JP4388272B2 - Host microorganism - Google Patents

Host microorganism Download PDF

Info

Publication number
JP4388272B2
JP4388272B2 JP2002344261A JP2002344261A JP4388272B2 JP 4388272 B2 JP4388272 B2 JP 4388272B2 JP 2002344261 A JP2002344261 A JP 2002344261A JP 2002344261 A JP2002344261 A JP 2002344261A JP 4388272 B2 JP4388272 B2 JP 4388272B2
Authority
JP
Japan
Prior art keywords
gene
microorganism
polypeptide
protein
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002344261A
Other languages
Japanese (ja)
Other versions
JP2004173598A (en
Inventor
和久 澤田
正敏 東畑
克也 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002344261A priority Critical patent/JP4388272B2/en
Publication of JP2004173598A publication Critical patent/JP2004173598A/en
Application granted granted Critical
Publication of JP4388272B2 publication Critical patent/JP4388272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有用なタンパク質又はポリペプチドの生産に用いる宿主微生物、及び組換え微生物に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
微生物による有用物質の工業的生産は、アルコール飲料や味噌、醤油等の食品類をはじめとし、アミノ酸、有機酸、核酸関連物質、抗生物質、糖質、脂質、タンパク質等、その種類は多岐に渡っており、またその用途についても食品、医薬や、洗剤、化粧品等の日用品、或いは各種化成品原料に至るまで幅広い分野に広がっている。
【0003】
こうした微生物による有用物質の工業生産においては、その生産性の向上が重要な課題の一つであり、その手法として、突然変異等の遺伝学的手法による生産菌の育種が行われてきた。特に最近では、微生物遺伝学、バイオテクノロジーの発展により、遺伝子組換え技術等を用いたより効率的な生産菌の育種が行われるようになっており、遺伝子組換えのための宿主微生物の開発が進められている。例えば、枯草菌Marburg No.168系統株の様に宿主微生物として安全かつ優良と認められた微生物菌株に更に改良を加えた菌株が開発されている。
【0004】
しかしながら、微生物は元来、自然界における環境変化に対応するための多種多様な遺伝子群を有しており、限定された生産培地が使用されるタンパク質等の工業的生産においては、必ずしも生産性が効率的であるとは言えない状況であった。
【0005】
また、ある種の微生物については、胞子形成初期に関わる遺伝子を単独に削除又は不活性化した菌株が構築されているが(特許文献1、特許文献2、特許文献3、特許文献4参照)、生産性向上の効果が十分といえるものではない。
【0006】
従って、本発明はタンパク質又はポリペプチドの生産に不要或いは有害な遺伝子をゲノム上から削除又は不活性化することにより、タンパク質又はポリペプチドの生産性向上を可能とする宿主微生物を提供することを目的としている。また、本発明は当該宿主微生物に転写開始制御領域、翻訳開始制御領域又は分泌用シグナル領域の下流に結合したタンパク質又はポリペプチドをコードする遺伝子を導入して得られる組換え微生物、更に、当該組換え微生物を用いるタンパク質又はポリペプチドの製造法を提供することを目的とする。
【0007】
【特許文献1】
特開昭58−190390号公報
【特許文献2】
特開昭61−1381号公報
【特許文献3】
国際公開第89/04866号パンフレット
【特許文献4】
特表平11−509096号公報
【0008】
【課題を解決するための手段】
本発明者らは、微生物ゲノム上にコードされる各種遺伝子において、有用なタンパク質又はポリペプチドの生産にとって不要或いは有害な働きをする遺伝子群を鋭意探索したところ、胞子形成の中期から後期にかけて発現する特定の遺伝子をゲノム上から削除又は不活性化した後、目的のタンパク質又はポリペプチドをコードする遺伝子を適当な転写開始制御領域、翻訳開始制御領域又は分泌シグナル領域を結合して導入することにより、目的のタンパク質又はポリペプチドの生産性が、削除又は不活性化前と比較して向上することを見出した。
【0009】
すなわち本発明は、胞子形成第II期、第III期、第IV期又は第V期に特異的に発現するRNAポリメラーゼのσ因子の活性化に関与する遺伝子群から選ばれた1以上の遺伝子を削除又は不活性化した微生物、当該微生物に目的のタンパク質又はポリペプチドをコードする遺伝子を適当な転写開始制御領域、翻訳開始制御領域又は分泌シグナル領域を結合して導入して得られる組換え微生物、並びに当該組換え微生物を用いたタンパク質又はポリペプチドの製造方法を提供するものである。
【0010】
【発明の実施の形態】
本発明の微生物を構築するための親微生物としては、胞子形成に関与する遺伝子を有するものであればよく、胞子を形成する微生物がより好ましい。これらは、野生型のものでも変異を施したものでものよい。具体的には、枯草菌などのバチルス(Bacillus)属細菌や、クロストリジウム(Clostridium)属細菌、或いは酵母等が挙げられ、中でもバチルス(Bacillus)属細菌が好ましい。更に、全ゲノム情報が明らかにされ、遺伝子工学、ゲノム工学技術が確立されている点、またタンパク質と菌体外に分泌生産させる能力を有する点から特に枯草菌が好ましい。
【0011】
本発明の微生物を用いて生産する目的タンパク質又はポリペプチドとしては、例えば食品用、医薬品用、化粧品用、洗浄剤用、繊維処理用、医療検査薬用等として有用な酵素や生理活性因子等のタンパク質やポリペプチドが挙げられる。
【0012】
胞子の形成にはゲノム上に散在する250遺伝子以上が関与することが知られているが、本発明において削除又は不活性の対象となる遺伝子群は、胞子形成の中期から後期、すなわち第II期、第III期、第IV期又は第V期に特異的に発現するRNAポリメラーゼのσ因子の活性化に関与する遺伝子群から選ばれた1以上の遺伝子であるが、このうち胞子形成第II期又は第III期、特に胞子形成期第II期に関与する遺伝子群が好ましく、具体的には当該胞子形成期に特異的に発現するRNAポリメラーゼσ因子、例えば枯草菌のσE、σF、σG又はσKの活性化に関与する遺伝子群が挙げられる。
斯かる遺伝子群は、目的タンパク質の生産には直接関与しておらず、また、通常の工業的生産培地における微生物の生育にも不要であることが本発明者らによって見出された。
【0013】
枯草菌における当該遺伝子の一例を下記表1に示す。
尚、本明細書の各遺伝子の名称、位置、塩基番号及び機能は、Nature, 390, 249-256, (1997) で報告され、JAFAN: Japan Functional Analysis Network for Bacillus subtilis (BSORF DB)でインターネット公開(http://bacillus.genome.ad.jp/)された枯草菌ゲノムデーターに基づいて記載している。
【0014】
【表1】

Figure 0004388272
【0015】
また、削除又は不活性の対象となる遺伝子は、表1に記載の遺伝子に相当する遺伝子でもよく、斯かる遺伝子としては、例えば表1に示される枯草菌の各遺伝子と同じ機能を有する、または、表1の各遺伝子と70%以上、好ましくは80%以上、より好ましくは90%以上、更に好ましくは95%以上の相同性を有する、他の微生物由来、好ましくはバチルス属細菌の由来の遺伝子が挙げられる。
尚、配列の相同性はLipman-Pearson法 (Science, 227, 1435, (1985))によって計算される。
【0016】
斯かる遺伝子群の中から選ばれる1又は複数の遺伝子を削除又は不活性化することにより胞子形成に関与する化学エネルギーの消費が減ること、また、タンパク質又はポリペプチドの生産期間が長期化することに等により、当該タンパク質又はポリペプチドの生産において、その生産性の向上が達成される。
尚、削除又は不活性化する遺伝子は1以上であればよいが、複数、特に3以上更に最適には5以上であることが好ましい。
【0017】
更に本発明の微生物の構築には、上記以外の遺伝子群の削除又は不活性化を組み合わせることも可能であり、生産性向上に対してより大きな効果が期待される。
【0018】
遺伝子群の削除又は不活性化の方法は、公知の方法、例えば標的遺伝子を順次削除又は不活性化する方法や、ランダムな遺伝子の削除又は不活性化変異を与えた後、適当な方法によりタンパク質生産性の評価及び遺伝子解析を行うことによって遺伝子群の削除又は不活性化する方法等を用いることができる。
【0019】
標的とする遺伝子を削除又は不活性化するには、例えば相同組換えによる方法を用いればよい。すなわち、標的遺伝子を含むDNA断片を適当なプラスミドベクターにクローニングした後、通常の遺伝子工学技術を用いて遺伝子の全領域又は一部領域を両側のDNA断片を残した形で削除する、塩基置換やフレームシフト等によって構造遺伝子中にナンセンス変異を与える、或いはクローニングやPCRなどにより単離した目的遺伝子断片中に他のDNA断片を挿入する等の改変を行った後、改変遺伝子を含むDNA断片を、親微生物に取り込ませて、親微生物ゲノムとの間で目的遺伝子の外側の両領域で相同組換えを起こさせることにより、ゲノム上の標的遺伝子を削除或いは不活性化した遺伝子断片と置換することが可能である。
【0020】
特に、本発明微生物を構築するための親微生物として枯草菌を用いる場合、相同組換えにより標的遺伝子を削除又は不活性化する方法については、既にいくつかの報告例があり(Mol. Gen. Genet., 223, 268 (1990)等)、こうした方法を繰り返すことによって、本発明の宿主微生物を得ることができる。
また、ランダムな遺伝子の削除又は不活性化についてもランダムにクローニングしたDNA断片を用いて上述の方法と同様な相同組換えを起こさせる方法や、親微生物にγ線等を照射すること等によっても実施可能である。
【0021】
かくして得られたRNAポリメラーゼのσ因子の活性化に関与する遺伝子群から選ばれた1以上の遺伝子を削除又は不活性化した宿主微生物に、目的とするタンパク質又はポリペプチド、すなわち異種(外来)のタンパク質又はポリペプチドをコードする遺伝子を導入することによって、本発明の組換え微生物を得ることができる。
【0022】
目的タンパク質又はポリペプチド遺伝子は特に限定されず、洗剤、食品、繊維、飼料、化学品、医療、診断など各種産業用酵素や、生理活性ペプチドなどが含まれる。また、産業用酵素の機能別には、酸化還元酵素 (Oxidoreductase) 、転移酵素 (Transferase) 、加水分解酵素 (Hydrolase) 、脱離酵素 (Lyase)、異性化酵素 (Isomerase) 、合成酵素 (Ligase/Synthetase) 等が含まれるが、好適にはセルラーゼ、α-アミラーゼ、プロテアーゼ等の加水分解酵素の遺伝子が挙げられる。具体的には、多糖加水分解酵素の分類(Biochem. J., 280, 309 (1991))中でファミリー5に属するセルラーゼが挙げられ、中でも微生物由来、特にバチルス属細菌由来のセルラーゼが挙げられる。より具体的な例として、配列番号1又は2で示されるアミノ酸配列を有するバチルス属細菌由来のアルカリセルラーゼや、配列番号1又は2で示されるアミノ酸配列と70%、好ましくは80%、より好ましくは90%以上、更に好ましくは95%以上の相同性を有する配列のセルラーゼが挙げられる。尚、アミノ酸配列の相同性はLipman-Pearson法 (Science, 227, 1435, (1985))によって計算される。また、α−アミラーゼの具体例としては、微生物由来のα−アミラーゼが挙げられ、特にバチルス属細菌由来の液化型アミラーゼが好ましい。また、プロテアーゼの具体例としては、微生物由来、特にバチルス属細菌由来のセリンプロテアーゼや金属プロテアーゼ等が挙げられる。
【0023】
また、目的タンパク質又はポリペプチド遺伝子は、その上流に当該遺伝子の転写、翻訳、および分泌に関わる制御領域、即ち、プロモーターおよび転写開始点を含む転写開始制御領域、リボソーム結合部位及び開始コドンを含む翻訳開始領域、又は分泌用シグナルペプチド領域が適正な形で結合されていることが望ましい。例えば、特開2000-210081号公報や特開平4-190793号公報等に記載されているバチルス属細菌由来のセルラーゼ遺伝子、および当該セルラーゼ遺伝子に隣接の上流0.6〜1kb以内の領域から得られる当該領域、より具体的には配列番号1若しくは2で示される塩基配列又はこれらと70%以上、好ましくは80%以上、より好ましくは90%以上、更に好ましくは95%以上の相同性を有するセルラーゼ遺伝子から得られる領域が結合されていることが望ましい。
【0024】
上記の目的タンパク質又はポリペプチド遺伝子を含むDNA断片と適当なプラスミドベクターを結合た組換えプラスミドを、一般的な形質転換法によって宿主微生物細胞に取り込ませることによって、本発明の組換え微生物を得ることができる。また、当該DNA断片に宿主微生物ゲノムとの適当な相同領域を結合したDNA断片を用い、宿主微生物ゲノムに直接組み込むことによっても本発明の組換え微生物を得ることができる。
【0025】
本発明の組換え微生物を用いた目的タンパク質又はポリペプチドの生産は、当該菌株を同化性の炭素源、窒素源、その他の必須成分を含む培地に接種し、通常の微生物培養法にて培養し、培養終了後、タンパク質又はポリペプチドを採取・精製することにより行えばよい。
【0026】
以上より、目的とする胞子形成関与の遺伝子を削除又は不活性化した宿主微生物、及び当該宿主微生物を用いて組換え微生物を構築することができ、これを用いれば有用なタンパク質又はポリペプチドを効率的に生産することができる。以下に、枯草菌を用いてα−アミラーゼ又はセルラーゼを生産する場合について具体的に説明する。
【0027】
例えば、枯草菌において胞子形成の第II期以降にフォアスポア内で発現するRNAポリメラーゼのσE因子の活性化に関与するコードするspoIIGA遺伝子(930bp)を削除する場合、以下の様に行えばよい。
まず、宿主とする枯草菌株から抽出したゲノム遺伝子を鋳型としてSOE(splicing by overlap extention)−PCR法(Gene, 77, 61, (1989))等により、spoIIGA遺伝子の開始コドンより上流側のDNA断片と終止コドンより下流側のDNA断片が、その間にクロラムフェニコール耐性遺伝子等のマーカー遺伝子を挿入した形で結合したDNA断片を調製する。
【0028】
次に、得られたDNA断片によって宿主枯草菌株をコンピテント法により形質転換し、クロラムフェニコール耐性等を指標として形質転換体を分離することによって、spoIIGA遺伝子の上流側と下流側で相同組換えが起こり、ゲノム上のspoIIGA遺伝子がクロラムフェニコール耐性遺伝子等のマーカー遺伝子と置換した形質転換体を取得することができる。
【0029】
続いて、得られた形質転換体及び対照として元の枯草菌株に、α−アミラーゼ又はセルラーゼをコードする遺伝子が含まれるプラスミドを導入して、得られる組換え体を適当な条件、例えば栄養培地における振とう培養などを行った後、培養液上清液のα−アミラーゼ活性又はセルラーゼ活性を測定し元の宿主枯草菌株の生産性と比較することによって、spoIIGA遺伝子の削除による目的生産物の高生産化を確認することができる。また、この培養液から採取・精製することによって、α−アミラーゼ又はセルラーゼを得ることができる。
【0030】
【実施例】
実施例1
枯草菌168株から抽出したゲノムDNAを鋳型として増幅した、ゲノム上のspoIIGA遺伝子(塩基番号:1603174→1604103)の上流に隣接する1.5kb断片(A)、及び下流に隣接する1.5kb断片(B)と、プラスミドpC194を鋳型として増幅したクロラムフェニコール耐性遺伝子を含む0.9kb断片(C)を、(A)(B)(C)の順になる様にSOE−PCR法によって結合させ、3.9kbのDNA断片を得た。このDNA断片を用いて、コンピテント法により枯草菌168株の形質転換を行い、クロラムフェニコールを含むLB寒天培地上に生育したコロニーを形質転換体として分離した。この結果得られた形質転換体ではゲノム上のspoIIGA遺伝子領域(1603174-1604103)が削除され、クロラムフェニコール遺伝子に置換していることをPCR及びシークエンシングにより確認された。一方、上記と同様にして、ゲノム上のspoIIAA遺伝子(2444227-2443874)、spoIIE(70536→73019)遺伝子の大部分を含む領域(70537-73018)、spoIIR遺伝子(3794405-3793731)、spoIIIJ遺伝子(4213816-4213031)、spoIVFB遺伝子(2856100-2855234)が削除され、クロラムフェニコール耐性遺伝子に置換した胞子形成遺伝子削除株をそれぞれ得た。
【0031】
実施例2
実施例1にて得られた各遺伝子削除株と対照として枯草菌168株に、バチルス エスピー(Bacillus sp.)KSM−S237株由来のアルカリセルラーゼ遺伝子(特開2000-210081号公報)断片(3.1kb)がシャトルベクターpHY300PLKのBamHI制限酵素切断点に挿入された組換えプラスミドpHY−S237を、プロトプラスト法によって導入した。これによって得られた菌株を10mLのLB培地で一夜37℃で振盪培養を行い、更にこの培養液0.05mLを50mLの2×L−マルトース培地(2%トリプトン、1%酵母エキス、1%NaCl、7.5%マルトース、7.5ppm硫酸マンガン4−5水和物、15ppmテトラサイクリン)に接種し、30℃で3日間、振盪培養を行った。培養後、遠心分離によって菌体を除いた培養液上清のアルカリセルラーゼ活性を測定し、培養によって菌体外に分泌生産されたアルカリセルラーゼの量を求めた。この結果、表3に示した様に、胞子形成遺伝子削除株を用いた場合はいずれも、対照の168株(野生型)の場合と比較して高いアルカリセルラーゼの分泌生産が認められた。
【0032】
【表2】
Figure 0004388272
【0033】
【発明の効果】
本発明の微生物を用いれば、胞子が形成されないことから、目的タンパク質又はポリペプチドを生産する場合において、エネルギーロス、副産物の生産や比生産速度の低下等、培地の浪費が大幅に減少でき、また、タンパク質又はポリペプチドの生産期間が長期化することによって効率よく目的生産物を生産することができる。
【0034】
【配列表】
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a host microorganism used for production of a useful protein or polypeptide, and a recombinant microorganism.
[0002]
[Prior art and problems to be solved by the invention]
The industrial production of useful substances by microorganisms includes a wide variety of types including foods such as alcoholic beverages, miso and soy sauce, as well as amino acids, organic acids, nucleic acid-related substances, antibiotics, carbohydrates, lipids, proteins, etc. In addition, its application has been extended to a wide range of fields from foods, medicines, daily necessaries such as detergents and cosmetics to various chemical raw materials.
[0003]
In industrial production of useful substances by such microorganisms, improvement of productivity is one of the important issues, and breeding of produced bacteria by genetic techniques such as mutation has been performed as a technique. In recent years, the development of microbial genetics and biotechnology has led to more efficient breeding of production microorganisms using genetic recombination techniques, and the development of host microorganisms for genetic recombination has been promoted. It has been. For example, a strain obtained by further improving a microorganism strain recognized as safe and excellent as a host microorganism, such as Bacillus subtilis Marburg No.168 strain, has been developed.
[0004]
However, microorganisms originally have a wide variety of genes to cope with environmental changes in nature, and productivity is not always efficient in industrial production of proteins and the like that use a limited production medium. The situation was not ideal.
[0005]
Moreover, about a certain kind of microorganism, although the strain which deleted or inactivated the gene in connection with the early stage of spore formation is constructed | assembled (refer patent document 1, patent document 2, patent document 3, patent document 4), The effect of improving productivity is not sufficient.
[0006]
Accordingly, an object of the present invention is to provide a host microorganism that can improve the productivity of a protein or polypeptide by deleting or inactivating a gene unnecessary or harmful to the production of the protein or polypeptide from the genome. It is said. The present invention also provides a recombinant microorganism obtained by introducing a gene encoding a protein or polypeptide bound downstream of a transcription initiation control region, translation initiation control region or secretion signal region into the host microorganism, It is an object of the present invention to provide a method for producing a protein or polypeptide using a recombinant microorganism.
[0007]
[Patent Document 1]
JP 58-190390 A [Patent Document 2]
Japanese Patent Application Laid-Open No. 61-1381 [Patent Document 3]
International Publication No. 89/04866 Pamphlet [Patent Document 4]
Japanese National Patent Publication No. 11-509096 [0008]
[Means for Solving the Problems]
The present inventors diligently searched for genes that act unnecessary or harmful to the production of useful proteins or polypeptides in various genes encoded on the microbial genome. As a result, they are expressed from the middle stage to the late stage of sporulation. After deleting or inactivating a specific gene from the genome, by introducing a gene encoding the target protein or polypeptide by binding an appropriate transcription initiation control region, translation initiation control region or secretion signal region, It has been found that the productivity of the target protein or polypeptide is improved as compared with that before deletion or inactivation.
[0009]
That is, the present invention relates to one or more genes selected from the group of genes involved in the activation of the sigma factor of RNA polymerase specifically expressed in the spore formation stage II, stage III, stage IV or stage V. A deleted or inactivated microorganism, a recombinant microorganism obtained by introducing an appropriate transcription initiation control region, a translation initiation control region or a secretion signal region into a microorganism encoding the target protein or polypeptide, The present invention also provides a method for producing a protein or polypeptide using the recombinant microorganism.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As a parent microorganism for constructing the microorganism of the present invention, any microorganism having a gene involved in spore formation may be used, and a microorganism that forms spores is more preferable. These may be wild-type or mutated. Specific examples include Bacillus genus bacteria such as Bacillus subtilis, Clostridium genus bacteria, yeast, and the like, and among them, Bacillus genus bacteria are preferable. Furthermore, Bacillus subtilis is particularly preferred from the viewpoint that whole genome information has been clarified, genetic engineering and genome engineering techniques have been established, and that protein and secretory production are possible.
[0011]
Examples of the target protein or polypeptide produced using the microorganism of the present invention include proteins useful for foods, pharmaceuticals, cosmetics, detergents, fiber treatments, medical tests, etc. And polypeptides.
[0012]
It is known that more than 250 genes scattered on the genome are involved in the formation of spores, but in the present invention, a group of genes to be deleted or inactivated is a middle to late stage of spore formation, that is, stage II. , One or more genes selected from the group of genes involved in the activation of the sigma factor of RNA polymerase specifically expressed in stage III, stage IV or stage V, of which spore formation stage II Alternatively, a group of genes involved in the stage III, particularly the spore formation stage II is preferable, specifically, an RNA polymerase σ factor specifically expressed in the spore formation stage, for example, σE, σF, σG or σK of Bacillus subtilis A group of genes involved in activation of.
It has been found by the present inventors that such a gene group is not directly involved in the production of the target protein and is unnecessary for the growth of microorganisms in a normal industrial production medium.
[0013]
An example of the gene in Bacillus subtilis is shown in Table 1 below.
The name, position, base number and function of each gene in this specification were reported in Nature, 390, 249-256, (1997), and published on the Internet on JAFAN: Japan Functional Analysis Network for Bacillus subtilis (BSORF DB). It is described based on the Bacillus subtilis genome data (http://bacillus.genome.ad.jp/).
[0014]
[Table 1]
Figure 0004388272
[0015]
Further, the gene to be deleted or inactivated may be a gene corresponding to the gene described in Table 1, and as such a gene, for example, it has the same function as each gene of Bacillus subtilis shown in Table 1, or , Genes derived from other microorganisms, preferably from Bacillus bacteria, having homology of 70% or more, preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more, with each gene in Table 1. Is mentioned.
The sequence homology is calculated by the Lipman-Pearson method (Science, 227, 1435, (1985)).
[0016]
By deleting or inactivating one or more genes selected from such a gene group, the consumption of chemical energy involved in sporulation is reduced, and the production period of protein or polypeptide is prolonged. As a result, the productivity can be improved in the production of the protein or polypeptide.
It should be noted that the number of genes to be deleted or inactivated is one or more, but a plurality, particularly three or more, more preferably five or more is preferable.
[0017]
Furthermore, the construction of the microorganism of the present invention can be combined with deletion or inactivation of genes other than those described above, and a greater effect is expected for improving productivity.
[0018]
The gene group can be deleted or inactivated by publicly known methods such as a method of sequentially deleting or inactivating target genes, a random gene deletion or inactivating mutation, and an appropriate method. A method of deleting or inactivating a gene group by performing productivity evaluation and gene analysis can be used.
[0019]
In order to delete or inactivate the target gene, for example, a method by homologous recombination may be used. That is, after cloning a DNA fragment containing the target gene into an appropriate plasmid vector, the entire region or a partial region of the gene is deleted in a form leaving the DNA fragments on both sides using ordinary genetic engineering techniques. After making a modification such as adding a nonsense mutation in a structural gene by frame shift or the like or inserting another DNA fragment into a target gene fragment isolated by cloning or PCR, a DNA fragment containing the modified gene is It is possible to replace the target gene on the genome with a deleted or inactivated gene fragment by incorporating it into the parent microorganism and causing homologous recombination in both regions outside the target gene with the parent microorganism genome. Is possible.
[0020]
In particular, when Bacillus subtilis is used as a parent microorganism for constructing the microorganism of the present invention, there have already been several reports on methods for deleting or inactivating target genes by homologous recombination (Mol. Gen. Genet , 223, 268 (1990), etc.), the host microorganism of the present invention can be obtained by repeating these methods.
In addition, for deletion or inactivation of random genes, a method of causing homologous recombination similar to the above method using a randomly cloned DNA fragment, or irradiation of parental microorganisms with γ rays, etc. It can be implemented.
[0021]
Thus obtained host microorganism from which one or more genes selected from the gene group involved in the activation of the σ-factor of RNA polymerase have been deleted or inactivated is added to the target protein or polypeptide, ie, a heterologous (foreign) foreign protein. The recombinant microorganism of the present invention can be obtained by introducing a gene encoding a protein or polypeptide.
[0022]
The target protein or polypeptide gene is not particularly limited, and includes various industrial enzymes such as detergents, foods, fibers, feeds, chemicals, medicines, diagnostics, bioactive peptides, and the like. In addition, industrial enzymes are classified according to their functions: oxidoreductase, transferase, hydrolase, lyase, isomerase, and synthase (Ligase / Synthetase). ) And the like, and preferred examples include genes for hydrolases such as cellulase, α-amylase, and protease. Specifically, cellulases belonging to Family 5 are listed in the classification of polysaccharide hydrolases (Biochem. J., 280, 309 (1991)), and among them, cellulases derived from microorganisms, particularly from Bacillus bacteria. As a more specific example, an alkaline cellulase derived from a Bacillus bacterium having the amino acid sequence represented by SEQ ID NO: 1 or 2, or 70%, preferably 80%, more preferably the amino acid sequence represented by SEQ ID NO: 1 or 2 A cellulase having a sequence having a homology of 90% or more, more preferably 95% or more is mentioned. The amino acid sequence homology is calculated by the Lipman-Pearson method (Science, 227, 1435, (1985)). Specific examples of α-amylase include α-amylase derived from microorganisms, and liquefied amylase derived from bacteria belonging to the genus Bacillus is particularly preferable. Specific examples of proteases include serine proteases, metal proteases, and the like derived from microorganisms, particularly from Bacillus bacteria.
[0023]
In addition, the target protein or polypeptide gene is upstream and includes a control region involved in transcription, translation and secretion of the gene, that is, a transcription initiation control region including a promoter and a transcription initiation site, a ribosome binding site and a start codon. It is desirable that the initiation region or the signal peptide region for secretion is bound in a proper form. For example, it is obtained from a cellulase gene derived from a bacterium belonging to the genus Bacillus described in Japanese Patent Application Laid-Open No. 2000-210081, Japanese Patent Application Laid-Open No. 4-190793, etc., and an upstream region within 0.6 to 1 kb adjacent to the cellulase gene. The region, more specifically, the base sequence represented by SEQ ID NO: 1 or 2, or a cellulase having a homology of 70% or more, preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more with these. It is desirable that the regions obtained from the genes are linked.
[0024]
The recombinant microorganism of the present invention is obtained by incorporating a recombinant plasmid in which a DNA fragment containing the target protein or polypeptide gene and an appropriate plasmid vector are combined into a host microorganism cell by a general transformation method. Can do. The recombinant microorganism of the present invention can also be obtained by using a DNA fragment in which an appropriate homologous region with the host microorganism genome is bound to the DNA fragment and directly integrating it into the host microorganism genome.
[0025]
In producing the target protein or polypeptide using the recombinant microorganism of the present invention, the strain is inoculated into a medium containing an assimilable carbon source, nitrogen source, and other essential components, and cultured by a normal microorganism culture method. After completion of the culture, the protein or polypeptide may be collected and purified.
[0026]
Based on the above, it is possible to construct a host microorganism from which a target gene involved in spore formation has been deleted or inactivated, and a recombinant microorganism using the host microorganism, and use this to efficiently produce a useful protein or polypeptide. Can be produced. The case where α-amylase or cellulase is produced using Bacillus subtilis will be specifically described below.
[0027]
For example, in order to delete the spoIIGA gene (930 bp) that is involved in the activation of the σE factor of RNA polymerase expressed in the forespore after the second phase of sporulation in Bacillus subtilis, the following may be carried out.
First, a DNA fragment upstream from the start codon of the spoIIGA gene by the SOE (splicing by overlap extention) -PCR method (Gene, 77, 61, (1989)) using the genomic gene extracted from the Bacillus subtilis strain as a template. A DNA fragment is prepared by binding a DNA fragment downstream of the stop codon with a marker gene such as a chloramphenicol resistance gene inserted between them.
[0028]
Next, a host Bacillus subtilis strain was transformed by the competent method with the obtained DNA fragment, and the transformant was separated using chloramphenicol resistance or the like as an index, so that a homologous group was found upstream and downstream of the spoIIGA gene. A transformant in which the spoIIGA gene on the genome is replaced with a marker gene such as a chloramphenicol resistance gene can be obtained.
[0029]
Subsequently, a plasmid containing a gene encoding α-amylase or cellulase is introduced into the obtained transformant and the original Bacillus subtilis strain as a control, and the resulting recombinant is subjected to appropriate conditions, for example, in a nutrient medium. After shaking culture, etc., the α-amylase activity or cellulase activity of the culture supernatant is measured and compared with the productivity of the original host Bacillus subtilis strain. Can be confirmed. Moreover, (alpha) -amylase or cellulase can be obtained by extract | collecting and refine | purifying from this culture solution.
[0030]
【Example】
Example 1
A 1.5 kb fragment (A) adjacent to the upstream of the spoIIGA gene (base number: 1603174 → 1604103) on the genome and a 1.5 kb fragment adjacent to the downstream amplified with genomic DNA extracted from Bacillus subtilis 168 strain as a template (B) and a 0.9 kb fragment (C) containing a chloramphenicol resistance gene amplified using plasmid pC194 as a template were combined by SOE-PCR method in the order of (A), (B) and (C). A 3.9 kb DNA fragment was obtained. Using this DNA fragment, Bacillus subtilis strain 168 was transformed by a competent method, and colonies grown on an LB agar medium containing chloramphenicol were isolated as transformants. In the resulting transformant, it was confirmed by PCR and sequencing that the spoIIGA gene region (1603174-1604103) on the genome was deleted and replaced with the chloramphenicol gene. On the other hand, in the same manner as above, the spoIIAA gene (2444227-2443874), the region containing most of the spoIIE (70536 → 73019) gene (70537-73018), the spoIIR gene (3794405-3793731), the spoIIIJ gene (4213816) -4213031) and spoIVFB gene (2856100-2855234) were deleted, and sporulation gene deletion strains were obtained in which the chloramphenicol resistance gene was replaced.
[0031]
Example 2
As a control for each gene deletion strain obtained in Example 1, Bacillus subtilis 168 strain, an alkaline cellulase gene (Japanese Patent Laid-Open No. 2000-210081) fragment derived from Bacillus sp. KSM-S237 strain (3. Recombinant plasmid pHY-S237 having 1 kb) inserted into the BamHI restriction enzyme cleavage point of shuttle vector pHY300PLK was introduced by the protoplast method. The resulting strain was cultured with shaking in 10 mL of LB medium overnight at 37 ° C., and 0.05 mL of this culture was further added to 50 mL of 2 × L-maltose medium (2% tryptone, 1% yeast extract, 1% NaCl. 7.5% maltose, 7.5 ppm manganese sulfate 4-5 hydrate, 15 ppm tetracycline), followed by shaking culture at 30 ° C. for 3 days. After culturing, the alkaline cellulase activity of the culture supernatant after removing the cells by centrifugation was measured, and the amount of alkaline cellulase secreted and produced outside the cells by the culture was determined. As a result, as shown in Table 3, in all cases where the sporulation gene deleted strain was used, higher secretion of alkaline cellulase was observed compared to the control strain 168 (wild type).
[0032]
[Table 2]
Figure 0004388272
[0033]
【The invention's effect】
Since the spore is not formed by using the microorganism of the present invention, when the target protein or polypeptide is produced, waste of the medium such as energy loss, production of by-products or reduction of the specific production rate can be greatly reduced, and The target product can be efficiently produced by prolonging the production period of the protein or polypeptide.
[0034]
[Sequence Listing]
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272
Figure 0004388272

Claims (2)

枯草菌において、spoIIGA、spoIIAA、spoIIR、spoIIE、spoIIIJ及びspoIVFBから選ばれる1以上の遺伝子を削除又は不活性化し、かつ配列番号1若しくは配列番号2で示される塩基配列のセルラーゼ遺伝子に隣接の上流0.6〜1kb以内の領域からなる転写開始制御領域、翻訳開始制御領域又は分泌用シグナル領域の下流に結合した異種のタンパク質又はポリペプチドをコードする遺伝子を導入して得られる組換え微生物。In Bacillus subtilis, one or more genes selected from spoIIGA, spoIIAA, spoIIR, spoIIE, spoIIIJ and spoIVFB are deleted or inactivated, and upstream 0 adjacent to the cellulase gene of the nucleotide sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 A recombinant microorganism obtained by introducing a gene encoding a heterologous protein or polypeptide bound downstream of a transcription initiation control region, translation initiation control region or secretion signal region comprising a region of 6 to 1 kb or less . 請求項1記載の組換え微生物を用いるタンパク質又はポリペプチドの製造方法。  A method for producing a protein or polypeptide using the recombinant microorganism according to claim 1.
JP2002344261A 2002-11-27 2002-11-27 Host microorganism Expired - Fee Related JP4388272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002344261A JP4388272B2 (en) 2002-11-27 2002-11-27 Host microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002344261A JP4388272B2 (en) 2002-11-27 2002-11-27 Host microorganism

Publications (2)

Publication Number Publication Date
JP2004173598A JP2004173598A (en) 2004-06-24
JP4388272B2 true JP4388272B2 (en) 2009-12-24

Family

ID=32705803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002344261A Expired - Fee Related JP4388272B2 (en) 2002-11-27 2002-11-27 Host microorganism

Country Status (1)

Country Link
JP (1) JP4388272B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067884A (en) * 2004-09-01 2006-03-16 Kao Corp Recombinant bacterium of genus bacillus
JP2006067883A (en) * 2004-09-01 2006-03-16 Kao Corp Recombinant bacterium of genus bacillus
JP4643999B2 (en) * 2005-02-02 2011-03-02 花王株式会社 Recombinant microorganism
JP2006296268A (en) * 2005-04-19 2006-11-02 Kao Corp Recombinant microorganism
JP4832153B2 (en) * 2005-04-28 2011-12-07 花王株式会社 Recombinant microorganism
JP2006345860A (en) * 2005-05-20 2006-12-28 Shinshu Univ Recombinant bacillus bacterium
JP4685521B2 (en) * 2005-06-24 2011-05-18 花王株式会社 Recombinant microorganism
JP4861659B2 (en) * 2005-08-23 2012-01-25 花王株式会社 Recombinant microorganism
US8460893B2 (en) * 2006-02-16 2013-06-11 Kao Corporation Recombinant microorganism expressing a secY gene and method of use thereof
JP5226958B2 (en) * 2007-02-22 2013-07-03 花王株式会社 Recombinant microorganism
JP5140307B2 (en) * 2007-04-10 2013-02-06 花王株式会社 Recombinant microorganism

Also Published As

Publication number Publication date
JP2004173598A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
EP1391502B1 (en) Host microorganisms
JP4336082B2 (en) Host microorganism
US20140170703A1 (en) Recombinant microorganism
JP2006296268A (en) Recombinant microorganism
JP4388272B2 (en) Host microorganism
JP5294666B2 (en) Recombinant microorganism
JP2005137308A (en) Recombinant microorganism
JP4915728B2 (en) Recombinant microorganism
JP4839144B2 (en) Host microorganism
JP4832153B2 (en) Recombinant microorganism
JP4509743B2 (en) Recombinant microorganism
JP4496000B2 (en) Host microorganism
EP1680502B1 (en) Recombinant microorganism
JP4676848B2 (en) Recombinant microorganism
JP5140313B2 (en) Recombinant microorganism
JP6791623B2 (en) Recombinant microorganisms and their use
JP4643999B2 (en) Recombinant microorganism
JP4861659B2 (en) Recombinant microorganism
JP2007074933A (en) Recombinant microorganism
JP4463871B2 (en) Recombinant microorganism
JP5474448B2 (en) Mutated Bacillus bacteria
JP2009034067A (en) Recombinant bacterium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees