JP4386217B2 - Number of pumps control method - Google Patents

Number of pumps control method Download PDF

Info

Publication number
JP4386217B2
JP4386217B2 JP06770699A JP6770699A JP4386217B2 JP 4386217 B2 JP4386217 B2 JP 4386217B2 JP 06770699 A JP06770699 A JP 06770699A JP 6770699 A JP6770699 A JP 6770699A JP 4386217 B2 JP4386217 B2 JP 4386217B2
Authority
JP
Japan
Prior art keywords
distribution
water supply
pump
characteristic curve
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06770699A
Other languages
Japanese (ja)
Other versions
JP2000265967A (en
Inventor
匠 村田
靖彦 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP06770699A priority Critical patent/JP4386217B2/en
Publication of JP2000265967A publication Critical patent/JP2000265967A/en
Application granted granted Critical
Publication of JP4386217B2 publication Critical patent/JP4386217B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、送水・配水場の複数台の送水・配水用ポンプにおける台数制御方法に関する。
【0002】
【従来の技術】
送水あるいは配水場に設置される送水・配水ポンプは、通常複数台である。
これは、配水する水の圧力(以下単に配水圧という)はほぼ一定に保たれる必要があり、且つ要求される水の流量(以下単に配水量という)は、広範囲に変化する為、配水圧を維持しつつ少ない配水量の時には1台のポンプを運転し、配水量が増加するにつれ運転ポンプの台数を増やして行くことで効率的な運転を行なう為である。
【0003】
今、配水圧を維持しつつ少ない配水量を供給すべくポンプが1台のみ回転数制御されている(通常は配水圧一定にする為圧力制御するが、その結果としての回転数を制御するという事から、以降回転数制御という)とする。この状態で配水量が増加して行けば2台目のポンプが追加運転され、1台目のポンプと共に必要配水量を供給する為回転数が制御される。更に配水量が増えれば、3台目のポンプが追加運転され、1台目・2台目・3台目のポンプにより必要配水量を供給する為回転数が制御される。
【0004】
このように、複数台のポンプにより必要配水量に応じた必要最小限のポンプ運転をする事により効率的な運転が可能となる。
さて、この2台目・3台目の追加運転はどうして決定されるかを図2に示す特性図で説明する。
【0005】
図2は、ポンプを定格回転数で運転した時の配水圧と配水量の関係を表わす代表特性(以下単に代表Q−H特性という)であり、(1)はポンプ1台のみの定格回転数運転時、(2)はポンプ2台の定格回転数運転時、(3)はポンプ3台の定格回転数運転時の代表Q−H特性である。また、Pは維持したい配水圧を表わす。一般的に2台目、3台目の運転は、1台目のポンプ運転時に配水圧Pを維持しつつ配水量が増加して行き、代表Q−H特性(1)と配水圧Pとの交点の配水量Q1よりΔQだけ小さい(Q1−ΔQ)に配水量が達した時2台目が追加運転される。更に配水量が増加して行き、代表Q−H特性(2)と配水圧Pとの交点の配水量Q2よりΔQだけ小さい(Q2−ΔQ)に配水量が達した時3台目が追加運転される。以降同様に4台目、5台目と追加運転されて行く。
【0006】
[発明が解決しようとする課題]さて、上述の配水量ΔQを何故設定するかであるが、主に次の理由があげられる。図3の特性図に示すように、ポンプ自体の実際のQ−H特性やあるいはポンプ経年変化などで、代表Q−H特性(1)(図2の(1)と同じ)の左側に実際Q−H特性(1)’があり、ΔQを設けずQ1にて2台目運転が入るよう設定されていれば、Q1に達するまでに配水圧Pが実際特性(1)’に沿って低下する事になり、追加運転直前に配水圧Pの維持が不可能になる。(図3のA点で運転される)
この為、ポンプの実際特性が(1)’であっても、配水圧Pの維持が可能な配水量(Q1−ΔQ)の配水量に達した時2台目追加運転に入るようΔQが設定されている。つまりΔQが配水量の制御余裕代となっている。しかしながら、3台目・4台目とポンプ台数が増えてもΔQが一定値であるなら、上述の余裕代は、1/(追加ポンプ台数)に等価的に減少した事になる。この為、配水量増加による追加運転直前の配水圧低下が発生するという課題を有していた。本発明は上述した点に鑑みて創案されたもので、その目的とするところは、これらの課題を解消するポンプの台数制御方法を提供することにある。
【0007】
[課題を解決するための手段]つまり、その目的を達成するための手段は、1.請求項1について、送水・配水場に設置される複数の送水・配水ポンプの、送水・配水圧力を一定値に保ちながら送水・配水流量の変化に従い運転台数を増加させるポンプ台数制御方法であり、1台運転から2台目運転追加に際しては、1台目ポンプを定格回転数で運転した場合の送水・配水圧力と送水・配水流量の関係を表わす代表特性曲線(1)上の一定送水・配水圧力Pに相当する送水・配水流量Q1より、本来1台目ポンプが持つ実際の特性曲線あるいはポンプ経年変化による特性曲線と、前記代表特性曲線(1)との差異量或は該差異量より大きい値ΔQ1を差し引いた値(Q1−ΔQ1)に送水・配水量が達した時に行い、また、2台運転から3台目追加運転に際しては、1台目および2台目ポンプを共に定格回転数で運転した場合の総合的な送水・配水圧力と送水・配水流量の関係を表わす代表特性曲線(2)上の一定送水・配水圧力Pに相当する送水・配水流量Q2より、本来1台目・2台目ポンプが持つ各々の実際の特性曲線、或はポンプ経年変化による該特性曲線と代表特性曲線(2)との差異の合計に相当する差異量或は該差異量より大きい値ΔQ2を差し引いた値(Q2−ΔQ2)に送水・配水量が達した時に行い、同様の方法により、4台目、5台目、・・・、n台目と追加運転させて行く事を特徴とするポンプ台数制御方法である。
【0008】
2.請求項2について、送水・配水場に設置される複数の送水・配水ポンプの、送水・配水圧力を一定値に保ちながら送水・配水流量の変化に従い運転台数を増加させるポンプ台数制御方法であり、1台運転から2台目運転追加に際しては、1台目ポンプを定格回転数で運転した場合の送水・配水圧力と送水・配水流量の関係を表わす代表特性曲線(1)上の一定送水・配水圧力Pに相当する送水・配水流量Q1より、本来1台目ポンプが持つ実際の特性曲線あるいはポンプ経年変化による特性曲線と、前記代表特性曲線(1)との差異量或は該差異量より大きい値ΔQ1を差し引いた値(Q1−ΔQ1)に送水・配水量が達した時に行い、また、2台運転から3台目追加運転に際しては、1台目および2台目ポンプを共に定格回転数で運転した場合の総合的な送水・配水圧力と送水・配水流量の関係を表わす代表特性曲線(2)上の一定送水・配水圧力Pに相当する送水・配水流量Q2より、本来1台目・2台目ポンプが持つ各々の実際の特性曲線、或はポンプ経年変化による該特性曲線と代表特性曲線(2)との差異の合計に相当する差異量或は該差異量より大きい値ΔQ2を差し引いた値(Q2−ΔQ2)に送水・配水量が達した時に行い、同様の方法により、4台目、5台目、・・・、n台目と追加運転させて行くに際し、各ポンプの定格回転数で運転した場合の送水・配水圧力と送水・配水流量の関係を表わす代表特性曲線と、本来各ポンプが持つ実際の特性曲線或はポンプ経年変化による特性曲線との差異に相当する送水・配水量、或は該送水・配水量より大きい値をあらかじめ設定しておき、台数制御するポンプの自由な組み合わせに応じ、運転中ポンプの前記あらかじめ設定されている送水・配水量を加算し、これをその時の組み合わせられたポンプが持つ実際の特性曲線、或はポンプ経年変化による前記特性曲線と代表特性曲線との差異とする事を特徴とするポンプ台数制御方法である。
【0009】
すなわち、請求項1において、配水量の制御余裕代ΔQを変化させる事にある。例えば3台目の追加運転は、図2の代表Q−H特性(2)に対して、1台目ポンプの余裕代分と2台目ポンプの余裕代分を加算した配水量の余裕代をQ2から差し引いた配水量に配水量が達した時に行なう。4台目の追加運転は、図2の(3)に対して、1台目、2台目、3台目ポンプの余裕代分を加算した余裕代分をQ3から差し引いた流量に配水量が達した時に行なう。
【0010】
また、請求項2においては、台数制御されるポンプの組み合わせは自由に選択される事があり、運転中ポンプの余裕代を加算した値を固定する事には問題がある。
この時は、各ポンプの余裕代をあらかじめ設定しておき、自由な組み合わせの運転中ポンプ余裕代を加算した値を上記のようにQ2やQ3などから差し引くようにし、追加運転に移行させる方法である。
【0011】
その作用は次のごとくである。
このように、課題であった配水量制御余裕代が等価的に1/(追加ポンプ台数)になる事なく、それぞれのポンプの配水量制御余裕代を確保する事が可能となる。
また、ポンプの自由な組み合わせによる台数制御の対応にも可能となる。
以下、本発明の一実施例を図面に基づいて詳述する。
【0012】
【発明の実施の形態】
図1は本発明の一実施例を示す特性図であり、図中、図2と同一記号のものは同一の内容である。
今、配水圧Pを維持しつつ小配水量を供給する為ポンプが1台運転されているとする。これが、さらに配水量が増加し、やがて(Q1−ΔQ1)に配水量が達した時2台目ポンプの追加運転を開始する。この時のΔQ1と図2のΔQは同じものであり、1台目ポンプの配水量制御余裕代である。
更に配水量が増加し、やがて(Q2−ΔQ2)に配水量が達した時3台目の追加運転が開始されるが、この時の配水量制御余裕代はΔQ2であり、これは1台目と2台目の制御余裕代の合計となっている。
同様に4台目運転は(Q3−ΔQ3)となり、配水量制御余裕代ΔQ3は1台目・2台目・3台目の各余裕代の合計に設定されている。
【0013】
つまり、この場合ΔQ1、ΔQ2、ΔQ3の内訳は
ΔQ1:1台目ポンプの配水量制御余裕代
ΔQ2:1台目ポンプの配水量制御余裕代+2台目ポンプの配水量制御余裕代
ΔQ3:1台目ポンプの配水量制御余裕代+2台目ポンプの配水量制御余裕代
+3台目ポンプの配水量制御余裕代
となっている。
しかしながら、ポンプ台数制御においては運転するポンプの組み合わせを自由に選択する場合があり、ΔQ1,2,3を固定値とする事には問題が発生する。そこで請求項2で示すように、各ポンプの配水量制御余裕代をあらかじめ設定しておき、自由な組み合わせによる運転中ポンプの各配水量制御余裕代を加算する事で上述の問題を回避できる。
【0014】
例えば、上述でいう1台目と3台目ポンプが運転されており、2台目ポンプを追加運転する場合には、その総合余裕代をΔQ2’とすれば
ΔQ2’=1台目ポンプの配水量制御余裕代+3台目ポンプの配水量制御余裕代として加算すれば良く、ポンプの自由な組み合わせによる台数制御の対応にも可能となる。
【0015】
[発明の効果]以上述べたように本発明によれば、ポンプ追加運転が、現在運転中のそれぞれの流量制御余裕代を合計した総合的な余裕代を差し引いた配水量に達した時に行われるため、図3の(1)’のようにポンプ自体が元々持つ実際Q−H特性の違いや、経年変化による実際Q−H特性の違いが存在しても、配水量増加による追加運転直前の配水圧低下を招くことは無くなる。また、ポンプの自由な組み合わせによる台数制御の対応にも可能となり、実用上、極めて有用性の高いものである。
【図面の簡単な説明】
【図1】本発明の請求項1および2記載の一実施例を示す特性図である。
【図2】従来技術の一例を示す特性図である。
【図3】図2のポンプが元々持つ特性や経年変化による特性の差異の説明図である。
【符号の説明】
(1) 1台目ポンプの定格速度運転時における、配水圧と配水量の代表特性曲線
(2) 1台目と2台目ポンプの定格速度運転時における、配水圧と配水量の代表特性曲線
(3) 1台目と2台目と3台目ポンプの定格速度運転時における、配水圧と配水量の代表特性曲線
(1)’ 1台目ポンプの定格速度運転時における、配水圧と配水量の実際特性曲線
P 維持すべき配水圧
Q1、Q2、Q3 代表Q−H特性(1)(2)(3)と維持すべき配水圧Pとの交点の配水量(Q1−ΔQ1)、(Q2−ΔQ2)、(Q3−ΔQ3)、(Q1−ΔQ)、(Q2−ΔQ)、(Q3−ΔQ)
ポンプ追加運転させる配水量
A 実際特性(1)’に従い流量がQ1時において配水圧が低下して運転する動作点
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a number control method for a plurality of water supply / distribution pumps in a water supply / distribution station.
[0002]
[Prior art]
There are usually multiple water / distribution pumps installed in a water supply or distribution station.
This is because the pressure of the water to be distributed (hereinafter simply referred to as the “distribution pressure”) needs to be kept substantially constant, and the required flow rate of the water (hereinafter simply referred to as the “distribution amount”) varies widely. This is because one pump is operated at the time of a small amount of water distribution while maintaining the above, and an efficient operation is performed by increasing the number of operation pumps as the amount of water distribution increases.
[0003]
Currently, only one pump is controlled to supply a small amount of water while maintaining the water distribution pressure (normally the pressure is controlled to keep the water distribution pressure constant, but the resulting rotation speed is controlled. Therefore, it will be referred to as “rotational speed control”. If the amount of water distribution increases in this state, the second pump is additionally operated, and the rotational speed is controlled to supply the necessary amount of water distribution together with the first pump. If the amount of water distribution further increases, the third pump is additionally operated, and the number of revolutions is controlled to supply the required amount of water distribution by the first, second and third pumps.
[0004]
In this way, efficient operation is possible by performing the minimum required pump operation according to the required water distribution amount with a plurality of pumps.
Now, how the second and third additional operations are determined will be described with reference to the characteristic diagram shown in FIG.
[0005]
FIG. 2 shows representative characteristics (hereinafter simply referred to as representative QH characteristics) representing the relationship between the distribution pressure and the distribution amount when the pump is operated at the rated rotation speed. (1) is the rated rotation speed of only one pump. During operation, (2) is a typical QH characteristic during operation at the rated speed of two pumps, and (3) is a typical QH characteristic during operation at the rated speed of three pumps. P represents the distribution pressure to be maintained. In general, the operation of the second and third units increases the distribution amount while maintaining the distribution pressure P during the first pump operation, and the relationship between the representative QH characteristic (1) and the distribution pressure P When the amount of water distribution reaches (Q1-ΔQ) smaller than the water distribution amount Q1 at the intersection by ΔQ, the second unit is additionally operated. When the water distribution amount further increases, and the water distribution amount reaches (Q2-ΔQ) smaller by ΔQ than the water distribution amount Q2 at the intersection of the representative QH characteristic (2) and the water distribution pressure P, the third unit is additionally operated. Is done. Thereafter, the fourth and fifth units are additionally operated in the same manner.
[0006]
[Problems to be Solved by the Invention] The reason why the above-mentioned water distribution amount ΔQ is set is mainly due to the following reasons. As shown in the characteristic diagram of FIG. 3, the actual QH characteristic of the pump itself, or the pump aging, etc., the actual QH on the left side of the representative QH characteristic (1) (same as (1) of FIG. 2 ) . If there is -H characteristic (1) 'and ΔQ is not provided and the second unit operation is set to start at Q1, the water distribution pressure P decreases along the actual characteristic (1) ' before reaching Q1. As a result, it becomes impossible to maintain the distribution pressure P immediately before the additional operation. (Operated at point A in FIG. 3)
For this reason, even if the actual characteristics of the pump are (1) ', ΔQ is set so that the second additional operation can be started when the water distribution amount (Q1-ΔQ) that can maintain the water distribution pressure P is reached. Has been. That is, ΔQ is a control margin for the water distribution amount. However, if ΔQ is a constant value even if the number of pumps is increased at the third and fourth units, the above margin is equivalently reduced to 1 / (the number of additional pumps). For this reason, it had the subject that the water distribution pressure fall just before the additional operation by the amount of water distribution generate | occur | produced. The present invention has been made in view of the above-described points, and an object of the present invention is to provide a method for controlling the number of pumps that solves these problems.
[0007]
[Means for Solving the Problems] That is, means for achieving the object are as follows. About Claim 1, it is a pump number control method of increasing the number of operating units according to the change in the water supply / distribution flow rate while maintaining the water supply / distribution pressure at a constant value for a plurality of water supply / distribution pumps installed in the water supply / distribution station, When adding the second unit to the second unit, constant water supply / distribution on the representative characteristic curve (1) showing the relationship between the water supply / distribution pressure and the water supply / distribution flow rate when the first pump is operated at the rated speed From the water supply / distribution flow rate Q1 corresponding to the pressure P, the difference between the actual characteristic curve of the first pump or the characteristic curve due to aging of the pump and the representative characteristic curve (1) or larger than the difference Performed when the water supply / distribution amount reaches the value obtained by subtracting the value ΔQ1 (Q1-ΔQ1). In addition, the second and third pumps are operated at the rated speed for both the first and second pumps. When I drove From the water / distribution flow rate Q2 corresponding to the constant water / distribution pressure P on the representative characteristic curve (2) representing the relationship between the total water / distribution pressure and the water / distribution flow rate Each actual characteristic curve of the pump, or a difference amount corresponding to the sum of differences between the characteristic curve and the representative characteristic curve (2) due to aging of the pump, or a value obtained by subtracting a value ΔQ2 larger than the difference amount ( Q2-ΔQ2) When the water supply / distribution amount reaches, the number of pumps is controlled by the same method and the fourth unit, the fifth unit,..., The nth unit are additionally operated. It is.
[0008]
2. About Claim 2, it is a pump number control method of increasing the number of operating units according to the change of the water supply / distribution flow rate while keeping the water supply / distribution pressure of a plurality of water supply / distribution pumps installed in the water supply / distribution station, When adding the second unit to the second unit, constant water supply / distribution on the representative characteristic curve (1) showing the relationship between the water supply / distribution pressure and the water supply / distribution flow rate when the first pump is operated at the rated speed From the water supply / distribution flow rate Q1 corresponding to the pressure P, the difference between the actual characteristic curve of the first pump or the characteristic curve due to aging of the pump and the representative characteristic curve (1) or larger than the difference Performed when the water supply / distribution amount reaches the value obtained by subtracting the value ΔQ1 (Q1-ΔQ1). In addition, the second and third pumps are operated at the rated speed for both the first and second pumps. When I drove From the water / distribution flow rate Q2 corresponding to the constant water / distribution pressure P on the representative characteristic curve (2) representing the relationship between the total water / distribution pressure and the water / distribution flow rate Each actual characteristic curve of the pump, or a difference amount corresponding to the sum of differences between the characteristic curve and the representative characteristic curve (2) due to aging of the pump, or a value obtained by subtracting a value ΔQ2 larger than the difference amount ( Q2-ΔQ2) is performed when the amount of water delivered / distributed reaches, and the same method is used for additional operation with the 4th, 5th, ..., nth units, at the rated speed of each pump. The water supply / distribution volume corresponding to the difference between the representative characteristic curve representing the relationship between the water supply / distribution pressure and the water supply / distribution flow rate in operation, and the actual characteristic curve of each pump or the characteristic curve due to aging of the pump, Or a value larger than the water supply / distribution amount is indicated in advance. In accordance with the free combination of pumps to control the number of units, add the preset water supply / distribution amount of the pumps in operation, and add this to the actual characteristic curve of the combined pump at that time, Or it is a pump number control method characterized by making it the difference between the said characteristic curve by a pump secular change, and a representative characteristic curve.
[0009]
That is, in claim 1, the control allowance ΔQ of the water distribution amount is changed. For example, in the additional operation of the third unit, the margin of water distribution is calculated by adding the margin of the first pump and the margin of the second pump to the representative QH characteristics (2) in FIG. Performed when the water distribution reaches the water distribution subtracted from Q2. In the additional operation of the fourth unit, the amount of water distribution is equal to the flow rate obtained by subtracting the margin allowance for the first, second, and third pumps from Q3 with respect to (3) in FIG. When you reach it.
[0010]
Further, in claim 2, the combination of pumps to be controlled may be freely selected, and there is a problem in fixing the value obtained by adding the margin of the operating pump.
At this time, the margin of each pump is set in advance, and the value obtained by adding the pump margin during operation in a free combination is subtracted from Q2 or Q3 as described above, and the operation is shifted to the additional operation. is there.
[0011]
The operation is as follows.
Thus, it becomes possible to ensure the water supply amount control allowance of each pump, without the water supply amount control allowance which was a subject becoming equivalently 1 / (the number of additional pumps).
In addition, it is possible to support unit control by a free combination of pumps.
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a characteristic diagram showing an embodiment of the present invention. In the figure, the same symbols as those in FIG. 2 have the same contents.
Now, assume that one pump is operated to supply a small amount of water distribution while maintaining the water distribution pressure P. This further increases the water distribution amount, and when the water distribution amount eventually reaches (Q1-ΔQ1), the additional operation of the second pump is started. At this time, ΔQ1 and ΔQ in FIG. 2 are the same, which is a margin for controlling the amount of water distribution of the first pump.
When the amount of water distribution further increases and eventually the amount of water distribution reaches (Q2-ΔQ2), the third additional operation is started, but the water supply control margin at this time is ΔQ2, which is the first unit And the total control margin of the second unit.
Similarly, the fourth unit operation is (Q3-ΔQ3), and the water distribution amount control allowance ΔQ3 is set to the total of the allowance allowances of the first, second, and third units.
[0013]
That is, in this case, the breakdown of ΔQ1, ΔQ2, and ΔQ3 is: ΔQ1: water distribution control margin of the first pump ΔQ2: water distribution control margin of the first pump + water distribution control margin of the second pump ΔQ3: one Water supply control allowance for the second pump + water supply control allowance for the second pump + water supply control allowance for the third pump.
However, in controlling the number of pumps, there is a case where a combination of pumps to be operated is freely selected, and there is a problem in setting ΔQ1, 2, 3 to fixed values. Therefore, as shown in claim 2, the above-mentioned problem can be avoided by setting the water distribution amount control margin for each pump in advance and adding each water amount control margin for the operating pump by a free combination.
[0014]
For example, when the first and third pumps described above are operated and the second pump is additionally operated, if the total margin is ΔQ2 ′, ΔQ2 ′ = arrangement of the first pump. What is necessary is just to add as water amount control allowance + water supply amount control allowance of the 3rd pump, and it becomes possible to cope with unit control by a free combination of pumps.
[0015]
[Effects of the Invention] As described above, according to the present invention, the additional pump operation is performed when the water distribution amount obtained by subtracting the total allowance obtained by adding up the respective flow control allowances currently in operation is reached. Therefore, even if there is a difference in the actual QH characteristics inherent in the pump itself as shown in (1) 'of FIG. 3 or a difference in the actual QH characteristics due to secular change, It will not cause a drop in water distribution pressure. It is also possible to control the number of units by freely combining pumps, which is extremely useful in practice.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing an embodiment of the first and second aspects of the present invention.
FIG. 2 is a characteristic diagram showing an example of a conventional technique.
FIG. 3 is an explanatory diagram of characteristics inherent to the pump of FIG. 2 and characteristics differences due to aging.
[Explanation of symbols]
(1) Typical characteristic curve of distribution pressure and distribution during the rated speed operation of the first pump
(2) Typical characteristic curves of distribution pressure and distribution amount during rated speed operation of the first and second pumps
(3) Typical characteristic curves of distribution pressure and distribution amount during rated speed operation of the first, second and third pumps
(1) 'Actual characteristics curve P of distribution pressure and distribution amount during rated speed operation of the first pump Distribution pressures Q1, Q2, Q3 to be maintained Typical QH characteristics (1) (2) (3) Water distribution amount at intersections with water distribution pressure P to be maintained ( Q1- ΔQ1), ( Q2- ΔQ2), ( Q3- ΔQ3), ( Q1- ΔQ), ( Q2- ΔQ), ( Q3- ΔQ)
Water distribution amount A to be additionally operated by the pump A Actual point of operation (1) Operating point at which the water distribution pressure decreases when the flow rate is Q1

Claims (2)

送水・配水場に設置される複数の送水・配水ポンプの、送水・配水圧力を一定値に保ちながら送水・配水流量の変化に従い運転台数を増加させるポンプ台数制御方法において、1台運転から2台目運転追加に際しては、1台目ポンプを定格回転数で運転した場合の送水・配水圧力と送水・配水流量の関係を表わす代表特性曲線(1)上の一定送水・配水圧力Pに相当する送水・配水流量Q1より、本来1台目ポンプが持つ実際の特性曲線あるいはポンプ経年変化による特性曲線と、前記代表特性曲線(1)との差異量或は該差異量より大きい値ΔQ1を差し引いた値(Q1−ΔQ1)に送水・配水量が達した時に行い、また、2台運転から3台目追加運転に際しては、1台目および2台目ポンプを共に定格回転数で運転した場合の総合的な送水・配水圧力と送水・配水流量の関係を表わす代表特性曲線(2)上の一定送水・配水圧力Pに相当する送水・配水流量Q2より、本来1台目・2台目ポンプが持つ各々の実際の特性曲線、或はポンプ経年変化による該特性曲線と代表特性曲線(2)との差異の合計に相当する差異量或は該差異量より大きい値ΔQ2を差し引いた値(Q2−ΔQ2)に送水・配水量が達した時に行い、同様の方法により、4台目、5台目、・・・、n台目と追加運転させて行く事を特徴とするポンプ台数制御方法。In the pump number control method that increases the number of operating pumps according to changes in the water supply / distribution flow rate while maintaining the water supply / distribution pressure at a constant value for multiple water supply / distribution pumps installed in the water supply / distribution station, one to two When adding the first operation, the water supply corresponding to the constant water supply / distribution pressure P on the representative characteristic curve (1) showing the relationship between the water supply / distribution pressure and the water supply / distribution flow rate when the first pump is operated at the rated speed. The value obtained by subtracting the difference ΔQ1 from the actual characteristic curve of the first pump or the characteristic curve due to aging of the pump and the representative characteristic curve (1) from the distribution flow rate Q1 or a value larger than the difference amount. Performed when the amount of water delivered / distributed reaches (Q1-ΔQ1), and in the case of the second unit to the third additional operation, the first and second pumps are both operated at the rated speed. Water supply・ From the water supply / distribution flow rate Q2 corresponding to the constant water supply / distribution pressure P on the representative characteristic curve (2) , which shows the relationship between the water distribution pressure and the water supply / distribution flow rate, each actual one that the first and second pumps originally have To the difference curve corresponding to the sum of the difference between the characteristic curve due to aging of the pump and the representative characteristic curve (2) or the value (Q2−ΔQ2) obtained by subtracting the value ΔQ2 larger than the difference amount. -A pump unit number control method characterized in that it is performed when the amount of water distribution reaches, and the fourth unit, the fifth unit,... 送水・配水場に設置される複数の送水・配水ポンプの、送水・配水圧力を一定値に保ちながら送水・配水流量の変化に従い運転台数を増加させるポンプ台数制御方法において、1台運転から2台目運転追加に際しては、1台目ポンプを定格回転数で運転した場合の送水・配水圧力と送水・配水流量の関係を表わす代表特性曲線(1)上の一定送水・配水圧力Pに相当する送水・配水流量Q1より、本来1台目ポンプが持つ実際の特性曲線あるいはポンプ経年変化による特性曲線と、前記代表特性曲線(1)との差異量或は該差異量より大きい値ΔQ1を差し引いた値(Q1−ΔQ1)に送水・配水量が達した時に行い、また、2台運転から3台目追加運転に際しては、1台目および2台目ポンプを共に定格回転数で運転した場合の総合的な送水・配水圧力と送水・配水流量の関係を表わす代表特性曲線(2)上の一定送水・配水圧力Pに相当する送水・配水流量Q2より、本来1台目・2台目ポンプが持つ各々の実際の特性曲線、或はポンプ経年変化による該特性曲線と代表特性曲線(2)との差異の合計に相当する差異量或は該差異量より大きい値ΔQ2を差し引いた値(Q2−ΔQ2)に送水・配水量が達した時に行い、同様の方法により、4台目、5台目、・・・、n台目と追加運転させて行くに際し、各ポンプの定格回転数で運転した場合の送水・配水圧力と送水・配水流量の関係を表わす代表特性曲線と、本来各ポンプが持つ実際の特性曲線或はポンプ経年変化による特性曲線との差異に相当する送水・配水量、或は該送水・配水量より大きい値をあらかじめ設定しておき、台数制御するポンプの自由な組み合わせに応じ、運転中ポンプの前記あらかじめ設定されている送水・配水量を加算し、これをその時の組み合わせられたポンプが持つ実際の特性曲線、或はポンプ経年変化による前記特性曲線と代表特性曲線との差異とする事を特徴とするポンプ台数制御方法。In the pump number control method that increases the number of operating pumps according to changes in the water supply / distribution flow rate while maintaining the water supply / distribution pressure at a constant value for multiple water supply / distribution pumps installed in the water supply / distribution station, one to two When adding the first operation, the water supply corresponding to the constant water supply / distribution pressure P on the representative characteristic curve (1) showing the relationship between the water supply / distribution pressure and the water supply / distribution flow rate when the first pump is operated at the rated speed. The value obtained by subtracting the difference ΔQ1 from the actual characteristic curve of the first pump or the characteristic curve due to aging of the pump and the representative characteristic curve (1) from the distribution flow rate Q1 or a value larger than the difference amount. Performed when the amount of water delivered / distributed reaches (Q1-ΔQ1), and in the case of the second unit to the third additional operation, the first and second pumps are both operated at the rated speed. Water supply・ From the water supply / distribution flow rate Q2 corresponding to the constant water supply / distribution pressure P on the representative characteristic curve (2) , which shows the relationship between the water distribution pressure and the water supply / distribution flow rate, each actual one that the first and second pumps originally have To the difference curve corresponding to the sum of the difference between the characteristic curve due to aging of the pump and the representative characteristic curve (2) or the value (Q2−ΔQ2) obtained by subtracting the value ΔQ2 larger than the difference amount.・ When the amount of water distribution reaches, the same method will be used to add water to the 4th, 5th,..., Nth units. The water supply / distribution volume corresponding to the difference between the representative characteristic curve representing the relationship between the water distribution pressure and the water supply / distribution flow rate and the actual characteristic curve inherent to each pump or the characteristic curve due to aging of the pump, or the water supply / distribution Set a value larger than the amount of water in advance, Depending on the free combination of pumps to control the number of units, add the preset water supply / distribution amount of the pumps in operation, and add this to the actual characteristic curve of the combined pumps at that time, or the pump aging A method for controlling the number of pumps, wherein the characteristic curve is different from the representative characteristic curve.
JP06770699A 1999-03-15 1999-03-15 Number of pumps control method Expired - Lifetime JP4386217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06770699A JP4386217B2 (en) 1999-03-15 1999-03-15 Number of pumps control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06770699A JP4386217B2 (en) 1999-03-15 1999-03-15 Number of pumps control method

Publications (2)

Publication Number Publication Date
JP2000265967A JP2000265967A (en) 2000-09-26
JP4386217B2 true JP4386217B2 (en) 2009-12-16

Family

ID=13352683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06770699A Expired - Lifetime JP4386217B2 (en) 1999-03-15 1999-03-15 Number of pumps control method

Country Status (1)

Country Link
JP (1) JP4386217B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102691334A (en) * 2012-05-25 2012-09-26 天津大学建筑设计研究院 Method for determining switching time between constant-pressure water supply and air-pressure water supply of joined water supply system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748175B2 (en) * 2008-04-16 2011-08-17 日立電線株式会社 Cold water circulation system
CN102677737B (en) * 2012-05-25 2014-04-02 天津大学建筑设计研究院 Method for selecting and determining air pressure water feeding pump and air pressure water tank in constant-pressure water supply system
JP6987289B1 (en) * 2021-07-14 2021-12-22 東京瓦斯株式会社 Pump controller, pump control system, and pump control program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102691334A (en) * 2012-05-25 2012-09-26 天津大学建筑设计研究院 Method for determining switching time between constant-pressure water supply and air-pressure water supply of joined water supply system
CN102691334B (en) * 2012-05-25 2013-12-11 天津大学建筑设计研究院 Method for determining switching time between constant-pressure water supply and air-pressure water supply of joined water supply system

Also Published As

Publication number Publication date
JP2000265967A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
JP4386217B2 (en) Number of pumps control method
KR100466753B1 (en) A control device for a slanting plate type variable capacity pump
JPH0369861A (en) Hydraulic closed circuit
CN104929787A (en) Pumping control method
JP3523489B2 (en) Pump control method
JPH04358795A (en) Control method for pump operation
JPH10103252A (en) Pump control system
JPH08219106A (en) Hydraulic drive circuit
JP2781527B2 (en) Pump control method for pressure tank type water supply device
JP6665009B2 (en) Pump system, control device, and control method
JP2001099087A (en) Pump flow control device
JP2000054982A (en) Water feed method and its device
JPH0518390A (en) Operating number control device for pumps
JP2002005075A (en) System for controlling pump
JP3849734B2 (en) Water distribution control method considering the water level of clean water reservoir and distribution reservoir
JPH06195102A (en) Pump controller
JPH0688594A (en) Feed water supply system
JPH0819915B2 (en) Variable speed pump operating device
JP2006183496A (en) Operation method of pump for supplying fluid
JP2806840B2 (en) Centrifugal pump with controlled discharge characteristics
JP3172499B2 (en) Combination pump device
JPH07106584B2 (en) Injection molding machine pressure setting method
JPH031520B2 (en)
JP2002195164A (en) Discharge flow rate controller
JPS63277892A (en) Pressure control for air conditioning pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090829