JP4388314B2 - GAS DIFFUSION ELECTRODE BASE FOR SOLID POLYMER FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL USING THE SAME - Google Patents

GAS DIFFUSION ELECTRODE BASE FOR SOLID POLYMER FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL USING THE SAME Download PDF

Info

Publication number
JP4388314B2
JP4388314B2 JP2003175495A JP2003175495A JP4388314B2 JP 4388314 B2 JP4388314 B2 JP 4388314B2 JP 2003175495 A JP2003175495 A JP 2003175495A JP 2003175495 A JP2003175495 A JP 2003175495A JP 4388314 B2 JP4388314 B2 JP 4388314B2
Authority
JP
Japan
Prior art keywords
vinylidene fluoride
solvent
fuel cell
resin compound
fluoride resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003175495A
Other languages
Japanese (ja)
Other versions
JP2004281363A (en
Inventor
博己 戸塚
仁英 杉山
正則 高畑
和徳 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2003175495A priority Critical patent/JP4388314B2/en
Publication of JP2004281363A publication Critical patent/JP2004281363A/en
Application granted granted Critical
Publication of JP4388314B2 publication Critical patent/JP4388314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明が属する技術分野】
本発明は、固体高分子型燃料電池用ガス拡散電極基材、その製造方法及びそれを用いた固体高分子型燃料電池に関するものである。
【0002】
【従来の技術】
燃料電池は、燃料と酸化剤とを連続的に供給し、これらが反応したときの化学エネルギーを電力として取り出す発電システムである。燃料電池は、これに用いる電解質の種類によって、動作温度が比較的低いアルカリ型、リン酸型、固体高分子型と、高温で動作する溶融炭酸塩型,固体酸化物電解質型とに大別される。
これらの中で、固体高分子型燃料電池は、固体高分子固体電解質として作用する隔膜の両面に触媒が担持されたガス拡散電極を接合し、一方のガス拡散電極が存在する側の室(燃料室)に燃料である水素を、他方のガス拡散電極が存在する側の室(酸化剤室)に酸化剤である酸素や空気等の酸素含有ガスをそれぞれ供給し、両ガス拡散電極間に外部負荷回路を接続することにより、燃料電池として作用させる。また、該固体高分子型燃料電池に用いられる燃料は水素の他、メタノールを直接燃料として用いる場合もある。
【0003】
固体高分子型燃料電池において使用されるガス拡散電極は、従来カーボンペーパーやカーボンクロスを基材として、カーボンブラックを微小なポリテトラフルオロエチレン(以下、PTFEという)粒子で結着し固定化したものを用いることが提案されている。このカーボンブラック層は、触媒との密着性をよくして集電効率を向上させる目的の他、触媒のカーボンペーパーやカーボンクロスへの沈み込みによる触媒効率の低下を防ぐ目的がある。PTFE粒子を用いる目的は、上記のカーボンブラック粒子の結着の他、燃料極へ供給される水分と、空気極で生成される水分濃度を適度に保つための撥水性の付与にある。しかし、カーボンブラック層に含まれるPTFE粒子は高温で溶融させても、全てのカーボンブラック粒子を結着するにはいたらない。これは、PTFEが溶融状態においても全てのカーボンブラック粒子を濡らすほど低粘度には至らず濡れ拡がらないためと考えられる。その結果、カーボンブラックは、該基材への固着性が不十分であり、燃料電池セルを組み立てるまでの工程で基材より欠落し不具合を生ずる場合がある。また、PTFE粒子の密度がカーボンブラック層内で不均一となることで、強い撥水性を有する部分と、撥水性が低い部分とが不均一に存在することとなる。特に空気極で生成する水は、親水性が強い部分で排出されやすいが、連続運転時において、生成水が親水性の高い部分で凝縮して水の排出流路を閉塞させ出力低下に繋がる問題を有する。また水素を供給する側の燃料極においても、水蒸気で加湿した水素を供給する場合に、このような親水性と疎水性の不均一性に起因して、燃料極と同様の水による閉塞現象が発生して出力を低下させる原因となる。
【0004】
このような問題を解決するために、溶媒可溶性含フッ素樹脂を用いて、フッ素樹脂を均一にカーボンペーパーやカーボンクロスに結着させる方法が提案されている(例えば、特許文献1参照)。該方法では、溶媒可溶性含フッ素樹脂は単にカーボンブラック粒子の結着剤として用いている。該方法においては、例えば、カーボンブラックの溶媒可溶性含フッ素樹脂に対する含有比率が高い場合には、燃料を透気するための気孔が含フッ素樹脂で閉塞する場合があり出力があがらない問題を有する。また、該方法においてカーボンブラックの含有率が含フッ素樹脂に比べて非常に多い場合は、カーボンブラックによる多孔質層ができるものの、親水性が相対的に高くなるため、閉塞現象を抑制することが困難となる場合がある他、結着効果が低下してカーボンブラック粒子が脱落しやすくなる問題を有する。また、固体高分子型燃料電池の課題の一つに今後の大幅な製造コストの低下が挙げられるが、該方法における含フッ素樹脂は実質的に脂肪族環構造を有するものであり、溶媒に溶解しにくく製造効率が低い他、比較的高価であるなどの問題がある。
【0005】
また、多孔質繊維シートをガス拡散電極の基材とする場合、毛羽立ちによる電解質膜の貫通が問題とされている。この貫通を防ぐために、カーボンブラック層は緩衝材として重要であるが、PTFE粒子をカーボンブラックの結着に用いた場合、繊維の毛羽立ちによりカーボンブラック層が破損する問題を有する。また、従来用いられているカーボンペーパーやカーボンクロスはその表面粗さに起因して、セルに組み付けに際して触媒層と強く密着する部分と、密着が弱い部分とが存在する。このような密着性の不均一性に起因して、密着性が弱い部分では優先的に水素が通過する。この様な密着性が弱く水素が通過しやすい部分では密着性が強く水素が通過しにくい部分に比べて、連続使用時における触媒の劣化が進みやすく、耐久性の低下につながる問題を有する。このようなことから、ガス拡散電極と、触媒層とがより均一な押圧で密着できるカーボンブラック層が望まれている。
また従来ガス拡散電極の基材として用いられているカーボンペーパーやカーボンクロスは機械的強度においても課題があり、組み付けまでのハンドリング性の向上が望まれている。また、これらの基材は高価であり、より安価な基材が求められている。
【0006】
【特許文献1】
特開2001−351637号公報
【0007】
【発明が解決しようとする課題】
本発明は上記の課題に鑑みてなされたものである。すなわち、本発明は、カーボンブラックの多孔質繊維シートへの固着が良好であり、なおかつ、供給水及び生成水による閉塞が発生せず、また、触媒層との密着性が均一で耐久性に優れた固体高分子型燃料電池用ガス拡散電極基材、その製造方法及びそれを用いた固体高分子型燃料電池を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の固体高分子型燃料電池用ガス拡散電極基材は、多孔質繊維シートの少なくとも片面にフッ化ビニリデン樹脂化合物及びカーボンブラックを含有した導電性多孔質層を形成してなり、前記導電性多孔質層が、フッ化ビニリデン樹脂化合物を該フッ化ビニリデン樹脂化合物が溶解する溶媒に分散させ溶液を得た後、該溶液に前記溶媒より沸点が高く且つ前記フッ化ビニリデン樹脂化合物が溶解しない溶媒を混合し、次いでカーボンブラックを混合して塗液を得た後、該塗液を多孔質繊維シート上に塗布し、乾燥させて得たものか、又は、前記導電性多孔質層が、フッ化ビニリデン樹脂化合物を該フッ化ビニリデン樹脂化合物が溶解する溶媒に分散させ溶液を得た後、該溶液に前記溶媒より沸点が高く且つ前記フッ化ビニリデン樹脂化合物が溶解しない溶媒を混合し、次いで前記フッ化ビニリデン樹脂化合物が溶解する溶媒にカーボンブラックを分散した分散液を混合して塗液を得た後、該塗液を多孔質繊維シート上に塗布し、乾燥させて得たものであることを特徴とする。
また、本発明の固体高分子型燃料電池用ガス拡散電極基材は、多孔質繊維シートの内部にフッ化ビニリデン樹脂化合物及びカーボンブラックを含有してなる固体高分子型燃料電池用ガス拡散電極基材であって、前記固体高分子型燃料電池用ガス拡散電極基材が、フッ化ビニリデン樹脂化合物を該フッ化ビニリデン樹脂化合物が溶解する溶媒に分散させ溶液を得た後、該溶液に前記溶媒より沸点が高く且つ前記フッ化ビニリデン樹脂化合物が溶解しない溶媒を混合し、次いでカーボンブラックを混合して塗液を得た後、該塗液を多孔質繊維シートに浸透し、乾燥させて得たものか、又は、前記固体高分子型燃料電池用ガス拡散電極基材が、フッ化ビニリデン樹脂化合物を該フッ化ビニリデン樹脂化合物が溶解する溶媒に分散させ溶液を得た後、該溶液に前記溶媒より沸点が高く且つ前記フッ化ビニリデン樹脂化合物が溶解しない溶媒を混合し、次いで前記フッ化ビニリデン樹脂化合物が溶解する溶媒にカーボンブラックを分散した分散液を混合して塗液を得た後、該塗液を多孔質繊維シートに浸透し、乾燥させて得たものであることを特徴とする。
また、本発明の固体高分子型燃料電池用ガス拡散電極基材の製造方法は、フッ化ビニリデン樹脂化合物を該フッ化ビニリデン樹脂化合物が溶解する溶媒に分散させ溶液を得た後、該溶液に前記溶媒より沸点が高く且つ前記フッ化ビニリデン樹脂化合物が溶解しない溶媒を混合し、次いでカーボンブラックを混合して塗液を得た後、該塗液を多孔質繊維シート上に塗布し、乾燥することを特徴とする。
また、本発明の固体高分子型燃料電池用ガス拡散電極基材の製造方法は、フッ化ビニリデン樹脂化合物を該フッ化ビニリデン樹脂化合物が溶解する溶媒に分散させ溶液を得た後、該溶液に前記溶媒より沸点が高く且つ前記フッ化ビニリデン樹脂化合物が溶解しない溶媒を混合し、次いで前記フッ化ビニリデン樹脂化合物が溶解する溶媒にカーボンブラックを分散した分散液を混合して塗液を得た後、該塗液を多孔質繊維シート上に塗布し、乾燥することを特徴とする。
また、本発明の固体高分子型燃料電池は、前記固体高分子型燃料電池用ガス拡散電極基材と、触媒層、高分子電解質膜及びセパレータを用いたことを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明で用いられる多孔質繊維シートはいずれのものも使用できるが、カーボンペーパー、カーボンクロス、ステンレス等の金属繊維シートなどの導電性が高いものが集電性能が優れているため好ましい。金属を素材とする多孔質繊維シートは、酸性雰囲気下で燃料電池内における酸性雰囲気下でも腐食しやすいが、本発明においては、導電性多孔質層に用いるフッ化ビニリデン樹脂化合物により被覆されるために、腐食が防止される。更に耐酸性を向上するためには、多孔質繊維シートの金属素材に予め酸化皮膜を設けることや、金属表面を耐酸性の高い樹脂や貴金属でコーティングする等の表面処理することが好ましい。また、ポリテトラフルオロエチレン等のフッ素樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリベンズオキサイド樹脂などからなる樹脂繊維シートや、ガラス、炭素、セラミックスなどからなる無機繊維シートなどの絶縁性の高い材質のものでも何らかまわない。これは、絶縁性を有する繊維であっても、カーボンブラックとフッ化ビニリデン樹脂化合物の導電性多孔質層が繊維を覆うために良好な導電性が得られるためである。また、前記樹脂繊維シート、特にフッ素樹脂からなる繊維シートはガス拡散電極に適度な疎水性を与えるために、燃料電池セル内部での水分コントロールに寄与する場合があり本発明において好適に用いられる。また、本発明に用いられる多孔質繊維シートは、カレンダー処理や平板プレスなどで表面を平滑化処理したものがより好適に用いられるが、特に多孔質繊維の毛羽立ちにより、触媒層及び高分子電解質が機械的な損傷を受ける場合においては、カレンダー処理でその毛羽立ちを抑え、多孔質繊維表面を平滑化することで、このような不具合の発生を抑えることが可能となる。以上の理由により、カレンダー処理が好ましい。多孔質繊維シートに毛羽立ちがある場合には、このような平滑化処理を施すことで、電解質膜を傷つけることがなくなりセルの信頼性が向上する。また、多孔質繊維シートを構成する繊維は単独の組成であっても、複合化された組成のシートでもよく、炭素繊維、ステンレス繊維、フッ素繊維、ガラス繊維から選ばれた2種以上を混抄してなるものが挙げられる。特に多孔質繊維シートを構成する繊維が、ステンレス繊維とポリテトラフルオロエチレン繊維を混抄したものは、疎水性と撥水性のバランスをとる上で好都合な多孔質繊維シートであり本発明に好適に用いられる。また、多孔質繊維シートは、不織布やメッシュ状のものであってもかまわない。
また、本発明における多孔質繊維シートの厚さは、10〜500μm、より好ましくは、15〜350μm、更により好ましくは15〜100μmである。10μmより薄い場合では、多孔質繊維シートそのものの機械的強度が低下し、セル組み付けまでのハンドリングが困難になる。一方500μmより厚い場合では、ガス透過のための多孔質内の流路が長くなり、高負荷時の出力電圧が低下する他、特に空気極側では生成水による多孔質繊維シートの閉塞現象が発生して好ましくない。
【0010】
本発明に用いられるフッ化ビニリデン樹脂化合物は、フッ化ビニリデンのホモポリマー、あるいは四フッ化エチレン、六フッ化プロピレン、エチレン等のモノマーのいずれか1種類以上とフッ化ビニリデンとからなるコポリマーを用いることが可能である。これらのポリマーは電気化学的に安定で耐酸性が極めて優れているため、燃料電池内部に組み込まれても、長期安定性において優れている。したがって、これらホモポリマーあるいはコポリマーはそれぞれ単独で用いても差支えなく、また、2種類以上の混合物であっても好適に本発明を実施することができる。特にフッ化ビニリデンのホモポリマーは、耐熱性が高く、機械的強度が良好であるために好ましい。このようなフッ化ビニリデン樹脂化合物は、フッ化ビニリデンを含むモノマーの付加重合反応により得られ、その重合方法としては、公知の技術を用いることができる。すなわちラジカル重合、カチオン重合、アニオン重合、光・放射線重合などにより得ることができる。本発明において好適に用いられるフッ化ビニリデン樹脂化合物の分子量は、重量平均分子量において10万から120万が好ましく、10万未満の場合では、導電性多孔質層の機械的な強度が不十分となるおそれがあり、120万を越えた場合では、溶剤への溶解性が低下して製造効率を低下せしめる等のおそれがあるが、これに限定されるものではない。
【0011】
本発明で用いられるカーボンブラックは、比表面積が大きく、かつ二次凝集粒子の大きさが比較的大きい高ストラクチャーのものが、性能と生産性の両立から好適に利用できる。例えば、ライオンアクゾ社の商品名:ケッチンECやキャボット社の商品名:VulcanXC72Rは、導電性グレードのカーボンブラックの中でも、塗液での高分散性と導電性多孔質層に用いた場合の抵抗の低さから本発明に好適に用いられるが、本発明で使用可能なカーボンブラックはこの例に限られることはなく、比表面積や粒子径の大きさによらずいずれのグレードも使用可能である。また、ファーネスブラックやチャネルブラック等に代表されるいわゆるカーボンブラック以外では、アセチレンブラック、黒鉛、カーボン繊維、カーボンナノチューブなども、本発明でいうカーボンブラックであり、同様に好適に用いられるが、導電性を有する無機材料であり酸化雰囲気に耐性があるものであれば、いずれも利用するこが可能である。
【0012】
本発明において、カーボンブラックの含有量はフッ化ビニリデン樹脂化合物100重量部に対して、5〜1000重量部であり、好ましくは8〜800重量部であり、より好ましくは10〜500重量部である。カーボンブラックが5重量部より少ないと、ガス拡散電極としての抵抗率が高すぎて良好な集電効果が得られない。一方、1000重量部より多いと、フッ化ビニリデン樹脂化合物によるカーボンブラックの多孔質繊維シートへの固着が不十分となる他、カーボンブラックの存在量が過多となり、フッ化ビニリデン樹脂化合物による多孔質構造が維持できなくなる。
【0013】
次に本発明の固体高分子型燃料電池用ガス拡散電極基材の製造方法について説明する。前記多孔質繊維シートの少なくとも片面にフッ化ビニリデン樹脂化合物及びカーボンブラックを含有した導電性多孔質層を形成する方法としては、下記に述べる形成方法が好ましい。すなわち、はじめにフッ化ビニリデン樹脂化合物を溶媒に分散させた溶液を得る。溶媒としてはフッ化ビニリデン樹脂化合物が溶解するものを選択しなければならず、例えば、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、N,N−ジメチルスルホキシド等を挙げることができる。フッ化ビニリデン樹脂化合物を溶媒に分散、溶解する方法としては市販の攪拌機を使用すればよい。本発明に用いられるフッ化ビニリデン樹脂化合物は前記溶媒に室温で容易に溶解するので、特に加熱する必要はない。分散溶液の濃度としては、得るべき導電性多孔質層の特性を考慮に入れ適宜変更する必要がある。次いで、この溶液に上記溶媒より沸点が高く、且つフッ化ビニリデン樹脂化合物が溶解しない溶媒を添加混合する。このような第二の溶媒としては、フタル酸ジブチル等のフタル酸エステル、エチレングリコール等のグリコール類を選択することが可能である。
【0014】
次に、カーボンブラックを上記と同様のフッ化ビニリデン樹脂化合物を溶解する溶媒に適宜分散し、得られた分散液を上記のフッ化ビニリデン樹脂化合物の溶液と混合し塗液とする。カーボンブラックの分散には、市販のミキサーを用いるが、例えば特殊機化社製のホモミキサー、キーエンス社製のハイブリッドミキサー等が好適に用いられる。
次に前記で得られた塗液を、多孔質繊維シートの片面または両面にディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等により塗布し、乾燥することで、フッ化ビニリデン樹脂化合物が溶解する溶媒が溶解しない溶媒より先に蒸発し、溶解度が低下したポリマーが析出を開始し、溶解しない溶媒の存在体積相当の空孔率を有する導電性多孔質層を得ることができる
お、前記塗布方法によってそれぞれで好適な塗液の粘度範囲が存在するが、それぞれの塗布方法にあった粘度に調整するためには、上記のフッ化ビニリデン樹脂を溶解する溶媒の添加量を変えることで容易に調整が可能である。
【0015】
また、多孔質繊維シートの内部にフッ化ビニリデン樹脂化合物及びカーボンブラックを含有させるためには、前記フッ化ビニリデン樹脂化合物及びカーボンブラックからなる塗液の粘度を低下させ、この低粘度の塗液を多孔質繊維シートに浸透し、乾燥させることによって、多孔質繊維シートの内部にフッ化ビニリデン樹脂化合物及びカーボンブラックを含有させることができる。
本発明においては、多孔質繊維シートの少なくとも片面に導電性多孔質層を形成し、更に、その多孔質繊維シートの内部にフッ化ビニリデン樹脂化合物及びカーボンブラックを含有させて固体高分子型燃料電池用ガス拡散電極基材を構成してもよい。
なお、本発明においては、フッ化ビニリデン樹脂化合物及びカーボンブラックの他に、ポリテトラフルオロエチレン、テトラフルオロエチレン−フルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体等の他、テトラフルオロエチレン−エチレン共重合体、ポリクロロトリフルオロエチレン、クロロトリフルオロエチレン−エチレン共重合体、パーフロロ環状重合体、ポリビニルフルオライド等の1種又は2種以上を併用して導電性多孔質層を構成してもよい。
【0016】
本発明における導電性多孔質層の厚さは0.5〜400μm、より好ましくは、5〜200μm、更により好ましくは10〜150μmである。0.5μmより薄い場合では、導電性多孔質層の弾性効果が得られず、触媒層との密着性が低下し好ましくない。400μmより厚い場合では、電気的な接触抵抗が大きくなるほか、ガスの拡散距離が長くなることで、燃料供給が滞る場合があるほか、生成水の排出効率が低下し好ましくない。
前記のようにして得られた導電性多孔質層の構造を測る尺度としては空隙率、透気度、密度がある。多孔質繊維シート上に形成したフッ化ビニリデン樹脂化合物とカーボンブラックからなる導電性多孔質層の空隙率は10〜90%の範囲内が好適であり、より好適には70〜90%であり、さらに好適には50〜90%である。10%未満では、燃料極の場合には透過する水素量が少なくなり、空気極の場合では水蒸気の透過流路が狭まる等の問題が生ずる。90%を超える場合には機械的強度の低下が著しく、燃料電池セルに組み上げるまでの工程で破損しやすく不都合を生じる場合がある。透気度は1〜1000sec/100ml、密度は0.15〜1.3g/cmが上記と同様の理由で好適である。
【0017】
本発明のようなフッ化ビニリデン樹脂化合物を用いた導電性多孔質層は、フッ化ビニリデン樹脂化合物そのものがゴム状の弾性体であることと、更に同材質を用いた多孔質体であることから、これと接する触媒層との密着性が極めて良好であるばかりでなく、上記触媒層の表面粗さが低くても接触圧力が極めて均一に保たれることで、触媒層全面にわたって触媒が効率的に使用できる。このため、触媒の部分的な劣化が抑えられセルの高寿命化が達成できる。従来のカーボンブラックそのものによる多孔質層では、カーボンブラック自体が長期使用において親水性が次第に強くなることと、孔径が1μ以下と小さいことから、カーボンブラックの多孔質構造中で、生成水や供給水が凝縮して閉塞することで発電効率の低下をきたす問題があった。これに対し、本発明のフッ化ビニリデン樹脂化合物を用いた導電性多孔質層は、フッ化ビニリデン樹脂化合物そのものによる1〜3μm程度の比較的大きい孔構造を有するために、水素や水蒸気などのガスの透過が従来のカーボンブラックそのものによる多孔質体より極めて良好であるばかりでなく、フッ化ビニリデン樹脂が適度な疎水性を有するために、上記のような水による閉塞現象がおこらず、安定した発電特性を長期にわたって維持することが可能である。また、このような多孔質構造を有することで、燃料極における水素の供給及び空気極における水分の透過性が極めて良好であり発電効率の向上が容易に実現できる。また、従来のポリテトラフルオロエチレンなどのフッ素樹脂微粒子をバインダーとするガス拡散電極では、該フッ素樹脂が微粒子であること故に、溶融しても該フッ素樹脂が個々のカーボンブラック粒子には必ずしも均一に濡れ拡がらない。従って、該フッ素樹脂の濃度が高い部分と低い部分で水の透過性が不均一となり、発電特性が向上しない。これに対して、本発明のフッ化ビニリデン樹脂化合物は塗液の溶媒に相溶可能であるため、カーボンブラックを均一に濡らすことが可能となり、上記のような不具合がない。また、前記のように本発明の導電性多孔質層は弾性に富むため、セル組み付けの加圧によりカーボンブラック粒子どうし、及び、カーボンブラックと多孔質繊維シートとの接触が良好となり、電気的な接触抵抗が低減することで集電性が向上という効果を奏する。
【0018】
次に本発明の固体高分子型燃料電池について説明する。
本発明の固体高分子型燃料電池は、前記固体高分子型燃料電池用ガス拡散電極基材を使用するものであり、その他に触媒層、水素イオン伝導性を有する高分子電解質膜及びセパレータを有するものである。触媒層は高分子電解質膜の両側に配置されるものであり、燃料を供給する側においては、水素やメタノールなどの燃料から水素イオンを分離し供給する機能を有するものである。一方、空気極側に配置される触媒層は、高分子電解質膜を透過して供給された水素イオンを酸化する機能を有する。上記の両触媒層に隣接して本発明の固体高分子型燃料電池用ガス拡散電極基材が配置され、更に該ガス拡散電極に隣接してセパレータが配置される。燃料極側のセパレータは燃料をガス拡散電極に供給する機能を有し、空気極側に配置されるセパレータは、空気を触媒層に供給する機能とともに触媒層において生成される水を排出する機能を併せ持っている。
【0019】
【実施例】
以下に、実施例及び比較例に基づいて本発明を更に詳細に説明する。ただし、本発明はこれら実施例に限定されるものではない。
実施例1
重量平均分子量10万のフッ化ビニリデンホモポリマーを1−メチル−2−ピロリドンに溶解し、フタル酸ジブチルを添加してフッ化ビニリデンホモポリマー成分が10重量%になるように溶液1を調整した。次に、カーボンブラック(キャボット社製 商品名:VulcanXC72R)10重量%と1−メチル−2−ピロリドン90重量%になるようにメディア式撹拌機を用いて混合し、分散液1を調整した。前記溶液1と分散液1とを、カーボンブラックとフッ化ビニリデンホモポリマーが、重量比において、カーボンブラック:フッ化ビニリデンホモポリマー=3:1となるように混合し調製して塗液1を得た。次に、厚さ270μmのカーボンペーパーからなる多孔質繊維シート上に、ドクターブレード法により上記塗液1を塗布し、乾燥して厚さ50μmの導電性多孔質層を形成し、本発明の固体高分子型燃料電池用ガス拡散電極基材を得た。
【0020】
実施例2
多孔質繊維シートを厚さ50μmのステンレス繊維シートに代えた以外は実施例1と同様にして厚さ25μmの導電性多孔質層を形成し、本発明の固体高分子型燃料電池用ガス拡散電極基材を得た。
【0021】
実施例3
重量平均分子量50万のフッ化ビニリデンホモポリマーを用いた他は、実施例1と同様にして溶液2を作製した。次に、この溶液2と実施例1の分散液1を、カーボンブラックとフッ化ビニリデンホモポリマーが、重量比において、カーボンブラック:フッ化ビニリデンホモポリマー=4:1となるように混合し、調製して塗液2を得た。次に、厚さ270μmのカーボンペーパーからなる多孔質繊維シート上に、ドクターブレード法により上記塗液2を塗布し、乾燥して厚さ30μmの導電性多孔質層を形成し、本発明の固体高分子型燃料電池用ガス拡散電極基材を得た。
【0022】
実施例4
多孔質繊維シートを厚さ70μmのポリテトラフルオロエチレン繊維シートに代え、該繊維シートの両面に厚さ5μmの導電性多孔質層を形成した以外は実施例3と同様にして本発明の固体高分子型燃料電池用ガス拡散電極基材を得た。
【0023】
実施例5
多孔質繊維シートを厚さ100μmのポリテトラフルオロエチレン繊維とステンレス繊維を混抄した繊維シートに代えた以外は実施例3と同様にして本発明の固体高分子型燃料電池用ガス拡散電極基材を得た。
【0024】
実施例6
多孔質繊維シートを厚さ90μmのポリテトラフルオロエチレン繊維とガラス繊維を混抄した繊維シートに代えた以外は実施例3と同様にして本発明の固体高分子型燃料電池用ガス拡散電極基材を得た。
【0025】
実施例7
多孔質繊維シートを厚さ40μmの常温でカレンダー処理を施したステンレス繊維シートに代えた以外は実施例1と同様にして厚さ25μmの導電性多孔質層を形成し、本発明の固体高分子型燃料電池用ガス拡散電極基材を得た。
【0026】
実施例8
実施例1の塗液1に、厚さ270μmのカーボンペーパーを浸漬し、カーボンペーパーの内部に塗液1をしみ込ませた後、該カーボンペーパーの両面に付着した塗液1を一旦ドクターブレードで擦り落とし、その片面に実施例1の塗液1を実施例1と同様の方法で塗工し、カーボンペーパー内にフッ化ビニリデン樹脂化合物とカーボンブラックを含有した本発明の固体高分子型燃料電池用ガス拡散電極基材を得た。
【0027】
実施例9
多孔質繊維シートを厚さ40μmのポリベンズオキサイド樹脂繊維からなる不織布に代えた以外は実施例1と同様にして厚さ25μmの導電性多孔質層を形成し、本発明の固体高分子型燃料電池用ガス拡散電極基材を得た。
【0028】
実施例10
厚さ25μmのポリエステル繊維シートの両面に、ドクターブレード法により前記実施例3の塗液2を塗布し、乾燥して片面の厚さが5μmの導電性多孔質層を形成し、本発明の固体高分子型燃料電池用ガス拡散電極基材を得た。
【0029】
実施例11
実施例10におけるポリエステル繊維シートをカレンダー処理して厚さ15μmに調整した多孔質繊維シートの片面に、ドクターブレード法により前記実施例3の塗液2を塗布し、乾燥して厚さが5μmの導電性多孔質層を形成し、本発明の固体高分子型燃料電池用ガス拡散電極基材を得た。
【0030】
実施例12
炭化タングステンからなるウィスカー状繊維とポリエステル繊維とを混抄した厚さ50μmの多孔質繊維シートの片面に、ドクターブレード法により前記実施例3の塗液2を塗布し、乾燥して厚さが10μmの導電性多孔質層を形成し、本発明の固体高分子型燃料電池用ガス拡散電極基材を得た。
【0031】
比較例1
カーボンブラック(キャボット社製 商品名:VulcanXC72R)10重量%、ポリオキシエチレンオクチルフェニルエーテル1重量%、イオン交換水89重量%をメディア式分散機を用いて混合した分散液100重量部に、ポリテトラフルオロエチレン微粒子のディスパ−ジョン(三井・デュポンフロロケミカル社製 商品名:30J)5重量部を加え、レッドデビル社製のペイントシェーカーで30分撹拌して塗液3を得た。次に、厚さ270μmのカーボンペーパーからなる多孔質繊維シート上に、ドクターブレード法により上記塗液3を塗布し、乾燥して比較用の固体高分子型燃料電池用ガス拡散電極基材を得た。
【0032】
比較例2
フタル酸ジブチルを使用しない以外は実施例1と同様にして厚さ40μmの多孔質を有しない導電性層を多孔質繊維シート上に形成し、比較用の固体高分子型燃料電池用ガス拡散電極基材を得た。
【0033】
次に、前記実施例及び比較例に示した固体高分子型燃料電池用ガス拡散電極基材を次のように評価した。
(1)触媒インクの作製
カーボンブラック(ライオンアクゾ社製 商品名:ケッチンEC)80重量部に白金20重量部を担持した触媒10重量部と酢酸ブチル90重量部とを混合し、超音波洗浄機にて10分間分散した後、この分散液100重量部に対して、更に水及びアルコールの混合溶媒にイオン交換溶液(デュポン社製 商品名:Nafion)5重量部を溶解した溶液200重量部、及び、ポリテトラフルオロエチレンのディスパージョン(三井・デュポンフロロケミカル社製 商品名:30J)5重量部とを追加混合し、更に超音波洗浄機で30分分散し触媒インクを得た。
(2)固体高分子型燃料電池(単セル)の作製
次に上記触媒インクを前記実施例及び比較例で作製した固体高分子型燃料電池用ガス拡散電極基材上に白金量が0.8mg/cmとなるように塗布、乾燥し触媒層を形成した。以上の処理を施した実施例及び比較例の触媒インクを塗布したそれぞれの固体高分子型燃料電池用ガス拡散電極2枚を燃料極、空気極として、その触媒層面がイオン交換膜からなる高分子電解質膜(デュポン社製 商品名:Nafion117)に接触するように配し、熱圧プレス(140℃)にて接合して電極と膜の接合体を作製した。この電極と膜の接合体を更にセパレータで挟んでセル化し固体高分子型燃料電池(単セル)とした。
次に各単セルへ水素及び酸素からなるガスを供給した。供給ガスはいずれもバブリングにて加湿し2.5気圧の供給圧とした上で、単セルにかかる温度を70℃に保持した状態で供給し電圧を発生させた。電流密度が1A/cmにおける電圧を調べた結果を表1に記す。なお、表1における電圧は、数値が高い方が固体高分子型燃料電池用ガス拡散電極基材として優れることを示している。
【0034】
【表1】

Figure 0004388314
【0035】
上記表1の結果から、本発明の固体高分子型燃料電池用ガス拡散電極基材はいずれも連続運転時における電圧低下が少ない結果であった。これは、本発明による固体高分子型燃料電池用ガス拡散電極基材の多孔質繊維シート及び導電性多孔質層がいずれも高いガス透過性と良好な撥水性を合わせもっているからと考えられる。一方、比較例1では、PTFEの密度が低い部分では長時間運転で供給水や生成水がカーボンブラックの粒子間隙に閉塞して電圧低下をきたしたものと考えられる。また、比較例2においては、多孔質繊維シートの部分ではガスが良好に供給される構造多孔質構造が維持されているものの、ポリフッ化ビニリデン樹脂化合物と非相溶の溶媒が塗液に混合されていないために、ポリフッ化ビニリデン樹脂化合物による多孔質が形成されず、その結果、ガスの供給量が低下して発電性能の低下をきたしたものと考えられる。
【0036】
【発明の効果】
本発明によれば、燃料ガスや生成水の透過が極めて良好であり、触媒層との密着が良好であり、親水性と疎水性バランスに優れ、長期に渡り水による閉塞現象が生じにくい良好な発電特性を有する安価な固体高分子型燃料電池用ガス拡散電極基材及び固体高分子型燃料電池を提供することができる。[0001]
[Technical field to which the invention belongs]
  The present invention relates to a gas diffusion electrode for a polymer electrolyte fuel cell.Base materialThe manufacturing method and a polymer electrolyte fuel cell using the same.
[0002]
[Prior art]
  A fuel cell is a power generation system that continuously supplies fuel and an oxidant and extracts chemical energy as electric power when they react. Fuel cells are roughly classified into alkaline, phosphoric acid, and solid polymer types that operate at relatively low temperatures, and molten carbonate and solid oxide electrolyte types that operate at high temperatures, depending on the type of electrolyte used. The
  Among these, the polymer electrolyte fuel cell has a gas diffusion electrode having a catalyst supported on both surfaces of a diaphragm acting as a solid polymer solid electrolyte, and a chamber (fuel) on the side where one gas diffusion electrode exists. Hydrogen as a fuel is supplied to the chamber), and an oxygen-containing gas such as oxygen or air as the oxidant is supplied to the chamber (oxidant chamber) where the other gas diffusion electrode is present. By connecting a load circuit, it acts as a fuel cell. In addition to the hydrogen used as the fuel for the polymer electrolyte fuel cell, methanol may be used directly as the fuel.
[0003]
  A gas diffusion electrode used in a polymer electrolyte fuel cell is a conventional carbon paper or carbon cloth as a base material, and carbon black is bound and fixed with fine polytetrafluoroethylene (hereinafter referred to as PTFE) particles. It has been proposed to use The carbon black layer has the purpose of improving the current collection efficiency by improving the adhesion to the catalyst and the purpose of preventing the catalyst efficiency from being lowered due to the sinking of the catalyst into carbon paper or carbon cloth. The purpose of using the PTFE particles is to impart water repellency in order to keep the moisture supplied to the fuel electrode and the concentration of moisture generated at the air electrode in addition to the binding of the carbon black particles. However, even if the PTFE particles contained in the carbon black layer are melted at a high temperature, not all the carbon black particles are bound. This is presumably because PTFE does not reach a low viscosity so as to wet all carbon black particles even in a molten state and does not spread out. As a result, carbon black has insufficient adhesion to the base material, and may be defective from the base material in the process until the fuel cell is assembled. Further, since the density of the PTFE particles is non-uniform in the carbon black layer, a portion having strong water repellency and a portion having low water repellency exist non-uniformly. In particular, the water generated at the air electrode is likely to be discharged at the highly hydrophilic part, but the problem is that the generated water condenses at the highly hydrophilic part and clogs the water discharge flow path during continuous operation, leading to a decrease in output. Have Also, in the fuel electrode on the hydrogen supply side, when hydrogen humidified with water vapor is supplied, due to such non-uniformity of hydrophilicity and hydrophobicity, the same water clogging phenomenon as the fuel electrode occurs. Which will cause the output to decrease.
[0004]
  In order to solve such a problem, a method has been proposed in which a fluororesin is uniformly bound to carbon paper or carbon cloth using a solvent-soluble fluororesin (see, for example, Patent Document 1). In this method, the solvent-soluble fluorine-containing resin is simply used as a binder for carbon black particles. In this method, for example, when the content ratio of carbon black to the solvent-soluble fluorine-containing resin is high, there is a problem that pores for allowing fuel to pass through may be clogged with the fluorine-containing resin and the output is not increased. In addition, when the carbon black content in the method is much higher than that of the fluororesin, a porous layer of carbon black can be formed, but the hydrophilicity becomes relatively high, so that the clogging phenomenon can be suppressed. In addition to being difficult, there are problems that the binding effect is reduced and the carbon black particles are easily dropped. In addition, one of the problems of the polymer electrolyte fuel cell is that the production cost will be drastically reduced in the future. However, the fluororesin in the method has a substantially aliphatic ring structure and is dissolved in a solvent. In addition to being difficult to manufacture, the production efficiency is low, and there are problems such as being relatively expensive.
[0005]
  Further, when a porous fiber sheet is used as a base material for a gas diffusion electrode, penetration of the electrolyte membrane due to fluff is a problem. In order to prevent this penetration, the carbon black layer is important as a buffer material. However, when PTFE particles are used for binding carbon black, there is a problem that the carbon black layer is damaged due to fiber fluffing. In addition, carbon paper and carbon cloth that have been used conventionally have a portion that adheres strongly to the catalyst layer when assembled to the cell and a portion that adheres weakly due to the surface roughness. Due to such non-uniformity of adhesion, hydrogen preferentially passes through a portion where adhesion is weak. In such a portion where the adhesion is weak and hydrogen is likely to pass therethrough, there is a problem that the deterioration of the catalyst during continuous use tends to progress and the durability is lowered compared to a portion where the adhesion is strong and hydrogen is difficult to pass. For this reason, a carbon black layer is desired in which the gas diffusion electrode and the catalyst layer can be adhered to each other with more uniform pressure.
  In addition, carbon paper and carbon cloth conventionally used as a base material for gas diffusion electrodes have problems in mechanical strength, and improvement in handling properties until assembly is desired. Moreover, these base materials are expensive, and cheaper base materials are required.
[0006]
[Patent Document 1]
          JP 2001-351537 A
[0007]
[Problems to be solved by the invention]
  The present invention has been made in view of the above problems. That is, the present invention has good fixation of the carbon black to the porous fiber sheet, does not cause clogging with supply water and generated water, has uniform adhesion with the catalyst layer, and has excellent durability. Gas diffusion electrode for solid polymer fuel cellBase materialAn object of the present invention is to provide a production method thereof and a polymer electrolyte fuel cell using the same.
[0008]
[Means for Solving the Problems]
  The gas diffusion electrode substrate for a polymer electrolyte fuel cell according to the present invention is formed by forming a conductive porous layer containing a vinylidene fluoride resin compound and carbon black on at least one surface of a porous fiber sheet. The porous layer is a solvent in which the vinylidene fluoride resin compound is dispersed in a solvent in which the vinylidene fluoride resin compound is dissolved to obtain a solution, and then the solvent has a boiling point higher than that of the solvent and in which the vinylidene fluoride resin compound is not dissolved.And thenMixed with carbon blackAfter obtaining the coating liquid,What was obtained by applying the coating liquid on the porous fiber sheet and drying itAlternatively, after the conductive porous layer is obtained by dispersing the vinylidene fluoride resin compound in a solvent in which the vinylidene fluoride resin compound is dissolved, the solution has a boiling point higher than that of the solvent and the fluoride fluoride. After mixing a solvent in which the vinylidene resin compound is not dissolved, and then mixing a dispersion in which carbon black is dispersed in the solvent in which the vinylidene fluoride resin compound is dissolved, a coating liquid is obtained, and then the coating liquid is applied to the porous fiber sheet. Obtained by applying and dryingIt is characterized by being.
  Further, the gas diffusion electrode substrate for a polymer electrolyte fuel cell of the present invention is a gas diffusion electrode substrate for a polymer electrolyte fuel cell comprising a vinylidene fluoride resin compound and carbon black inside a porous fiber sheet. The gas diffusion electrode base material for a polymer electrolyte fuel cell is obtained by dispersing a vinylidene fluoride resin compound in a solvent in which the vinylidene fluoride resin compound is dissolved, and then obtaining the solution in the solvent. A solvent having a higher boiling point and in which the vinylidene fluoride resin compound does not dissolveAnd thenMixed with carbon blackAfter obtaining the coating liquid,What was obtained by infiltrating the coating liquid into the porous fiber sheet and drying itAlternatively, the gas diffusion electrode base material for a polymer electrolyte fuel cell is obtained by dispersing a vinylidene fluoride resin compound in a solvent in which the vinylidene fluoride resin compound is dissolved, and then obtaining a solution from the solvent. A solvent having a high boiling point and in which the vinylidene fluoride resin compound is not dissolved is mixed, and then a dispersion in which carbon black is dispersed in the solvent in which the vinylidene fluoride resin compound is dissolved is obtained to obtain a coating solution. Obtained by infiltrating the liquid into the porous fiber sheet and drying itIt is characterized by being.
  In the method for producing a gas diffusion electrode substrate for a polymer electrolyte fuel cell according to the present invention, a vinylidene fluoride resin compound is dispersed in a solvent in which the vinylidene fluoride resin compound is dissolved to obtain a solution. A solvent having a boiling point higher than that of the solvent and in which the vinylidene fluoride resin compound is not dissolved is mixed, and then carbon black is mixed to obtain a coating liquid, and then the coating liquid is applied onto the porous fiber sheet and dried. It is characterized by that.
  In the method for producing a gas diffusion electrode substrate for a polymer electrolyte fuel cell according to the present invention, a vinylidene fluoride resin compound is dispersed in a solvent in which the vinylidene fluoride resin compound is dissolved to obtain a solution. After mixing a solvent having a boiling point higher than that of the solvent and in which the vinylidene fluoride resin compound is not dissolved, and then mixing a dispersion in which carbon black is dispersed in the solvent in which the vinylidene fluoride resin compound is dissolved, to obtain a coating liquid The coating liquid is applied onto a porous fiber sheet and dried.
  The polymer electrolyte fuel cell of the present invention is characterized by using the gas diffusion electrode base material for a polymer electrolyte fuel cell, a catalyst layer, a polymer electrolyte membrane, and a separator.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, the present invention will be described in detail.
  Although any porous fiber sheet can be used in the present invention, a highly conductive material such as carbon fiber, carbon cloth, stainless steel or other metal fiber sheet is preferable because of its excellent current collecting performance. A porous fiber sheet made of a metal is easily corroded even in an acidic atmosphere in an acidic atmosphere, but in the present invention, it is coated with a vinylidene fluoride resin compound used for the conductive porous layer. In addition, corrosion is prevented. In order to further improve acid resistance, it is preferable to provide an oxide film on the metal material of the porous fiber sheet in advance, or to treat the metal surface with a highly acid-resistant resin or noble metal. Insulating properties such as resin fiber sheets made of fluorine resin such as polytetrafluoroethylene, polyester resin, polyolefin resin, polyamide resin, polyimide resin, polybenzoxide resin, and inorganic fiber sheets made of glass, carbon, ceramics, etc. It doesn't matter if it is made of a high quality material. This is because even if the fiber has insulating properties, the conductive porous layer of carbon black and vinylidene fluoride resin compound covers the fiber, so that good conductivity is obtained. In addition, the resin fiber sheet, particularly a fiber sheet made of a fluororesin, may contribute to moisture control inside the fuel cell in order to impart appropriate hydrophobicity to the gas diffusion electrode, and is preferably used in the present invention. In addition, the porous fiber sheet used in the present invention is more preferably one whose surface is smoothed by calendering or flat plate press, etc., but the catalyst layer and the polymer electrolyte are particularly affected by the fuzz of the porous fiber. In the case of mechanical damage, the occurrence of such defects can be suppressed by suppressing the fuzz by a calendar process and smoothing the surface of the porous fiber. For the above reasons, calendar processing is preferable. When the porous fiber sheet is fuzzy, by performing such a smoothing treatment, the electrolyte membrane is not damaged, and the reliability of the cell is improved. In addition, the fiber constituting the porous fiber sheet may be a single composition or a composite sheet, and a mixture of two or more selected from carbon fiber, stainless steel fiber, fluorine fiber, and glass fiber. The thing which becomes. In particular, the fiber constituting the porous fiber sheet, which is a mixture of stainless fiber and polytetrafluoroethylene fiber, is a porous fiber sheet that is convenient for balancing hydrophobicity and water repellency, and is preferably used in the present invention. It is done. The porous fiber sheet may be a nonwoven fabric or a mesh.
  Moreover, the thickness of the porous fiber sheet in this invention is 10-500 micrometers, More preferably, it is 15-350 micrometers, More preferably, it is 15-100 micrometers. When the thickness is less than 10 μm, the mechanical strength of the porous fiber sheet itself decreases, and handling up to the cell assembly becomes difficult. On the other hand, when the thickness is larger than 500 μm, the flow path in the porous for gas permeation becomes long and the output voltage at the time of high load is lowered. In addition, the porous fiber sheet is blocked by the generated water, especially on the air electrode side. It is not preferable.
[0010]
  As the vinylidene fluoride resin compound used in the present invention, a homopolymer of vinylidene fluoride or a copolymer comprising at least one monomer such as ethylene tetrafluoride, propylene hexafluoride, and ethylene and vinylidene fluoride is used. It is possible. Since these polymers are electrochemically stable and have excellent acid resistance, they are excellent in long-term stability even when incorporated in a fuel cell. Therefore, these homopolymers or copolymers may be used alone, or the present invention can be suitably carried out with a mixture of two or more. In particular, a homopolymer of vinylidene fluoride is preferable because of its high heat resistance and good mechanical strength. Such a vinylidene fluoride resin compound is obtained by an addition polymerization reaction of a monomer containing vinylidene fluoride, and a known technique can be used as the polymerization method. That is, it can be obtained by radical polymerization, cationic polymerization, anionic polymerization, light / radiation polymerization and the like. The molecular weight of the vinylidene fluoride resin compound suitably used in the present invention is preferably 100,000 to 1,200,000 in weight average molecular weight, and if it is less than 100,000, the mechanical strength of the conductive porous layer becomes insufficient. If it exceeds 1,200,000, the solubility in the solvent may be reduced and the production efficiency may be reduced. However, the present invention is not limited to this.
[0011]
  As the carbon black used in the present invention, a high-structure carbon black having a large specific surface area and a relatively large size of secondary aggregated particles can be suitably used from the viewpoint of both performance and productivity. For example, Lion Akzo's trade name: Ketchin EC and Cabot's trade name: Vulcan XC72R are conductive grade carbon blacks with high dispersibility in coating liquids and resistance when used in conductive porous layers. Although it is suitably used in the present invention because of its lowness, the carbon black usable in the present invention is not limited to this example, and any grade can be used regardless of the specific surface area and the size of the particle diameter. In addition to the so-called carbon black typified by furnace black and channel black, acetylene black, graphite, carbon fibers, carbon nanotubes, and the like are also carbon blacks as used in the present invention, and are also preferably used in the same manner. Any inorganic material having a resistance to an oxidizing atmosphere can be used.
[0012]
  In the present invention, the carbon black content is 5 to 1000 parts by weight, preferably 8 to 800 parts by weight, and more preferably 10 to 500 parts by weight with respect to 100 parts by weight of the vinylidene fluoride resin compound. . If the amount of carbon black is less than 5 parts by weight, the resistivity as a gas diffusion electrode is too high to obtain a good current collecting effect. On the other hand, when the amount exceeds 1000 parts by weight, the carbon black is not sufficiently fixed to the porous fiber sheet by the vinylidene fluoride resin compound, and the carbon black is excessively present, resulting in a porous structure by the vinylidene fluoride resin compound. Cannot be maintained.
[0013]
  Next, the gas diffusion electrode for the polymer electrolyte fuel cell of the present inventionBase materialThe manufacturing method will be described. As a method of forming a conductive porous layer containing a vinylidene fluoride resin compound and carbon black on at least one surface of the porous fiber sheetBelowThe forming method described below is preferred. That is, first, a solution in which a vinylidene fluoride resin compound is dispersed in a solvent is obtained. As the solvent, a solvent that can dissolve the vinylidene fluoride resin compound must be selected. For example, N, N-dimethylacetamide, N, N-dimethylformamide, 1-methyl-2-pyrrolidone, N, N-dimethylsulfoxide Etc. As a method for dispersing and dissolving the vinylidene fluoride resin compound in a solvent, a commercially available stirrer may be used. Since the vinylidene fluoride resin compound used in the present invention is easily dissolved in the solvent at room temperature, it does not need to be heated. The concentration of the dispersion solution needs to be changed as appropriate in consideration of the characteristics of the conductive porous layer to be obtained. Next, a solvent having a boiling point higher than that of the solvent and in which the vinylidene fluoride resin compound is not dissolved is added to and mixed with the solution. As such a second solvent, phthalic acid esters such as dibutyl phthalate and glycols such as ethylene glycol can be selected.
[0014]
  Next, carbon black is appropriately dispersed in a solvent that dissolves the same vinylidene fluoride resin compound as described above, and the resulting dispersion is mixed with the solution of the vinylidene fluoride resin compound to form a coating solution. A commercially available mixer is used for dispersion of carbon black. For example, a homomixer manufactured by Tokushu Kika Co., Ltd., a hybrid mixer manufactured by Keyence Corporation, or the like is preferably used.
  Next, the coating liquid obtained above is applied to one or both sides of the porous fiber sheet by dip coating, spray coating, roll coating, doctor blade method, gravure coating, screen printing, etc., and dried. As a result, the solvent in which the vinylidene fluoride resin compound is dissolved evaporates before the solvent in which the solvent is not dissolved, and the polymer having reduced solubility starts to precipitate, and has a porosity corresponding to the volume of the solvent in which the solvent does not dissolve. Can get the layer.
NaDepending on the coating method, there is a suitable viscosity range of the coating solution, but in order to adjust the viscosity to suit each coating method, the addition amount of the solvent for dissolving the vinylidene fluoride resin is changed. It is possible to adjust easily.
[0015]
  Further, in order to contain the vinylidene fluoride resin compound and carbon black inside the porous fiber sheet, the viscosity of the coating liquid composed of the vinylidene fluoride resin compound and carbon black is lowered, and this low viscosity coating liquid is used. By infiltrating the porous fiber sheet and drying it, the vinylidene fluoride resin compound and carbon black can be contained inside the porous fiber sheet.
  In the present invention, a conductive polymer layer is formed on at least one surface of a porous fiber sheet, and a vinylidene fluoride resin compound and carbon black are further contained in the porous fiber sheet, so that the polymer electrolyte fuel cell Gas diffusion electrodeBase materialMay be configured.
  In the present invention, in addition to the vinylidene fluoride resin compound and carbon black, in addition to polytetrafluoroethylene, tetrafluoroethylene-fluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, etc. A conductive porous layer is formed by using one or more of fluoroethylene-ethylene copolymer, polychlorotrifluoroethylene, chlorotrifluoroethylene-ethylene copolymer, perfluorocyclic polymer, polyvinyl fluoride and the like in combination. It may be configured.
[0016]
  The thickness of the conductive porous layer in the present invention is 0.5 to 400 μm, more preferably 5 to 200 μm, and still more preferably 10 to 150 μm. When the thickness is less than 0.5 μm, the elastic effect of the conductive porous layer cannot be obtained, and the adhesion with the catalyst layer is lowered, which is not preferable. When the thickness is greater than 400 μm, the electrical contact resistance is increased, and the gas diffusion distance is increased, so that the fuel supply may be delayed and the discharge efficiency of the generated water is lowered, which is not preferable.
  The scale for measuring the structure of the conductive porous layer obtained as described above includes porosity, air permeability, and density. The porosity of the conductive porous layer composed of the vinylidene fluoride resin compound and carbon black formed on the porous fiber sheet is preferably in the range of 10 to 90%, more preferably 70 to 90%, More preferably, it is 50 to 90%. If it is less than 10%, the amount of permeated hydrogen decreases in the case of the fuel electrode, and problems such as narrowing of the water vapor permeation flow path occur in the case of the air electrode. If it exceeds 90%, the mechanical strength is remarkably lowered, and it may be damaged in the process until it is assembled into a fuel cell, which may cause inconvenience. Air permeability is 1-1000sec / 100ml, density is 0.15-1.3g / cm3Is preferable for the same reason as described above.
[0017]
  The conductive porous layer using the vinylidene fluoride resin compound as in the present invention is because the vinylidene fluoride resin compound itself is a rubber-like elastic body and further a porous body using the same material. In addition to having very good adhesion with the catalyst layer in contact with the catalyst layer, the contact pressure is kept extremely uniform even if the surface roughness of the catalyst layer is low, so that the catalyst is efficiently applied over the entire surface of the catalyst layer. Can be used for For this reason, partial deterioration of the catalyst can be suppressed, and a long life of the cell can be achieved. In the conventional porous layer made of carbon black itself, the hydrophilicity of carbon black itself is gradually increased over a long period of use and the pore size is as small as 1 μm or less. There is a problem that the power generation efficiency decreases due to the condensation and blockage. On the other hand, since the conductive porous layer using the vinylidene fluoride resin compound of the present invention has a relatively large pore structure of about 1 to 3 μm by the vinylidene fluoride resin compound itself, a gas such as hydrogen or water vapor is used. In addition to being much better than conventional porous materials made of carbon black itself, the vinylidene fluoride resin has moderate hydrophobicity, so the above-mentioned water blocking phenomenon does not occur and stable power generation It is possible to maintain the properties for a long time. Further, by having such a porous structure, the hydrogen supply at the fuel electrode and the moisture permeability at the air electrode are extremely good, and the improvement in power generation efficiency can be easily realized. Further, in a conventional gas diffusion electrode using fluororesin fine particles such as polytetrafluoroethylene as a binder, the fluororesin is not necessarily uniform even when melted because the fluororesin is fine. Does not spread wet. Accordingly, water permeability is non-uniform between the high and low fluororesin concentrations, and the power generation characteristics are not improved. On the other hand, since the vinylidene fluoride resin compound of the present invention is compatible with the solvent of the coating solution, it becomes possible to uniformly wet the carbon black, and there is no such problem as described above. Moreover, since the conductive porous layer of the present invention is rich in elasticity as described above, the contact between the carbon black particles and the carbon black and the porous fiber sheet is improved by pressurizing the cell assembly, and the electrical By reducing the contact resistance, there is an effect that the current collecting property is improved.
[0018]
  Next, the polymer electrolyte fuel cell of the present invention will be described.
  The polymer electrolyte fuel cell of the present invention is the gas diffusion electrode for a polymer electrolyte fuel cell.Base materialIn addition, it has a catalyst layer, a polymer electrolyte membrane having hydrogen ion conductivity, and a separator. The catalyst layer is disposed on both sides of the polymer electrolyte membrane, and has a function of separating and supplying hydrogen ions from a fuel such as hydrogen or methanol on the fuel supply side. On the other hand, the catalyst layer disposed on the air electrode side has a function of oxidizing the hydrogen ions supplied through the polymer electrolyte membrane. The gas diffusion electrode for a polymer electrolyte fuel cell of the present invention adjacent to both the catalyst layersBase materialAnd a separator is disposed adjacent to the gas diffusion electrode. The separator on the fuel electrode side has a function of supplying fuel to the gas diffusion electrode, and the separator disposed on the air electrode side has a function of supplying water to the catalyst layer and a function of discharging water generated in the catalyst layer. Have both.
[0019]
【Example】
  Hereinafter, the present invention will be described in more detail based on examples and comparative examples. However, the present invention is not limited to these examples.
  Example 1
  A vinylidene fluoride homopolymer having a weight average molecular weight of 100,000 was dissolved in 1-methyl-2-pyrrolidone, and dibutyl phthalate was added to prepare solution 1 so that the vinylidene fluoride homopolymer component was 10% by weight. Next, 10% by weight of carbon black (trade name: Vulcan XC72R manufactured by Cabot Corporation) and 90% by weight of 1-methyl-2-pyrrolidone were mixed using a media stirrer to prepare dispersion 1. The solution 1 and the dispersion 1 are mixed and prepared so that the carbon black and the vinylidene fluoride homopolymer are in a weight ratio of carbon black: vinylidene fluoride homopolymer = 3: 1. It was. Next, the coating liquid 1 is applied onto a porous fiber sheet made of carbon paper having a thickness of 270 μm by a doctor blade method and dried to form a conductive porous layer having a thickness of 50 μm. Gas diffusion electrode for polymer fuel cellBase materialGot.
[0020]
  Example 2
  A conductive porous layer having a thickness of 25 μm is formed in the same manner as in Example 1 except that the porous fiber sheet is replaced with a stainless fiber sheet having a thickness of 50 μm, and the gas diffusion electrode for a polymer electrolyte fuel cell of the present invention is formed.Base materialGot.
[0021]
  Example 3
  Solution 2 was prepared in the same manner as in Example 1 except that a vinylidene fluoride homopolymer having a weight average molecular weight of 500,000 was used. Next, this solution 2 and the dispersion liquid 1 of Example 1 were mixed so that the carbon black and the vinylidene fluoride homopolymer were in a weight ratio of carbon black: vinylidene fluoride homopolymer = 4: 1. Thus, a coating liquid 2 was obtained. Next, the coating liquid 2 is applied onto a porous fiber sheet made of carbon paper having a thickness of 270 μm by a doctor blade method and dried to form a conductive porous layer having a thickness of 30 μm. Gas diffusion electrode for polymer fuel cellBase materialGot.
[0022]
  Example 4
  The solid fiber of the present invention is the same as in Example 3 except that the porous fiber sheet is replaced with a polytetrafluoroethylene fiber sheet having a thickness of 70 μm, and a conductive porous layer having a thickness of 5 μm is formed on both surfaces of the fiber sheet. Gas diffusion electrode for molecular fuel cellBase materialGot.
[0023]
  Example 5
  A gas diffusion electrode for a polymer electrolyte fuel cell of the present invention as in Example 3, except that the porous fiber sheet is replaced with a fiber sheet obtained by mixing polytetrafluoroethylene fiber and stainless fiber having a thickness of 100 μm.Base materialGot.
[0024]
  Example 6
  Gas diffusion electrode for polymer electrolyte fuel cell of the present invention as in Example 3, except that the porous fiber sheet is replaced with a fiber sheet obtained by mixing 90 μm thick polytetrafluoroethylene fiber and glass fiber.Base materialGot.
[0025]
  Example 7
  A conductive porous layer having a thickness of 25 μm was formed in the same manner as in Example 1 except that the porous fiber sheet was replaced with a stainless fiber sheet having a thickness of 40 μm and subjected to calendar treatment at room temperature, and the solid polymer of the present invention was formed. Diffusion electrode for type fuel cellBase materialGot.
[0026]
  Example 8
  After immersing carbon paper having a thickness of 270 μm in the coating liquid 1 of Example 1 and soaking the coating liquid 1 inside the carbon paper, the coating liquid 1 adhering to both surfaces of the carbon paper is once rubbed with a doctor blade. The coating liquid 1 of Example 1 was applied to one side by the same method as in Example 1, and the carbon paper contained a vinylidene fluoride resin compound and carbon black in the polymer electrolyte fuel cell of the present invention. Gas diffusion electrodeBase materialGot.
[0027]
  Example 9
  A solid polymer fuel of the present invention is formed by forming a conductive porous layer having a thickness of 25 μm in the same manner as in Example 1 except that the porous fiber sheet is replaced with a non-woven fabric made of polybenzoxide resin fibers having a thickness of 40 μm. Gas diffusion electrode for batteryBase materialGot.
[0028]
  Example 10
  The coating liquid 2 of Example 3 was applied to both sides of a polyester fiber sheet having a thickness of 25 μm by a doctor blade method, and dried to form a conductive porous layer having a thickness of 5 μm on one side. Gas diffusion electrode for polymer fuel cellBase materialGot.
[0029]
  Example 11
  The polyester liquid sheet in Example 10 was calendered to one side of a porous fiber sheet adjusted to a thickness of 15 μm, and the coating liquid 2 of Example 3 was applied by the doctor blade method and dried to a thickness of 5 μm. Gas diffusion electrode for solid polymer fuel cell of the present invention, having a conductive porous layerBase materialGot.
[0030]
  Example 12
  The coating liquid 2 of Example 3 was applied to one side of a 50 μm thick porous fiber sheet obtained by mixing whisker-like fibers made of tungsten carbide and polyester fibers by the doctor blade method, and dried to a thickness of 10 μm. Gas diffusion electrode for solid polymer fuel cell of the present invention, having a conductive porous layerBase materialGot.
[0031]
  Comparative Example 1
  To 100 parts by weight of a dispersion obtained by mixing 10% by weight of carbon black (trade name: Vulcan XC72R, manufactured by Cabot), 1% by weight of polyoxyethylene octylphenyl ether and 89% by weight of ion-exchanged water using a media type dispersing machine, Dispersion of fluoroethylene fine particles (trade name: 30J, manufactured by Mitsui / Dupont Fluorochemical Co., Ltd.) (5 parts by weight) was added, and the mixture was stirred for 30 minutes with a paint shaker manufactured by Red Devil to obtain coating solution 3. Next, the above coating liquid 3 is applied onto a porous fiber sheet made of carbon paper having a thickness of 270 μm by a doctor blade method, and dried for comparison. A gas diffusion electrode for a polymer electrolyte fuel cell for comparisonBase materialGot.
[0032]
  Comparative Example 2
  A non-porous conductive layer having a thickness of 40 μm was formed on the porous fiber sheet in the same manner as in Example 1 except that dibutyl phthalate was not used, and a gas diffusion electrode for a polymer electrolyte fuel cell for comparison purposesBase materialGot.
[0033]
  Next, the gas diffusion electrode for a polymer electrolyte fuel cell shown in the examples and comparative examplesBase materialWas evaluated as follows.
(1) Preparation of catalyst ink
  After mixing 10 parts by weight of a catalyst carrying 20 parts by weight of platinum and 90 parts by weight of butyl acetate in 80 parts by weight of carbon black (product name: Ketchin EC, manufactured by Lion Akzo Co.) and dispersing for 10 minutes with an ultrasonic cleaner. Further, with respect to 100 parts by weight of this dispersion, 200 parts by weight of a solution obtained by dissolving 5 parts by weight of an ion exchange solution (trade name: Nafion, manufactured by DuPont) in a mixed solvent of water and alcohol, and a disperser of polytetrafluoroethylene 5 parts by weight of John (trade name: 30J, manufactured by Mitsui / Dupont Fluoro Chemical Co., Ltd.) was additionally mixed, and further dispersed for 30 minutes with an ultrasonic cleaner to obtain a catalyst ink.
(2) Fabrication of polymer electrolyte fuel cell (single cell)
  Next, a gas diffusion electrode for a polymer electrolyte fuel cell in which the above catalyst ink was prepared in the above examples and comparative examplesBase materialThe platinum content is 0.8mg / cm2It was applied and dried to form a catalyst layer. Polymers comprising two gas diffusion electrodes for each polymer electrolyte fuel cell coated with the catalyst inks of Examples and Comparative Examples subjected to the above treatments as a fuel electrode and an air electrode, and the catalyst layer surface of which is an ion exchange membrane The electrode membrane was bonded to an electrolyte membrane (trade name: Nafion 117, manufactured by DuPont) and bonded by a hot press (140 ° C.) to prepare an electrode / membrane assembly. The electrode / membrane assembly was further sandwiched between separators to form a cell, thereby obtaining a polymer electrolyte fuel cell (single cell).
  Next, a gas composed of hydrogen and oxygen was supplied to each single cell. All the supply gases were humidified by bubbling to a supply pressure of 2.5 atm, and supplied with the temperature applied to the single cell maintained at 70 ° C. to generate a voltage. Current density is 1A / cm2The results of examining the voltage at are shown in Table 1. As for the voltage in Table 1, the higher the numerical value, the gas diffusion electrode for the polymer electrolyte fuel cellBase materialAs good as it shows.
[0034]
[Table 1]
Figure 0004388314
[0035]
  From the results in Table 1, the gas diffusion electrode for the polymer electrolyte fuel cell of the present inventionBase materialIn all cases, the voltage drop during continuous operation was small. This is a gas diffusion electrode for a polymer electrolyte fuel cell according to the present invention.Base materialIt is considered that both the porous fiber sheet and the conductive porous layer have both high gas permeability and good water repellency. On the other hand, in Comparative Example 1, it is considered that the portion of the PTFE having a low density caused a drop in voltage due to the supply water and produced water being blocked in the carbon black particle gaps during a long time operation. In Comparative Example 2, the porous fiber sheet portion maintains a porous structure in which gas is satisfactorily supplied, but a polyvinylidene fluoride resin compound and an incompatible solvent are mixed in the coating liquid. Therefore, it is considered that the porous structure made of the polyvinylidene fluoride resin compound was not formed, and as a result, the gas supply amount was reduced, resulting in a decrease in power generation performance.
[0036]
【The invention's effect】
  According to the present invention, the permeation of fuel gas and generated water is very good, the adhesion with the catalyst layer is good, the hydrophilicity and hydrophobicity balance is excellent, and the clogging phenomenon due to water is difficult to occur over a long period of time. Inexpensive gas diffusion electrode for polymer electrolyte fuel cell with power generation characteristicsBase materialIn addition, a polymer electrolyte fuel cell can be provided.

Claims (15)

多孔質繊維シートの少なくとも片面にフッ化ビニリデン樹脂化合物及びカーボンブラックを含有した導電性多孔質層を形成してなり、
前記導電性多孔質層が、フッ化ビニリデン樹脂化合物を該フッ化ビニリデン樹脂化合物が溶解する溶媒に分散させ溶液を得た後、該溶液に前記溶媒より沸点が高く且つ前記フッ化ビニリデン樹脂化合物が溶解しない溶媒を混合し、次いでカーボンブラックを混合して塗液を得た後、該塗液を多孔質繊維シート上に塗布し、乾燥させて得たものか、又は、前記導電性多孔質層が、フッ化ビニリデン樹脂化合物を該フッ化ビニリデン樹脂化合物が溶解する溶媒に分散させ溶液を得た後、該溶液に前記溶媒より沸点が高く且つ前記フッ化ビニリデン樹脂化合物が溶解しない溶媒を混合し、次いで前記フッ化ビニリデン樹脂化合物が溶解する溶媒にカーボンブラックを分散した分散液を混合して塗液を得た後、該塗液を多孔質繊維シート上に塗布し、乾燥させて得たものであることを特徴とする固体高分子型燃料電池用ガス拡散電極基材。
Forming a conductive porous layer containing a vinylidene fluoride resin compound and carbon black on at least one surface of the porous fiber sheet;
After the conductive porous layer obtains a solution by dispersing the vinylidene fluoride resin compound in a solvent in which the vinylidene fluoride resin compound is dissolved, the solution has a boiling point higher than that of the solvent and the vinylidene fluoride resin compound is the solvent that does not dissolve by mixing, then after obtaining a coating solution by mixing carbon black, and applying the coating liquid to the porous fiber sheet, or not obtained by drying, or, the conductive porous layer However, after a vinylidene fluoride resin compound is dispersed in a solvent in which the vinylidene fluoride resin compound is dissolved to obtain a solution, a solvent having a boiling point higher than that of the solvent and in which the vinylidene fluoride resin compound is not dissolved is mixed with the solution. Then, after mixing a dispersion in which carbon black is dispersed in a solvent in which the vinylidene fluoride resin compound is dissolved to obtain a coating liquid, the coating liquid is applied onto the porous fiber sheet, For a polymer electrolyte fuel cell gas diffusion electrode substrate, characterized in that those obtained by燥.
前記多孔質繊維シートが、カーボンペーパー、カーボンクロス、樹脂繊維シート、金属繊維シート、無機繊維シートのいずれかであることを特徴とする請求項1に記載の固体高分子型燃料電池用ガス拡散電極基材。  2. The gas diffusion electrode for a polymer electrolyte fuel cell according to claim 1, wherein the porous fiber sheet is any one of carbon paper, carbon cloth, resin fiber sheet, metal fiber sheet, and inorganic fiber sheet. Base material. 前記樹脂繊維シートを構成する樹脂繊維が、フッ素樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリベンズオキサイド樹脂のいずれかであることを特徴とする請求項2に記載の固体高分子型燃料電池用ガス拡散電極基材。  3. The solid polymer type according to claim 2, wherein the resin fiber constituting the resin fiber sheet is any one of a fluororesin, a polyester resin, a polyolefin resin, a polyamide resin, a polyimide resin, and a polybenzoxide resin. Gas diffusion electrode base material for fuel cells. 前記金属繊維シートを構成する金属繊維が、ステンレスであることを特徴とする請求項2に記載の固体高分子型燃料電池用ガス拡散電極基材。  The gas diffusion electrode substrate for a polymer electrolyte fuel cell according to claim 2, wherein the metal fiber constituting the metal fiber sheet is stainless steel. 前記無機繊維シートを構成する無機繊維が、ガラス、炭素、セラミックスのいずれかであることを特徴とする請求項2に記載の固体高分子型燃料電池用ガス拡散電極基材。  The gas diffusion electrode base material for a polymer electrolyte fuel cell according to claim 2, wherein the inorganic fiber constituting the inorganic fiber sheet is any one of glass, carbon, and ceramics. 前記多孔質繊維シートが、その表面をカレンダー処理してあることを特徴とする請求項1から5のいずれかに記載の固体高分子型燃料電池用ガス拡散電極基材。  The gas diffusion electrode substrate for a polymer electrolyte fuel cell according to any one of claims 1 to 5, wherein the porous fiber sheet is calendered on the surface thereof. 前記多孔質繊維シートが、炭素繊維、ステンレス繊維、フッ素繊維、ガラス繊維から選ばれた2種以上を混抄してなることを特徴とする請求項1に記載の固体高分子型燃料電池用ガス拡散電極基材。  The gas diffusion for a polymer electrolyte fuel cell according to claim 1, wherein the porous fiber sheet is a mixture of two or more selected from carbon fiber, stainless steel fiber, fluorine fiber, and glass fiber. Electrode substrate. 前記フッ化ビニリデン樹脂化合物の重量平均分子量が10万〜120万であることを特徴とする請求項1に記載の固体高分子型燃料電池用ガス拡散電極基材。  The gas diffusion electrode substrate for a polymer electrolyte fuel cell according to claim 1, wherein the vinylidene fluoride resin compound has a weight average molecular weight of 100,000 to 1,200,000. 多孔質繊維シートの内部にフッ化ビニリデン樹脂化合物及びカーボンブラックを含有してなる固体高分子型燃料電池用ガス拡散電極基材であって、
前記固体高分子型燃料電池用ガス拡散電極基材が、フッ化ビニリデン樹脂化合物を該フッ化ビニリデン樹脂化合物が溶解する溶媒に分散させ溶液を得た後、該溶液に前記溶媒より沸点が高く且つ前記フッ化ビニリデン樹脂化合物が溶解しない溶媒を混合し、次いでカーボンブラックを混合して塗液を得た後、該塗液を多孔質繊維シートに浸透し、乾燥させて得たものか、又は、前記固体高分子型燃料電池用ガス拡散電極基材が、フッ化ビニリデン樹脂化合物を該フッ化ビニリデン樹脂化合物が溶解する溶媒に分散させ溶液を得た後、該溶液に前記溶媒より沸点が高く且つ前記フッ化ビニリデン樹脂化合物が溶解しない溶媒を混合し、次いで前記フッ化ビニリデン樹脂化合物が溶解する溶媒にカーボンブラックを分散した分散液を混合して塗液を得た後、該塗液を多孔質繊維シートに浸透し、乾燥させて得たものであることを特徴とする固体高分子型燃料電池用ガス拡散電極基材。
A gas diffusion electrode base material for a polymer electrolyte fuel cell comprising a vinylidene fluoride resin compound and carbon black inside a porous fiber sheet,
The gas diffusion electrode base material for a polymer electrolyte fuel cell is obtained by dispersing a vinylidene fluoride resin compound in a solvent in which the vinylidene fluoride resin compound is dissolved to obtain a solution, and the solution has a boiling point higher than that of the solvent and after the vinylidene fluoride resin compound is mixed a solvent which does not dissolve, then to obtain a coating liquid by mixing carbon black, it penetrates the coating liquid to the porous fiber sheet or not obtained by drying, or, The gas diffusion electrode base material for a polymer electrolyte fuel cell is obtained by dispersing a vinylidene fluoride resin compound in a solvent in which the vinylidene fluoride resin compound is dissolved to obtain a solution, and the solution has a boiling point higher than that of the solvent and A solvent in which the vinylidene fluoride resin compound is not dissolved is mixed, and then a dispersion in which carbon black is dispersed in the solvent in which the vinylidene fluoride resin compound is dissolved is mixed. After obtaining, penetrates the coating liquid to the porous fiber sheet, a polymer electrolyte fuel cell gas diffusion electrode substrate, characterized in that those obtained by drying.
前記多孔質繊維シートが、カーボンペーパー、カーボンクロス、樹脂繊維シート、金属繊維シート、無機繊維シートのいずれかであることを特徴とする請求項9に記載の固体高分子型燃料電池用ガス拡散電極基材。  The gas diffusion electrode for a polymer electrolyte fuel cell according to claim 9, wherein the porous fiber sheet is any one of carbon paper, carbon cloth, resin fiber sheet, metal fiber sheet, and inorganic fiber sheet. Base material. 前記多孔質繊維シートが、その表面をカレンダー処理してあることを特徴とする請求項9または10に記載の固体高分子型燃料電池用ガス拡散電極基材。  The gas diffusion electrode substrate for a polymer electrolyte fuel cell according to claim 9 or 10, wherein the surface of the porous fiber sheet is calendered. 前記フッ化ビニリデン樹脂化合物の重量平均分子量が10万〜120万であることを特徴とする請求項9に記載の固体高分子型燃料電池用ガス拡散電極基材。  The gas diffusion electrode substrate for a polymer electrolyte fuel cell according to claim 9, wherein the vinylidene fluoride resin compound has a weight average molecular weight of 100,000 to 1,200,000. フッ化ビニリデン樹脂化合物を該フッ化ビニリデン樹脂化合物が溶解する溶媒に分散させ溶液を得た後、該溶液に前記溶媒より沸点が高く且つ前記フッ化ビニリデン樹脂化合物が溶解しない溶媒を混合し、次いでカーボンブラックを混合して塗液を得た後、該塗液を多孔質繊維シート上に塗布し、乾燥することを特徴とする固体高分子型燃料電池用ガス拡散電極基材の製造方法。  After obtaining a solution by dispersing the vinylidene fluoride resin compound in a solvent in which the vinylidene fluoride resin compound is dissolved, the solvent is mixed with a solvent having a boiling point higher than that of the solvent and in which the vinylidene fluoride resin compound is not dissolved, A method for producing a gas diffusion electrode substrate for a polymer electrolyte fuel cell, comprising: mixing a carbon black to obtain a coating liquid; and then applying the coating liquid on a porous fiber sheet and drying. フッ化ビニリデン樹脂化合物を該フッ化ビニリデン樹脂化合物が溶解する溶媒に分散させ溶液を得た後、該溶液に前記溶媒より沸点が高く且つ前記フッ化ビニリデン樹脂化合物が溶解しない溶媒を混合し、次いで前記フッ化ビニリデン樹脂化合物が溶解する溶媒にカーボンブラックを分散した分散液を混合して塗液を得た後、該塗液を多孔質繊維シート上に塗布し、乾燥することを特徴とする固体高分子型燃料電池用ガス拡散電極基材の製造方法。  After obtaining a solution by dispersing the vinylidene fluoride resin compound in a solvent in which the vinylidene fluoride resin compound is dissolved, the solvent is mixed with a solvent having a boiling point higher than that of the solvent and in which the vinylidene fluoride resin compound is not dissolved, A solid obtained by mixing a dispersion in which carbon black is dispersed in a solvent in which the vinylidene fluoride resin compound is dissolved to obtain a coating liquid, and then applying the coating liquid on a porous fiber sheet and drying the solid. A method for producing a gas diffusion electrode substrate for a polymer fuel cell. 請求項1または請求項9の固体高分子型燃料電池用ガス拡散電極基材と、触媒層、高分子電解質膜及びセパレータを用いたことを特徴とする固体高分子型燃料電池。  10. A polymer electrolyte fuel cell comprising the gas diffusion electrode substrate for a polymer electrolyte fuel cell according to claim 1 or 9, a catalyst layer, a polymer electrolyte membrane, and a separator.
JP2003175495A 2003-01-21 2003-06-19 GAS DIFFUSION ELECTRODE BASE FOR SOLID POLYMER FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL USING THE SAME Expired - Fee Related JP4388314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003175495A JP4388314B2 (en) 2003-01-21 2003-06-19 GAS DIFFUSION ELECTRODE BASE FOR SOLID POLYMER FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL USING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003012805 2003-01-21
JP2003175495A JP4388314B2 (en) 2003-01-21 2003-06-19 GAS DIFFUSION ELECTRODE BASE FOR SOLID POLYMER FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL USING THE SAME

Publications (2)

Publication Number Publication Date
JP2004281363A JP2004281363A (en) 2004-10-07
JP4388314B2 true JP4388314B2 (en) 2009-12-24

Family

ID=33301507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003175495A Expired - Fee Related JP4388314B2 (en) 2003-01-21 2003-06-19 GAS DIFFUSION ELECTRODE BASE FOR SOLID POLYMER FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL USING THE SAME

Country Status (1)

Country Link
JP (1) JP4388314B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650673B2 (en) * 2004-12-14 2011-03-16 東海カーボン株式会社 Separator material for fuel cell and manufacturing method thereof
US20060199068A1 (en) * 2005-01-26 2006-09-07 Lee Jong-Ki Electrode and membrane/electrode assembly for fuel cells and fuel cell systems comprising same
US7608334B2 (en) * 2005-03-29 2009-10-27 3M Innovative Properties Company Oxidatively stable microlayers of gas diffusion layers
JP2006318790A (en) * 2005-05-13 2006-11-24 Tomoegawa Paper Co Ltd Solid polymer type fuel cell, gas diffusion electrode therefor, and its manufacturing method
JP4811992B2 (en) * 2005-08-22 2011-11-09 日産自動車株式会社 Conductive porous film
JP4906307B2 (en) * 2005-10-21 2012-03-28 アイシン化工株式会社 Method for producing gas diffusion layer for fuel cell electrode
JP4868949B2 (en) * 2006-06-07 2012-02-01 ペルメレック電極株式会社 Gas diffusion electrode and manufacturing method thereof
JP2008204945A (en) * 2007-01-23 2008-09-04 Japan Vilene Co Ltd Gas diffusion electrode substrate, gas diffusion electrode, its manufacturing method, and fuel cell
JP4985737B2 (en) * 2009-09-30 2012-07-25 大日本印刷株式会社 Gas diffusion electrode with microporous layer, catalyst layer with microporous layer, gas diffusion electrode with catalyst layer, membrane-electrode assembly, and polymer electrolyte fuel cell for fuel cell
US20110143262A1 (en) * 2009-12-10 2011-06-16 Gm Global Technology Operations, Inc. Gas diffusion media made from electrically conductive coatings on non-conductive fibers
BR112012028043A2 (en) * 2010-06-29 2017-03-21 Vito Nv gas diffusion electrode, method of producing the same, membrane electrode unit comprising the same and method of producing membrane electrode unit comprising the same
JP5421227B2 (en) * 2010-07-05 2014-02-19 株式会社日本自動車部品総合研究所 Manufacturing method, manufacturing apparatus and fuel cell for gas diffusion layer of fuel cell
JP5543322B2 (en) * 2010-12-03 2014-07-09 日本板硝子株式会社 Current collector substrate for solid fuel cell
JP5883301B2 (en) * 2011-02-07 2016-03-15 日本バイリーン株式会社 Moisture management sheet, gas diffusion sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
JP6209515B2 (en) * 2012-07-13 2017-10-04 日本バイリーン株式会社 Base material for gas diffusion electrode, gas diffusion electrode, membrane-electrode assembly, and polymer electrolyte fuel cell
CN104022306B (en) * 2014-05-16 2016-06-08 中山大学 A kind of solid porous polymer dielectric and its preparation method and application
US10950868B2 (en) * 2015-12-24 2021-03-16 Toray Industries, Inc. Gas diffusion electrode and fuel cell
HUE060665T2 (en) 2015-12-24 2023-04-28 Toray Industries Gas diffusion electrode
ES2784939T3 (en) 2015-12-24 2020-10-02 Toray Industries Electrode and gas diffusion method to make the same
DE102019203373A1 (en) * 2019-03-13 2020-09-17 Robert Bosch Gmbh Gas diffusion layer for a fuel cell and fuel cell

Also Published As

Publication number Publication date
JP2004281363A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JP4388314B2 (en) GAS DIFFUSION ELECTRODE BASE FOR SOLID POLYMER FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER FUEL CELL USING THE SAME
JP5107050B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP4023903B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
TW200301582A (en) Gas diffusion backing for fuel cells
EP1950826A1 (en) Gas diffusion electrode substrate, gas diffusion electrode and process for its production, and fuel cell
JP5066998B2 (en) Membrane electrode assembly for polymer electrolyte fuel cells
KR101931890B1 (en) Membrane electrode assembly
WO2005081339A1 (en) Gas diffusion layer and fuel cell using same
JP2002313359A (en) Solid polymer fuel cell
JP4348155B2 (en) Catalyst membrane for polymer electrolyte fuel cell, production method thereof and fuel cell using the same
JP2006324104A (en) Gas diffusion layer for fuel cell and fuel cell using this
JP2007200762A (en) Membrane electrode assembly for solid polymer fuel cell, and manufacturing method therefor
JP2007128671A (en) Gas diffusion electrode, film-electrode assembly and manufacturing method of the same, and solid polymer fuel cell
JP5233153B2 (en) Membrane electrode assembly for polymer electrolyte fuel cells
JP2007012424A (en) Gas diffusion electrode, membrane-electrode joined body and its manufacturing method, and solid polymer fuel cell
US20020192538A1 (en) Current collector for fuel cell and method of producing the same
JP5193478B2 (en) Gas diffusion electrode, membrane-electrode assembly and method for producing the same, and polymer electrolyte fuel cell
EP1059686A2 (en) Polymer electrolyte fuel cell
JP4817622B2 (en) Method for producing gas diffusion electrode for polymer electrolyte fuel cell
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP4348154B2 (en) Catalyst membrane for polymer electrolyte fuel cell, production method thereof and fuel cell using the same
JP4828864B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell, membrane-electrode assembly for polymer electrolyte fuel cell, production method thereof, and polymer electrolyte fuel cell
JP5339261B2 (en) Fuel cell
JP4423063B2 (en) Membrane / electrode assembly and polymer electrolyte fuel cell using the same
JP2009037933A (en) Gas diffusion electrode for solid polymer fuel cell, membrane-electrode assembly and manufacturing method for the solid polymer fuel cell, and the solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees