JP4385920B2 - Voltage drop detection device - Google Patents

Voltage drop detection device Download PDF

Info

Publication number
JP4385920B2
JP4385920B2 JP2004308985A JP2004308985A JP4385920B2 JP 4385920 B2 JP4385920 B2 JP 4385920B2 JP 2004308985 A JP2004308985 A JP 2004308985A JP 2004308985 A JP2004308985 A JP 2004308985A JP 4385920 B2 JP4385920 B2 JP 4385920B2
Authority
JP
Japan
Prior art keywords
transformer
voltage
voltage drop
inverter
instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004308985A
Other languages
Japanese (ja)
Other versions
JP2006121852A (en
Inventor
英洋 前川
賢 土岐
渡辺  純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2004308985A priority Critical patent/JP4385920B2/en
Priority to KR1020050095840A priority patent/KR20060052197A/en
Publication of JP2006121852A publication Critical patent/JP2006121852A/en
Application granted granted Critical
Publication of JP4385920B2 publication Critical patent/JP4385920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Inverter Devices (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Description

本発明は、電力系統の事故等によって発生する瞬時電圧低下や停電を検出する電圧低下検出装置に係り、特に高速にて検出し、且つ電圧低下を補償する電圧低下検出装置に関するものである。   The present invention relates to a voltage drop detection device that detects an instantaneous voltage drop or a power failure that occurs due to a power system accident or the like, and more particularly to a voltage drop detection device that detects at high speed and compensates for the voltage drop.

瞬時電圧低下補償装置として、図6で示すような直列補償方式と、図7で示すような並列補償方式などがある。
図6において、1は交流電源、2は変圧器で、負荷4に合わせた容量を有している。3は直列変圧器で、その一次巻線は変圧器2と負荷4と直列に接続されている。5は直流電源で電解コンデンサ、蓄電池、電気二重層キャパシタ等が使用される。6はインバータ、7はリアクトル、8はコンデンサで、リアクトル7とコンデンサ8によってフィルタを構成し、インバータ6に発生した高調波分を除去して直列変圧器3の二次巻線に供給する。9は計器用変圧器で、この計器用変圧器によって電力系統の電圧を検出して図示省略されたインバータの制御回路に出力される。12は半導体素子等が使用される高速スイッチで、変圧器3の一次巻線とは並列状態で接続され、電力系統の正常時にはオン状態を維持してこのスイッチを介して負荷に電力が供給される。
図7の並列補償方式では、変圧器2と高速スイッチ11間に遮断器10が介挿され、且つ変圧器13が系統と並列に接続されている以外は図6の直列補償方式と同様である。
図6で示す直列補償方式においては、電源の正常時には高速スイッチを介して負荷に給電する。何らかの理由により電源電圧が低下したことを検出すると高速スイッチ12を開路すると共に、計器用変圧器9によって検出した電圧に基づきインバータ6を制御し、電源電圧の低下量に見合った電圧をインバータ6より発生させ、変圧器3の一次巻線に重畳させることで負荷電圧を所定値に保つ。なお、インバータの電源は、直流電源5に蓄えられたエネルギーから供給される。
As the instantaneous voltage drop compensation device, there are a series compensation system as shown in FIG. 6 and a parallel compensation system as shown in FIG.
In FIG. 6, 1 is an AC power source, 2 is a transformer, and has a capacity matched to the load 4. Reference numeral 3 denotes a series transformer, the primary winding of which is connected in series with the transformer 2 and the load 4. Reference numeral 5 denotes a DC power source, which uses an electrolytic capacitor, a storage battery, an electric double layer capacitor, and the like. 6 is an inverter, 7 is a reactor, and 8 is a capacitor. The reactor 7 and the capacitor 8 constitute a filter, and a harmonic component generated in the inverter 6 is removed and supplied to the secondary winding of the series transformer 3. Reference numeral 9 denotes an instrument transformer, which detects the voltage of the power system by the instrument transformer and outputs it to an inverter control circuit (not shown). Reference numeral 12 denotes a high-speed switch using a semiconductor element or the like, which is connected in parallel with the primary winding of the transformer 3, and maintains an ON state when the power system is normal, and power is supplied to the load through this switch. The
The parallel compensation system of FIG. 7 is the same as the series compensation system of FIG. 6 except that the circuit breaker 10 is inserted between the transformer 2 and the high-speed switch 11 and the transformer 13 is connected in parallel with the system. .
In the series compensation system shown in FIG. 6, power is supplied to the load via a high-speed switch when the power supply is normal. When it is detected that the power supply voltage has dropped for some reason, the high-speed switch 12 is opened, and the inverter 6 is controlled based on the voltage detected by the instrument transformer 9, and a voltage commensurate with the amount of power supply voltage drop is obtained from the inverter 6. Generated and superposed on the primary winding of the transformer 3 to keep the load voltage at a predetermined value. The inverter power is supplied from the energy stored in the DC power source 5.

また、図7で示した並列補償方式においては、電源の正常時には高速スイッチを介して負荷に給電する。何らかの理由により電源電圧が低下したことを計器用変圧器9によって検出すると高速スイッチ11を開路しいからインバータ6を制御し、系統電圧と同位相で、系統の定格電圧をインバータ6より発生させることで、負荷電圧を所定値に保つ。なお、停電後の復電時にはインバータの発生した電圧と電源側電圧との位相差があるために最大系統電圧の2倍の電圧が発生する場合がある。この電圧から高速スイッチ11を保護するために遮断器10が設けられている。   In the parallel compensation system shown in FIG. 7, when the power supply is normal, power is supplied to the load via the high-speed switch. When it is detected by the instrument transformer 9 that the power supply voltage has decreased for some reason, the inverter 6 is controlled because the high-speed switch 11 is open, and the rated voltage of the system is generated from the inverter 6 in the same phase as the system voltage. The load voltage is kept at a predetermined value. Note that when power is restored after a power failure, there is a case where a voltage twice as large as the maximum system voltage may be generated due to the phase difference between the voltage generated by the inverter and the power supply side voltage. A circuit breaker 10 is provided to protect the high speed switch 11 from this voltage.

このような瞬時電圧低下補償装置を介して系統電圧を補償するものとしては、特許文献1や特許文献2等が公知となっている。特許文献1には直列補償方式のものが図示され、電力系統に事故が発生して過大な電流が直列変圧器の一次巻線に流れたとき、二次巻線に流れる比例した大電流によって生じるインバータのスイッチング素子破損を防止することが開示されている。また、特許文献2には、直列補償方式の瞬時電圧低下補償装置が常時運転されることに基づく運転コストの削減を目的として、電圧検出回路によって検出された電圧低下分が所定のしきい値より小さいときにはインバータを停止させ、しきい値を超えたときにインバータを動作させて系統電圧を補償することが記載されている。
特許第3429932号公報 特公平8−32132号公報
Patent Document 1, Patent Document 2, and the like are known as means for compensating the system voltage through such an instantaneous voltage drop compensation device. Patent Document 1 shows a series compensation system, and when an accident occurs in the power system and an excessive current flows in the primary winding of the series transformer, it is caused by a proportional large current flowing in the secondary winding. It is disclosed that the switching element of the inverter is prevented from being damaged. Further, Patent Document 2 discloses that a voltage drop detected by a voltage detection circuit is less than a predetermined threshold value for the purpose of reducing operating costs based on a continuous operation of an instantaneous voltage drop compensator of a series compensation method. It describes that the inverter is stopped when it is small and the inverter is operated when the threshold value is exceeded to compensate the system voltage.
Japanese Patent No. 3429932 Japanese Patent Publication No. 8-32132

瞬時電圧低下補償装置においては、電力系統の瞬時電圧の低下を高速に検出して直ちに補償動作に入る必要がある。その検出時間は数m秒以下と非常に高速性を必要とする。瞬時電圧低下補償装置では電源側に変圧器2が設置されるため、そこに流れる電流によって電圧降下が発生する。また、高調波電流が変圧器2に流れると変圧器のインダクタンスによって高調波電圧歪が二次側電圧に現れる。そのため、高調波電流が流れたときの電圧歪と、系統側事故による瞬時電圧とを区別して高速に検出することが困難となっている。このような現象は高調波電流が流れた場合のみならず、負荷側変圧器等を投入した場合に発生する励磁突入電流が流れた場合にも発生する現象である。
そこで本発明が目的とするところは、変圧器インピーダンスによる電圧降下の影響を受けずに、電源側の電圧降下を検出することを可能とした電圧低下検出装置を提供することにある。
In the instantaneous voltage drop compensator, it is necessary to detect the instantaneous voltage drop of the power system at high speed and immediately enter the compensation operation. The detection time requires a very high speed of several milliseconds or less. In the instantaneous voltage drop compensator, since the transformer 2 is installed on the power supply side, a voltage drop occurs due to the current flowing therethrough. Further, when harmonic current flows through the transformer 2, harmonic voltage distortion appears in the secondary side voltage due to the inductance of the transformer. For this reason, it is difficult to distinguish between voltage distortion when harmonic current flows and instantaneous voltage due to a system-side fault and to detect them at high speed. Such a phenomenon occurs not only when a harmonic current flows, but also when a magnetizing inrush current that occurs when a load-side transformer or the like is turned on flows.
Therefore, an object of the present invention is to provide a voltage drop detection device that can detect a voltage drop on the power supply side without being affected by a voltage drop due to transformer impedance.

本発明の第1は、電源に接続された変圧器の二次側の電力系統に高速スイッチを介して負荷を接続し、この高速スイッチと並列に、若しくは高速スイッチと負荷間に第2の変圧器(直列変圧器、若しくは並列変圧器)を接続し、この第2の変圧器の二次巻線に直流電源を有するインバータを接続し、前記電力系統の電圧低下時にこのインバータを介して電圧補償する瞬時電圧低下補償装置において、
前記変圧器の一次側に計器用変圧器を設け、この計器用変圧器により検出された電圧をインバータの制御部に導入し、この一次電圧に対応した電圧補償を前記インバータ、及び第2の変圧器を介して電力系統に供給するよう構成したことを特徴としたものである。
本発明の第2は、前記変圧器の一次側に設置される計器用変圧器の二次側に補助の電圧検出手段を設けたことを特徴としたものである。
In the first aspect of the present invention, a load is connected to a secondary power system of a transformer connected to a power source via a high-speed switch, and a second transformer is connected in parallel with the high-speed switch or between the high-speed switch and the load. Connected to a transformer (series transformer or parallel transformer), an inverter having a DC power supply is connected to the secondary winding of the second transformer, and voltage compensation is performed via this inverter when the voltage of the power system drops. In the instantaneous voltage drop compensation device
An instrument transformer is provided on the primary side of the transformer, a voltage detected by the instrument transformer is introduced into an inverter control unit , and voltage compensation corresponding to the primary voltage is compensated for by the inverter and the second transformer. It is characterized in that it is configured to be supplied to the electric power system through a device .
According to a second aspect of the present invention, auxiliary voltage detection means is provided on the secondary side of the instrument transformer installed on the primary side of the transformer.

以上のとおり、本発明によれば、電力系統の電圧検出を変圧器の一次側で検出しているので、変圧器のインピーダンスと負荷の高調波電流によって発生する変圧器の二次側での電圧歪と、落雷やスリートジャンプ、ギャロッビング等による系統短絡、地絡事故等の電源側の事故による瞬時電圧低下を高速に判別することができる。
また、負荷側に設置された変圧器等を投入したときに発生する突入電流等と瞬時電圧低下補償装置より電源側に設置されている変圧器のインピーダンスとによる電圧降下と、電源側の事故による瞬時電圧低下とを高速に判別することができる。
また、電力系統の変圧器の一次側に計器用変圧器を設置することなく、瞬時電圧低下補償装置としては標準的に必要な容量の計器用変流器により電流を検出して変圧器の一次側電圧の算出が可能となる。したがって、変圧器が設置される瞬時電圧低下補償装置とは遠隔地にあっても、変圧器の一次側電圧を直接検出することなく一次側電圧の算出ができ、経済的な装置の構築が可能となるものである。
As described above, according to the present invention, since the voltage detection of the power system is detected on the primary side of the transformer, the voltage on the secondary side of the transformer generated by the impedance of the transformer and the harmonic current of the load. Distortion, instantaneous voltage drop due to power-side accidents such as lightning, three-way jumps, system shorts due to galloping, ground faults, etc. can be discriminated at high speed.
Also, due to the voltage drop due to the inrush current generated when the transformer etc. installed on the load side is turned on and the impedance of the transformer installed on the power supply side from the instantaneous voltage drop compensator, due to the accident on the power supply side The instantaneous voltage drop can be distinguished at high speed.
In addition, without installing an instrument transformer on the primary side of the transformer of the power system, the instantaneous voltage drop compensator can detect the current with an instrument current transformer with a standard required capacity to detect the current. The side voltage can be calculated. Therefore, it is possible to calculate the primary voltage without directly detecting the primary voltage of the transformer, even if it is remote from the instantaneous voltage drop compensator where the transformer is installed. It will be.

図1は直列補償方式に適用した第1の実施例で、図6と同一部分若しくは相当部分には同一符号を付してその説明を省略する。図1において、図6との相違点は計器用変圧器14を設けたことにある。この計器用変圧器14は、計器用変圧器9の代わりか若しくは図1のように併設され、変圧器2の一次側に接続される。
計器用変圧器14によって検出された電圧は、図示省略されたインバータ6の制御回路に出力されて基準しきい値と比較され、停電、瞬時電圧低下の検出値として使用される。
すなわち、計器用検出器によって検出された値がしきい値より高く、電源電圧が正常時の場合には高速スイッチ12はオン状態となっており、このスイッチ12を介して負荷に給電する。何らかの理由によって電源電圧が瞬時低下すると、計器用変圧器14はこれを検出して検出値としきい値との偏差演算がなされ、比較部において比較される。その結果、瞬時電圧低下と判断されたときには高速スイッチ12を開路すると共に、計器用変圧器14の出力としきい値との偏差値に応じてインバータ6を制御し、電源電圧の低下量に見合った電圧をインバータ6より発生させ、変圧器3の一次巻線に重畳させることで負荷電圧を所定値に維持する。
したがって、この実施例によれば、電力系統の電圧検出を変圧器2の一次側で検出しているので、変圧器2のインピーダンスと負荷の高調波電流によって発生する変圧器2の二次側での電圧歪と、落雷やスリートジャンプ、ギャロッビング等による系統短絡、地絡事故等の電源側の事故による瞬時電圧低下を高速に判別することができる。
また、負荷4内存在する図示省略された変圧器等を投入したときに発生する突入電流等と瞬時電圧低下補償装置より電源側に設置されている変圧器2のインピーダンスとによる電圧降下と、電源側の事故による瞬時電圧低下とを高速に判別することができる。
FIG. 1 shows a first embodiment applied to a series compensation system. The same or corresponding parts as in FIG. 1 is different from FIG. 6 in that an instrument transformer 14 is provided. The instrument transformer 14 is provided in place of the instrument transformer 9 or as shown in FIG. 1 and is connected to the primary side of the transformer 2.
The voltage detected by the instrument transformer 14 is output to a control circuit of the inverter 6 (not shown), compared with a reference threshold value, and used as a detection value for power failure and instantaneous voltage drop.
That is, when the value detected by the instrument detector is higher than the threshold value and the power supply voltage is normal, the high-speed switch 12 is in an on state, and power is supplied to the load via the switch 12. When the power supply voltage drops instantaneously for some reason, the instrument transformer 14 detects this, calculates a deviation between the detected value and the threshold value, and compares them in the comparison unit. As a result, when the instantaneous voltage drop is determined, the high-speed switch 12 is opened, and the inverter 6 is controlled in accordance with the deviation value between the output of the instrument transformer 14 and the threshold value, and the power supply voltage drop is met. A voltage is generated from the inverter 6 and superposed on the primary winding of the transformer 3 to maintain the load voltage at a predetermined value.
Therefore, according to this embodiment, since the voltage detection of the power system is detected on the primary side of the transformer 2, the secondary side of the transformer 2 generated by the impedance of the transformer 2 and the harmonic current of the load is detected. Thus, it is possible to quickly discriminate between the voltage distortion and the instantaneous voltage drop due to power supply side accidents such as lightning, three-way jump, system short circuit due to galloping, and ground fault.
In addition, a voltage drop due to an inrush current generated when a transformer (not shown) existing in the load 4 is turned on and the impedance of the transformer 2 installed on the power source side from the instantaneous voltage drop compensation device, The instantaneous voltage drop due to the accident on the side can be discriminated at high speed.

図2は第2の実施例を示したものである。この実施例は、図1において更に計器用の補助変圧器15を設置したもので、特に、高圧又は特別高圧系統に有効のものである。なお、高圧又は特別高圧系統においては、計器用変圧器の他に接地変圧器が設置されている場合があるが、そのような場合、計器用変圧器14の代わりとして接地変圧器が使用され、この変圧器の二次側に変圧器15が接続される。
図2の作用及び効果は図1と同様であるのでその説明は省略する。
図3は第3の実施例を示したもので、この例は並列補償方式に計器用変圧器14を設置したもので、作用及び効果については図1と略同じであるのでその説明は省略する。
FIG. 2 shows a second embodiment. In this embodiment, an instrumental auxiliary transformer 15 is further installed in FIG. 1, and this is particularly effective for a high voltage or special high voltage system. In the high-voltage or special high-voltage system, a grounding transformer may be installed in addition to the instrument transformer. In such a case, a grounding transformer is used instead of the instrument transformer 14, A transformer 15 is connected to the secondary side of the transformer.
The operation and effect of FIG. 2 are the same as those of FIG.
FIG. 3 shows the third embodiment. In this example, the instrument transformer 14 is installed in the parallel compensation system, and the operation and effect are substantially the same as those in FIG. .

図4は第4の実施例を示したものである。この実施例は、第1〜第3実施例に用いた計器用変圧器14の代わりに計器用変流器16とインピーダンス降下補償部20を設けたものである。インピーダンス降下補償部20は、図5で示すようにインピーダンス降下演算手段21と加算部22を有している。インピーダンス降下演算手段21は、変流器16によって検出された電力系統の負荷電流I(t)を入力して、I*(R+jX)又はR*I(t)+L*dI(t)/dtの変圧器2によるインピーダンス降下分の演算を常時実行し、その結果を加算部22に出力して変圧器9によって検出された系統電圧V(t)と加算することによって電源電圧を算出する。この算出電圧は減算器23に出力されて基準しきい値との差信号が演算され、コンパレータ24において電源電圧が低下したか否かなどが判断されてインバータの制御信号並びに高速スイッチ12のオン、オフ信号として出力される。   FIG. 4 shows a fourth embodiment. In this embodiment, an instrument current transformer 16 and an impedance drop compensator 20 are provided in place of the instrument transformer 14 used in the first to third embodiments. The impedance drop compensator 20 includes an impedance drop calculator 21 and an adder 22 as shown in FIG. The impedance drop calculation means 21 inputs the load current I (t) of the power system detected by the current transformer 16, and I * (R + jX) or R * I (t) + L * dI (t) / dt The power supply voltage is calculated by constantly executing the calculation of the impedance drop by the transformer 2 and outputting the result to the adding unit 22 and adding it to the system voltage V (t) detected by the transformer 9. This calculated voltage is output to the subtractor 23, a difference signal from the reference threshold value is calculated, the comparator 24 determines whether or not the power supply voltage has decreased, and the like, and the inverter control signal and the high-speed switch 12 are turned on. Output as an off signal.

この実施例によれば、第1〜第3実施例の有する効果の他に、次のような効果を有するものである。
すなわち、電力系統の変圧器2の一次側に計器用変圧器を設置することなく、瞬時電圧低下補償装置としては標準的に必要な容量の計器用変流器により電流を検出して変圧器2の一次側電圧の算出が可能となる。したがって、変圧器2が、設置される瞬時電圧低下補償装置とは遠隔地にあっても、変圧器2の一次側電圧を直接検出しなくとも一次側電圧の算出ができて経済的な装置の構築が可能となるものである。
According to this embodiment, in addition to the effects of the first to third embodiments, the following effects are obtained.
In other words, the current is detected by a current transformer having a capacity required as a standard for an instantaneous voltage drop compensator without installing a transformer for the primary side of the transformer 2 of the power system. The primary side voltage can be calculated. Therefore, even if the transformer 2 is remote from the installed instantaneous voltage drop compensation device, the primary side voltage can be calculated without directly detecting the primary side voltage of the transformer 2. It can be constructed.

本発明の第1の実施例を示す構成図。The block diagram which shows the 1st Example of this invention. 本発明の第2の実施例を示す構成図。The block diagram which shows the 2nd Example of this invention. 本発明の第3の実施例を示す構成図。The block diagram which shows the 3rd Example of this invention. 本発明の第4の実施例を示す構成図。The block diagram which shows the 4th Example of this invention. 第4の実施例に使用されるインピーダンス降下補償部の構成図。The block diagram of the impedance fall compensation part used for a 4th Example. 従来の直列補償方式による瞬時電圧低下補償装置の構成図。The block diagram of the instantaneous voltage drop compensation apparatus by the conventional series compensation system. 従来の並列補償方式による瞬時電圧低下補償装置の構成図。The block diagram of the instantaneous voltage drop compensation apparatus by the conventional parallel compensation system.

符号の説明Explanation of symbols

1…電源
2…変圧器
3…直列変圧器
4…負荷
5…直流電源
6…インバータ
7…リアクトル
8…コンデンサ
9、14、15…計器用変圧器
10…遮断器
11、12…高速スイッチ
13…並列変圧器
16…計器用変流器
20…インピーダンス降下補償部
21…インピーダンス降下演算手段
24…コンパレータ
1 ... Power supply
2 ... Transformer
3 Series transformer
4 ... Load
5 ... DC power supply
6 ... Inverter
7 ... Reactor
8 ... Capacitor
9, 14, 15 ... Transformer for instrument
10 ... circuit breaker
11, 12 ... High speed switch
13 ... Parallel transformer
16 ... Current transformer for instrument
20: Impedance drop compensation unit
21. Impedance drop calculation means
24 ... Comparator

Claims (2)

電源に接続された変圧器の二次側の電力系統に高速スイッチを介して負荷を接続し、この高速スイッチと並列に、若しくは高速スイッチと負荷間に第2の変圧器(直列変圧器、若しくは並列変圧器)を接続し、この第2の変圧器の二次巻線に直流電源を有するインバータを接続し、前記電力系統の電圧低下時にこのインバータを介して電圧補償する瞬時電圧低下補償装置において、
前記変圧器の一次側に計器用変圧器を設け、この計器用変圧器により検出された電圧をインバータの制御部に導入し、この一次電圧に対応した電圧補償を前記インバータ、及び第2の変圧器を介して電力系統に供給するよう構成したことを特徴とした電圧低下検出装置。
A load is connected via a high-speed switch to the secondary power system of the transformer connected to the power supply, and a second transformer (series transformer or In an instantaneous voltage drop compensator for connecting a parallel transformer), connecting an inverter having a DC power source to the secondary winding of the second transformer, and compensating the voltage via the inverter when the voltage of the power system drops ,
An instrument transformer is provided on the primary side of the transformer, a voltage detected by the instrument transformer is introduced into the control unit of the inverter, and voltage compensation corresponding to the primary voltage is applied to the inverter and the second transformer. A voltage drop detection device characterized in that it is configured to be supplied to an electric power system via a device.
前記変圧器の一次側に設置される計器用変圧器の二次側に補助の電圧検出手段を設けたことを特徴とした請求項1記載の電圧低下検出装置。 2. The voltage drop detection device according to claim 1, wherein auxiliary voltage detection means is provided on the secondary side of the instrument transformer installed on the primary side of the transformer.
JP2004308985A 2004-10-25 2004-10-25 Voltage drop detection device Active JP4385920B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004308985A JP4385920B2 (en) 2004-10-25 2004-10-25 Voltage drop detection device
KR1020050095840A KR20060052197A (en) 2004-10-25 2005-10-12 Detecting device for voltage lowering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308985A JP4385920B2 (en) 2004-10-25 2004-10-25 Voltage drop detection device

Publications (2)

Publication Number Publication Date
JP2006121852A JP2006121852A (en) 2006-05-11
JP4385920B2 true JP4385920B2 (en) 2009-12-16

Family

ID=36539208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308985A Active JP4385920B2 (en) 2004-10-25 2004-10-25 Voltage drop detection device

Country Status (2)

Country Link
JP (1) JP4385920B2 (en)
KR (1) KR20060052197A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101563062B1 (en) 2013-12-31 2015-10-23 주식회사 포스코아이씨티 Battery Energy Storage System and Method for Controlling Battery Energy Storage System

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4640361B2 (en) * 2007-03-15 2011-03-02 日新電機株式会社 Parallel compensation type instantaneous voltage drop power failure countermeasure device and instantaneous power failure / power failure countermeasure method, series compensation type instantaneous voltage drop countermeasure device and instantaneous power failure countermeasure method, parallel connection type AC / DC converter with independent operation function and AC / DC conversion method thereof
WO2012120703A1 (en) * 2011-03-07 2012-09-13 三菱電機株式会社 Power transmitting apparatus
KR101133107B1 (en) 2011-08-23 2012-04-06 조영숙 Instrument transformer comprising high voltage ct and low voltage pt , all in one transformer using the same, and all in one incoming and distributing pannel using the same
CN103683295B (en) * 2013-11-26 2016-08-24 广东电网公司肇庆供电局 Power distribution network regulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101563062B1 (en) 2013-12-31 2015-10-23 주식회사 포스코아이씨티 Battery Energy Storage System and Method for Controlling Battery Energy Storage System

Also Published As

Publication number Publication date
KR20060052197A (en) 2006-05-19
JP2006121852A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
TW480800B (en) Protection system for power receiving station
JP2008067566A (en) Three-level inverter system
JP5651508B2 (en) Inrush current suppression device
KR100883502B1 (en) Apparatus for controlling harmonic wave automatically
US11349299B2 (en) Transformer rectifier unit power quality protection
JP4385920B2 (en) Voltage drop detection device
EP3654480B1 (en) Power conditioner, power system, and reactive power supressing method for power system
JP2006014515A (en) Dc ground fault detector
KR100567815B1 (en) Apparatus for detecting defect in direct current line
JP2010273478A (en) Method and system for detection of line-to-ground fault in dc and ac circuit
JP3199940B2 (en) Transformer protection relay device
JP4028521B2 (en) Distribution system protection device and distribution system protection method
JP3857167B2 (en) Voltage fluctuation compensation device
JP2001286078A (en) Uninterruptible power supply system
US20230187925A1 (en) Electrical protection systems and methods having improved selectivity
JP4072961B2 (en) Control device with system interconnection protection function of SOG switch
JP4078217B2 (en) Power system protection device
JP2002101562A (en) System interconnection protection device of power generating installation
JPH027831A (en) Protective circuit for inverter
JP4054749B2 (en) Uninterruptible power system
WO2020110256A1 (en) Power supply system, control device, and power supply method
JP3818302B2 (en) Uninterruptible power system
JP2006109567A (en) Ground fault current suppressing apparatus of power distribution system
JP2002199578A (en) Linkage protective apparatus for power system
JP2022148181A (en) Three-phase power conversion system for electric railway

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

R150 Certificate of patent or registration of utility model

Ref document number: 4385920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4