreased, and as a result, the total organic compound content in hydrochloric acid after concentration adjustment has also decreased.
[0040]
In Example 3, the operating pressure of the washing tower was higher than in Example 1. As is apparent from Table 1, since the partial pressure of the organic compound decreases when the operating pressure is increased, the total organic compound content in the reaction gas after cleaning is reduced compared to Example 1, resulting in the concentration The total organic compound content in the adjusted hydrochloric acid is also decreasing.
[0041]
In Comparative Example 1, the reaction gas obtained by the chlorination reaction was directly sent to the adiabatic absorption type hydrochloric acid recovery tower without performing the cleaning operation via the cleaning tower, and hydrochloric acid was recovered. The total organic compound content in the gas at the entrance of the adiabatic absorption type hydrochloric acid recovery tower (reaction gas) is small as compared with Examples 1-3. However, since the specific gravity difference between the organic layer and the hydrochloric acid layer of the condensed liquid of the adiabatic absorption type hydrochloric acid recovery tower exhaust gas is small, the liquid-liquid separation efficiency is poor. In addition, high boiling point chlorinated aromatic hydrocarbons are supplied to the recovery tower without being removed by washing, and are mixed in hydrochloric acid without being vaporized in the recovery tower. As a result, all organic compounds in hydrochloric acid after concentration adjustment The content is much higher than in Examples 1-3.
[0042]
【The invention's effect】
In the present invention, a hydrogen chloride gas containing an organic compound such as a chlorinated aromatic hydrocarbon generated when chlorinating the aromatic hydrocarbon as a raw material is converted into an aromatic having a boiling point lower than that of the chlorinated aromatic hydrocarbon. By washing with hydrocarbons and replacing chlorinated aromatic hydrocarbons with higher boiling points in hydrogen chloride gas with aromatic hydrocarbons with lower boiling points, condensation of organic compounds is prevented in the adiabatic absorption type hydrochloric acid recovery tower, The content of organic compounds in the crude hydrochloric acid taken out from the column bottom is reduced. Furthermore, the condensate of the exhaust gas taken out from the top of the recovery tower is separated into an organic layer and a hydrochloric acid layer, but the organic layer has a low specific gravity because of its low content of chlorinated aromatic hydrocarbons, For this reason, the liquid-liquid separation between the organic layer and the hydrochloric acid layer is easy, and the organic layer and the hydrochloric acid layer are separated without mixing with each other, and the separation efficiency is high. The organic layer and the hydrochloric acid layer separated in this way have high purity because they are prevented from being mixed with each other. Therefore, they can be effectively reused, and the resulting product hydrochloric acid has high purity.
[Brief description of the drawings]
FIG. 1 is a flow diagram showing an example of an apparatus for producing chlorinated benzene incorporating the hydrochloric acid recovery method of the present invention.
[Explanation of symbols]
2 Chlorination reaction tower 4 Washing tower 6 Adiabatic absorption type hydrochloric acid recovery tower 8 Condenser 10 Liquid-liquid separator 12 Organic layer 14 Hydrochloric acid layer 16 Hydrochloric acid concentration adjustment process 18 Hydrochloric acid purification process

Claims (3)

芳香族炭化水素の塩素化反応により塩素化芳香族炭化水素を製造するに当り、前記塩素化反応において発生する塩化水素ガスを含む反応ガスを原料の芳香族炭化水素と接触させて前記反応ガス中に含まれる該芳香族炭化水素よりも高沸点の塩素化芳香族炭化水素を該芳香族炭化水素に吸収除去させ、次いで吸収除去後の反応ガスを断熱吸収式塩酸回収塔に送り、塔底から粗塩酸を得ると共に、塔頂から排出ガスを抜出すことを特徴とする塩酸の回収方法。In producing chlorinated aromatic hydrocarbons by chlorination reaction of aromatic hydrocarbons, a reaction gas containing hydrogen chloride gas generated in the chlorination reaction is brought into contact with the raw material aromatic hydrocarbons in the reaction gas. The chlorinated aromatic hydrocarbon having a boiling point higher than that of the aromatic hydrocarbon contained in is absorbed and removed by the aromatic hydrocarbon, and then the reaction gas after absorption and removal is sent to the adiabatic absorption type hydrochloric acid recovery tower, from the bottom of the tower A method for recovering hydrochloric acid, comprising obtaining crude hydrochloric acid and extracting exhaust gas from the top of the column. 排出ガスを凝縮させ、原料の芳香族炭化水素を主成分とする有機層と塩酸層とに液液分離し、前記有機層を脱水後、塩素化反応に再利用する請求項1に記載の塩酸の回収方法。2. The hydrochloric acid according to claim 1, wherein the exhaust gas is condensed and liquid-liquid separated into an organic layer mainly comprising an aromatic hydrocarbon as a raw material and a hydrochloric acid layer, and the organic layer is dehydrated and reused in a chlorination reaction. Recovery method. 排出ガスを凝縮させ、原料の芳香族炭化水素を主成分とする有機層と塩酸層とに液液分離し、前記塩酸層を断熱吸収式塩酸回収塔に返送する請求項1に記載の塩酸の回収方法。2. The hydrochloric acid solution according to claim 1, wherein the exhaust gas is condensed and liquid-liquid separated into an organic layer mainly composed of a raw material aromatic hydrocarbon and a hydrochloric acid layer, and the hydrochloric acid layer is returned to the adiabatic absorption hydrochloric acid recovery tower. Collection method.
JP2000074213A 2000-03-16 2000-03-16 How to recover hydrochloric acid Expired - Fee Related JP4389327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000074213A JP4389327B2 (en) 2000-03-16 2000-03-16 How to recover hydrochloric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000074213A JP4389327B2 (en) 2000-03-16 2000-03-16 How to recover hydrochloric acid

Publications (2)

Publication Number Publication Date
JP2001261308A JP2001261308A (en) 2001-09-26
JP4389327B2 true JP4389327B2 (en) 2009-12-24

Family

ID=18592302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000074213A Expired - Fee Related JP4389327B2 (en) 2000-03-16 2000-03-16 How to recover hydrochloric acid

Country Status (1)

Country Link
JP (1) JP4389327B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE511498T1 (en) 2003-11-20 2011-06-15 Solvay METHOD FOR PRODUCING DICHLOROPROPANOL FROM GLYCERIN AND A CHLORINATING AGENT IN THE PRESENCE OF A CATALYST SELECTED FROM ADIPINE AND GLUTARIC ACID
EA017149B1 (en) 2005-05-20 2012-10-30 Солвей (Сосьете Аноним) Continuous method for making chlorhydrines
KR20080037613A (en) 2005-05-20 2008-04-30 솔베이(소시에떼아노님) Method for converting polyhydroxylated aliphatic hydrocarbons into chlorohydrins
US7939696B2 (en) 2005-11-08 2011-05-10 Solvay Societe Anonyme Process for the manufacture of dichloropropanol by chlorination of glycerol
KR100979372B1 (en) 2006-06-14 2010-08-31 솔베이(소시에떼아노님) Crude glycerol-based product, process for its purification and its use in the manufacture of dichloropropanol
CN100446841C (en) * 2007-02-15 2008-12-31 武汉祥龙电业股份有限公司 Method for reclamation and cyclic utilization of tail gas containing benzene and hydrogenchloride in chlorobenzene production
FR2913421B1 (en) 2007-03-07 2009-05-15 Solvay PROCESS FOR PRODUCING DICHLOROPROPANOL
FR2913684B1 (en) 2007-03-14 2012-09-14 Solvay PROCESS FOR PRODUCING DICHLOROPROPANOL
TW200911740A (en) 2007-06-01 2009-03-16 Solvay Process for manufacturing a chlorohydrin
TW200911693A (en) 2007-06-12 2009-03-16 Solvay Aqueous composition containing a salt, manufacturing process and use
TW200911773A (en) 2007-06-12 2009-03-16 Solvay Epichlorohydrin, manufacturing process and use
WO2009043796A1 (en) 2007-10-02 2009-04-09 Solvay (Société Anonyme) Use of compositions containing silicon for improving the corrosion resistance of vessels
FR2925045B1 (en) 2007-12-17 2012-02-24 Solvay GLYCEROL-BASED PRODUCT, PROCESS FOR OBTAINING THE SAME AND USE THEREOF IN THE MANUFACTURE OF DICHLOROPROPANOL
TWI478875B (en) 2008-01-31 2015-04-01 Solvay Process for degrading organic substances in an aqueous composition
EA201071157A1 (en) 2008-04-03 2011-04-29 Солвей (Сосьете Аноним) COMPOSITION CONTAINING GLYCERIN, METHOD OF ITS RECEPTION AND APPLICATION IN PRODUCTION OF DICHLORPROPANOL
FR2935968B1 (en) 2008-09-12 2010-09-10 Solvay PROCESS FOR THE PURIFICATION OF HYDROGEN CHLORIDE
KR20140009163A (en) 2010-09-30 2014-01-22 솔베이(소시에떼아노님) Derivative of epichlorohydrin of natural origin
FR3013606B1 (en) * 2013-11-28 2015-11-13 Arkema France PROCESS FOR PURIFYING HYDROCHLORIC ACID
CN106621777A (en) * 2016-12-30 2017-05-10 天津滨港电镀企业管理有限公司 Large heat insulation waste gas tower
CN110194712A (en) * 2019-05-30 2019-09-03 烟台中瑞化工有限公司 One kind is for recycling hydrogen fluoride technique in the production of 1,1,1 trichorotrifluoroethanes

Also Published As

Publication number Publication date
JP2001261308A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
JP4389327B2 (en) How to recover hydrochloric acid
EP2021275B1 (en) Enhanced process for the purification of anyhydrous hydrogen chloride gas
KR100453863B1 (en) A method for post treatment of reactive gas during the oxidation reaction from HCI to chlorine
BRPI0607933A2 (en) method and apparatus for purifying hydrogen chloride gas, and method for oxychlorination of ethylene to 1,2-dichloroethane
KR20160008531A (en) Method for purifying hydrogen chloride
JP2007008898A (en) Method for separation and recovery of aromatic compound and hydrogen chloride
CN103097325A (en) Method for dehydrating hydrofluorocarbon or hydrochlorofluorocarbon, and method for producing 1,3,3,3-tetrafluoropropane using said dehydrating method
JP4011139B2 (en) Method for separating high purity chlorine from chlorine containing feed gas
CN112320758A (en) Method for purifying trichloroethylene by-product hydrochloric acid
JPH0269425A (en) Production of pure tetrafluoroethylene
US20100036180A1 (en) Method of obtaining 1,2-dichloroethane by direct chlorination with a step of separation from the catalyst by direct evaporation, and facility for the implementation thereof
JP5344114B2 (en) Hydrogen purification recovery method and hydrogen purification recovery equipment
US11286223B2 (en) Method to purify a crude stream containing hydrochlorofluoroolefin
JP2011504802A (en) Method for purifying aqueous phase containing polyaromatics
CN104119201A (en) Dry separation and purification system and purification method for fluorine-containing alkane
US20150321978A1 (en) Method for Producing 1,3,3,3-Tetrafluoropropene
JPS61268635A (en) Production of ethane dichloride
JP2726771B2 (en) Industrial production method of chlorine
JP4022974B2 (en) Method for producing chlorinated aromatic hydrocarbons
JPS6020366B2 (en) Separation method for low boiling point chlorinated hydrocarbons
JP3822981B2 (en) Method for producing high purity carbon monoxide
JPH10101597A (en) Production of chlorinated aromatic hydrocarbons
US20220219981A1 (en) Methods for removing water from iodine (i2)
CN111013309B (en) Method for purifying tail gas and recovering materials in pivaloyl chloride production process
JP4251506B2 (en) C ▲ Lower 1-C ▲ Lower 3 Method for purifying methyl chloride contaminated with hydrocarbons and / or isobutane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4389327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees