JP4387227B2 - Thermo protector - Google Patents

Thermo protector Download PDF

Info

Publication number
JP4387227B2
JP4387227B2 JP2004079741A JP2004079741A JP4387227B2 JP 4387227 B2 JP4387227 B2 JP 4387227B2 JP 2004079741 A JP2004079741 A JP 2004079741A JP 2004079741 A JP2004079741 A JP 2004079741A JP 4387227 B2 JP4387227 B2 JP 4387227B2
Authority
JP
Japan
Prior art keywords
movable conductor
elastic movable
elastic
fixed electrode
soluble material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004079741A
Other languages
Japanese (ja)
Other versions
JP2005268076A (en
Inventor
俊朗 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2004079741A priority Critical patent/JP4387227B2/en
Publication of JP2005268076A publication Critical patent/JP2005268076A/en
Application granted granted Critical
Publication of JP4387227B2 publication Critical patent/JP4387227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fuses (AREA)

Description

本発明は可溶部材の融点または軟化点を動作温度とするサーモプロテクタに関するものである。   The present invention relates to a thermo protector whose operating temperature is the melting point or softening point of a soluble member.

電子・電気機器における異常発熱を感知し、この感知に基づくカットオフ動作で機器を電源から遮断して機器の過熱を防止し、火災の発生を未然に防止するサーモプロテクタとして、可溶部材の融点または軟化で動作するものが存在する。
このサーモプロテクタの基本的構造は、弾性歪みエネルギーを蓄させた状態で可動電極と固定電極とを接触させ、その弾性歪みエネルギーを可溶体で拘束し、可溶体の溶融乃至は軟化でその弾性歪みエネルギーを解放させて弾性可動導体を固定電極から離隔させることにある。
かかるサーモプロテクタとして、図8〜図10に示すものが知られている。
Detecting abnormal heat generation in electronic and electrical equipment, and cutting off based on this detection, the equipment is shut off from the power supply to prevent overheating of the equipment and the melting point of the soluble material as a thermo protector to prevent the occurrence of fire Or there is something that works with softening.
The basic structure of this thermo protector is that the elastic strain energy is stored, the movable electrode and the fixed electrode are brought into contact, the elastic strain energy is constrained by the soluble body, and the elastic strain is melted or softened. The purpose is to release the energy to separate the elastic movable conductor from the fixed electrode.
As such a thermo protector, what is shown in FIGS. 8 to 10 is known.

図8に示すものでは、図8の(イ)のように弾性金属片2'を弾性的に曲げ、この曲げ弾性金属片1'の両端を曲げ反力に抗して一対の固定電極41',42'に所定融点の可溶合金(はんだ)3'で接合し、周囲温度が可溶合金2'の融点まで昇温して可溶合金が溶融されると、図8の(ロ)のように弾性金属片2'の弾性曲げ歪みエネルギーを解放させて弾性金属片2'の一端と一方の固定電極42'との接合を脱離して通電を遮断している(特許文献1参照)。   In the case shown in FIG. 8, the elastic metal piece 2 'is elastically bent as shown in FIG. 8 (a), and both ends of the bending elastic metal piece 1' are resisted against bending reaction force and a pair of fixed electrodes 41 '. , 42 'are joined with a soluble alloy (solder) 3' having a predetermined melting point, and the ambient temperature is raised to the melting point of the soluble alloy 2 'to melt the soluble alloy as shown in FIG. In this way, the elastic bending strain energy of the elastic metal piece 2 ′ is released, and the connection between one end of the elastic metal piece 2 ′ and one fixed electrode 42 ′ is detached to cut off the energization (see Patent Document 1).

図9に示すものでは、図9の(イ)のように一端にリード端子13'を取付けた金属ケース14'内に一端側から所定融点のペレット2'、座板15'、圧縮スプリング1'、座板16'を順次に収容し、更に外周が金属ケース内面に摺動接触された可動電極42'を収容し、リードピン貫通ブッシング17'を金属ケース14'の他端側に固定し、このブッシング17'と可動電極42'との間に引外しスプリング18'を組み込んでリード端子13'→金属ケース14'→可動電極42'→リードピン41'を経る導通路を構成し、周囲温度がペレット2'の融点まで昇温されてペレット2'が溶融されると、図9の(ロ)のように圧縮スプリング1'の圧縮応力を解放させて引外しスプリング18'の圧縮応力でリードピン41'の先端から可動電極42'を離隔させて前記導通路を遮断している(非特許文献1参照)。   9, the pellet 2 ′ having a predetermined melting point, the seat plate 15 ′, and the compression spring 1 ′ are placed from one end into a metal case 14 ′ having a lead terminal 13 ′ attached to one end as shown in FIG. The seat plate 16 ′ is sequentially accommodated, the movable electrode 42 ′ whose outer periphery is slidably contacted with the inner surface of the metal case is accommodated, and the lead pin through bushing 17 ′ is fixed to the other end side of the metal case 14 ′. A tripping spring 18 ′ is incorporated between the bushing 17 ′ and the movable electrode 42 ′ to form a conduction path through the lead terminal 13 ′ → the metal case 14 ′ → the movable electrode 42 ′ → the lead pin 41 ′, and the ambient temperature is the pellet. When the temperature is raised to the melting point of 2 ′ and the pellet 2 ′ is melted, the compression stress of the compression spring 1 ′ is released and the compression force of the tripping spring 18 ′ is released as shown in FIG. The movable electrode 42 'is separated from the tip of the The conduction path is blocked (see Non-Patent Document 1).

図10に示すものでは、図10の(イ)のように弾性可動導体を可溶材スペーサの装着により垂直方向力で弾性的に撓ませて固定電極に接触させ、可溶材スペーサの溶融若しくは軟化で前記弾性可動導体の弾性歪みエネルギーを解放させ図10の(ロ)のように弾性可動導体を固定電極から脱離させて通電を遮断している。   In the case shown in FIG. 10, the elastic movable conductor is elastically bent by a vertical force by attaching a fusible material spacer and brought into contact with the fixed electrode as shown in FIG. 10 (a), and the fusible material spacer is melted or softened. The elastic strain energy of the elastic movable conductor is released and the elastic movable conductor is detached from the fixed electrode as shown in FIG.

特開平7−29481号公報JP 7-29481 A 電気工学ハンドブック1988の第818頁Page 818 of Electrical Engineering Handbook 1988

しかしながら、図8に示すものでは、弾性金属片の曲げ反力M’及びn方向押し拡げ力F’が可溶合金(はんだ)に作用するから、可溶合金における応力分布が複雑であり、作用部位が局部的であるために応力集中が避けられずクリープの基づく動作不良が発生し易い。更に、可溶合金が通電路の一部となっているので、可溶合金のクリープによる抵抗増大により発熱し、自己発熱による動作誤差も懸念される。また、溶融した合金の糸引きによる動作不良も生じ得る。
図9に示すものでは、座板による均圧化のためにペレットを一様に圧縮できても構造が複雑であり、小型化やコスト面での不利を免れ得ない。
図10に示すものでは、垂直方向力によって弾性可動導体を固定電極に接触させ、その接触を垂直方向に離隔するようにしているから、垂直方向に可溶体ストッパーの配設スペースをとる必要があり、サーモプロテクタの薄型化に不利である。
However, in the case shown in FIG. 8, the bending reaction force M ′ of the elastic metal piece and the n-direction expansion force F ′ act on the fusible alloy (solder). Since the part is local, stress concentration is unavoidable and malfunction due to creep tends to occur. Furthermore, since the fusible alloy is a part of the current path, heat is generated due to an increase in resistance due to creep of the fusible alloy, and there is a concern about an operation error due to self-heating. Also, malfunction due to stringing of the molten alloy can occur.
In the structure shown in FIG. 9, even if the pellets can be uniformly compressed for pressure equalization by the seat plate, the structure is complicated, and disadvantages in terms of downsizing and cost cannot be avoided.
In the case shown in FIG. 10, the elastic movable conductor is brought into contact with the fixed electrode by a vertical force, and the contact is separated in the vertical direction. Therefore, it is necessary to take a space for disposing the fusible material stopper in the vertical direction. This is disadvantageous for making the thermo protector thinner.

本発明の目的は、固定電極と弾性可動導体とが絶縁ハウジング内に収容され、弾性可動導体が弾性的に歪まされてそ固定電極に接触され、該弾性可動導体の弾性歪み状態が可溶材で保持され、可溶材の溶融乃至は軟化で弾性可動導体の弾性歪みが解放されて弾性可動導体が固定電極から脱離されるサーモプロテクタにおいて、安定・スムーズに動作させ得、部品数が少なく製作が容易で、しかも薄型化が容易なサーモプロテクタを提供することにある。   An object of the present invention is that the fixed electrode and the elastic movable conductor are accommodated in an insulating housing, the elastic movable conductor is elastically distorted and brought into contact with the fixed electrode, and the elastic strain state of the elastic movable conductor is a soluble material. A thermo-protector that is held and the elastic movable conductor is released from the fixed electrode by releasing the elastic strain of the elastic movable conductor by melting or softening the fusible material. In addition, it is an object of the present invention to provide a thermo protector that can be easily reduced in thickness.

請求項1に係るサーモプロテクタは、絶縁ハウジング内の対向する固定電極間に弾性可動導体が配され、弾性可動導体の一端が一方の固定電極に固定され、弾性可動導体が長手方向に圧縮され弾性的に湾曲されてその弾性可動導体の中間が他方の固定電極に接触され、弾性可動導体の他端部が前記長手方向圧縮の反力に抗して前記一方の固定電極に可溶材で面接合され、可溶材の溶融により弾性可動導体が弾性的に解放されたときに弾性可動導体の他端部を収容する空間を形成する絶縁スペーサが絶縁ハウジング内に設けられていることを特徴とする。   In the thermo protector according to claim 1, the elastic movable conductor is disposed between the opposed fixed electrodes in the insulating housing, one end of the elastic movable conductor is fixed to one fixed electrode, and the elastic movable conductor is compressed in the longitudinal direction to be elastic. And the middle of the elastic movable conductor is in contact with the other fixed electrode, and the other end of the elastic movable conductor is surface-bonded to the one fixed electrode with a soluble material against the reaction force of the longitudinal compression. The insulating housing is provided with an insulating spacer that forms a space for accommodating the other end of the elastic movable conductor when the elastic movable conductor is elastically released by melting the fusible material.

請求項2に係るサーモプロテクタは、絶縁ハウジング内の対向する固定電極間に弾性可動導体が配され、弾性可動導体が長手方向に圧縮され弾性的に湾曲されてその弾性可動導体の中間が他方の固定電極に接触され、弾性可動導体の両端部が前記長手方向圧縮の反力に抗して前記一方の固定電極に可溶材で面接合され、可溶材の溶融により弾性可動導体が弾性的に解放されたときに弾性可動導体の各端部を収容する空間を形成する絶縁スペーサが絶縁ハウジング内の両側に設けられていることを特徴とする。   In the thermo protector according to claim 2, the elastic movable conductor is disposed between the opposing fixed electrodes in the insulating housing, the elastic movable conductor is compressed in the longitudinal direction and elastically curved, and the middle of the elastic movable conductor is the other of the other. Both ends of the elastic movable conductor are in contact with the fixed electrode, and are joined to the one fixed electrode by a soluble material against the reaction force of the longitudinal compression, and the elastic movable conductor is elastically released by melting the soluble material. Insulating spacers that form spaces for accommodating the respective ends of the elastic movable conductor when provided are provided on both sides of the insulating housing.

請求項3に係るサーモプロテクタは、リード線先端部の弾性可動導体と固定電極とが対向して絶縁ハウジング内に配され、弾性可動導体が長手方向に圧縮され弾性的に湾曲されてその弾性可動導体の中間が固定電極に接触され、弾性可動導体の先端部が前記長手方向圧縮の反力に抗して前記固定電極に可溶材で面接合され、可溶材の溶融により弾性可動導体が弾性的に解放されたときに弾性可動導体の先端部を収容する空間を形成する絶縁スペーサが絶縁ハウジング内の両側に設けられていることを特徴とする。   In the thermo protector according to the third aspect, the elastic movable conductor at the tip of the lead wire and the fixed electrode face each other and are arranged in the insulating housing, and the elastic movable conductor is compressed in the longitudinal direction and elastically curved so as to be elastically movable. The middle of the conductor is in contact with the fixed electrode, the tip of the elastic movable conductor is surface-bonded to the fixed electrode with a soluble material against the reaction force of the longitudinal compression, and the elastic movable conductor is elastic by melting the soluble material Insulating spacers are formed on both sides of the insulating housing to form a space for accommodating the tip of the elastic movable conductor when released.

請求項4に係るサーモプロテクタは、請求項1〜3何れかのサーモプロテクタにおいて、絶縁スペーサが可溶材の湾曲変形部を受け容れる孔切欠きを有し、外周が絶縁ハウジングの内周に近接されていることを特徴とする。   The thermo protector according to claim 4 is the thermo protector according to any one of claims 1 to 3, wherein the insulating spacer has a hole notch that receives the curved deformed portion of the fusible material, and the outer periphery is close to the inner periphery of the insulating housing. It is characterized by.

請求項5に係るサーモプロテクタは、請求項1〜4何れかのサーモプロテクタにおいて、可溶材が可溶合金であることを特徴とする。   The thermo protector according to claim 5 is the thermo protector according to any one of claims 1 to 4, wherein the soluble material is a soluble alloy.

請求項6に係るサーモプロテクタは、請求項1〜4何れかのサーモプロテクタにおいて、可溶材が熱可塑性樹脂であることを特徴とする。   The thermo protector according to claim 6 is the thermo protector according to any one of claims 1 to 4, wherein the soluble material is a thermoplastic resin.

請求項7に係るサーモプロテクタは、請求項1〜6何れかのサーモプロテクタにおいて、弾性可動導体が弾性金属単体、または弾性を有する金属と樹脂との複合体或いは弾性を有する樹脂と金属との複合体であることを特徴とする。   The thermo protector according to claim 7 is the thermo protector according to any one of claims 1 to 6, wherein the elastic movable conductor is a single elastic metal, a composite of elastic metal and resin, or a composite of elastic resin and metal. It is a body.

弾性体端部と固定電極または絶縁ハウジング内面との間の可溶材による接合を面で行ない、弾性体に加えた弾性歪エネルギーをこの接合面で支え、その接合面に主に剪断力のみを作用させるようにしてあるから、接合界面の可溶材の応力分布を一様な剪断応力分布にできる。従って、可溶材での応力集中よるクリープをよく防止でき、可溶材のクリープによる動作不良を排除して長期安定性を保証できる。
更に、可溶材の溶融により弾性曲げ歪みから解放された弾性可動導体の解放端を絶縁スペーサ直下のスペースに受け入れるようにしているから、固定電極との再接触を防止でき確実な遮断を達成できる。
The end of the elastic body and the fixed electrode or the inner surface of the insulating housing are joined by a soluble material on the surface, and the elastic strain energy applied to the elastic body is supported by this joint surface, and only the shearing force acts mainly on the joint surface. Therefore, the stress distribution of the soluble material at the joint interface can be made uniform. Accordingly, creep due to stress concentration in the fusible material can be well prevented, and malfunction due to creep of the fusible material can be eliminated to ensure long-term stability.
Furthermore, since the open end of the elastic movable conductor released from the elastic bending strain by melting the fusible material is received in the space immediately below the insulating spacer, re-contact with the fixed electrode can be prevented and reliable interruption can be achieved.

図1は本発明に係るサーモプロテクタの基本的構造を示す図面である。
図1において、1はベースである。3は弾性可動導体であり、一端部をベース面に平行接触で固定し、弾性体他端部をベース面に平行に接触させた状態で当該弾性体他端部に長手方向荷重fを作用させて弾性曲げ歪エネルギーを加え、この弾性曲げ歪エネルギーを加えたままで弾性可動導体3の他端部をベース面に可溶材4により面接合してある。
このサーモセンサにおいては、外部温度が上昇されて可溶材4が溶融若しくは軟化されると、接合界面31が脱離され、弾性曲げ歪エネルギーが解放されて弾性可動導体が元の直線形状に復帰される。
FIG. 1 shows the basic structure of a thermoprotector according to the present invention.
In FIG. 1, 1 is a base. Reference numeral 3 denotes an elastic movable conductor, one end of which is fixed in parallel contact with the base surface, and a longitudinal load f is applied to the other end of the elastic body while the other end of the elastic body is in contact with the base surface in parallel. Then, the elastic bending strain energy is applied, and the other end of the elastic movable conductor 3 is surface-bonded to the base surface with the soluble material 4 while the elastic bending strain energy is applied.
In this thermosensor, when the external temperature is raised and the soluble material 4 is melted or softened, the bonding interface 31 is detached, the elastic bending strain energy is released, and the elastic movable conductor is restored to the original linear shape. The

図1において、弾性可動導体3の他端部が未固定のとき、オイレルの理論から長手方向荷重fが4πEI/L(Lは弾性体長さ)を越えると座屈を生じる。すなわち、このオイレルの荷重以上では、長手方向荷重fがなす仕事fΔλ(Δλは弾性可動導体他端の移動距離)が弾性可動導体3の曲げ歪エネルギーを越えて系が不安定化し座屈を生じる。
座屈が生じない安定系での弾性可動導体の曲げ形状yを近似的に
In FIG. 1, when the other end of the elastic movable conductor 3 is not fixed, buckling occurs if the longitudinal load f exceeds 4π 2 EI / L 2 (L is the length of the elastic body) according to Euler's theory. That is, above this Euler load, the work fΔλ (Δλ is the movement distance of the other end of the elastic movable conductor) that the longitudinal load f makes exceeds the bending strain energy of the elastic movable conductor 3, and the system becomes unstable and buckles. .
Approximate the bending shape y of the elastic movable conductor in a stable system without buckling

y=h(1−cos2πx/L)/2
とすると、上記の押し付け量Δλ、すなわち

Figure 0004387227
y = h (1-cos2πx / L) / 2
Then, the above pressing amount Δλ, that is,
Figure 0004387227

は、Δλ=π/(4L)で与えられ、 Is given by Δλ = π 2 h 2 / (4L),

h=2(Δλ・L)1/2/π
から、押し付け量Δλの調整により所定の曲げ高さhを設定できる。
h = 2 (Δλ · L) 1/2 / π
Therefore, the predetermined bending height h can be set by adjusting the pressing amount Δλ.

図1において、可溶材4が融点乃至は軟化点に達すると、弾性可動導体3の曲げ高さhが零になり、弾性可動導体の他端が外側にΔλだけ移動して元の直線状態に復帰する。
上記において、弾性可動導体の他端部とベース面との接合界面31に作用する主な力は剪断力fであり、接合界面の面積をSとすれば、剪断力fに対する接合界面の剪断応力τは、
In FIG. 1, when the fusible material 4 reaches the melting point or the softening point, the bending height h of the elastic movable conductor 3 becomes zero, and the other end of the elastic movable conductor moves outward by Δλ to the original linear state. Return.
In the above, the main force acting on the joining interface 31 between the other end of the elastic movable conductor and the base surface is the shearing force f. If the area of the joining interface is S, the shearing stress of the joining interface with respect to the shearing force f. τ is

τ=f/S
で与えらる。
弾性可動導体の他端部とベース面との接合界面に作用する曲げ反力については、弾性可動導体他端部を撓み角ほぼ零で固定してあるから、その曲げ反力を小にとどめ得、しかもその曲げ反力に対する接合面の応力を接合面積Sに分散させ得るから、僅小にとどめ得る。
τ = f / S
Given in.
Regarding the bending reaction force acting on the joint interface between the other end of the elastic movable conductor and the base surface, the other end of the elastic movable conductor is fixed at a deflection angle of almost zero, so the bending reaction force can be kept small. In addition, since the stress of the joint surface with respect to the bending reaction force can be dispersed in the joint area S, the stress can be kept small.

前記接合界面の剪断応力τ=f/Sに対し、接合界面の剪断強度をf/Sを越える強度とする必要がある。この剪断強度は充分な安全率を有するものでなくてはならず、このため面接合される弾性可動導体の他端部またはベース面の一方または双方に、孔、窪み、切欠きを設けて可溶材を食い込ませたり、面接合される弾性体他端部またはベース面の一方または双方を粗面として接合界面の剪断強度を増強することが望ましい。また、前記可溶材で面接合された界面を機械的に補強するために弾性可動導体の先端面とベース面とにわたって可溶材を盛り付けることもできる。   For the shear stress τ = f / S at the joint interface, the shear strength at the joint interface needs to exceed f / S. This shear strength must have a sufficient safety factor. For this reason, holes, depressions, and notches may be provided in one or both of the other end of the elastic movable conductor to be surface-bonded and / or the base surface. It is desirable to increase the shear strength of the bonding interface by biting in the melt or by using one or both of the other end of the elastic body and the base surface to be surface bonded as a rough surface. Moreover, in order to mechanically reinforce the interface surface-bonded with the fusible material, the fusible material can be placed over the tip surface and the base surface of the elastic movable conductor.

前記弾性可動導体3には、金属、合成樹脂または金属と合成樹脂との複合体を用いることができる。複合体には、金属粉を混合した樹脂も含まれる。このように弾性体に金属粉混合樹脂のような電気抵抗値の高いものを使用する場合、抵抗体の通電発熱で可溶材を溶融させてプロテクタを動作させることもできる。
前記可溶材4には、はんだ等の可溶合金、単体金属または熱可塑性樹脂、或いは導電性粉末を添加した導電性熱可塑性樹脂を用いることができる。
The elastic movable conductor 3 can be a metal, a synthetic resin, or a composite of a metal and a synthetic resin. The composite includes a resin mixed with metal powder. Thus, when using a thing with high electrical resistance value like a metal powder mixed resin for an elastic body, a soluble material can be fuse | melted by the heat_generation | fever of a resistor, and a protector can also be operated.
As the soluble material 4, a soluble alloy such as solder, a single metal or a thermoplastic resin, or a conductive thermoplastic resin to which conductive powder is added can be used.

図1においては、弾性可動導体の一端部を固定し、弾性可動導体の他端部のみを可溶材でベース面に面接合しているが、弾性体の両端部を可溶材でベース面に面接合することもできる。   In FIG. 1, one end of the elastic movable conductor is fixed, and only the other end of the elastic movable conductor is surface-bonded to the base surface with a soluble material. Can also be combined.

図2の(イ)は本発明に係るサーモプロテクタの一実施例の平面図を、図2の(ロ)は図2の(イ)におけるロ−ロ断面図をそれぞれ示している。
図2において、1は絶縁ハウジングであり、セラミックスや合成樹脂等から構成してある。21,22は絶縁ハウジング1内に対向して配された固定電極であり、絶縁ハウジング1内の底面及び上面に固着されている。210,220は各固定電極21,22のリード部である。3は弾性可動導体であり、一端部を一方の固定電極21に面接触でリベット23や溶接等により固定し、この状態で弾性可動導体3の他端部に前記長手方向荷重fを作用させて弾性可動導体3に曲げ歪エネルギーを加え、この状態で弾性可動導体3の他端部を一方の固定電極21の最先端部に面接触で可溶合金や熱可塑性樹脂等の可溶材4の溶融・凝固(可溶材の溶融温度は弾性可動導体の焼き鈍し温度よりも充分に低くしてある)により接合固定し、弾性可動導体3の曲げ外面を前記他方の固定電極22に接触させてある。
5は可溶材4の溶融により面接合34より解放された弾性可動導体3の他端部を受け入れるスペースを形成するための絶縁スペーサであり、絶縁ハウジング内面に接着するか、一体成形により設けることができる。
2A is a plan view of an embodiment of the thermoprotector according to the present invention, and FIG. 2B is a cross-sectional view of the roller in FIG.
In FIG. 2, reference numeral 1 denotes an insulating housing, which is made of ceramics or synthetic resin. Reference numerals 21 and 22 denote fixed electrodes disposed opposite to each other in the insulating housing 1, and are fixed to the bottom surface and the top surface in the insulating housing 1. Reference numerals 210 and 220 denote lead portions of the fixed electrodes 21 and 22, respectively. Reference numeral 3 denotes an elastic movable conductor, one end of which is fixed to one fixed electrode 21 by surface contact by a rivet 23 or welding, and in this state, the longitudinal load f is applied to the other end of the elastic movable conductor 3. Bending strain energy is applied to the elastic movable conductor 3, and in this state, the other end portion of the elastic movable conductor 3 is brought into surface contact with the most distal portion of one fixed electrode 21 to melt the soluble material 4 such as a soluble alloy or a thermoplastic resin. Bonding and fixing are performed by solidification (the melting temperature of the soluble material is sufficiently lower than the annealing temperature of the elastic movable conductor), and the bending outer surface of the elastic movable conductor 3 is brought into contact with the other fixed electrode 22.
Reference numeral 5 denotes an insulating spacer for forming a space for receiving the other end portion of the elastic movable conductor 3 released from the surface bonding 34 by melting the fusible material 4, and can be adhered to the inner surface of the insulating housing or provided by integral molding. it can.

このサーモプロテクタにおいて、常時は、一方の固定電極21→弾性可動導体3→弾性可動導体3と他方の固定電極22との接触面→他方の固定電極22の経路で導通されている。可溶材4が導通経路に含まれていないので、その導通性に可溶材4の導電性が関与することはない。
このサーモプロテクタの動作について説明すると、外部温度の上昇により可溶材4がその融点乃至は軟化点にまで加熱されると、弾性可動導体3の曲げ歪エネルギーにより弾性可動導体3の他端部と一方の固定電極21との間の可溶材4による面接合34が解放され、図3に示すように弾性可動導体3が元の平板状に復帰されて弾性可動導体3の曲げ高さが0にされ、前記弾性可動導体3と他方の固定電極22との接触が脱離されて非復帰の通電オフが行なわれる。
この場合、可溶材が溶融乃至は軟化して弾性可動導体3の弾性歪エネルギーが解放されることが動作開始要件であるから、たとえ可溶材4の糸引きが生じても、動作性能に影響を与えることがない。
面接合34から解放された弾性可動導体3の他端部が絶縁スペーサ5直下のスペースに収容され、弾性可動導体3と他方の固定電極22との接触が防止されるから、再導通の発生なく確実な通電遮断が確保される。
In this thermoprotector, the conduction is always made by the path of one fixed electrode 21 → the elastic movable conductor 3 → the contact surface between the elastic movable conductor 3 and the other fixed electrode 22 → the other fixed electrode 22. Since the soluble material 4 is not included in the conduction path, the conductivity of the soluble material 4 is not involved in the conductivity.
The operation of the thermoprotector will be described. When the soluble material 4 is heated to its melting point or softening point due to an increase in external temperature, the other end portion of the elastic movable conductor 3 and one of the elastic movable conductor 3 are heated by bending strain energy of the elastic movable conductor 3. As shown in FIG. 3, the elastic movable conductor 3 is restored to the original flat plate shape so that the bending height of the elastic movable conductor 3 is reduced to zero. The contact between the elastic movable conductor 3 and the other fixed electrode 22 is removed, and the non-returning energization is turned off.
In this case, since the operation start requirement is that the soluble material is melted or softened and the elastic strain energy of the elastic movable conductor 3 is released, the operation performance is affected even if stringing of the soluble material 4 occurs. Never give.
Since the other end portion of the elastic movable conductor 3 released from the surface bonding 34 is accommodated in a space immediately below the insulating spacer 5 and contact between the elastic movable conductor 3 and the other fixed electrode 22 is prevented, re-conduction does not occur. A reliable cut-off is ensured.

図2の(ロ)における弾性可動導体3の曲げ外面と他方の固定電極22との接触面に後述するように接触圧力が作用し、接触抵抗の低減に役立つが、更なる接触抵抗の低減を図るために、その接触面を前記した可溶材よりも低融点のはんだで接合することもできる。この場合、糸引きを抑えるために、低融点はんだの層を十分薄くすることが好ましい。   A contact pressure acts on the contact surface between the bending outer surface of the elastic movable conductor 3 and the other fixed electrode 22 in FIG. 2B, as will be described later, which helps to reduce the contact resistance, but further reduces the contact resistance. For the purpose of illustration, the contact surfaces can be joined with a solder having a melting point lower than that of the aforementioned soluble material. In this case, it is preferable to make the low melting point solder layer sufficiently thin in order to suppress stringing.

図2に示すサーモプロテクタを製作するには、絶縁ハウジングのベースに一方の固定電極を配置し、該固定電極上に弾性可動導体を配置し、該弾性可動導体の一端部と固定電極をリベット等により絶縁ハウジングのベースに固定し、次いで、弾性可動導体に長手方向荷重fを加えて弾性可動導体に曲げ歪エネルギーを与え、この状態で弾性可動導体の他端部と一方の固定電極の先端側との接触界面を可溶合金や熱可塑性樹脂等の可溶材の溶融・凝固により接合固定し、次いで、他方の固定電極を固着し、絶縁スペーサを取付けた絶縁ハウジング本体を絶縁ハウジングベースに融着、接着剤または嵌合方式により結着し、他方の固定電極を弾性可動導体の曲げ頂部に接触させ、これにて製作を終了する。
この製作時、ハウジング本体の結着により他方の固定電極で弾性可動導体の曲げ頂面との接触面に反力f’が発生されるが、弾性可動導体の曲げ剛性EIが小さいためにこの反力f’を充分に小さくでき、この反力f’に基づき可溶材接合面に作用する曲げモーメントも充分に小さくできる。従って、弾性可動導体の他端部と一方の固定電極の先端側との間の可溶材による接合面での単純な剪断応力一様分布をよく維持できる。
To manufacture the thermo protector shown in FIG. 2, one fixed electrode is arranged on the base of the insulating housing, an elastic movable conductor is arranged on the fixed electrode, and one end of the elastic movable conductor and the fixed electrode are rivets or the like. To the base of the insulating housing by applying a longitudinal load f to the elastic movable conductor to give bending elastic energy to the elastic movable conductor, and in this state, the other end of the elastic movable conductor and the tip side of one fixed electrode The contact interface is fused and fixed by melting and solidifying a soluble material such as a soluble alloy or thermoplastic resin, and then the other fixed electrode is fixed and the insulating housing body with the insulating spacer attached is fused to the insulating housing base. The other fixed electrode is brought into contact with the bending top portion of the elastic movable conductor, and the production is finished.
At the time of manufacture, the reaction force f ′ is generated on the contact surface of the elastic movable conductor with the bending top surface of the other fixed electrode due to the attachment of the housing body. However, since the bending rigidity EI of the elastic movable conductor is small, the reaction force f ′ is generated. The force f ′ can be made sufficiently small, and the bending moment acting on the fusible material joint surface based on the reaction force f ′ can be made sufficiently small. Therefore, it is possible to maintain a simple uniform distribution of shear stress on the joint surface by the fusible material between the other end of the elastic movable conductor and the tip side of one fixed electrode.

図4の(イ)は本発明に係るサーモプロテクタの別実施例の平面説明図を、図4の(ロ)は図4の(イ)におけるロ−ロ断面図をそれぞれ示している。
図4において、1は絶縁ハウジングのベースであり、セラミックスや合成樹脂等の絶縁体から構成してある。30は弾性を有するリード導体であり、先端部を弾性可動導体3として使用し、先端から所定の距離を隔てた箇所を絶縁ハウジング1のベース面に面接触でリベットや溶接等23により固定し、この状態で当該弾性可動導体3の先端部に縦方向荷重fを加えて弾性可動導体3に曲げ歪エネルギーを与え、この状態で弾性可動導体3の先端部をハウジング1のベース面に面接触で可溶合金や熱可塑性樹脂等の可溶材4の溶融・凝固(可溶材の溶融温度は弾性リード導体の焼き鈍し温度よりも充分に低くしてある)により接合固定してある。
前記絶縁ハウジング1のベース面への弾性可動導体3の面接触での溶接固定には、金属箔の貼付・エッチングや金属粉ペーストの印刷・焼き付けによりベース面を金属化したうえで行なうことができる。
22は固定電極であり、弾性可動導体3の曲げ頂面に接触させてある。220は固定電極22のリード部である。
5は可溶材4の溶融により面接合34より解放された弾性可動導体3の先端部を受け入れるスペースを形成するための絶縁スペーサであり、絶縁ハウジング内面に接着するか、一体成形により設けることができる。
FIG. 4 (a) shows a plan view of another embodiment of the thermoprotector according to the present invention, and FIG. 4 (b) shows a cross-sectional view of the roller in FIG.
In FIG. 4, reference numeral 1 denotes a base of an insulating housing, which is composed of an insulator such as ceramics or synthetic resin. 30 is a lead conductor having elasticity, the tip portion is used as the elastic movable conductor 3, and a part separated from the tip by a predetermined distance is fixed to the base surface of the insulating housing 1 by surface contact with a rivet or welding 23. In this state, a longitudinal load f is applied to the distal end portion of the elastic movable conductor 3 to apply bending strain energy to the elastic movable conductor 3, and in this state, the distal end portion of the elastic movable conductor 3 is brought into surface contact with the base surface of the housing 1. The material is bonded and fixed by melting and solidifying the soluble material 4 such as a soluble alloy or a thermoplastic resin (the melting temperature of the soluble material is sufficiently lower than the annealing temperature of the elastic lead conductor).
Welding and fixing the elastic movable conductor 3 in surface contact with the base surface of the insulating housing 1 can be performed after metalizing the base surface by sticking / etching metal foil or printing / baking metal powder paste. .
Reference numeral 22 denotes a fixed electrode which is in contact with the bending top surface of the elastic movable conductor 3. Reference numeral 220 denotes a lead portion of the fixed electrode 22.
Reference numeral 5 denotes an insulating spacer for forming a space for receiving the tip of the elastic movable conductor 3 released from the surface bonding 34 by melting the fusible material 4, and can be adhered to the inner surface of the insulating housing or provided by integral molding. .

このサーモプロテクタにおいて、常時は、リード導体30→リード導体30の弾性可動導体3の折り曲げ部と固定電極22との接触面→他方のリード導体220の経路で導通されている。可溶材4が導通経路に含まれていないので、可溶材4の導電性の関与はない。
このサーモプロテクタの動作について説明すると、外部温度の上昇により可溶材4がその融点乃至は軟化点にまで加熱されると、弾性可動導体3の曲げ歪エネルギーの解放により弾性可動導体3と絶縁ハウジングベースとの間の可溶材4による面接合34が解離され、図5に示すように弾性可動導体3が元の平板状に復帰されて弾性可動導体3の曲げ高さが0にされ、前記弾性可動導体3と固定電極22との接触面が脱離されて非復帰の通電オフが完結される。
面接合34から解放された弾性可動導体3の先端部が絶縁スペーサ5直下のスペースに収容され、固定電極22との接触が防止されるから、再導通の発生なく通電遮断を確実に達成できる。
In this thermoprotector, the lead conductor 30 is normally conducted in the path of the lead conductor 30 → the contact portion between the bent portion of the elastic movable conductor 3 of the lead conductor 30 and the fixed electrode 22 → the other lead conductor 220. Since the soluble material 4 is not included in the conduction path, the conductive property of the soluble material 4 is not involved.
The operation of this thermo protector will be described. When the soluble material 4 is heated to its melting point or softening point due to an increase in external temperature, the elastic movable conductor 3 and the insulating housing base are released by releasing the bending strain energy of the elastic movable conductor 3. The surface bonding 34 by the fusible material 4 between the elastic movable conductor 3 and the elastic movable conductor 3 is restored to the original flat plate shape as shown in FIG. The contact surface between the conductor 3 and the fixed electrode 22 is detached, and the non-returning energization-off is completed.
Since the distal end portion of the elastic movable conductor 3 released from the surface bonding 34 is accommodated in the space immediately below the insulating spacer 5 and contact with the fixed electrode 22 is prevented, it is possible to reliably cut off energization without occurrence of re-conduction.

図6の(イ)は本発明に係るサーモプロテクタの一実施例の平面説明図を、図6の(ロ)は図6の(イ)におけるロ−ロ断面図をそれぞれ示している。
図6において、1は絶縁ハウジングであり、セラミックスや合成樹脂等から構成してある。21,22は絶縁ハウジング1内に対向して配された固定電極であり、絶縁ハウジング1内の底面及び上面に固着されている。210,220は各固定電極21,22のリード部である。3は弾性可動導体であり、長手方向荷重fを作用させて弾性可動導体3に曲げ歪エネルギーを加え、この状態で弾性可動導体3の両端を一方の固定電極21に面接触で可溶合金や熱可塑性樹脂等の可溶材4の溶融・凝固(可溶材の溶融温度は弾性可動導体の焼き鈍し温度よりも充分に低くしてある)により接合固定し、弾性可動導体3の曲げ外面を前記他方の固定電極22に接触させてある。
5は可溶材4の溶融により面接合より解放された弾性可動導体の両端部を受け入れるスペースを形成するための絶縁スペーサであり、前記弾性可動導体の湾曲部の頂部側を受け入れる孔または切欠き51を設けた絶縁プレートを輪絶縁ハウジング内面に嵌合してある。この絶縁プレートに代え図示した絶縁スペーサを絶縁ハウジング内の長手方向両側に設けることもできる。
6 (a) is an explanatory plan view of an embodiment of the thermoprotector according to the present invention, and FIG. 6 (b) is a cross-sectional view of the roller in FIG. 6 (a).
In FIG. 6, reference numeral 1 denotes an insulating housing, which is made of ceramics or synthetic resin. Reference numerals 21 and 22 denote fixed electrodes disposed opposite to each other in the insulating housing 1, and are fixed to the bottom surface and the top surface in the insulating housing 1. Reference numerals 210 and 220 denote lead portions of the fixed electrodes 21 and 22, respectively. Reference numeral 3 denotes an elastic movable conductor, which applies a longitudinal load f to apply bending strain energy to the elastic movable conductor 3, and in this state, both ends of the elastic movable conductor 3 are brought into surface contact with one fixed electrode 21 to form a soluble alloy or the like. The fusible material 4 such as thermoplastic resin is melted and solidified (the melting temperature of the fusible material is sufficiently lower than the annealing temperature of the elastic movable conductor), and the outer bending surface of the elastic movable conductor 3 is fixed to the other side. It is in contact with the fixed electrode 22.
Reference numeral 5 denotes an insulating spacer for forming a space for receiving both ends of the elastic movable conductor released from the surface bonding by melting the fusible material 4, and a hole or notch 51 for receiving the top side of the curved portion of the elastic movable conductor. The insulating plate provided with is fitted to the inner surface of the ring insulating housing. Instead of this insulating plate, the illustrated insulating spacers can be provided on both sides in the longitudinal direction in the insulating housing.

このサーモプロテクタにおいて、常時は、一方の固定電極21→弾性可動導体3→弾性可動導体3と他方の固定電極22との接触面→他方の固定電極22の経路で導通されている。
このサーモプロテクタの動作について説明すると、図6において外部温度の上昇により可溶材4がその融点乃至は軟化点にまで加熱されると、弾性可動導体3の曲げ歪エネルギーにより弾性可動導体3の両端部と一方の固定電極21との間の可溶材4による面接合が解放され、図7に示すように弾性可動導体3が元の平板状に復帰されて弾性可動導体3の曲げ高さが0にされ、前記弾性可動導体3と他方の固定電極22との接触が脱離されて非復帰の通電オフが行なわれる。
この場合、可溶材4が溶融乃至は軟化して弾性可動導体3の弾性歪エネルギーが解放されることが動作開始要件であるから、たとえ可溶材の糸引きが生じても、動作性能に影響を与えることがない。
面接合から解放された弾性可動導体3の両端部が絶縁スペーサ5直下のスペースに収容され、弾性可動導体3と他方の固定電極22との接触が防止されるから、再導通の発生なく確実な通電遮断が確保される。
図6の(ロ)における弾性可動導体3の曲げ外面と他方の固定電極22との接触面に接触圧力が作用し、接触抵抗の低減に役立つが、更なる接触抵抗の低減を図るために、その接触面を前記した可溶材よりも低融点のはんだで接合することもできる。この場合、糸引きを抑えるために、低融点はんだの層を十分薄くすることが好ましい。
In this thermoprotector, the conduction is always made by the path of one fixed electrode 21 → the elastic movable conductor 3 → the contact surface between the elastic movable conductor 3 and the other fixed electrode 22 → the other fixed electrode 22.
The operation of the thermo protector will be described. In FIG. 6, when the soluble material 4 is heated to its melting point or softening point due to an increase in external temperature, both end portions of the elastic movable conductor 3 are caused by the bending strain energy of the elastic movable conductor 3. And the one surface of the fixed electrode 21 by the fusible material 4 is released, and the elastic movable conductor 3 is restored to the original flat plate shape as shown in FIG. Then, the contact between the elastic movable conductor 3 and the other fixed electrode 22 is removed, and the non-returning energization is turned off.
In this case, since the operation start requirement is that the soluble material 4 is melted or softened and the elastic strain energy of the elastic movable conductor 3 is released, even if stringing of the soluble material occurs, the operation performance is affected. Never give.
Since both ends of the elastic movable conductor 3 released from the surface bonding are accommodated in a space immediately below the insulating spacer 5 and contact between the elastic movable conductor 3 and the other fixed electrode 22 is prevented, it is possible to reliably prevent re-conduction. Energization interruption is secured.
A contact pressure acts on the contact surface between the bending outer surface of the elastic movable conductor 3 and the other fixed electrode 22 in FIG. 6B, which helps to reduce the contact resistance. In order to further reduce the contact resistance, The contact surfaces can be joined with a solder having a melting point lower than that of the soluble material. In this case, it is preferable to make the low melting point solder layer sufficiently thin in order to suppress stringing.

図6に示すサーモプロテクタを製作するには、絶縁ハウジングのベースに一方の固定電極を配置し、該固定電極上に弾性可動導体を配置し、弾性可動導体に長手方向荷重fを加えて弾性可動導体に曲げ歪エネルギーを与え、この状態で弾性可動導体の両端部と一方の固定電極との接触界面を可溶合金や熱可塑性樹脂等の可溶材の溶融・凝固により接合固定し、次いで、他方の固定電極及び絶縁スペーサを取付けた絶縁ハウジング本体を絶縁ハウジングベースに融着、接着剤または嵌合方式により結着し、他方の固定電極を弾性可動導体の曲げ頂部に接触させ、これにて製作を終了する。   6 is manufactured, one fixed electrode is arranged on the base of the insulating housing, an elastic movable conductor is arranged on the fixed electrode, and a longitudinal load f is applied to the elastic movable conductor to move elastically. Bending strain energy is applied to the conductor, and in this state, the contact interface between both ends of the elastic movable conductor and one fixed electrode is bonded and fixed by melting and solidifying a soluble material such as a soluble alloy or thermoplastic resin, and then the other Insulating housing body with fixed electrode and insulating spacer attached to the insulating housing base is bonded to the insulating housing base by adhesive or fitting method, and the other fixed electrode is brought into contact with the bending top of the elastic movable conductor. Exit.

上記弾性可動導体としては例えばリン青銅やエリンバー等のNi、Fe系の合金や高融点の単体金属を使用できる。弾性可動導体として弾性樹脂と金属との複合体を使用する場合、樹脂(熱可塑性樹脂や熱硬化性樹脂)をガラス繊維、金属繊維、合成繊維等の繊維で補強したFRP、高剛性エンジニアリングプラスチック等を可溶材として使用する熱可塑性樹脂との融点との相対的な関係を考慮して選択できる。弾性可動導体として、弾性金属材と合成樹脂との複合体、例えばリン青銅板とポリアミドフィルムとの積層体を使用することもできる。   As the elastic movable conductor, for example, Ni, Fe-based alloys such as phosphor bronze and Erin bar, and high melting point single metals can be used. When using a composite of elastic resin and metal as an elastic movable conductor, FRP in which resin (thermoplastic resin or thermosetting resin) is reinforced with fibers such as glass fiber, metal fiber, synthetic fiber, high-rigidity engineering plastic, etc. Can be selected in consideration of the relative relationship with the melting point of the thermoplastic resin used as a soluble material. As the elastic movable conductor, a composite of an elastic metal material and a synthetic resin, for example, a laminate of a phosphor bronze plate and a polyamide film can be used.

上記弾性可動導体の構成部材としての樹脂や可溶材としての熱可塑性樹脂としては、ポリエチレンテレフタレ−ト、ポリエチレンナフタレ−ト、ポリアミド、ポリイミド、ポリブチレンテレフタレ−ト、ポリフェニレンオキシド、ポリエチレンサルファイド、ポリサルホン等のエンジニアリングプラスチック、ポリアセタ−ル、ポリカ−ボネ−ト、ポリフェニレンスルフィド、ポリオキシベンゾイル、ポリエ−テルエ−テルケトン、ポリエ−テルイミド等のエンジニアリングプラスチックやポリプロピレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリメチルメタクリレ−ト、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、エチレンポリテトラフルオロエチレン共重合体、エチレン酢酸ビニル共重合体(EVA)、AS樹脂、ABS樹脂、アイオノマ−、AAS樹脂、ACS樹脂等中から所定融点のものを選定できる。   Examples of the resin as a constituent member of the elastic movable conductor and the thermoplastic resin as a soluble material include polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, polybutylene terephthalate, polyphenylene oxide, polyethylene sulfide, Engineering plastics such as polysulfone, engineering plastics such as polyacetal, polycarbonate, polyphenylene sulfide, polyoxybenzoyl, polyether ether ketone, polyetherimide, polypropylene, polyvinyl chloride, polyvinyl acetate, polymethyl methacrylate Rate, polyvinylidene chloride, polytetrafluoroethylene, ethylene polytetrafluoroethylene copolymer, ethylene vinyl acetate copolymer (EVA), AS resin, ABS resin, Ionomer -, can be selected ones AAS resin, from in ACS resin of a predetermined melting point.

上記可溶材としての可溶合金としては、PbやCd等の生体系に有害な元素を含まないものを使用することが好ましく、次ぎの組成[A](1)43%Sn≦70%,0.5%≦In≦10%,残Bi、(2)25%≦Sn≦40%,50%≦In≦55%,残Bi、(3)25%Sn≦44%,55%In≦74%,1%≦Bi20%、(4)46%Sn≦70%,18%≦In48%,1%≦Bi≦12%、(5)5%≦Sn≦28%,15%≦In37%,残Bi(但し、Bi57.5%,In25.2%,Sn17.3%とBi54%,In29.7%,Sn16.3%のそれぞれを基準にBi±2%,In及びSn±1%の範囲を除く)、(6)10%≦Sn≦18%,37%≦In≦43%,残Bi、(7)25%Sn≦60%,20%≦In50%,12%Bi≦33%、(8)(1)〜(7)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(9)33%≦Sn≦43%,0.5%≦In≦10%,残Bi、(10)47%≦Sn≦49%,51%≦In≦53%の100重量部にBiを3〜5重量部を添加、(11)40%≦Sn≦46%,7%≦Bi≦12%,残In、(12)0.3%≦Sn≦1.5%,51%≦In≦54%,残Bi、(13)2.5%≦Sn≦10%,25%≦Bi≦35%,残In、(14)(9)〜(13)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(15)10%≦Sn≦25%,48%≦In≦60%,残Biを100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn−Bi系合金の組成[B](16)30%≦Sn≦70%,0.3%≦Sb≦20%,残Bi、(17)(16)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn−Sb系合金の組成[C](18)52%≦In≦85%,残Sn、(19)(18)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn系合金の組成[D](20)45%≦Bi≦55%,残In、(21)(20)の組成の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Bi系合金の組成、[E](22)50%Bi≦56%,残Sn、(23)(22)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn系合金の組成[F](24)Inの100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(25)90%≦In≦99.9%,0.1%≦Ag≦10%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(26)95%≦In≦99.9%,0.1%≦Sb≦5%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加等のIn系合金(27)2%≦Zn≦15%,70%≦Sn≦95%,残Bi及びその合金100重量部にAu、In、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加した合金組成等からサーモプロテクタの動作温度に適合した融点の組成を選定することができる。
また、可溶合金にb.c.cやc.p.h等の結晶構造の金属を多く含ませることにより塑性変形を抑止し、クリープ強度を向上させることができる。
As the soluble alloy, it is preferable to use an alloy that does not contain elements harmful to biological systems such as Pb and Cd. The following composition [A] (1) 43% Sn ≦ 70%, 0 .5% ≦ In ≦ 10%, remaining Bi, (2) 25% ≦ Sn ≦ 40%, 50% ≦ In ≦ 55%, remaining Bi, (3) 25% Sn ≦ 44%, 55% In ≦ 74% 1% ≦ Bi 20%, (4) 46% Sn ≦ 70%, 18% ≦ In 48%, 1% ≦ Bi ≦ 12%, (5) 5% ≦ Sn ≦ 28%, 15% ≦ In 37%, remaining Bi (However, Bi ± 2%, In and Sn ± 1% are excluded based on Bi57.5%, In25.2%, Sn17.3% and Bi54%, In29.7%, and Sn16.3%, respectively. ), (6) 10% ≦ Sn ≦ 18%, 37% ≦ In ≦ 43%, remaining Bi, (7) 25% Sn ≦ 60%, 2 % ≦ In 50%, 12% Bi ≦ 33%, (8) 1 of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P in any one of (8) (1) to (7) 0.01 to 7 parts by weight in total of seeds or two or more kinds, (9) 33% ≦ Sn ≦ 43%, 0.5% ≦ In ≦ 10%, remaining Bi, (10) 47% ≦ Sn ≦ 49% 3 to 5 parts by weight of Bi are added to 100 parts by weight of 51% ≦ In ≦ 53%, (11) 40% ≦ Sn ≦ 46%, 7% ≦ Bi ≦ 12%, remaining In, (12) 0. 3% ≦ Sn ≦ 1.5%, 51% ≦ In ≦ 54%, remaining Bi, (13) 2.5% ≦ Sn ≦ 10%, 25% ≦ Bi ≦ 35%, remaining In, (14) (9 ) To (13) 100 parts by weight of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P or a total of 0.01 to 7 weights Addition, (15) 10% ≦ Sn ≦ 25%, 48% ≦ In ≦ 60%, remaining Bi is 100 parts by weight of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P Alternatively, the composition of the In—Sn—Bi alloy, such as the addition of two or more of 0.01 to 7 parts by weight in total [B] (16) 30% ≦ Sn ≦ 70%, 0.3% ≦ Sb ≦ 20%, Add one or more of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P to 100 parts by weight of the remaining Bi, (17), (16), and add 0.01 to 7 parts by weight in total, etc. The composition [C] (18) 52% ≦ In ≦ 85% of the Bi—Sn—Sb based alloy of the following: Sn, (19) In 100 parts by weight of (18), Ag, Au, Cu, Ni, Pd, Pt, Composition [D] (20) 4 of In-Sn alloy such that one or more of Sb, Ga, Ge, and P are added in a total of 0.01 to 7 parts by weight. 1% or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P in 100 parts by weight of the composition of 5% ≦ Bi ≦ 55%, remaining In, (21) (20) In-Bi based alloy composition such as addition of 0.01 to 7 parts by weight in total, [E] (22) 50% Bi ≦ 56%, remaining Sn, (23) Ag in 100 parts by weight of (22), Bi-Sn based alloy composition [F] (24) In, such as addition of one or more of Au, Cu, Ni, Pd, Pt, Ga, Ge, P in a total of 0.01 to 7 parts by weight One to two parts or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P are added in a total of 0.01 to 7 parts by weight to 100 parts by weight, (25) 90% ≦ In ≦ 99.9 %, 0.1% ≦ Ag ≦ 10% in 100 parts by weight of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, P or 2 0.01-7 parts by weight in total of seeds or more, (26) Au, Bi, Cu, Ni, Pd, 100 parts by weight of 95% ≦ In ≦ 99.9%, 0.1% ≦ Sb ≦ 5%, In-type alloy including one or more of Pt, Ga, Ge, and P in an amount of 0.01 to 7 parts by weight in total (27) 2% ≦ Zn ≦ 15%, 70% ≦ Sn ≦ 95%, remaining Bi The operation of the thermo protector from an alloy composition in which one or more of Au, In, Cu, Ni, Pd, Pt, Ga, Ge, and P are added to a total of 0.01 to 7 parts by weight to 100 parts by weight of the alloy. A melting point composition suitable for the temperature can be selected.
Moreover, bc and c. p. By including a large amount of metal having a crystal structure such as h, plastic deformation can be suppressed and the creep strength can be improved.

上記固定電極には、ニッケル、銅、銅合金等の導電性金属乃至は合金を使用でき、必要に応じ鍍金することができる。   For the fixed electrode, a conductive metal or alloy such as nickel, copper, or copper alloy can be used, and can be plated as necessary.

リチウムイオン2次電池、リチウムポリマー2次電池等の高いエネルギー密度の2次電池では、その高いエネルギー密度のために異常時の発熱温度が高く、その発熱を検知して電池を不通電とするサーモプロテクタが必要であるが、本発明に係るサーモプロテクタにおいては薄型化が容易であり電池パックに良好に組み込み得、その電池用サーモプロテクタとして好適に利用できる。   High energy density secondary batteries, such as lithium ion secondary batteries and lithium polymer secondary batteries, have a high heat generation temperature due to their high energy density, and a thermostat that detects the heat generation and de-energizes the battery. Although a protector is required, the thermo protector according to the present invention can be easily reduced in thickness and can be favorably incorporated into a battery pack, and can be suitably used as a thermo protector for a battery.

本発明に係るサーモプロテクタに使用する弾性可動導体の力学的挙動を示す図面である。It is drawing which shows the mechanical behavior of the elastic movable conductor used for the thermoprotector which concerns on this invention. 本発明に係るサーモプロテクタの一実施例を示す図面である。It is drawing which shows one Example of the thermo protector which concerns on this invention. 図2に示すサーモプロテクタの動作後の状態を示す図面である。It is drawing which shows the state after operation | movement of the thermo protector shown in FIG. 本発明に係るサーモプロテクタの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the thermoprotector which concerns on this invention. 図4に示すサーモプロテクタの動作後の状態を示す図面である。It is drawing which shows the state after operation | movement of the thermo protector shown in FIG. 本発明に係るサーモプロテクタの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the thermoprotector which concerns on this invention. 図6に示すサーモプロテクタの動作後の状態を示す図面である。It is drawing which shows the state after operation | movement of the thermo protector shown in FIG. 従来のサーモプロテクタを示す図面である。It is drawing which shows the conventional thermo protector. 従来のサーモプロテクタの上記とは別の例を示す図面である。It is drawing which shows an example different from the above of the conventional thermoprotector. 従来のサーモプロテクタの上記とは別の例を示す図面である。It is drawing which shows an example different from the above of the conventional thermoprotector.

符号の説明Explanation of symbols

1 ハウジング
21 固定電極
22 固定電極
3 弾性可動導体
4 可溶材
34 可溶材による接合面
5 絶縁スペーサ
51 絶縁スペーサの孔または切欠き
DESCRIPTION OF SYMBOLS 1 Housing 21 Fixed electrode 22 Fixed electrode 3 Elastic movable conductor 4 Soluble material 34 Joining surface by soluble material 5 Insulating spacer 51 Hole or notch of insulating spacer

Claims (7)

絶縁ハウジング内の対向する固定電極間に弾性可動導体が配され、弾性可動導体の一端が一方の固定電極に固定され、弾性可動導体が長手方向に圧縮され弾性的に湾曲されてその弾性可動導体の中間が他方の固定電極に接触され、弾性可動導体の他端部が前記長手方向圧縮の反力に抗して前記一方の固定電極に可溶材で面接合され、可溶材の溶融により弾性可動導体が弾性的に解放されたときに弾性可動導体の他端部を収容する空間を形成する絶縁スペーサが絶縁ハウジング内に設けられていることを特徴とするサーモプロテクタ。 An elastic movable conductor is arranged between the opposed fixed electrodes in the insulating housing, one end of the elastic movable conductor is fixed to one fixed electrode, the elastic movable conductor is compressed in the longitudinal direction, and is elastically curved, and the elastic movable conductor The other end of the elastic movable conductor is surface-bonded to the one fixed electrode with a soluble material against the reaction force of the longitudinal compression, and elastically movable by melting the soluble material. A thermo protector, wherein an insulating spacer is provided in the insulating housing for forming a space for accommodating the other end of the elastic movable conductor when the conductor is elastically released. 絶縁ハウジング内の対向する固定電極間に弾性可動導体が配され、弾性可動導体が長手方向に圧縮され弾性的に湾曲されてその弾性可動導体の中間が他方の固定電極に接触され、弾性可動導体の両端部が前記長手方向圧縮の反力に抗して前記一方の固定電極に可溶材で面接合され、可溶材の溶融により弾性可動導体が弾性的に解放されたときに弾性可動導体の各端部を収容する空間を形成する絶縁スペーサが絶縁ハウジング内の両側に設けられていることを特徴とするサーモプロテクタ。 An elastic movable conductor is disposed between the opposed fixed electrodes in the insulating housing, the elastic movable conductor is compressed in the longitudinal direction and elastically curved, and the middle of the elastic movable conductor is in contact with the other fixed electrode, and the elastic movable conductor Both end portions of the elastic movable conductor are surface-bonded to the one fixed electrode with a soluble material against the reaction force of the longitudinal compression, and the elastic movable conductor is elastically released by melting the soluble material. A thermo protector characterized in that insulating spacers that form spaces for accommodating the end portions are provided on both sides of the insulating housing. リード線先端部の弾性可動導体と固定電極とが対向して絶縁ハウジング内に配され、弾性可動導体が長手方向に圧縮され弾性的に湾曲されてその弾性可動導体の中間が固定電極に接触され、弾性可動導体の先端部が前記長手方向圧縮の反力に抗して前記固定電極に可溶材で面接合され、可溶材の溶融により弾性可動導体が弾性的に解放されたときに弾性可動導体の先端部を収容する空間を形成する絶縁スペーサが絶縁ハウジング内の両側に設けられていることを特徴とするサーモプロテクタ。 The elastic movable conductor at the tip of the lead wire and the fixed electrode face each other in the insulating housing, the elastic movable conductor is compressed in the longitudinal direction and elastically curved, and the middle of the elastic movable conductor is in contact with the fixed electrode. The elastic movable conductor when the distal end portion of the elastic movable conductor is surface-bonded to the fixed electrode with a soluble material against the reaction force of the longitudinal compression, and the elastic movable conductor is elastically released by melting the soluble material A thermo protector, characterized in that insulating spacers that form a space for accommodating the tip of each are provided on both sides of the insulating housing. 絶縁スペーサが可溶材の湾曲変形部を受け容れる孔または切欠きを有し、外周が絶縁ハウジングの内周に近接されていることを特徴とする請求項1〜3何れか記載のサーモプロテクタ。 The thermoprotector according to any one of claims 1 to 3, wherein the insulating spacer has a hole or a notch for receiving the curved deformed portion of the fusible material, and the outer periphery is close to the inner periphery of the insulating housing. 可溶材が可溶合金であることを特徴とする請求項1〜4何れか記載のサーモプロテクタ。 The thermoprotector according to claim 1, wherein the soluble material is a soluble alloy. 可溶材が熱可塑性樹脂であることを特徴とする請求項1〜4何れか記載のサーモプロテクタ。 The thermoprotector according to any one of claims 1 to 4, wherein the soluble material is a thermoplastic resin. 弾性可動導体が弾性金属単体、または弾性を有する金属と樹脂との複合体或いは弾性を有する樹脂と金属との複合体であることを特徴とする請求項1〜6何れか記載のサーモプロテクタ。
The thermo-protector according to any one of claims 1 to 6, wherein the elastic movable conductor is a single elastic metal, a composite of an elastic metal and a resin, or a composite of an elastic resin and a metal.
JP2004079741A 2004-03-19 2004-03-19 Thermo protector Expired - Lifetime JP4387227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004079741A JP4387227B2 (en) 2004-03-19 2004-03-19 Thermo protector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004079741A JP4387227B2 (en) 2004-03-19 2004-03-19 Thermo protector

Publications (2)

Publication Number Publication Date
JP2005268076A JP2005268076A (en) 2005-09-29
JP4387227B2 true JP4387227B2 (en) 2009-12-16

Family

ID=35092393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004079741A Expired - Lifetime JP4387227B2 (en) 2004-03-19 2004-03-19 Thermo protector

Country Status (1)

Country Link
JP (1) JP4387227B2 (en)

Also Published As

Publication number Publication date
JP2005268076A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
US7345570B2 (en) Thermoprotector
JP4410056B2 (en) Thermosensor, thermoprotector, and method of manufacturing thermosensor
EP2988313B2 (en) Protective device
JPWO2007132808A1 (en) Protective element
JP4630403B2 (en) Protective element
US20170062167A1 (en) Protective Device
JP6195910B2 (en) Protective device
JP2017098186A (en) Breaker, safety circuit with the same, and secondary battery circuit
KR20140005595U (en) Protection device
JP4387227B2 (en) Thermo protector
JP4757931B2 (en) Protective element
JP4912447B2 (en) Alloy type thermal fuse
JP2005063792A (en) Heat sensitive element and thermo-protector
JP2005078954A (en) Thermosensor and thermoprotector
JP2006196189A (en) Thermo-protector, manufacturing and mounting method of the same
JP4269264B2 (en) Thin thermal fuse
JP4387251B2 (en) Thermo protector
JP4223368B2 (en) Thermo protector
JP2006155974A (en) Thermoprotector
CN111247613B (en) Thermal particle type thermal fuse
JP2006147326A (en) Thermo protector
JP4527609B2 (en) Thermo protector
JP2005268078A (en) Thermo-protector
JP2006331777A (en) Thermo-protector and its manufacturing method
WO2023074752A1 (en) Breaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3