JP4387141B2 - Polarization diffraction grating - Google Patents

Polarization diffraction grating Download PDF

Info

Publication number
JP4387141B2
JP4387141B2 JP2003288168A JP2003288168A JP4387141B2 JP 4387141 B2 JP4387141 B2 JP 4387141B2 JP 2003288168 A JP2003288168 A JP 2003288168A JP 2003288168 A JP2003288168 A JP 2003288168A JP 4387141 B2 JP4387141 B2 JP 4387141B2
Authority
JP
Japan
Prior art keywords
diffraction grating
light
polarizing
polarizing diffraction
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003288168A
Other languages
Japanese (ja)
Other versions
JP2005055773A (en
Inventor
茂 大内田
一也 宮垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003288168A priority Critical patent/JP4387141B2/en
Publication of JP2005055773A publication Critical patent/JP2005055773A/en
Application granted granted Critical
Publication of JP4387141B2 publication Critical patent/JP4387141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Description

本発明は、偏光性回折格子からなる偏光光学素子、および、それを用いた光ピックアップ装置、光ディスクドライブ装置に関する。   The present invention relates to a polarizing optical element including a polarizing diffraction grating, and an optical pickup device and an optical disk drive device using the polarizing optical element.

液晶表示のカラーフィルタ用途として、基板に対して斜めに傾いた格子が提案されている(例えば、特許文献1 参照。)。斜めにすることにより0次光と1次光以外の高次光が発生しないで、しかも回折効率の波長依存性もほとんど無いものとなる。   As a color filter application for liquid crystal display, a lattice inclined obliquely with respect to the substrate has been proposed (for example, see Patent Document 1). By tilting, high-order light other than the 0th-order light and the 1st-order light is not generated, and the wavelength dependence of the diffraction efficiency is hardly present.

図13は偏光性回折格子の1例を示す模式図である。
同図において符号1、1’は基板、2は第1の媒質、3は第2の媒質をそれぞれ示す。
偏光性回折格子は、基板1、1’に挟まれた、互いに屈折率の異なる第1の媒質2と第2の媒質3との境界面に、断面が矩形波状に形成されている。すなわち、矩形状の凹凸によって、2つの媒質が互いに同じ幅で入り組むように、基板面に平行な方向に周期的に所定のピッチで交互に並んでいる。凹凸の上面と底面は基板表面に対し平行であり、上面と底面を結ぶ壁面は基板表面に対し垂直になっている。紙面に垂直な方向にはこのような凹凸が、格子ラインとして所定の長さで形成されている。同図では理解を容易にするために縦横とも誇張して示してある。
FIG. 13 is a schematic diagram showing an example of a polarizing diffraction grating.
In the figure, reference numerals 1 and 1 ′ denote a substrate, 2 denotes a first medium, and 3 denotes a second medium.
The polarizing diffraction grating has a rectangular wave cross section at the boundary surface between the first medium 2 and the second medium 3 sandwiched between the substrates 1 and 1 ′ and having different refractive indexes. In other words, the rectangular irregularities are alternately arranged periodically at a predetermined pitch in a direction parallel to the substrate surface so that the two media are intertwined with the same width. The top and bottom surfaces of the unevenness are parallel to the substrate surface, and the wall surface connecting the top and bottom surfaces is perpendicular to the substrate surface. Such irregularities are formed as lattice lines with a predetermined length in a direction perpendicular to the paper surface. In the figure, both the vertical and horizontal directions are exaggerated for easy understanding.

矩形波のピッチに比べて凹凸の深さが浅い場合は、平面ホログラムとしての性質を示し、逆に或る程度深い場合は、Q値が大きくなり体積ホログラムとしての性質を示す。ただし、ここで言うQ値とは、光の空気中の波長λ、格子深さT、回折格子媒質の屈折率n、格子ピッチをdとするとき、
Q=2πλT/nd
で表される値のことである。
平面ホログラムの+1次回折光の回折効率は、面に対する光束の入射角度による依存性があまり大きくないが、体積ホログラムのそれは、入射角度に大きく依存する。
When the depth of the unevenness is shallower than the pitch of the rectangular wave, the property as a planar hologram is exhibited, and conversely, when the depth is somewhat deep, the Q value is increased and the property as a volume hologram is exhibited. However, the Q value here refers to the wavelength λ of light in the air, the grating depth T, the refractive index n of the diffraction grating medium, and the grating pitch d.
Q = 2πλT / nd 2
It is a value represented by.
The diffraction efficiency of the + 1st order diffracted light of the plane hologram is not so dependent on the incident angle of the light beam with respect to the surface, but that of the volume hologram greatly depends on the incident angle.

図14はホログラムの種類による+1次回折光の回折効率を表すグラフである。
同図において符号Pは平面ホログラムによる1次光回折効率を表す曲線、Vは体積ホログラムによる1次光回折効率を表す曲線をそれぞれ示す。
平面ホログラムの場合は、光束が面に対して垂直に入射するとき最も回折効率が高くなる。そして、入射光束が面に対し傾いていっても、回折効率の低下はあまり著しくない。
それに比べ、体積ホログラムの場合は、光束が面に対し垂直に入射したときは、平面ホログラムとほぼ同等の回折効率を示すが、入射角度が−(マイナス)方向に傾いていくと、回折効率はそれより減少し、逆に、入射角度が+方向に傾いていくと、回折効率は上昇し、或る角度θBにおいて最大値を示し、それ以上の角度では減少に転ずる。
この現象は、非特許文献1にも示されている。
FIG. 14 is a graph showing the diffraction efficiency of + 1st order diffracted light according to the type of hologram.
In the figure, the symbol P represents a curve representing the first-order light diffraction efficiency by a plane hologram, and V represents a curve representing the first-order light diffraction efficiency by a volume hologram.
In the case of a planar hologram, the diffraction efficiency is highest when the light beam enters perpendicularly to the surface. Even if the incident light beam is inclined with respect to the surface, the diffraction efficiency is not significantly reduced.
In contrast, in the case of a volume hologram, when the light beam is incident on the surface perpendicularly, the diffraction efficiency is almost the same as that of the planar hologram, but when the incident angle is inclined in the-(minus) direction, the diffraction efficiency is If the incident angle is further decreased and the incident angle is tilted in the + direction, the diffraction efficiency increases, shows a maximum value at a certain angle θB, and starts decreasing at an angle larger than that.
This phenomenon is also shown in Non-Patent Document 1.

偏光性回折格子の回折効率を高めるためには回折格子の溝を深く加工しなければならない。しかしながら、溝が深く、ピッチの小さい偏光性回折格子は前述のように体積ホログラムの特性が表れる。
一般に偏光性回折格子には光を面に垂直入射(入射角0°)させて使うが、光ピックアップにおいて偏光性回折格子を光源とカップリングレンズの間に配置すると、収束光が偏光性回折格子に入るので光束の中心部は垂直入射するが、周辺部では光の入射角度が+5°や−5°の角度で入射する。+5°で入射した光は回折効率η1が大きく、−5°で入射した光は回折効率η2が小さいと、ビームの左右で回折効率が異なることになり、プッシュプル信号にオフセットが生じてしまう。
この問題を解決するため、本発明者等は回折格子自体を傾ける方式を提案した(特願2003−090769)。
In order to increase the diffraction efficiency of the polarizing diffraction grating, the grooves of the diffraction grating must be processed deeply. However, a polarizing diffraction grating having a deep groove and a small pitch exhibits the characteristics of a volume hologram as described above.
In general, a polarizing diffraction grating is used by making light incident perpendicularly to the surface (incident angle 0 °). However, when a polarizing diffraction grating is arranged between a light source and a coupling lens in an optical pickup, the convergent light is polarized. Since the light enters the central portion of the light beam, the light enters the central portion at a vertical angle, but the light enters the peripheral portion at an angle of + 5 ° or −5 °. When the light incident at + 5 ° has a large diffraction efficiency η1, and the light incident at −5 ° has a small diffraction efficiency η2, the diffraction efficiency differs between the left and right beams, and an offset occurs in the push-pull signal.
In order to solve this problem, the present inventors have proposed a method of tilting the diffraction grating itself (Japanese Patent Application No. 2003-090769).

図15は格子面の傾斜による1次光回折効率のグラフのシフトを説明するための図である。
同図において符号g0は格子を傾けないときの光軸に沿った入射光、いわゆる主光線に対する1次回折光の回折効率のグラフ、gθBは格子をθB傾けた場合の主光線に対する1次回折光の回折効率のグラフをそれぞれ示す。
この先願によれば、回折格子を傾けない場合の1次光回折効率はグラフg0で示される。1次光回折効率が最も高くなる入射角度(θB)だけ光軸に対して回折格子自体を傾けて、主光線に対して最も回折効率が大きくなるようにすると、グラフg0は座標軸対称にシフトして、主光線に対する1次光回折効率のグラフgθBを得る。このグラフは光軸に関し+5°や−5°の角度で入射した場合でも回折効率η1とη2が等しくなる。このようにしてプッシュプル信号にオフセットが生じないように構成している。このように構成すると、収束光のすべての角度に対し、回折効率が上昇するので、受光素子に入射する光量も増加し、高速応答も可能になる。
FIG. 15 is a diagram for explaining the shift of the graph of the first-order light diffraction efficiency due to the inclination of the grating surface.
In the figure, g0 is a graph of the diffraction efficiency of the first-order diffracted light with respect to the incident light along the optical axis when the grating is not tilted, so-called chief ray, and gθB is the diffraction of the first-order diffracted light with respect to the chief ray when the grating is tilted by θB. The efficiency graphs are shown respectively.
According to this prior application, the first-order light diffraction efficiency when the diffraction grating is not tilted is shown by a graph g0. If the diffraction grating itself is tilted with respect to the optical axis by the incident angle (θB) at which the first-order light diffraction efficiency is the highest, and the diffraction efficiency is maximized with respect to the principal ray, the graph g0 shifts symmetrically with respect to the coordinate axis. Thus, a graph gθB of the first-order light diffraction efficiency with respect to the principal ray is obtained. In this graph, the diffraction efficiencies η1 and η2 are equal even when incident at an angle of + 5 ° or −5 ° with respect to the optical axis. In this way, the push-pull signal is configured not to be offset. With this configuration, the diffraction efficiency increases for all angles of the convergent light, so that the amount of light incident on the light receiving element increases and a high-speed response is possible.

上記先願においては、光軸に対して格子自体を傾けて、主光線に関し最も回折効率が大きくなるようにして、光軸に対し傾いた角度で入射した場合でも+5°入射と−5°入射で回折効率が等しくなるようにしてプッシュプル信号にオフセットが生じないように構成されている。しかしながら回折効率が等しくなるのでオフセットは生じないが、傾斜角入射光に対する回折効率自体は低下するのでプッシュプル信号光量は低下する。
さらに同先願において、全領域でブラッグ角になるように格子を傾斜することで回折効率の低下を抑制する方法が提案されているが、収束光が入射する場合、全領域でブラッグ角になるようにおのおのの格子を少しずつ傾けて加工することは難しい。
In the above prior application, the grating itself is tilted with respect to the optical axis so that the diffraction efficiency is maximized with respect to the principal ray, and even when incident at an angle inclined with respect to the optical axis, + 5 ° incidence and −5 ° incidence Thus, the push-pull signal is configured to have no offset by making the diffraction efficiencies equal. However, since the diffraction efficiencies are equal, no offset occurs, but the diffraction efficiency itself with respect to the incident light with the tilt angle is lowered, so that the push-pull signal light quantity is lowered.
Further, in the earlier application, a method for suppressing a decrease in diffraction efficiency by tilting the grating so as to have a Bragg angle in the entire region is proposed. However, when convergent light is incident, the Bragg angle is obtained in the entire region. It is difficult to work by tilting each grid little by little.

偏光性回折格子を構成する材料として、光学的異方性材料が必要となるが、この材料としてカルサイトを用いる例がある(例えば、特許文献2 参照。)。しかしながら、カルサイトは大面積・低コストに関して難がある。一方、このような用途に使える材料として、有機延伸膜をホログラムに用いた例がある(例えば、特許文献3 参照。)。有機延伸膜はカルサイトに比べて大面積化が容易で、膜厚が薄く、安価に入手できると言うメリットを持っている。   An optically anisotropic material is required as a material constituting the polarizing diffraction grating, and there is an example in which calcite is used as this material (for example, see Patent Document 2). However, calcite has difficulty in terms of large area and low cost. On the other hand, as a material that can be used for such applications, there is an example in which an organic stretched film is used for a hologram (see, for example, Patent Document 3). Compared to calcite, the organic stretched film has the advantage of being easy to increase in area, thin in thickness, and available at low cost.

特開平10−096807号公報(第4頁、第1図)Japanese Patent Laid-Open No. 10-096807 (page 4, FIG. 1) 特第2594548号公報(第2頁、第1図)Japanese Patent No. 2594548 (2nd page, Fig. 1) 特開2000−075130号公報(第4頁、第1図)JP 2000-075130 (page 4, FIG. 1) 小山、西原共著「光波電子光学」コロナ社、p.121Co-authored by Koyama and Nishihara, “Lightwave Electro-Optics”, Corona, p. 121

受光素子に入る光量を大きくするために矩形波ピッチに対する深さを深くすると、特定の入射角度に対して回折効率が大きくなるような体積ホログラムの特性が現れる。この体積ホログラムは、通常の使い方では、入射角度の違いによる回折効率の違いから生じるプッシュプル信号のオフセットが発生する。これを避けるため回折効率が最大になる入射角で主光線が入射するように格子を傾ける。それでも主光線に対する回折効率に比べて、傾斜入射光線に対する回折効率は低くなる。収束しながら入射するすべての入射光の入射角に対してブラッグ角度になるよう、ホログラムの格子を傾斜する方法は製造が難しい。
本発明では格子を複数の領域に分けて、領域ごとに格子の形状を変える事により、+5°入射、−5°入射のような光軸に関し斜めに入射する光に対して回折効率が等しく、かつ回折効率自体も低下しないようにすることを提案する。
When the depth with respect to the rectangular wave pitch is increased in order to increase the amount of light entering the light receiving element, the characteristics of a volume hologram that increases the diffraction efficiency for a specific incident angle appear. In a normal usage, this volume hologram causes an offset of a push-pull signal resulting from a difference in diffraction efficiency due to a difference in incident angle. To avoid this, the grating is tilted so that the chief ray is incident at an angle of incidence that maximizes the diffraction efficiency. Nevertheless, the diffraction efficiency for obliquely incident light is lower than the diffraction efficiency for chief rays. It is difficult to manufacture the method of tilting the hologram grating so that the Bragg angle is set with respect to the incident angle of all incident light incident while converging.
In the present invention, the grating is divided into a plurality of regions, and by changing the shape of the lattice for each region, diffraction efficiency is equal to light incident obliquely with respect to the optical axis such as + 5 ° incidence and −5 ° incidence, In addition, it is proposed that the diffraction efficiency itself is not lowered.

請求項1に記載の発明では、光学的に透明、且つ、互いに平行に配された2枚の基板と、両基板の間に挟まれ、少なくとも一方が複屈折性を示し、互いに光学的特性の異なる2つの媒質が境界面をもって交互に周期的に配列された構造を有する矩形形状の偏光性回折格子において、該回折格子は側面部が前記基板に対して傾斜し、前記配列方向に関して複数の領域に分割され、各々の領域において前記境界面の傾斜する角度が異なることを特徴とする。
請求項2に記載の発明では、請求項1に記載の偏光性回折格子において、前記光学的特性の異なる2つの媒質のうち一方の媒質のみが複屈折性を示す媒質であり、他方の媒質は光学的等方性を示す媒質であることを特徴とする。
In the first aspect of the present invention, two substrates that are optically transparent and arranged in parallel to each other are sandwiched between the two substrates, at least one of which exhibits birefringence, and has optical properties relative to each other. in the polarizing diffraction grating rectangular shape two different medium to have a periodically arranged structure alternately with the interface, the diffraction grating is inclined sidewall is relative to the substrate, the plurality with respect to the arrangement direction It is divided into regions, and the angle at which the boundary surface inclines is different in each region.
In the invention according to claim 2, in the polarizing diffraction grating according to claim 1, only one of the two media having different optical characteristics is a medium exhibiting birefringence, and the other medium is It is a medium exhibiting optical isotropy.

請求項3に記載の発明では、請求項2に記載の偏光性回折格子において、前記複屈折性を示す媒質の面内の直交する2方向の異なる屈折率のうち一方の屈折率と前記光学的等方性を示す媒質の屈折率とが略等しいことを特徴とする。
請求項4に記載の発明では、請求項1ないし3のいずれか1つに記載の偏光性回折格子において、該回折格子は奇数の領域に分割されており、中央の領域の前記境界面の傾斜角は、使用すべき光の波長に関し、前記基板の面に垂直に入射する光線の1次回折光の回折効率が最大になる角度θBに設定されていることを特徴とする。
According to a third aspect of the present invention, there is provided the polarizing diffraction grating according to the second aspect, wherein one of the two different refractive indices in two orthogonal directions within the plane of the birefringent medium and the optical refractive index. The refractive index of a medium exhibiting isotropic property is substantially equal.
According to a fourth aspect of the present invention, in the polarizing diffraction grating according to any one of the first to third aspects, the diffraction grating is divided into an odd-numbered area, and an inclination of the boundary surface in a central area. The angle is set to an angle θB at which the diffraction efficiency of the first-order diffracted light of the light incident perpendicularly to the surface of the substrate is maximized with respect to the wavelength of light to be used.

請求項5に記載の発明では、請求項4に記載の偏光性回折格子において、前記奇数の領域のうち最外側の領域の前記境界面の傾斜角は、前記回折格子に入射させるべき収束性の光束のうち1次回折光の回折効率を最大にしたい光線の相対入射角度がθBになるように設定されていることを特徴とする。
請求項6に記載の発明では、光学的に透明、且つ、互いに平行に配された2枚の基板と、両基板の間に挟まれ、少なくとも一方が複屈折性を示し、互いに光学的特性の異なる2つの媒質が境界面をもって交互に周期的に配列された構造を有する矩形形状の偏光性回折格子において、該回折格子は側面部が前記基板に対して傾斜し、複数の領域に分割され、各々の領域において前記回折格子の深さが異なることを特徴とする。
According to a fifth aspect of the present invention, in the polarizing diffraction grating according to the fourth aspect, the inclination angle of the boundary surface of the outermost region of the odd number regions is a convergence property to be incident on the diffraction grating. It is characterized in that the relative incident angle of a light beam for maximizing the diffraction efficiency of the first-order diffracted light is set to θB.
In the invention described in claim 6, two substrates that are optically transparent and arranged in parallel to each other are sandwiched between the two substrates, at least one of which exhibits birefringence, and has optical properties relative to each other. in the polarizing diffraction grating rectangular shape two different medium to have a periodically arranged structure alternately with the interface, the diffraction grating is inclined sidewall is relative to the substrate, it is divided into a plurality of regions The depth of the diffraction grating is different in each region.

請求項7に記載の発明では、請求項6に記載の偏光性回折格子において、前記光学的特性の異なる2つの媒質のうち一方の媒質のみが複屈折性を示す媒質であり、他方の媒質は光学的等方性を示す媒質であることを特徴とする。
請求項8に記載の発明では、請求項7に記載の偏光性回折格子において、前記複屈折性を示す媒質の面内の直交する2方向の異なる屈折率のうち一方の屈折率と前記光学的等方性を示す媒質の屈折率とが略等しいことを特徴とする。
請求項9に記載の発明では、請求項6ないし8のいずれか1つに記載の偏光性回折格子において、該回折格子は奇数の領域に分割されており、中央の領域の前記回折格子の深さは、使用すべき光の波長に関し、前記基板の面に垂直に入射する光線の出射角θなる1次回折光の回折効率が最大になる深さに設定されていることを特徴とする。
In the invention according to claim 7, in the polarizing diffraction grating according to claim 6, only one of the two media having different optical characteristics is a medium exhibiting birefringence, and the other medium is It is a medium exhibiting optical isotropy.
According to an eighth aspect of the present invention, in the polarizing diffraction grating according to the seventh aspect, one of the two different refractive indexes in the two orthogonal directions in the plane of the birefringent medium and the optical index. The refractive index of a medium exhibiting isotropic property is substantially equal.
According to a ninth aspect of the present invention, in the polarizing diffraction grating according to any one of the sixth to eighth aspects, the diffraction grating is divided into odd-numbered regions, and the depth of the diffraction grating in the central region. This is characterized in that, with respect to the wavelength of light to be used, it is set to a depth at which the diffraction efficiency of the first-order diffracted light having the emission angle θ of the light incident perpendicularly to the surface of the substrate is maximized.

請求項10に記載の発明では、請求項9に記載の偏光性回折格子において、前記奇数の領域のうち最外側の領域の前記回折格子の深さは、前記回折格子に入射させるべき収束性の光束のうち1次回折光の回折効率を最大にしたい光線の入射角に対する相対出射角度が前記θになるように設定されていることを特徴とする。
請求項11に記載の発明では、請求項1ないし10のいずれか1つに記載の偏光性回折格子において、該回折格子を使用すべき所望の光の空気中における波長をλ、格子深さをT、回折格子媒質の屈折率をn、格子ピッチをdとしたとき、Q=2πλT/ndで定義される回折格子のQ値が、Q>2となるよう構成したことを特徴とする。
According to a tenth aspect of the present invention, in the polarizing diffraction grating according to the ninth aspect, the depth of the diffraction grating in the outermost region of the odd number regions is a convergence property to be incident on the diffraction grating. It is characterized in that the relative emission angle with respect to the incident angle of the light beam for maximizing the diffraction efficiency of the first-order diffracted light among the light beams is set to be θ.
In the eleventh aspect of the present invention, in the polarizing diffraction grating according to any one of the first to tenth aspects, the wavelength of desired light to be used in the diffraction grating is λ, and the grating depth is It is characterized in that the Q value of the diffraction grating defined by Q = 2πλT / nd 2 is Q> 2, where T, the refractive index of the diffraction grating medium is n, and the grating pitch is d.

請求項12に記載の発明では、請求項1ないし11のいずれか1つに記載の偏光性回折格子において、前記複屈折性を示す媒質は有機延伸膜であることを特徴とする。
請求項13に記載の発明では、請求項1ないし11のいずれか1つに記載の偏光性回折格子において、前記複屈折性を示す媒質は液晶であることを特徴とする。
請求項14に記載の発明では、請求項1ないし13のいずれか1つに記載の偏光性回折格子を、レーザ光源と受光素子を一体化した投受光素子の光入出射面に一体化してユニットを構成してなる光学素子ユニットを特徴とする。
In a twelfth aspect of the present invention, in the polarizing diffraction grating according to any one of the first to eleventh aspects, the medium exhibiting birefringence is an organic stretched film.
In a thirteenth aspect of the present invention, in the polarizing diffraction grating according to any one of the first to eleventh aspects, the medium exhibiting birefringence is a liquid crystal.
According to a fourteenth aspect of the present invention, the polarizing diffraction grating according to any one of the first to thirteenth aspects is integrated with a light incident / exit surface of a light projecting / receiving element in which a laser light source and a light receiving element are integrated. An optical element unit comprising:

請求項15に記載の発明では、請求項1ないし13のいずれか1つに記載の偏光性回折格子と、光源と、対物レンズと、受光素子とを有する記録媒体記録再生のための光ピックアップ装置であって、前記光源からの光束の光路中に前記偏光性回折格子を配置し、前記記録媒体からの反射光を前記偏光性回折格子により分岐し、前記受光素子で受光することを特徴とする。
請求項16に記載の発明では、請求項15に記載の光ピックアップ装置を搭載した光ディスクドライブ装置を特徴とする。
According to a fifteenth aspect of the present invention, there is provided an optical pickup device for recording / reproducing a recording medium, comprising the polarizing diffraction grating according to any one of the first to thirteenth aspects, a light source, an objective lens, and a light receiving element. The polarizing diffraction grating is disposed in the optical path of the light beam from the light source, the reflected light from the recording medium is branched by the polarizing diffraction grating, and is received by the light receiving element. .
According to a sixteenth aspect of the present invention, there is provided an optical disk drive device on which the optical pickup device according to the fifteenth aspect is mounted.

請求項17に記載の発明では、請求項1に記載の偏光性回折格子を作製する方法であって、光学的に透明な第1の基板の片面に、外部から電圧印加可能な状態に帯状の透明電極を所定の等間隔に形成し、同じく透明な第2の基板の片面に、外部から電圧印加可能な状態に帯状の透明電極を複数の領域に分けて形成し、各領域内では前記透明電極を前記所定の等間隔に形成し、領域間では前記所定の等間隔とは異なる間隔で配置し、前記両基板の前記透明電極を形成した面を、前記帯状電極が配列方向に所定量ずれて向き合うように対向させ、その間に光硬化型液晶を封入し、前記両基板の前記透明電極間に電圧を印加しながら光照射を行うことによって、前記液晶の電圧印加による配向状態のまま前記液晶を固化させる偏光性回折格子の作製方法を特徴とする。   According to a seventeenth aspect of the present invention, there is provided a method for producing the polarizing diffraction grating according to the first aspect of the present invention, wherein a band-like shape is formed on one side of an optically transparent first substrate so that an external voltage can be applied. Transparent electrodes are formed at predetermined equal intervals, and a strip-like transparent electrode is formed on one side of a transparent second substrate in a state where voltage can be applied from the outside in a plurality of regions. The electrodes are formed at the predetermined equal intervals, and the regions are arranged at intervals different from the predetermined equal intervals, and the surfaces of the two substrates on which the transparent electrodes are formed are shifted by a predetermined amount in the arrangement direction of the strip electrodes. Facing each other, encapsulating a photo-curable liquid crystal therebetween, and irradiating light while applying a voltage between the transparent electrodes of the two substrates, whereby the liquid crystal remains in an alignment state due to voltage application of the liquid crystal. Of Polarizing Diffraction Grating to Solidify Law and said.

本発明の偏光性回折格子によれば、作製が容易でありながら、光ディスクへの入射光の光量を大きく損失することなく、光ディスクからの収束しながら入射する戻り光を効率よく回折させて受光素子に導くことができ、高速応答性の光ピックアップ装置を作ることができる。   According to the polarizing diffraction grating of the present invention, the light receiving element can diffract return light efficiently while converging from the optical disk without losing a large amount of light incident on the optical disk, although it is easy to manufacture. Therefore, a high-speed responsive optical pickup device can be manufactured.

特定方向の偏光に関しては作用を与えず、それと直交方向の偏光に対しては高い1次回折効率を示す偏光性回折格子であって、互いに光学的特性の異なる2つの媒質が格子面に対し傾斜する境界面をもって交互に周期的に配列された構造を有し、該格子面が複数の領域に分割され、各領域毎に前記境界面の傾斜角を異ならせることによって、1次回折光に対する最高の回折効率を示す入射角度が領域毎に異なり、収束光に対し、主光線も、周辺光線も高い回折効率を示す偏光性回折格子を作製する。光源と受光素子が一体化された投受光素子の投受光窓に、光束分割用のグレーティングを貼り付け、所定の光学的距離を置いて前記偏光性回折格子を貼り付け一体化させ、光学素子ユニットを構成する。この光学素子ユニットを、光ディスクの記録・再生用光ピックアップに用いる。   A polarizing diffraction grating that has no effect on polarized light in a specific direction and exhibits high first-order diffraction efficiency for polarized light in a direction orthogonal to the polarized light. Two media having different optical characteristics are inclined with respect to the grating surface. The lattice plane is divided into a plurality of regions, and the inclination angle of the boundary surface is different for each region, so that the best for the first-order diffracted light is obtained. An incident angle indicating diffraction efficiency varies from region to region, and a polarizing diffraction grating is produced that exhibits high diffraction efficiency for both the principal ray and the peripheral ray with respect to the convergent light. An optical element unit is formed by attaching a grating for beam splitting to a light projecting / receiving window of a light projecting / receiving element in which a light source and a light receiving element are integrated, and affixing and integrating the polarizing diffraction grating at a predetermined optical distance. Configure. This optical element unit is used for an optical pickup for recording / reproducing optical disks.

以下に実施形態に従って本発明を説明する。
図1は本発明のホログラムの実施形態を説明するための図である。
同図において符号1、1’は基板、2は第1の媒質、3は第2の媒質、A、B、Cは壁面の傾斜角を異ならせた3つのブロック、Hは偏光性回折格子、L、L、Lは光束をそれぞれ示す。
互いに光学的特性の異なる第1の媒質2と、第2の媒質3は光学的に透明な基板1、1’に挟まれており、両媒質の境界は傾斜した矩形波状の凹凸が形成され、双方の媒質が部分的に相互に入り込むように、周期的に所定のピッチで並んでいる。この構成は基本的には図13に示した構成に類似であるが、図13の構成では、両媒質の凹凸の境界が基板の面に平行な上面・底面と垂直な壁面の繰り返しで構成されていたのに対し、本実施形態では、上記境界が、基板の面に平行な上面・底面を有する点では同じであるが、壁面は基板の面に垂直ではなく、或る特定な角度を有している点が異なる。
Hereinafter, the present invention will be described according to embodiments.
FIG. 1 is a diagram for explaining an embodiment of a hologram of the present invention.
In the figure, reference numerals 1 and 1 ′ are substrates, 2 is a first medium, 3 is a second medium, A, B, and C are three blocks with different inclination angles of a wall surface, H is a polarizing diffraction grating, L A , L B , and L C indicate light beams, respectively.
The first medium 2 and the second medium 3 having optical properties different from each other are sandwiched between optically transparent substrates 1 and 1 ′, and an inclined rectangular wave-shaped unevenness is formed at the boundary between the two media. The two media are periodically arranged at a predetermined pitch so as to partially enter each other. This configuration is basically similar to the configuration shown in FIG. 13, but in the configuration of FIG. 13, the boundary between the concaves and convexes of both media is configured by repeating wall surfaces perpendicular to the top and bottom surfaces parallel to the substrate surface. In contrast, in the present embodiment, the boundary is the same in that it has a top surface and a bottom surface parallel to the surface of the substrate, but the wall surface is not perpendicular to the surface of the substrate and has a certain angle. Is different.

先願の説明で示したように、図13に示した回折格子を傾斜させて配置した場合、全ての矩形状の凹凸の壁面(以後単に壁面と称す)は主光線に対し同じ角度傾くことになる。また、特許文献1に示された回折格子は上面・底面が基板面に平行であり、壁面が特定な角度で傾斜しているが、これも領域分割はされておらずすべての壁面が同一の角度を有している。
本実施形態は壁面が既に傾いているので、主光線は基板に垂直に入射させることができるが、本発明では、基板面に対し壁面の傾斜角度は一定ではないことが特徴である。
As shown in the description of the prior application, when the diffraction grating shown in FIG. 13 is tilted, all the rectangular uneven wall surfaces (hereinafter simply referred to as wall surfaces) are inclined at the same angle with respect to the principal ray. Become. In addition, the diffraction grating shown in Patent Document 1 has a top surface and a bottom surface that are parallel to the substrate surface, and the wall surface is inclined at a specific angle, but this is also not divided into regions and all the wall surfaces are the same. Have an angle.
In the present embodiment, since the wall surface is already inclined, the principal ray can be incident on the substrate perpendicularly. However, the present invention is characterized in that the inclination angle of the wall surface with respect to the substrate surface is not constant.

図2は偏光性回折格子の平面図である。
図1、2においてブロックBは、基板面に垂直に入射する主光線の1次回折光が最大の回折効率を示す角度に壁面を傾斜させてある。ブロックAは、主光線に対し−θ1の角度で入射する光線の1次回折光が最大の回折効率を示す角度に壁面を傾斜させてある。ブロックCは、主光線に対し+θ1の角度で入射する光線の1次回折光が最大の回折効率を示す角度に壁面を傾斜させてある。
ブロックBの壁面の基板面に対する傾斜角をθBとすると、ブロックAのそれはθB−θ1、ブロックCのそれはθB+θ1となる。すなわち、入射光線と壁面がなす相対角度がすべてθBとなっている。
収束光の最外側の光線の入射角を±θ2としたとき、θ1とθ2の関係は以下に述べるような関係に設定する。
FIG. 2 is a plan view of the polarizing diffraction grating.
1 and 2, the wall surface of the block B is inclined at an angle at which the first-order diffracted light of the principal ray incident perpendicularly to the substrate surface exhibits the maximum diffraction efficiency. In the block A, the wall surface is inclined at an angle at which the first-order diffracted light of the light ray incident at an angle of −θ1 with respect to the principal ray exhibits the maximum diffraction efficiency. In the block C, the wall surface is inclined at an angle at which the first-order diffracted light of the light ray incident at an angle of + θ1 with respect to the principal ray shows the maximum diffraction efficiency.
If the inclination angle of the wall surface of block B with respect to the substrate surface is θB, that of block A is θB−θ1, and that of block C is θB + θ1. That is, the relative angles formed between the incident light beam and the wall surface are all θB.
When the incident angle of the outermost ray of the convergent light is ± θ2, the relationship between θ1 and θ2 is set to the relationship described below.

図3は本実施形態のホログラムの回折効率を示す図である。同図(a)は壁面の傾斜角±θ1を入射角の限界値±θ2に一致させた場合、同図(b)は壁面の傾斜角±θ1の絶対値を入射角の限界値θ2より小さい値に設定した場合をそれぞれ示す図である。
同図において符号g、g、gはブロックA、B、Cにおける1次回折光の回折効率のグラフをそれぞれ示す。
同図(a)に示すグラフの実線の部分が光束の中心を通る横断面における1次回折光の回折効率である。ブロックAおよびBにおいては、収束光の最外側の光線の角度θ2(入射角の限界値)において1次光回折効率が最大になるように設定している。すなわち、最外側の光線の回折効率が主光線の回折効率と等しくなっている。したがって、光量損失をかなり低減できる。
FIG. 3 is a diagram showing the diffraction efficiency of the hologram of this embodiment. FIG. 6A shows the case where the wall surface inclination angle ± θ1 coincides with the incident angle limit value ± θ2, and FIG. 5B shows the absolute value of the wall surface inclination angle ± θ1 smaller than the incident angle limit value θ2. It is a figure which shows the case where it sets to a value, respectively.
In the figure, symbols g A , g B , and g C indicate diffraction efficiency graphs of the first-order diffracted light in the blocks A, B, and C, respectively.
The solid line portion of the graph shown in FIG. 4A is the diffraction efficiency of the first-order diffracted light in the cross section passing through the center of the light beam. In the blocks A and B, the first-order light diffraction efficiency is set to become maximum at the angle θ2 (incident angle limit value) of the outermost ray of the convergent light. That is, the diffraction efficiency of the outermost light beam is equal to the diffraction efficiency of the principal light beam. Therefore, the light loss can be considerably reduced.

同図(b)に示すグラフでは、入射角の限界値±θ2における回折効率が、グラフgとグラフgの交点、および、グラフgとグラフgの交点における回折効率ηに等しくなるように壁面の傾斜角θB±θ1を選んである。こうすることによって、光束の平均的な回折効率はさらに上昇し、それだけ光量損失の低減が図れる。図からも明らかなように、このときのθ1はθ2の3分の2に等しい。角度θ2があまり大きくなければ、ブロックA、B、Cの有効幅も光束の径をほぼ3等分する大きさになる。
このθ1の設定方法は、光束断面が、回折格子のライン方向に平行な辺を有する長方形の場合に最高の回折効率を示すことが明らかである。実際の光束断面は通常の場合円形なので、±θ2における回折効率がグラフgとグラフg等の交点における回折効率よりも若干小さくなっても、±θ1の絶対値を小さくしてさらにグラフgの中心側に近づけた方が、総合の回折効率はより大きくなる。
In the graph shown in FIG. 6B, the diffraction efficiency at the incident angle limit value ± θ2 is equal to the diffraction efficiency η at the intersection of the graphs g B and g A and at the intersection of the graphs g B and g C. Thus, the inclination angle θB ± θ1 of the wall surface is selected. By doing so, the average diffraction efficiency of the light beam is further increased, and the light amount loss can be reduced accordingly. As is apparent from the figure, θ1 at this time is equal to two-thirds of θ2. If the angle θ2 is not so large, the effective widths of the blocks A, B, and C are also sized so as to divide the light beam diameter into approximately three equal parts.
It is apparent that this method of setting θ1 exhibits the highest diffraction efficiency when the beam cross section is a rectangle having sides parallel to the line direction of the diffraction grating. Since the actual beam cross section is usually circular, even if the diffraction efficiency at ± θ2 is slightly smaller than the diffraction efficiency at the intersection of graphs g B and g A , the absolute value of ± θ1 is reduced to further increase the graph g. The closer to the center side of B, the greater the total diffraction efficiency.

ここでは光束透過領域を3分割した場合で説明したが、分割数を多くしてそれに合わせて格子の傾きを変えれば同様の効果が得られる。
逆に図3(b)において、θ1の絶対値をもっと小さくして、グラフgを省略することもできる。この場合は領域を2分割にすることになる。
エッチングで格子を作ったり、機械加工で格子を作ったりする場合、領域分割してその領域ごとに傾きを変えるのであれば、領域ごとに露光したり、領域ごとに切削すれば良いので、1つずつの格子を傾きを変えて加工する方法に比べ加工時間はかからずに、かつ高効率を得ることができる。
Although the case where the light beam transmission region is divided into three has been described here, the same effect can be obtained by increasing the number of divisions and changing the grating inclination accordingly.
In FIG. 3 (b) conversely, to more reduce the absolute value of .theta.1, it is also possible to omit the graph g B. In this case, the area is divided into two.
If a grid is formed by etching or a grid is formed by machining, if the area is divided and the inclination is changed for each area, one area can be exposed or cut for each area. Compared to the method of processing each lattice with different inclinations, processing time is not required and high efficiency can be obtained.

図1の第1の媒質2および第2の媒質3は配向状態が異なる媒質でともに複屈折性をもっていても良いが、一方の媒質が複屈折性を示し、他方の媒質が等方性媒質である構成の方が媒質の選択の幅を広げられて好ましい。往路で透過率が高く、復路で回折効率の高い偏光ホログラムを実現するには格子が傾斜断面構造を持ち、かつ、このとき複屈折媒質は基板に平行な面内における直交する2方向の屈折率が異なる屈折率異方性を示して、直交する2方向のうちのいずれかの方向の屈折率が等方性媒質の屈折率と略等しいことが必要となる。
本実施形態によれば、体積性のある格子を基板に対して斜めに傾けて+1次回折光に高効率を得ると共に、収束光が入った場合でも周辺部の格子傾き角度を中心部と異ならせることにより回折効率の低下を抑制できるので、高速記録・再生と信頼性の高いプッシュプル信号を得ることができる。さらに+1次回折光だけが高効率になるので、受光素子は+1次光だけを受光すれば良く1個で済む。±1次光を受光して2個の受光素子を必要とする構成よりも受光素子が少ないので、低コスト化と小型化を図れる。
The first medium 2 and the second medium 3 in FIG. 1 are media having different orientation states and may be birefringent, but one medium exhibits birefringence and the other medium is an isotropic medium. A certain configuration is preferable because the range of selection of the medium is widened. In order to realize a polarization hologram having high transmittance in the forward path and high diffraction efficiency in the backward path, the grating has an inclined cross-sectional structure, and at this time, the birefringent medium has a refractive index in two orthogonal directions in a plane parallel to the substrate. Indicate different refractive index anisotropies, and the refractive index in any one of the two orthogonal directions needs to be approximately equal to the refractive index of the isotropic medium.
According to the present embodiment, the volumetric grating is tilted with respect to the substrate to obtain high efficiency for the + 1st order diffracted light, and the grating inclination angle of the peripheral part is made different from the central part even when convergent light enters. As a result, a decrease in diffraction efficiency can be suppressed, and a high-speed recording / reproducing and highly reliable push-pull signal can be obtained. Furthermore, since only the + 1st order diffracted light becomes highly efficient, only one + 1st order light needs to be received. Since the number of light receiving elements is smaller than that of a structure that receives ± primary light and requires two light receiving elements, the cost and size can be reduced.

図4は本発明の他の実施形態を説明するための図である。
図5は図4に示す実施形態の回折効率の一例を示す線図である。
図4において符号は図1における符号に準ずる。
本実施形態ではブロックごとに格子の壁の高さ、あるいは溝の深さ(以下、回折格子の深さ、もしくは単に深さと呼ぶ)を異ならせている。図4における構成を数値例で示せば、波長650nmのレーザ光に対して、ピッチ1.0μm、深さ2.7μmで、壁面は約8°傾斜している。このような偏光回折格子の回折効率は図5に示すようになる。
すなわち、垂直入射の主光線に対して1次回折光が最大回折効率となるよう設定されており、その効率は80%以上の値を示している。この回折格子のみであると、光線の入射角が±6°の場合、回折効率が20%以下まで低下してしまう。そこで±6°傾いた光線が入射する領域の格子の、傾斜角は変えずに深さだけを3.7μmにすると、±6°傾いて入射した場合でも40%以上の回折効率が得られる。このように領域により深さを変えることで垂直入射する光だけではなく傾いて入射する光に対しても高い効率で回折させることができるようになるので、前記と同様、高速再生と信頼性の高いプッシュプル信号を得ることができる。
FIG. 4 is a view for explaining another embodiment of the present invention.
FIG. 5 is a diagram showing an example of the diffraction efficiency of the embodiment shown in FIG.
In FIG. 4, the reference numerals are the same as those in FIG.
In this embodiment, the height of the grating wall or the depth of the groove (hereinafter referred to as the depth of the diffraction grating, or simply the depth) is varied for each block. If the structure in FIG. 4 is shown by a numerical example, with respect to the laser beam with a wavelength of 650 nm, the pitch is 1.0 μm, the depth is 2.7 μm, and the wall surface is inclined about 8 °. The diffraction efficiency of such a polarization diffraction grating is as shown in FIG.
That is, the first-order diffracted light is set to have a maximum diffraction efficiency with respect to the principal ray of normal incidence, and the efficiency shows a value of 80% or more. When only this diffraction grating is used, the diffraction efficiency is reduced to 20% or less when the incident angle of the light beam is ± 6 °. Accordingly, if the depth of the grating in the region where the light beam tilted by ± 6 ° is incident is changed to 3.7 μm without changing the tilt angle, a diffraction efficiency of 40% or more can be obtained even when the light beam is tilted by ± 6 °. In this way, by changing the depth depending on the region, it becomes possible to diffract not only vertically incident light but also obliquely incident light with high efficiency. A high push-pull signal can be obtained.

本実施形態においても図3(b)を用いて説明したような方法が有効である。
すなわち、ブロックA、Cの幅を中央側にもう少し広げて、且つ、グラフg、gのピーク値がもっと中央寄りになるようにそれぞれの深さを選定する。この操作はQ値をより高くすることで可能である。深さの選定の基準は、主光線が角度θで出射するとしたとき、グラフg、gのピーク値に対応する入射角の光線が、回折格子を出るとき入射角に対する相対出射角がθになるような深さである。この目的のためにはブロックAとブロックCの深さが等しくならなくても構わない。
ただし、ブロックAの幅は、ブロックAとブロックBの境界におけるグラフgの回折効率の値がグラフgのピーク値を上回らない範囲とする。ブロックCの幅についても同様とする。なぜなら、この条件を外れると総合の回折効率がかえって減少するからである。
Also in this embodiment, the method described with reference to FIG.
That is, the depths of the blocks A and C are selected so that the widths of the blocks A and C are slightly expanded toward the center and the peak values of the graphs g A and g C are closer to the center. This operation is possible by increasing the Q value. The standard for selecting the depth is that when the chief ray is emitted at an angle θ, a ray having an incident angle corresponding to the peak values of the graphs g A and g C exits the diffraction grating, and the relative emission angle with respect to the incident angle is θ. The depth is such that For this purpose, the depths of block A and block C need not be equal.
However, the width of the block A, the value of the diffraction efficiency of the graph g B at the boundaries of the blocks A and B is a range that does not exceed the peak value of the graph g A. The same applies to the width of the block C. This is because the overall diffraction efficiency will decrease if this condition is not met.

矩形格子を傾斜させて、入射光に対してブラッグ角として高回折効率化できる領域について考察する。
従来から、矩形回折格子の回折効率は、格子を薄い平面型格子として近似したスカラー回折理論からの理論式より計算予測できた。
スカラー回折理論による矩形格子の回折効率理論式は、以下のようである。
波長λの単色光が格子をを透過した際、溝の山と谷で生じる位相変化δは、
δ=π・ΔnT/λ ・・・・・(1)
である。ここで、Tは格子の深さ、Δnは格子部屈折率差を表す。
±m次回折光の回折効率(光強度効率)η(垂直入射)は、
η=4(sin(mπq)/mπ)sinδ ・・・・・(2)
となる。ここでqは矩形格子のデューティを表す。
Consider a region where the diffraction grating can be tilted to increase the diffraction efficiency as a Bragg angle with respect to incident light.
Conventionally, the diffraction efficiency of a rectangular diffraction grating has been calculated and predicted from a theoretical formula based on a scalar diffraction theory in which the grating is approximated as a thin planar grating.
The theoretical formula for the diffraction efficiency of a rectangular grating according to the scalar diffraction theory is as follows.
When monochromatic light of wavelength λ is transmitted through the grating, the phase change δ that occurs at the crest and trough of the groove is
δ = π · ΔnT / λ (1)
It is. Here, T represents the depth of the grating, and Δn represents the refractive index difference of the grating part.
Diffraction efficiency (light intensity efficiency) η m (normal incidence) of ± mth order diffracted light is
η m = 4 (sin (mπq) / mπ) 2 sin 2 δ (2)
It becomes. Here, q represents the duty of the rectangular lattice.

平面型格子の場合、(2)式により矩形格子の回折効率は予測できた。格子の体積性を表わすQ値で言えばQ<0.5である格子については、実測値と(2)式による計算値がほぼ一致するが、Q>2となる格子では実測値と計算値が合わなくなってくる。Q<0.5である格子については、(2)式から出てくる矩形格子の回折効率最大値(垂直入射)は理論値で40.5%である。一方、Q>2の格子で正確に計算予測するためには(2)式ではなくベクトル回折理論による数値計算が必要となる。以上の事実は、Q>2の領域の格子は体積格子の特性を持ち始め、特定の角度(ブラッグ角)で回折効率がピークを持つことからもわかる。
非特許文献1にも示されているが、Q>2の領域の格子は体積格子の特性を示し、特定の入射角度に対して高い回折効率を示す。一方、Q<2である格子については入射角によらずほぼ一定の回折効率を示す。以上のことから、本発明の傾斜格子を適用することにより高回折効率化の効果が得られる領域は、回折格子のQ値がQ>2であるような領域の格子である。すなわち、Q>2とすることにより、体積ホログラムの特性が現れ、特定の角度で高い回折効率が得られるので高速再生に適している。
In the case of a planar grating, the diffraction efficiency of a rectangular grating could be predicted from equation (2). In terms of the Q value representing the volume of the lattice, for a lattice with Q <0.5, the measured value and the calculated value by equation (2) are almost the same, but for the lattice with Q> 2, the measured value and the calculated value Will not fit. For a grating with Q <0.5, the maximum value of the diffraction efficiency (normal incidence) of the rectangular grating derived from equation (2) is 40.5% in theory. On the other hand, in order to accurately calculate and predict with a lattice of Q> 2, numerical calculation based on the vector diffraction theory is required instead of the equation (2). The above facts can also be understood from the fact that the grating in the region of Q> 2 starts to have the characteristics of a volume grating, and the diffraction efficiency has a peak at a specific angle (Bragg angle).
Although also shown in Non-Patent Document 1, the grating in the region of Q> 2 exhibits the characteristics of a volume grating and exhibits high diffraction efficiency for a specific incident angle. On the other hand, a grating with Q <2 exhibits a substantially constant diffraction efficiency regardless of the incident angle. From the above, the region where the effect of increasing the diffraction efficiency can be obtained by applying the tilted grating of the present invention is a grating in a region where the Q value of the diffraction grating is Q> 2. That is, by setting Q> 2, the characteristics of a volume hologram appear and high diffraction efficiency is obtained at a specific angle, which is suitable for high-speed reproduction.

図6は有機延伸膜の作製方法を示す模式図である。
同図において符号0はガラス基板、2oは延伸膜基材をそれぞれ示す。
従来技術の項で説明したように、偏光性回折格子を構成する材料として、複屈折性を有する有機延伸膜が適している。有機延伸膜の具体例としては、ポリイミドや、ポリカーボネート、ポリエチレンテレフタレート等の高分子フィルムを、延伸により分子鎖を一軸方向に配向させ、面内複屈折を発生させる。
同図(a)で延伸膜基材2oとして例えばポリアミド酸膜をガラス基板0上に形成し、
同図(b)で剥離後、
同図(c)で加熱延伸を行って有機延伸膜2(この場合はポリイミド複屈折膜)を得る。
延伸の時の温度や加える力により複屈折率差Δnは変えることができ、安価で量産可能な方法である。
以下、有機延伸膜を本発明に用いた場合の偏光性回折格子の作製工程を説明する。
FIG. 6 is a schematic view showing a method for producing an organic stretched film.
In the figure, reference numeral 0 denotes a glass substrate, and 2o denotes a stretched film substrate.
As described in the section of the prior art, an organic stretched film having birefringence is suitable as a material constituting the polarizing diffraction grating. As a specific example of the organic stretched film, a polymer film such as polyimide, polycarbonate, or polyethylene terephthalate is oriented by aligning molecular chains in a uniaxial direction to generate in-plane birefringence.
For example, a polyamic acid film is formed on the glass substrate 0 as the stretched film substrate 2o in FIG.
After peeling in the figure (b),
In FIG. 2C, heat stretching is performed to obtain an organic stretched film 2 (in this case, a polyimide birefringent film).
The birefringence difference Δn can be changed by the temperature at the time of stretching and the applied force, and this is a cheap and mass-produced method.
Hereinafter, a process for producing a polarizing diffraction grating when an organic stretched film is used in the present invention will be described.

図7は偏光性回折格子の作製工程を説明するための断面模式図である。
同図において符号1’はカバーガラス、4、4’はレジスト、5はイオンビーム、6は電極、7は等方性物質をそれぞれ示す。
基板1に第1の媒質2として有機延伸膜を載せる(a)。さらにレジスト4を重ねる(b)。ブロックAの格子凹部に相当するマスクを重ねて露光し、格子凹部のみレジスト4を残す(c)。イオンビーム用レジストを一様に重ねる(d)。エッチング等によりレジスト4を除去する(e)。電極6の上で基板1自体をブロックAに必要な所定の角度傾けて、イオンビーム5を照射する(f)。所定の深さの凹部が得られたら、(b)の工程に戻って以下順次ブロックB、ブロックCの凹部を形成する(g)。
残っているレジストを除去する(h)。少なくとも凹部には等方性媒質7を充填し、カバーガラス1’を重ねて完成となる(i)。
このようにして、ブロックごとに異なる傾斜角を有する偏光性回折格子が形成される。
複屈折性材料として有機延伸膜を使うことにより大面積に加工でき、コストダウンを図れる。また基板の屈折率を任意に選べるのでコストダウンもしやすい。
FIG. 7 is a schematic cross-sectional view for explaining a manufacturing process of the polarizing diffraction grating.
In the figure, reference numeral 1 'denotes a cover glass, 4' denotes a resist, 5 denotes an ion beam, 6 denotes an electrode, and 7 denotes an isotropic substance.
An organic stretched film is placed on the substrate 1 as the first medium 2 (a). Further, a resist 4 is overlaid (b). Masks corresponding to the lattice recesses in block A are overlaid and exposed, leaving the resist 4 only in the lattice recesses (c). The ion beam resist is uniformly overlapped (d). The resist 4 is removed by etching or the like (e). The substrate 1 itself is inclined on the electrode 6 at a predetermined angle required for the block A, and the ion beam 5 is irradiated (f). When a recess having a predetermined depth is obtained, the process returns to the step (b), and the recesses of the block B and the block C are sequentially formed (g).
The remaining resist is removed (h). At least the recess is filled with the isotropic medium 7 and the cover glass 1 ′ is overlaid to complete (i).
In this way, a polarizing diffraction grating having a different tilt angle for each block is formed.
By using an organic stretched film as the birefringent material, it can be processed into a large area and the cost can be reduced. Further, since the refractive index of the substrate can be arbitrarily selected, it is easy to reduce the cost.

図7(f)において基板の傾斜角を一定とし、図7(g)における3通りの繰り返しを、エッチングの深さを変えることにより形成し、以後の工程を同様に行えば、図4に示した実施形態の偏光性回折格子を得ることができる。   7 (f), the substrate tilt angle is constant, the three repetitions in FIG. 7 (g) are formed by changing the etching depth, and the subsequent steps are performed in the same manner as shown in FIG. The polarizing diffraction grating of the embodiment can be obtained.

図8は本発明のさらに他の実施形態を説明するための断面模式図である。
同図において符号8は液晶を示す。
複屈折性を有する材料として、有機延伸膜の代わりに液晶を用いることができる。
基本的には図7に示した作製工程と同様であるが、図7(a)において、基板1の上に有機延伸膜2の代わりに等方性物質7を載せて以後の工程に進む。図7(i)において、格子溝を充填する媒質として、等方性物質7の代わりに液晶8を用いることによって図8に示す偏光性回折格子が得られる。
FIG. 8 is a schematic cross-sectional view for explaining still another embodiment of the present invention.
In the figure, reference numeral 8 denotes a liquid crystal.
As a material having birefringence, liquid crystal can be used instead of the organic stretched film.
7 is basically the same as the manufacturing process shown in FIG. 7, but in FIG. 7A, the isotropic substance 7 is placed on the substrate 1 instead of the organic stretched film 2, and the process proceeds to the subsequent processes. In FIG. 7I, the polarizing diffraction grating shown in FIG. 8 is obtained by using the liquid crystal 8 instead of the isotropic substance 7 as a medium filling the grating grooves.

図9は本発明のさらに他の実施形態を説明するための断面模式図である。
同図において符号9は透明電極を示す。
液晶を用いると、図7とは全く異なる作製工程で偏光性回折格子を作ることができる。
基板1、および基板1’に予め所望の回折格子に対応する間隔の帯状の透明電極9を、外部から電圧印加可能な状態に形成しておく。両基板1、1’の間に液晶8を封入して後、外部からしかるべき電圧を印加する。電圧印加部分8aの液晶の配向方向が所望の一定方向になった状態で液晶を硬化させる。例えば、紫外線照射で硬化する樹脂を配合しておくと良い。
基板に形成しておく透明電極9を上下で所定量ずらしておくと、電圧印加時に斜め方向に格子が形成される。このずれ量を領域ごとに少しずつずらせば斜めの傾き角度が領域ごとに異なることになり、図8に示した偏光性回折格子とほぼ同等な偏光性回折格子を得ることができる。
複屈折性材料として液晶を使うことにより大面積に加工でき、電圧印加と紫外線露光だけで格子を形成できるので、高価なエッチング装置を必要とせずコストダウンを図れる。
FIG. 9 is a schematic cross-sectional view for explaining still another embodiment of the present invention.
In the figure, reference numeral 9 denotes a transparent electrode.
When liquid crystal is used, a polarizing diffraction grating can be manufactured by a manufacturing process completely different from that in FIG.
A strip-shaped transparent electrode 9 having an interval corresponding to a desired diffraction grating is previously formed on the substrate 1 and the substrate 1 ′ so that a voltage can be applied from the outside. After the liquid crystal 8 is sealed between the two substrates 1 and 1 ′, an appropriate voltage is applied from the outside. The liquid crystal is cured in a state where the alignment direction of the liquid crystal in the voltage application portion 8a is a desired constant direction. For example, a resin that is cured by ultraviolet irradiation may be blended.
If the transparent electrode 9 formed on the substrate is shifted by a predetermined amount up and down, a lattice is formed in an oblique direction when a voltage is applied. If the shift amount is slightly shifted for each region, the oblique inclination angle varies for each region, and a polarizing diffraction grating substantially equivalent to the polarizing diffraction grating shown in FIG. 8 can be obtained.
By using a liquid crystal as a birefringent material, a large area can be processed, and a grating can be formed only by applying voltage and exposing to ultraviolet rays. Therefore, an expensive etching apparatus is not required and cost can be reduced.

図10は本発明に示した偏光性回折格子を光ピックアップ装置に用いた例を示す図である。
同図において符号10は光源、11は受光素子、12は偏光性回折格子、13はコリメートレンズ、14は1/4波長板、15は対物レンズ、16は光記録媒体、Lは光束をそれぞれ示す。
光源10から出た特定の方向に偏光した発散光束Lは、偏光性回折格子12によっても変化を受けず、コリメートレンズ13に入射する。光束Lは平行光に変換され、1/4波長板14に入射して位相の変調を受け対物レンズ15に入射する。ここで光束Lは収束光となり、光記録媒体16に入射し、反射される。光記録媒体16に記録された情報により変調を受けた反射光は、再度対物レンズ15に入射後、もとの平行光束に変換され、1/4波長板14に再入射する。結果的に光束Lは、1/2波長の位相変換を受け、もとの光束に対し偏光面が90°変化する。この平行光束はコリメートレンズ13に再度入射して、収束光となって偏光性回折格子12に入射する。光束Lは偏光面が90°変わっているため、偏光性回折格子12によってそのほとんどが1次回折光となり、受光素子11に入射する。なお、同図において、紙面に垂直方向がトラック方向である。
FIG. 10 is a diagram showing an example in which the polarizing diffraction grating shown in the present invention is used in an optical pickup device.
In the figure, reference numeral 10 is a light source, 11 is a light receiving element, 12 is a polarizing diffraction grating, 13 is a collimating lens, 14 is a quarter wave plate, 15 is an objective lens, 16 is an optical recording medium, and L is a light beam. .
The divergent light beam L emitted from the light source 10 and polarized in a specific direction is not changed by the polarizing diffraction grating 12 and enters the collimating lens 13. The light beam L is converted into parallel light, enters the quarter-wave plate 14, undergoes phase modulation, and enters the objective lens 15. Here, the light beam L becomes convergent light, enters the optical recording medium 16, and is reflected. The reflected light modulated by the information recorded on the optical recording medium 16 enters the objective lens 15 again, is converted into the original parallel light beam, and reenters the quarter wavelength plate 14. As a result, the light beam L undergoes phase conversion of ½ wavelength, and the polarization plane changes by 90 ° with respect to the original light beam. This parallel light beam is incident again on the collimating lens 13 and enters the polarizing diffraction grating 12 as convergent light. Since the polarization plane of the light beam L is changed by 90 °, most of the light L is converted into the first-order diffracted light by the polarizing diffraction grating 12 and is incident on the light receiving element 11. In the figure, the direction perpendicular to the paper surface is the track direction.

本発明を光ピックアップ装置に利用すると次のような効果がある。
1.回折効率が高いので、高速記録再生に対応できる。
2.回折効率が最大になる入射角で光が入射するようになっているので入射角度による回折効率アンバランスが生じず、正確なトラッキング信号検出ができる。
3.周辺部の光も回折効率が高いのでプッシュプル信号の低下が小さい。
4.周辺部の光も回折効率を高めているので、光軸ずれ等により回折格子に入射する光の角度が変わってもオフセットはほとんど生じない。
5.高回折効率なので高速記録再生が可能である。
When the present invention is used in an optical pickup device, the following effects are obtained.
1. High diffraction efficiency enables high-speed recording / playback.
2. Since light is incident at an incident angle that maximizes the diffraction efficiency, diffraction efficiency imbalance due to the incident angle does not occur, and accurate tracking signal detection can be performed.
3. Since the peripheral light also has high diffraction efficiency, the drop of the push-pull signal is small.
4). Since the light in the peripheral portion also increases the diffraction efficiency, an offset hardly occurs even if the angle of the light incident on the diffraction grating changes due to an optical axis shift or the like.
5. High diffraction efficiency enables high-speed recording / reproduction.

図11は本発明のさらに他の実施形態を説明するための図である。
同図において符号17はグレーティング、18は光学的に透明な等方性媒質、20は投受光素子、30は光学素子ユニットを示す。
本実施形態は、図10に長円形Dで示した部分、すなわち、光源10と受光素子11が一体となった投受光素子20に偏光性回折格子12を一体化した構成の光学素子ユニット30である。グレーティング17は、光源からの光束を0次光、±1次光の3本の光束に分離し、トラッキング等に利用するために挿入してある。戻り光が偏光性回折格子12で1次回折した光束が受光素子11に入射する過程でグレーティング17に入射しないように構成してある。
本実施形態の光学素子ユニット30は、経時変化の少ない、安定した信号検出ができる。
FIG. 11 is a diagram for explaining still another embodiment of the present invention.
In the figure, reference numeral 17 denotes a grating, 18 denotes an optically transparent isotropic medium, 20 denotes a light projecting / receiving element, and 30 denotes an optical element unit.
This embodiment is an optical element unit 30 having a configuration in which a polarizing diffraction grating 12 is integrated with a portion indicated by an oval D in FIG. 10, that is, a light projecting / receiving element 20 in which a light source 10 and a light receiving element 11 are integrated. is there. The grating 17 is inserted to separate the light beam from the light source into three light beams of 0th order light and ± 1st order light and use them for tracking and the like. In the process in which the returned light is first-order diffracted by the polarizing diffraction grating 12 and is incident on the light receiving element 11, the light is not incident on the grating 17.
The optical element unit 30 of this embodiment can perform stable signal detection with little change over time.

図12は本発明の光学素子ユニットを光ディスクドライブ装置に適用した状態を示す概念図である。
同図において符号40は光ピックアップ装置、50は光ディスクドライブ装置、60はパソコンをそれぞれ示す。
光ディスクドライブ装置50はパソコン60からの指示およびデータによって、指定の読み書きを行う。読み書きにあたっては、光学素子ユニット30を含む光ピックアップ装置40が動作する。
FIG. 12 is a conceptual diagram showing a state in which the optical element unit of the present invention is applied to an optical disc drive apparatus.
In the figure, reference numeral 40 denotes an optical pickup device, 50 denotes an optical disk drive device, and 60 denotes a personal computer.
The optical disk drive device 50 performs designated reading and writing according to instructions and data from the personal computer 60. In reading and writing, the optical pickup device 40 including the optical element unit 30 operates.

本装置に用いられる光ピックアップ装置は、回折効率が高く、回折効率にアンバランスのない偏光ホログラムを用いるので、高速な記録再生に適した信頼性の高い信号が得られる。回折効率が高いとPDICのゲインを小さくでき、PDICの高速応答化に貢献できる。
さらに入射角度により回折効率の低下が抑えられているので、プッシュプル信号の低下も小さい。したがって光ディスクドライブ装置の記録再生速度の高速化と安定したサーボ制御を達成することができる。
Since the optical pickup device used in this apparatus uses a polarization hologram having high diffraction efficiency and no unbalance in diffraction efficiency, a highly reliable signal suitable for high-speed recording / reproduction can be obtained. If the diffraction efficiency is high, the gain of the PDIC can be reduced, which can contribute to the high speed response of the PDIC.
Furthermore, since the decrease in diffraction efficiency is suppressed by the incident angle, the decrease in push-pull signal is small. Therefore, it is possible to increase the recording / reproducing speed of the optical disk drive device and to achieve stable servo control.

本発明のホログラムの実施形態を説明するための図である。It is a figure for demonstrating embodiment of the hologram of this invention. 偏光性回折格子の平面図である。It is a top view of a polarizing diffraction grating. 本実施形態のホログラムの回折効率を示す図である。It is a figure which shows the diffraction efficiency of the hologram of this embodiment. 本発明の他の実施形態を説明するための図である。It is a figure for demonstrating other embodiment of this invention. 図4に示す実施形態の回折効率の一例を示す線図である。It is a diagram which shows an example of the diffraction efficiency of embodiment shown in FIG. 有機延伸膜の作製方法を示す模式図である。It is a schematic diagram which shows the preparation methods of an organic stretched film. 偏光性回折格子の作製工程を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing process of a polarizing diffraction grating. 本発明のさらに他の実施形態を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating other embodiment of this invention. 本発明のさらに他の実施形態を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating other embodiment of this invention. 本発明に示した偏光性回折格子を光ピックアップ装置に用いた例を示す図である。It is a figure which shows the example which used the polarizing diffraction grating shown to this invention for the optical pick-up apparatus. 本発明のさらに他の実施形態を説明するための図である。It is a figure for demonstrating other embodiment of this invention. 本発明の光学素子ユニットを光ディスクドライブ装置に適用した状態を示す概念図である。It is a conceptual diagram which shows the state which applied the optical element unit of this invention to the optical disk drive device. ホログラムの1例を示す図である。It is a figure which shows one example of a hologram. ホログラムの種類による+1次回折光の回折効率を表すグラフである。It is a graph showing the diffraction efficiency of the + 1st order diffracted light by the kind of hologram. 格子面の傾斜の有無による1次光回折効率のグラフのシフトを説明するための図である。It is a figure for demonstrating the shift of the graph of the primary light diffraction efficiency by the presence or absence of the inclination of a lattice plane.

符号の説明Explanation of symbols

1 基板
2 第1の媒質
3 第2の媒質
4 レジスト
5 イオンビーム
6 電極
7 等方性物質
8 液晶
9 電極
20 投受光素子
30 光学素子ユニット
40 光ピックアップ装置
50 光ディスクドライブ装置
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 1st medium 3 2nd medium 4 Resist 5 Ion beam 6 Electrode 7 Isotropic substance 8 Liquid crystal 9 Electrode 20 Light emitting / receiving element 30 Optical element unit 40 Optical pick-up apparatus 50 Optical disk drive apparatus

Claims (17)

光学的に透明、且つ、互いに平行に配された2枚の基板と、両基板の間に挟まれ、少なくとも一方が複屈折性を示し、互いに光学的特性の異なる2つの媒質が境界面をもって交互に周期的に配列された構造を有する矩形形状の偏光性回折格子において、該回折格子は側面部が前記基板に対して傾斜し、複数の領域に分割され、各々の領域において前記境界面の傾斜する角度が異なることを特徴とする偏光性回折格子。 Two substrates that are optically transparent and arranged in parallel to each other, sandwiched between the two substrates, at least one of which exhibits birefringence, and two media having different optical properties alternate with each other at a boundary surface to the polarization diffraction grating of the rectangular shape have a periodically arranged structure, the diffraction grating is inclined sidewall is relative to the substrate, is divided into a plurality of regions, said boundary surface in each of the regions A polarizing diffraction grating characterized in that the angle of inclination is different. 請求項1に記載の偏光性回折格子において、前記光学的特性の異なる2つの媒質のうち一方の媒質のみが複屈折性を示す媒質であり、他方の媒質は光学的等方性を示す媒質であることを特徴とする偏光性回折格子。   2. The polarizing diffraction grating according to claim 1, wherein only one of the two media having different optical characteristics is a birefringent medium, and the other medium is an optically isotropic medium. A polarizing diffraction grating. 請求項2に記載の偏光性回折格子において、前記複屈折性を示す媒質の面内の直交する2方向の異なる屈折率のうち一方の屈折率と前記光学的等方性を示す媒質の屈折率とが略等しいことを特徴とする偏光性回折格子。   3. The polarizing diffraction grating according to claim 2, wherein one of two different refractive indexes in two orthogonal directions within the plane of the medium exhibiting birefringence and the refractive index of the medium exhibiting optical isotropy. And a polarizing diffraction grating characterized by being substantially equal to each other. 請求項1ないし3のいずれか1つに記載の偏光性回折格子において、該回折格子は奇数の領域に分割されており、中央の領域の前記境界面の傾斜角は、使用すべき光の波長に関し、前記基板の面に垂直に入射する光線の1次回折光の回折効率が最大になる角度θBに設定されていることを特徴とする偏光性回折格子。   The polarizing diffraction grating according to any one of claims 1 to 3, wherein the diffraction grating is divided into odd-numbered regions, and an inclination angle of the boundary surface in a central region is a wavelength of light to be used. In particular, the polarizing diffraction grating is set to an angle θB at which the diffraction efficiency of the first-order diffracted light of the light incident perpendicularly to the surface of the substrate is maximized. 請求項4に記載の偏光性回折格子において、前記奇数の領域のうち最外側の領域の前記境界面の傾斜角は、前記回折格子に入射させるべき収束性の光束のうち1次回折光の回折効率を最大にしたい光線の相対入射角度が前記θBになるように設定されていることを特徴とする偏光性回折格子。   5. The polarizing diffraction grating according to claim 4, wherein an inclination angle of the boundary surface of the outermost region of the odd number regions is a diffraction efficiency of the first-order diffracted light among the convergent light beams to be incident on the diffraction grating. A polarizing diffraction grating characterized in that the relative incident angle of a light beam that is desired to be maximized is set to be θB. 光学的に透明、且つ、互いに平行に配された2枚の基板と、両基板の間に挟まれ、少なくとも一方が複屈折性を示し、互いに光学的特性の異なる2つの媒質が境界面をもって交互に周期的に配列された構造を有する矩形形状の偏光性回折格子において、該回折格子は側面部が前記基板に対して傾斜し、複数の領域に分割され、各々の領域において前記回折格子の深さが異なることを特徴とする偏光性回折格子。 Two substrates that are optically transparent and arranged in parallel to each other, sandwiched between the two substrates, at least one of which exhibits birefringence, and two media having different optical properties alternate with each other at a boundary surface to the polarization diffraction grating of the rectangular shape have a periodically arranged structure, the diffraction grating is inclined sidewall is relative to the substrate, is divided into a plurality of regions, said diffraction grating in each area Polarizing diffraction grating characterized by different depths. 請求項6に記載の偏光性回折格子において、前記光学的特性の異なる2つの媒質のうち一方の媒質のみが複屈折性を示す媒質であり、他方の媒質は光学的等方性を示す媒質であることを特徴とする偏光性回折格子。   7. The polarizing diffraction grating according to claim 6, wherein only one of the two media having different optical characteristics is a birefringent medium, and the other medium is an optically isotropic medium. A polarizing diffraction grating. 請求項7に記載の偏光性回折格子において、前記複屈折性を示す媒質の面内の直交する2方向の異なる屈折率のうち一方の屈折率と前記光学的等方性を示す媒質の屈折率とが略等しいことを特徴とする偏光性回折格子。   8. The polarizing diffraction grating according to claim 7, wherein one of the different refractive indexes in two orthogonal directions within the plane of the medium exhibiting birefringence and the refractive index of the medium exhibiting optical isotropy. And a polarizing diffraction grating characterized by being substantially equal to each other. 請求項6ないし8のいずれか1つに記載の偏光性回折格子において、該回折格子は奇数の領域に分割されており、中央の領域の前記回折格子の深さは、使用すべき光の波長に関し、前記基板の面に垂直に入射する光線の出射角θなる1次回折光の回折効率が最大になる深さに設定されていることを特徴とする偏光性回折格子。   The polarizing diffraction grating according to any one of claims 6 to 8, wherein the diffraction grating is divided into odd-numbered regions, and the depth of the diffraction grating in the central region is the wavelength of light to be used. The polarizing diffraction grating is characterized in that it is set to a depth at which the diffraction efficiency of the first-order diffracted light having the emission angle θ of the light incident perpendicularly to the surface of the substrate is maximized. 請求項9に記載の偏光性回折格子において、前記奇数の領域のうち最外側の領域の前記回折格子の深さは、前記回折格子に入射させるべき収束性の光束のうち1次回折光の回折効率を最大にしたい光線の入射角に対する相対出射角度が前記θになるように設定されていることを特徴とする偏光性回折格子。   10. The polarizing diffraction grating according to claim 9, wherein a depth of the diffraction grating in an outermost region of the odd-numbered regions is a diffraction efficiency of a first-order diffracted light out of a convergent light beam to be incident on the diffraction grating. The polarizing diffraction grating is set such that a relative emission angle with respect to an incident angle of a light beam that is desired to maximize is set to θ. 請求項1ないし10のいずれか1つに記載の偏光性回折格子において、該回折格子を使用すべき所望の光の空気中における波長をλ、格子深さをT、回折格子媒質の屈折率をn、格子ピッチをdとしたとき、Q=2πλT/ndで定義される回折格子のQ値が、Q>2となるよう構成したことを特徴とする偏光性回折格子。 11. The polarizing diffraction grating according to claim 1, wherein the wavelength of desired light to be used in the diffraction grating is λ, the grating depth is T, and the refractive index of the diffraction grating medium is the refractive index. A polarizing diffraction grating, characterized in that the Q value of the diffraction grating defined by Q = 2πλT / nd 2 is Q> 2, where n and the grating pitch are d. 請求項1ないし11のいずれか1つに記載の偏光性回折格子において、前記複屈折性を示す媒質は有機延伸膜であることを特徴とする偏光性回折格子。   12. The polarizing diffraction grating according to claim 1, wherein the medium exhibiting birefringence is an organic stretched film. 請求項1ないし11のいずれか1つに記載の偏光性回折格子において、前記複屈折性を示す媒質は液晶であることを特徴とする偏光性回折格子。   12. The polarizing diffraction grating according to claim 1, wherein the medium exhibiting birefringence is a liquid crystal. 請求項1ないし13のいずれか1つに記載の偏光性回折格子を、レーザ光源と受光素子を一体化した投受光素子の光入出射面に一体化してユニットを構成してなることを特徴とする光学素子ユニット。   A polarizing diffraction grating according to any one of claims 1 to 13 is integrated with a light incident / exit surface of a light projecting / receiving element in which a laser light source and a light receiving element are integrated to form a unit. The optical element unit. 請求項1ないし13のいずれか1つに記載の偏光性回折格子と、光源と、対物レンズと、受光素子とを有する記録媒体記録再生のための光ピックアップ装置であって、前記光源からの光束の光路中に前記偏光性回折格子を配置し、前記記録媒体からの反射光を前記偏光性回折格子により分岐し、前記受光素子で受光することを特徴とする光ピックアップ装置。   14. An optical pickup device for recording / reproducing a recording medium, comprising: the polarizing diffraction grating according to claim 1; a light source; an objective lens; and a light receiving element; An optical pickup device, wherein the polarizing diffraction grating is disposed in the optical path, and the reflected light from the recording medium is branched by the polarizing diffraction grating and received by the light receiving element. 請求項15に記載の光ピックアップ装置を搭載したことを特徴とする光ディスクドライブ装置。   16. An optical disk drive device comprising the optical pickup device according to claim 15. 請求項1に記載の偏光性回折格子を作製する方法であって、光学的に透明な第1の基板の片面に、外部から電圧印加可能な状態に帯状の透明電極を所定の等間隔に形成し、同じく透明な第2の基板の片面に、外部から電圧印加可能な状態に帯状の透明電極を複数の領域に分けて形成し、各領域内では前記透明電極を前記所定の等間隔に形成し、領域間では前記所定の等間隔とは異なる間隔で配置し、前記両基板の前記透明電極を形成した面を、前記帯状電極が配列方向に所定量ずれて向き合うように対向させ、その間に光硬化型液晶を封入し、前記両基板の前記透明電極間に電圧を印加しながら光照射を行うことによって、前記液晶の電圧印加による配向状態のまま前記液晶を固化させることを特徴とする偏光性回折格子の作製方法。   2. A method for producing a polarizing diffraction grating according to claim 1, wherein strip-like transparent electrodes are formed on one side of an optically transparent first substrate in a state in which voltage can be applied from the outside at predetermined equal intervals. Similarly, a strip-shaped transparent electrode is formed on one side of a transparent second substrate in a state where voltage can be applied from the outside, divided into a plurality of regions, and the transparent electrodes are formed at predetermined intervals in each region. In addition, between the regions, they are arranged at an interval different from the predetermined equal interval, and the surfaces on which the transparent electrodes are formed on both the substrates are opposed so that the strip electrodes face each other with a predetermined amount in the arrangement direction. Polarized light characterized by encapsulating a photocurable liquid crystal and solidifying the liquid crystal in an alignment state by applying a voltage of the liquid crystal by irradiating light while applying a voltage between the transparent electrodes of both substrates. Of manufacturing a diffractive grating.
JP2003288168A 2003-08-06 2003-08-06 Polarization diffraction grating Expired - Fee Related JP4387141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003288168A JP4387141B2 (en) 2003-08-06 2003-08-06 Polarization diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288168A JP4387141B2 (en) 2003-08-06 2003-08-06 Polarization diffraction grating

Publications (2)

Publication Number Publication Date
JP2005055773A JP2005055773A (en) 2005-03-03
JP4387141B2 true JP4387141B2 (en) 2009-12-16

Family

ID=34366933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288168A Expired - Fee Related JP4387141B2 (en) 2003-08-06 2003-08-06 Polarization diffraction grating

Country Status (1)

Country Link
JP (1) JP4387141B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195463A1 (en) * 2015-06-05 2016-12-08 코오롱인더스트리 주식회사 Wire grid polarizer and liquid crystal display device comprising same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476858B2 (en) * 2009-08-24 2014-04-23 株式会社リコー Ranging sensor
JP6168642B2 (en) * 2012-03-30 2017-07-26 国立大学法人名古屋大学 Diffraction grating and manufacturing method thereof, optical waveguide
RU2587072C1 (en) * 2012-06-01 2016-06-10 Топпан Принтинг Ко., Лтд. Non-isometric reflective display element, data medium using non-isometric reflective display element
CN103576220B (en) * 2013-10-11 2016-01-06 中国科学院上海光学精密机械研究所 Quartz 1 × 2 beam splitting skew ray grid of TE polarization
US11195703B2 (en) 2018-12-07 2021-12-07 Applied Materials, Inc. Apparatus and techniques for angled etching using multielectrode extraction source
US11715621B2 (en) 2018-12-17 2023-08-01 Applied Materials, Inc. Scanned angled etching apparatus and techniques providing separate co-linear radicals and ions
PH12020050239A1 (en) * 2019-08-27 2021-05-17 Moxtek Inc Optical device with embedded organic moieties
CN115016128B (en) * 2022-08-08 2022-12-02 南京平行视界技术有限公司 Holographic waveguide HUD device based on polarizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195463A1 (en) * 2015-06-05 2016-12-08 코오롱인더스트리 주식회사 Wire grid polarizer and liquid crystal display device comprising same

Also Published As

Publication number Publication date
JP2005055773A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP3067665B2 (en) Optical pickup device for dual discs
JP2006252638A (en) Polarization diffraction element and optical head apparatus
JP4387141B2 (en) Polarization diffraction grating
WO1997027583A1 (en) Optical head, method of manufacturing the same, and diffraction element suitable therefor
US7835252B2 (en) Optical head apparatus
JP4478398B2 (en) Polarizing optical element, optical element unit, optical head device, and optical disk drive device
JP4561080B2 (en) Diffraction element and optical head device
JP3598703B2 (en) Optical head device and manufacturing method thereof
JP2003315540A (en) Polarization diffraction element and method for manufacturing the same
JP4720028B2 (en) Diffraction element and optical head device
JPH1010307A (en) Production of optical diffraction gating and optical head device formed by using the same
JP4599763B2 (en) Optical head device
JP3829356B2 (en) Optical head device
JP3528381B2 (en) Optical head device
JP4337510B2 (en) Diffraction element and optical head device
JP2004212552A (en) Polarizing optical element, diffractive optical element, optical element unit, optical pickup device, and optical disk drive system
JPH09329704A (en) Optical anisotropic diffraction grating, driving method thereof and optical head device using the same
JP2006099946A (en) Optical head device
JP4325365B2 (en) Optical head device
JPH09230370A (en) Optical modulation element and optical head device
JPH09197363A (en) Optical modulating element and optical head device
JP2002341125A (en) Diffraction element and optical head device
JP2006114201A (en) Polarization diffraction element and optical head apparatus
JP2002365417A (en) Polarizing diffractive element and method for manufacturing the same
JP4364083B2 (en) Optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees