JP4385382B2 - Inorganic fiber insulation for building materials - Google Patents

Inorganic fiber insulation for building materials Download PDF

Info

Publication number
JP4385382B2
JP4385382B2 JP2005324172A JP2005324172A JP4385382B2 JP 4385382 B2 JP4385382 B2 JP 4385382B2 JP 2005324172 A JP2005324172 A JP 2005324172A JP 2005324172 A JP2005324172 A JP 2005324172A JP 4385382 B2 JP4385382 B2 JP 4385382B2
Authority
JP
Japan
Prior art keywords
inorganic fiber
heat insulating
insulating material
molded body
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005324172A
Other languages
Japanese (ja)
Other versions
JP2006161546A (en
Inventor
学 鈴木
慎一 落合
功 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Daiwa House Industry Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd, Daiwa House Industry Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP2005324172A priority Critical patent/JP4385382B2/en
Publication of JP2006161546A publication Critical patent/JP2006161546A/en
Application granted granted Critical
Publication of JP4385382B2 publication Critical patent/JP4385382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Load-Bearing And Curtain Walls (AREA)
  • Panels For Use In Building Construction (AREA)

Description

本発明は、建材用無機繊維断熱材、特に外装材の背面側に設けられる外断熱用の建材用無機繊維断熱材に関する。   The present invention relates to an inorganic fiber heat insulating material for building materials, and more particularly to an inorganic fiber heat insulating material for building materials for external heat insulation provided on the back side of an exterior material.

従来、住宅などの建築物の外断熱用の断熱材としては、通常、発泡プラスチック断熱材や無機繊維断熱材が使用される。これら断熱材を用いて例えば外壁の断熱を行う場合には、外壁材などの外装材の背面側を該断熱材で受け支える。このため、該断熱材には所望の剛性が求められており、無機繊維断熱材にあっては無機繊維を熱硬化性結合剤で結合して32kg/m以上の密度にしている。 Conventionally, as a heat insulating material for external heat insulation of a building such as a house, a foamed plastic heat insulating material or an inorganic fiber heat insulating material is usually used. For example, when heat insulation is performed on the outer wall using these heat insulating materials, the back surface side of the exterior material such as the outer wall material is received and supported by the heat insulating material. For this reason, the heat insulating material is required to have a desired rigidity, and in the inorganic fiber heat insulating material, the inorganic fiber is bonded with a thermosetting binder to a density of 32 kg / m 3 or more.

しかし、この無機繊維断熱材は、一般に圧縮強度が弱く外装材を安定して受け支えできないために、特に圧縮強度が必要な部位には、高圧縮強度を有する発泡プラスチックが使用されることが多い。高圧縮強度を有する発泡プラスチックは、外壁材を背面側から安定して受け支えることができ施工を容易にできる利点を有しているが、不燃性でない、ノンフロン・COなどの環境問題がある、および透湿抵抗が高く断熱材の室内側で結露しやすいなどの問題を有しているため、これらの問題がない無機繊維断熱材の使用が要求される。 However, since this inorganic fiber heat insulating material generally has a low compressive strength and cannot stably support an exterior material, a foamed plastic having a high compressive strength is often used particularly in a portion requiring a compressive strength. . Foamed plastic with high compressive strength has the advantage of being able to stably support and support the outer wall material from the back side and facilitate construction, but it is not nonflammable and has environmental problems such as non-Freon and CO 2 In addition, since it has problems such as high moisture permeability resistance and easy condensation on the indoor side of the heat insulating material, it is required to use an inorganic fiber heat insulating material that does not have these problems.

しかし、無機繊維断熱材は前記したように圧縮強度が不足しているために、該断熱材を建物の構造体に取り付ける場合、あるいは外壁材の背面側を該断熱材で受け支える場合に、厚さ方向から押圧される部分の断熱材が圧縮変形し、断熱材の厚さを均一に保持することが困難になる。このため、外壁材を平らに安定して受け支えすることができなくなるおそれがある。   However, since the inorganic fiber heat insulating material has insufficient compressive strength as described above, it is thick when the heat insulating material is attached to a building structure or when the back side of the outer wall material is supported by the heat insulating material. A portion of the heat insulating material pressed from the vertical direction is compressed and deformed, and it becomes difficult to keep the thickness of the heat insulating material uniform. For this reason, there is a fear that the outer wall material cannot be stably received and supported flatly.

このような無機繊維断熱材の圧縮強度不足を補う手段として、最も一般的に実施されている方法は、例えば特許文献1に示されるようにスペーサーや桟など高い強度を有する断熱材以外の部材と組み合わせて用いる方法である。しかし、この方法はスペーサーや桟が熱橋となり断熱効果が低下するばかりでなく、施工の負担が増すという問題がある。   As a means for making up for such a lack of compressive strength of the inorganic fiber heat insulating material, the most commonly practiced method is, for example, as shown in Patent Document 1, a member other than the heat insulating material having a high strength such as a spacer or a crosspiece. This method is used in combination. However, this method has a problem that not only the heat insulation effect is lowered due to the spacers and piers serving as a thermal bridge, but also the work load is increased.

また、特許文献2には、繊維断熱材の圧縮強度不足を補う他の手段として、繊維断熱材の外装材を受ける部分に樹脂を含浸させて硬化し、その他の部分は樹脂の含浸されていない繊維系部分で形成し、樹脂の含浸硬化により圧縮強度が大きくなった部分で外装材を受け支えする方法が記載されている。しかし、この方法で所望の圧縮強度を得るには、繊維の内部まで樹脂を充分に含浸させなければならないために、樹脂の使用量が増大し、高コスト化を招くという問題があった。さらに、樹脂の部分的な含浸により、製造工程が煩雑になるという問題もあった。   Further, in Patent Document 2, as another means to compensate for the lack of compressive strength of the fiber heat insulating material, the portion receiving the exterior material of the fiber heat insulating material is cured by impregnating the resin, and the other portion is not impregnated with the resin. A method is described in which an exterior material is received and supported at a portion where the compressive strength is increased by impregnation and curing of a resin. However, in order to obtain a desired compressive strength by this method, the resin must be sufficiently impregnated into the inside of the fiber, so that there is a problem that the amount of resin used increases and the cost increases. Further, there is a problem that the manufacturing process becomes complicated due to partial impregnation of the resin.

特開2001−279840号公報JP 2001-279840 A 特開2003−293471号公報JP 2003-293471 A

本発明は、スペーサーや桟を使用せず、また樹脂の含浸硬化のみだけに頼らないで、無機繊維成形体の厚さ方向の圧縮強度を安価に補強できる無機繊維断熱材の提供を目的とする。   An object of the present invention is to provide an inorganic fiber heat insulating material that can reinforce the compressive strength in the thickness direction of an inorganic fiber molded body at low cost without using spacers or crosspieces and without relying solely on resin impregnation and curing. .

本発明者等は、上記課題を解決するために、無機繊維断熱材の厚さ方向における圧縮強度の補強方法について鋭意検討した結果、無機繊維断熱材を形成するボード状の無機繊維成形体に無機繊維成形体の厚さにほぼ見合った高さを有する支柱をボード面と垂直に刺挿し、外装板を実質的にこの支柱で受けることにより、無機繊維成形体の圧縮強度が充分に補強できることを見出し、本発明に至ったものである。すなわち、本発明は以下の無機繊維断熱材、無機繊維断熱パネルおよび断熱構造によって、上記課題を解決できる。
(1)無機繊維を熱硬化性結合剤によって結合して密度が32〜250kg/mとなるように成形したボード状の無機繊維成形体からなり、該無機繊維成形体の全面または一部に、無機繊維成形体の厚さの80〜130%に相当する高さを有する支柱がボード面と垂直に刺挿されて無機繊維成形体によって保持されており、前記支柱が一方の端部が有底である樹脂製の円筒状体であり、無機繊維成形体の厚さ方向の圧縮強度が該支柱によって補強されていることを特徴とする建材用無機繊維断熱材。
(2)前記筒状体の最大径が10〜150mmである上記(1)に記載の建材用無機繊維断熱材。
(3)前記筒状体の肉厚が、筒状体の最大径の2〜7%である上記(1)または(2)に記載の建材用無機繊維断熱材。
(4)前記支柱の端部が平担状をなしており、かつ該平坦状部の面積が1mm以上である上記(1)〜(3)のいずれかに記載の建材用無機繊維断熱材。
(5)上記(1)〜(4)のいずれかの無機繊維断熱材と他の建材用構造材とをパネル化してなる建材用断熱パネル。
(6)外壁材の背面側にボード状の無機繊維成形体からなる無機繊維断熱材が胴縁を介してまたは介さずに設けられており、該無機繊維断熱材の全面または一部に無機繊維断熱材の厚さの80〜130%に相当する高さの支柱がボード面と垂直に刺挿されて無機繊維成形体によって保持されており、前記支柱が一方の端部が有底である樹脂製の円筒状体であり、無機繊維断熱材の厚さ方向の圧縮強度が該支柱によって補強されており、外壁の背面側が無機繊維断熱材の支柱を設けた部位によって実質的に受け支えられていることを特徴とする外壁断熱構造。
(7)床板の背面側にボード状の無機繊維成形体からなる無機繊維断熱材が設けられており、該無機繊維断熱材の全面または一部に無機繊維断熱材の厚さの80〜130%に相当する高さの支柱がボード面と垂直に刺挿されて無機繊維成形体によって保持されており、前記支柱が一方の端部が有底である樹脂製の円筒状体であり、無機繊維断熱材の厚さ方向の圧縮強度が該支柱によって補強されており、床板の背面側が無機繊維断熱材の支柱を設けた部位によって受け支えられていることを特徴とする床断熱構造。
In order to solve the above-mentioned problems, the present inventors have intensively studied a method for reinforcing the compressive strength in the thickness direction of the inorganic fiber heat insulating material. As a result, the board-like inorganic fiber molded body forming the inorganic fiber heat insulating material is inorganic. It is possible to sufficiently reinforce the compressive strength of the inorganic fiber molded body by inserting a column having a height substantially corresponding to the thickness of the fiber molded body perpendicularly to the board surface and substantially receiving the exterior plate with this column. This is the headline and the present invention. That is, this invention can solve the said subject with the following inorganic fiber heat insulating materials, an inorganic fiber heat insulation panel, and a heat insulation structure.
(1) A board-like inorganic fiber molded body formed by bonding inorganic fibers with a thermosetting binder and having a density of 32 to 250 kg / m 3, and formed on the entire surface or a part of the inorganic fiber molded body. A strut having a height corresponding to 80 to 130% of the thickness of the inorganic fiber molded body is inserted perpendicularly to the board surface and held by the inorganic fiber molded body, and the strut has one end. An inorganic fiber heat insulating material for building materials, which is a resin-made cylindrical body as a bottom, and whose compressive strength in the thickness direction of the inorganic fiber molded body is reinforced by the support column .
(2) The inorganic fiber heat insulating material for building materials according to (1), wherein the cylindrical body has a maximum diameter of 10 to 150 mm.
(3) The inorganic fiber heat insulating material for building materials according to the above (1) or (2), wherein the thickness of the cylindrical body is 2 to 7% of the maximum diameter of the cylindrical body.
(4) The inorganic fiber heat insulating material for building materials according to any one of the above (1) to (3), wherein an end of the support column is flat and an area of the flat portion is 1 mm 2 or more. .
(5) A heat insulating panel for building material obtained by paneling the inorganic fiber heat insulating material according to any one of (1) to (4) above and another structural material for building material.
(6) An inorganic fiber heat insulating material made of a board-shaped inorganic fiber molded body is provided on the back side of the outer wall material with or without a trunk edge, and inorganic fibers are formed on the entire surface or a part of the inorganic fiber heat insulating material. Resin in which a column having a height corresponding to 80 to 130% of the thickness of the heat insulating material is inserted perpendicularly to the board surface and held by an inorganic fiber molded body, and the column has a bottom at one end. This is a cylindrical body made of inorganic fiber heat insulating material, in which the compressive strength in the thickness direction of the inorganic fiber heat insulating material is reinforced by the support, and the back side of the outer wall material is substantially supported and supported by the portion where the inorganic fiber heat insulating material support is provided. The outer wall heat insulation structure characterized by having.
(7) An inorganic fiber heat insulating material made of a board-like inorganic fiber molded body is provided on the back side of the floor board , and 80 to 130% of the thickness of the inorganic fiber heat insulating material on the entire surface or a part of the inorganic fiber heat insulating material. A pillar having a height corresponding to the length of the board is inserted perpendicularly to the board surface and held by an inorganic fiber molded body, and the pillar is a cylindrical body made of a resin having one end at the bottom, and an inorganic fiber. A floor heat insulating structure, characterized in that the compressive strength in the thickness direction of the heat insulating material is reinforced by the columns, and the back side of the floor board is supported and supported by a portion provided with the columns of the inorganic fiber heat insulating material.

本発明によれば、無機繊維断熱材を形成するボード状の無機繊維成形体に、その厚さにほぼ見合った高さの支柱をボード面と垂直に刺挿し、外装板を該支柱を刺挿した部位で実質的に受けるようにすると、無機繊維成形体の厚さ方向の圧縮強度が支柱によって補強されるので、外装板をその背面側から安定して受け支えできる。そして、この補強方法を無機繊維成形体の外装板を受け支えする部位だけに適用することによって、無機繊維成形体の圧縮強度を効率よく補強し、無機繊維断熱材の目標圧縮強度を満たすことができる。これにより、外装板を受け支えるのに必要な厚さ方向の圧縮強度を有し、かつ不燃性で環境的にも優れている無機繊維断熱材を低コストで得ることができる。   According to the present invention, a strut having a height substantially corresponding to the thickness of the board-like inorganic fiber molded body forming the inorganic fiber heat insulating material is inserted perpendicularly to the board surface, and the exterior plate is inserted into the strut. If it receives substantially at the site | part, since the compressive strength of the thickness direction of an inorganic fiber molded object is reinforced with a support | pillar, it can receive and support an exterior board stably from the back side. And, by applying this reinforcing method only to the part that supports and supports the exterior plate of the inorganic fiber molded body, it is possible to efficiently reinforce the compressive strength of the inorganic fiber molded body and satisfy the target compressive strength of the inorganic fiber heat insulating material. it can. Thereby, the inorganic fiber heat insulating material which has the compressive strength of the thickness direction required to receive and support an exterior board, and is nonflammable and environmentally excellent can be obtained at low cost.

また、従来、無機繊維断熱材の圧縮強度不足のためスペーサーや桟などを用いていた箇所に、本発明の無機繊維断熱材を用いることにより断熱構造体の工数を減らすことができるので、施工が簡略化し安価に施工できる。   In addition, since the number of man-hours for the heat insulating structure can be reduced by using the inorganic fiber heat insulating material of the present invention in a place where a spacer or a crosspiece has been conventionally used due to insufficient compressive strength of the inorganic fiber heat insulating material, the construction can be performed. Simplified and inexpensive construction.

本発明における無機繊維断熱材は、無機繊維を熱硬化性結合剤(以下、単に結合剤ということもある。)で結合してなる所定の密度を持ったボード状の無機繊維成形体によって形成される。前記無機繊維としては、建材用の断熱材として長年の実績と優れた特性を有し、また量産により低コストで製造できるガラス短繊維(カラスウール)が最も一般的に使用されるが、これに限定されない。例えば、ロックウール、高炉スラグウールも無機繊維として使用できる。前記無機繊維成形体は、例えば無機繊維の製造工程またはその後において、無機繊維に所定量の熱硬化性結合剤を含浸してマット状の無機繊維を形成し、該マット状の無機繊維を一定の厚さに押圧しながら前記結合剤を硬化させて無機繊維同士を結合することにより、所定の密度とある程度の剛性を持ったボード状の断熱材を作製し、該断熱材を必要に応じ切断して得ることができる。なお、上記結合剤としては、有機系や無機系の結合剤が使用でき、中でも有機系結合剤であるフェノール樹脂が難燃性や結合剤としての特性などの点で優れている。   The inorganic fiber heat insulating material in the present invention is formed by a board-shaped inorganic fiber molded body having a predetermined density formed by bonding inorganic fibers with a thermosetting binder (hereinafter also referred to simply as a binder). The As the inorganic fiber, short glass fiber (crown wool) that has many years of experience and excellent characteristics as a heat insulating material for building materials and can be manufactured at low cost by mass production is most commonly used. It is not limited. For example, rock wool and blast furnace slag wool can also be used as inorganic fibers. The inorganic fiber molded body is formed, for example, in the inorganic fiber manufacturing process or thereafter, by impregnating the inorganic fiber with a predetermined amount of a thermosetting binder to form a mat-like inorganic fiber. A board-like heat insulating material having a predetermined density and a certain degree of rigidity is produced by curing the binder while pressing to a thickness to bond the inorganic fibers together, and cutting the heat insulating material as necessary. Can be obtained. As the binder, an organic or inorganic binder can be used, and among them, a phenol resin which is an organic binder is excellent in terms of flame retardancy and properties as a binder.

本発明において無機繊維成形体の密度は32〜250kg/mであり、好ましくは80〜200kg/m、より好ましくは120〜180kg/mである。無機繊維成形体の密度は、無機繊維の重さのほかに結合剤の含浸量やマットの圧縮度などにより変えることができ、含浸量が多くなるほどおよび圧縮度が強くなるほど増大する。この密度が32kg/m未満であると、無機繊維成形体の剛性が小さくなるために、無機繊維成形体に刺挿された支柱を安定して支持するのが困難になり、また所望の断熱効果が得られなくなるおそれがある。また、密度が250kg/mより大きくなると、前記したように結合剤の含浸量が増加するために、結合剤の結合力が増強されることによって大きな剛性が発生し所望の圧縮強度が得られるので、本発明の補強方法の必要がなくなる。さらに、熱硬化性結合剤の含浸量の増加により、結合剤コストが高くなるとともに無機繊維断熱材が重くなるという問題が生じる。 In this invention, the density of an inorganic fiber molded object is 32-250 kg / m < 3 >, Preferably it is 80-200 kg / m < 3 >, More preferably, it is 120-180 kg / m < 3 >. The density of the inorganic fiber molded body can be changed by the impregnation amount of the binder and the compression degree of the mat in addition to the weight of the inorganic fiber, and increases as the impregnation amount increases and the compression degree increases. When the density is less than 32 kg / m 3 , the rigidity of the inorganic fiber molded body becomes small, so that it is difficult to stably support the support inserted into the inorganic fiber molded body, and desired heat insulation is achieved. The effect may not be obtained. Further, when the density is higher than 250 kg / m 3, the amount of the binder impregnated increases as described above, so that the binding force of the binder is enhanced to generate a large rigidity and obtain a desired compressive strength. This eliminates the need for the reinforcing method of the present invention. Furthermore, the increase in the amount of impregnation of the thermosetting binder causes a problem that the binder cost increases and the inorganic fiber heat insulating material becomes heavy.

また、通常は無機繊維成形体の全体を均一な密度に形成するが、無機繊維成形体の密度は必ずしも全体が均一である必要はなく、例えば厚さ方向の圧縮強度を補強したい部位の結合剤の含浸量を、その他の部分の含浸量より多くし、当該部位の密度をその他の部分の密度より大きくしてもよい。このように密度分布を有する場合の無機繊維成形体の密度は、前記圧縮強度を補強したい部位における密度を指す。   In general, the entire inorganic fiber molded body is formed to have a uniform density. However, the density of the inorganic fiber molded body does not necessarily have to be uniform. For example, the binder at a site where the compressive strength in the thickness direction is desired to be reinforced. The amount of impregnation may be larger than the amount of impregnation in other parts, and the density of the part may be larger than the density of other parts. Thus, the density of the inorganic fiber molded body in the case of having a density distribution refers to the density at the site where the compressive strength is desired to be reinforced.

本発明は、前記したボード状の無機繊維成形体の全面または一部に、無機繊維成形体の厚さの80〜130%に相当する高さを有する支柱をボード面と垂直にすなわち実質的に垂直に刺挿し、該支柱によって無機繊維成形体すなわち無機繊維断熱材の厚さ方向の圧縮強度を補強することを特徴としている。密度が32〜250kg/mの無機繊維断熱材では、外装板を受け支えるとき、または住宅の構造体に取り付けるとき、ボード面に垂直な押圧力(以下、単に押圧力ということもある)が作用した部位の無機繊維成形体が、圧縮強度不足のために圧縮し所定の厚さを保持できなくなる。そこで、前記押圧力が作用する無機繊維成形体の部位に支柱を刺挿し、該支柱の先端を例えば住宅の構造体に当接させて前記押圧力を実質的に該支柱で受けるようにし、該部位の無機繊維成形体が支柱の高さの厚さを保持し、外装板を安定してしっかり受け支えするものである。 In the present invention, a post having a height corresponding to 80 to 130% of the thickness of the inorganic fiber molded body is formed on the entire surface or a part of the board-shaped inorganic fiber molded body, ie, substantially perpendicular to the board surface. It is characterized by being inserted vertically and reinforcing the compressive strength in the thickness direction of the inorganic fiber molded body, that is, the inorganic fiber heat insulating material by the support. In the inorganic fiber heat insulating material having a density of 32 to 250 kg / m 3 , when supporting the exterior plate or attaching to the housing structure, there is a pressing force perpendicular to the board surface (hereinafter sometimes referred to simply as pressing force). The inorganic fiber molded body at the site where it has acted is compressed due to a lack of compressive strength, and cannot maintain a predetermined thickness. Therefore, a strut is inserted into a portion of the inorganic fiber molded body on which the pressing force acts, and the tip of the strut is brought into contact with, for example, a housing structure so that the pressing force is substantially received by the strut, The inorganic fiber molded body of the part maintains the thickness of the height of the column, and stably supports and supports the exterior plate.

本発明において、上記支柱は種々の形体のものを使用でき限定されない。図4および図5はその代表例であり、図4は単純形状を有する主な支柱で各支柱の下端が無機繊維成形体に刺挿する際の先端である。図4の(a)は円錐状の支柱で、図面では中空になっているが中実であってもよい。(b)は刺挿しやすいように柱状の脚部に扁平の頭部を設けた釘状の支柱、(c)は先細になっている板状の支柱、(d)は柱状の支柱であり、図面では中実となっているが、中空であってもよい。また、(e)は2脚状の支柱であるが、3脚状または4脚状であってもよく、脚数が多くなるほど無機繊維成形体に刺挿されたときボード面に垂直に安定して保持できる。   In the present invention, the column can be used in various shapes and is not limited. 4 and 5 are representative examples, and FIG. 4 is a main column having a simple shape, and a lower end of each column is a tip when inserted into an inorganic fiber molded body. FIG. 4A shows a conical column, which is hollow in the drawing, but may be solid. (B) is a nail-shaped column with a flat head on a columnar leg for easy insertion, (c) is a tapered plate-shaped column, (d) is a columnar column, Although it is solid in the drawing, it may be hollow. In addition, (e) is a bipod-like support, but it may be a tripod or quadruple, and as the number of legs increases, it stabilizes perpendicular to the board surface when inserted into the inorganic fiber molded body. Can be held.

一方、図5に例示する支柱は釘状支柱の一種で、円盤状頭部と該円盤状頭部の下部に形成された十字状脚部とからなっている。すなわち、(f)の支柱は円盤状頭部18の下部に、先端に向かって傾斜している先細の十字状脚部19を形成したもので、該十字状脚部19の下端は十字形の平らな端面27を有している。また、(g)の支柱は円盤状頭部18の下部に、該円盤状頭部の径より小さい寸法の十字状脚部19’を形成してなり、その下端は刺挿しやすくするために好ましくは中心部が突出する端面を有している。これら支柱(f)、(g)はいずれも広い面積の円盤状頭部18を有しているため、無機繊維成形体への刺挿が容易であり、さらに刺挿された支柱を十字状脚部19、19’によって無機繊維成形体中に安定して保持できる。図4の支柱に比べると若干コスト高となるが、これらの点で優れている。   On the other hand, the column illustrated in FIG. 5 is a kind of nail-shaped column, and includes a disk-shaped head and a cross-shaped leg formed at the bottom of the disk-shaped head. That is, the column (f) is formed by forming a tapered cruciform leg 19 inclined toward the tip at the lower part of the disc-shaped head 18, and the lower end of the cruciform leg 19 has a cruciform shape. It has a flat end face 27. Further, the column (g) is formed with a cross-shaped leg portion 19 'having a size smaller than the diameter of the disc-shaped head at the lower portion of the disc-shaped head 18, and the lower end thereof is preferable for easy insertion. Has an end surface from which the central portion protrudes. Since these struts (f) and (g) both have a disk-shaped head portion 18 with a large area, it is easy to insert into the inorganic fiber molded body, and the inserted struts are cross-shaped legs. The portions 19 and 19 ′ can be stably held in the inorganic fiber molded body. Compared to the support of FIG. 4, the cost is slightly higher, but it is superior in these respects.

該支柱は、無機繊維成形体の厚さ方向の圧縮強度を補強できる強度が得られれば、軽量で無機繊維成形体に刺挿しやすい形状のものが好ましい。また該支柱の端部は尖頭でないのが好ましい。支柱の端部が尖鋭になっていると、押圧力の負荷により端部が構造体等に突き刺さるために、支柱の有効高さが減じ支柱としての機能が充分に果たせなくなる、無機繊維断熱材の取り扱い時や施工時に、無機繊維成形体のボード面から突出した端部が色々なものに引っかかって支柱が傾きやすくなる、または刺挿時にボード面に対し垂直に荷重がかかり難くなるなどの問題が生じるので好ましくない。そのため、支柱の端部は必ずしも厳格に平坦な端面になっていなくてもよいが、平担または平担に近い形状(以下、平担状とする)になっているのが好ましい。具体的には支柱の端部は、面積が1mm以上、より好ましくは2mm以上の平担状の端面であるのが好ましい。頭部側と先端側の端面とでは、刺挿しやすいように通常先端側の方が小さい面積を有するのが好ましい。このように端面の面積が異なる支柱では、前記面積は端面のうちの小さい方を指す。また、端部以外の部分の断面積は、支柱の材質や形体によって限定されないが、所定の強度と剛性を得るため一定以上の断面積を持っていることが望ましい。 The struts are preferably light in weight and easy to insert into the inorganic fiber molded body so long as the strength capable of reinforcing the compressive strength in the thickness direction of the inorganic fiber molded body is obtained. Moreover, it is preferable that the edge part of this support | pillar is not a peak. If the end of the support is sharp, the end will pierce the structure or the like due to the load of the pressing force, so that the effective height of the support is reduced and the function as a support cannot be sufficiently performed. During handling and construction, there are problems such as the end protruding from the board surface of the inorganic fiber molded body gets caught in various things and the column tends to tilt, or it is difficult to apply a load perpendicular to the board surface during insertion. Since it occurs, it is not preferable. For this reason, the end portion of the support column does not necessarily have a strictly flat end surface, but is preferably flat or a shape close to flat (hereinafter referred to as flat). Specifically, the end portion of the support column is preferably a flat end surface having an area of 1 mm 2 or more, more preferably 2 mm 2 or more. It is preferable that the tip side usually has a smaller area on the head side and the end face on the tip side so that insertion is easy. Thus, in the support | pillar from which the area of an end surface differs, the said area points out the smaller one of end surfaces. In addition, the cross-sectional area of the portion other than the end is not limited by the material and shape of the column, but it is desirable to have a cross-sectional area of a certain level or more in order to obtain a predetermined strength and rigidity.

さらに、本発明の支柱としては、上記した柱状支柱の他の実施形態として円筒状、楕円筒状または多角形筒状などの筒状体が好ましく使用できる。図6は、かかる筒状支柱の代表例である円筒状支柱28を示す。この円筒状支柱28は、横断面が円形の中空構造を有する筒状体で、該筒状体の頭部側と無機繊維成形体に刺挿する先端側の端面は実質的に平坦で同一形状(寸法)を有している。楕円筒状または多角形筒状の支柱も、横断面形状が異なるだけで、筒状支柱としての基本構造は上記円筒状支柱28と同じである。これらの中で円筒状支柱28は形状が単純で無機繊維成形体に刺挿しやすく、さらに支柱の端面で均一に受け支えしやすい点で優れている。なお、支柱の高さ寸法は前記した支柱と同様に無機繊維成形体の厚さに対応して決められるが、無機繊維成形体の厚さが大きい場合には、支柱を高さ方向に二分割し、無機繊維成形体の表裏面から対向して刺挿してもよい。   Furthermore, as the column of the present invention, a cylindrical body such as a cylindrical shape, an elliptical cylindrical shape, or a polygonal cylindrical shape can be preferably used as another embodiment of the columnar column described above. FIG. 6 shows a cylindrical support 28 which is a typical example of such a cylindrical support. The cylindrical column 28 is a cylindrical body having a hollow structure with a circular cross section, and the end surface on the head side of the cylindrical body and the end side inserted into the inorganic fiber molded body are substantially flat and have the same shape. (Dimensions). The elliptical cylindrical or polygonal cylindrical column also has the same basic structure as the cylindrical column 28 except that the cross-sectional shape is different. Among these, the cylindrical support 28 is excellent in that it has a simple shape, can be easily inserted into an inorganic fiber molded body, and can be easily received and supported uniformly at the end face of the support. In addition, the height dimension of the support is determined according to the thickness of the inorganic fiber molded body in the same manner as the support described above, but when the thickness of the inorganic fiber molded body is large, the support is divided into two in the height direction. And you may insert oppositely from the front and back of an inorganic fiber molded object.

このような筒状支柱は中空構造を有しているため、開口している先端を適度の剛性を有している無機繊維成形体に刺挿すると、無機繊維成形体は支柱の先端部によってせん断され、せん断された無機繊維成形体は支柱の中空部に装入される。これにより筒状支柱では、径(最大径)を筒状でない中実の支柱より大きくしても比較的容易に無機繊維成形体に刺挿できる。したがって、筒状支柱は径(最大径)の大きい支柱に適している。   Since such a cylindrical column has a hollow structure, when the open end is inserted into an inorganic fiber molded body having appropriate rigidity, the inorganic fiber molded body is sheared by the distal end portion of the column. The sheared inorganic fiber molded body is inserted into the hollow portion of the column. As a result, the cylindrical support can be inserted into the inorganic fiber molded body relatively easily even if the diameter (maximum diameter) is larger than that of the solid support that is not cylindrical. Therefore, the cylindrical support is suitable for a support having a large diameter (maximum diameter).

上記筒状支柱の最大径としては、10〜150mmが好ましく、より好ましくは20〜70mmである。ここで、筒状支柱の最大径はいずれも支柱の外径で、支柱が円筒状のときは直径、楕円筒状のときは長軸径を指し、また多角形筒状の支柱にあっては、横断面における対角径または高さ(頂点と対辺との間の高さ)の最大のものとする。最大径が10mm未満であると、支柱を受け支える例えば柱や胴縁等の構造部材が支柱より柔らかい場合には支柱が構造部材に食い込み易くなり、目的とする補強効果が得にくくなるだけでなく構造部材を傷つける場合がある。支柱による上記補強効果を高めかつ構造部材の傷つきを防止するために、無機繊維成形体の単位面積当たりの支柱数を増やすことが考えられるが、支柱数が増加すると支柱を備えた建材用無機繊維断熱材の生産性が劣るため好ましくない。一方、最大径が150mmを超えると支柱の寸法が構造部材の寸法より過大となり、支柱の端部全体を構造部材で受け支えることができなくなるため、大きさに見合った補強効果の増大を見込めなくなる。   The maximum diameter of the cylindrical support is preferably 10 to 150 mm, more preferably 20 to 70 mm. Here, the maximum diameter of the cylindrical column is the outer diameter of the column, the diameter when the column is cylindrical, the long axis diameter when the column is elliptical, and in the case of a polygonal cylindrical column The maximum diagonal diameter or height (height between the apex and the opposite side) in the cross section. If the maximum diameter is less than 10 mm, for example, when a structural member such as a column or a trunk edge that supports the column is softer than the column, the column easily bites into the structural member, and not only the intended reinforcement effect is difficult to obtain. The structural member may be damaged. In order to enhance the above-mentioned reinforcing effect by the struts and prevent damage to the structural member, it is conceivable to increase the number of struts per unit area of the inorganic fiber molded body, but when the number of struts increases, the inorganic fibers for building materials provided with the struts It is not preferable because the productivity of the heat insulating material is inferior. On the other hand, if the maximum diameter exceeds 150 mm, the dimensions of the column will be larger than the dimensions of the structural member, and the entire end of the column will not be supported by the structural member, so an increase in the reinforcing effect corresponding to the size cannot be expected. .

また、本発明において典型的な筒状支柱は、図6のように筒状体の両端面が開口している無底のものであるが、該筒状支柱はその片端面または両端面に底面を設けた有底のものであってもよい。図7は図6の円筒状支柱28の片端面に底面29を設けた有底の円筒状支柱を例示したものである。無底または有底のいずれの筒状支柱であっても十分な補強効果は得られるが、無底の筒状支柱および頭部側のみに底面を設けた有底の筒状支持体は、無機繊維成形体に刺挿したとき前記したように支柱中に断熱材が装入されるため、中実もしくは中空の円柱状支柱(図4(d)参照)に比べて断熱性や防火性の点で優れている。また、有底の場合、有底となっている一方を前記構造部材より柔らかい材質にすることによって、構造部材への食い込みをより一層防止することができる。さらに、底面を設けることによって支柱が構造的に強化され、無機繊維成形体への挿入において支柱の変形を防止できる効果が得られると共に、底面が頭部側に設けられている場合は、無機繊維成形体への挿入が容易となることから、頭部が有底の筒状支柱が好ましく、特に図7に示すような円筒状支柱が最も好ましい。   Further, in the present invention, a typical cylindrical column is a bottomless one in which both end surfaces of the cylindrical body are open as shown in FIG. 6, but the cylindrical column is a bottom surface on one end surface or both end surfaces. It may be a bottomed one provided. FIG. 7 illustrates a bottomed cylindrical column having a bottom surface 29 on one end surface of the cylindrical column 28 of FIG. A sufficient reinforcing effect can be obtained with either a bottomed or bottomed cylindrical support, but a bottomed cylindrical support with a bottom surface only on the head side is inorganic. As described above, when the fiber molded body is inserted, the heat insulating material is inserted into the support column, so that the heat insulating property and the fire prevention property are compared with the solid or hollow cylindrical support column (see FIG. 4D). Is excellent. Moreover, in the case of a bottom, the biting into a structural member can be further prevented by making one of the bottoms softer than the structural member. Further, the support is structurally reinforced by providing the bottom surface, and the effect of preventing deformation of the support in insertion into the inorganic fiber molded body can be obtained, and when the bottom surface is provided on the head side, the inorganic fiber A cylindrical column having a bottomed head is preferable because it can be easily inserted into the molded body, and a cylindrical column as shown in FIG. 7 is most preferable.

上記筒状支柱において、筒状体の肉厚はその最大径の2〜7%、より好ましくは2.5〜5%となるように設定するのが好ましい。肉厚がこの範囲であれば、所望の補強効果が得られると共に、無機繊維成形体への刺挿が容易となるため作業性が向上する。   In the cylindrical support, the thickness of the cylindrical body is preferably set to be 2 to 7%, more preferably 2.5 to 5% of the maximum diameter. When the wall thickness is within this range, a desired reinforcing effect can be obtained, and workability is improved because insertion into the inorganic fiber molded body becomes easy.

支柱の材質としては、例えばポリプロピレン、ポリエチレン、ポリカーボネート、硬質合成ゴムなどの樹脂が軽量で低コストで成形加工しやすく、さらに長時間使用してもさびないなどの点で優れている。なかでも、ポリプロピレンとポリエチレンが、物性とコスト面で好ましい。しかし、支柱の材質はこれに限定されないで例えば金属製であってもよい。   As a material for the support, for example, a resin such as polypropylene, polyethylene, polycarbonate, and hard synthetic rubber is excellent in that it is lightweight, easy to be molded at low cost, and does not rust even when used for a long time. Of these, polypropylene and polyethylene are preferable in terms of physical properties and cost. However, the material of the support is not limited to this, and may be made of metal, for example.

本発明において、無機繊維成形体に刺挿する支柱の高さを無機繊維成形体の厚さの80〜130%に限定するのは、荷重を受けたとき無機繊維成形体が必要に応じて無機繊維成形体の厚さの80%になるまで縮減できるのを許容するためである。つまり、支柱の高さが無機繊維成形体の厚さに等しいとき、無機繊維成形体は荷重を受けても厚さを減少しないが、支柱の高さが無機繊維成形体の厚さの例えば80%のときは、無機繊維成形体自体の圧縮強度を超える荷重が作用すると、荷重を受けた部位の無機繊維成形体はその厚さを当初の厚さの80%になるまで圧縮し安定するが、それ以上は支柱がスペーサーの役割を果たすので減少しない。   In the present invention, the height of the support post inserted into the inorganic fiber molded body is limited to 80 to 130% of the thickness of the inorganic fiber molded body. This is to allow the reduction to 80% of the thickness of the fiber molded body. That is, when the height of the support column is equal to the thickness of the inorganic fiber molded body, the inorganic fiber molded body does not decrease in thickness even when subjected to a load, but the height of the support column is, for example, 80% of the thickness of the inorganic fiber molded body. %, When a load exceeding the compressive strength of the inorganic fiber molded body itself is applied, the inorganic fiber molded body at the portion receiving the load is compressed and stabilized until the thickness reaches 80% of the original thickness. , More than that, it does not decrease because the struts act as spacers.

この支柱の高さを無機繊維成形体の厚さに対しどの程度にするかは、前記支柱の高さが80%以上で130%以下の場合である。その高さは無機繊維成形体の表面性状や密度、および支柱の形状などにより適宜決めることができる。例えば、使用する無機繊維成形体にその厚さに対して20%以下の凹凸がある場合に、該凹凸の割合に合わせて支柱の高さを設定すれば、無機繊維成形体を押圧した際に無機繊維成形体の面が平滑で、しかも押圧された無機繊維成形体の厚さに対し支柱が実質的に100%の高さとなる。したがって、このような場合には無機繊維成形体の凹凸の大きさや程度に合わせて決めるのが好ましい。   The degree to which the height of the support is set to the thickness of the inorganic fiber molded body is the case where the height of the support is 80% or more and 130% or less. The height can be appropriately determined depending on the surface properties and density of the inorganic fiber molded body, the shape of the support, and the like. For example, when the inorganic fiber molded body to be used has an unevenness of 20% or less with respect to its thickness, when the height of the support is set in accordance with the ratio of the unevenness, when the inorganic fiber molded body is pressed The surface of the inorganic fiber molded body is smooth, and the struts are substantially 100% high with respect to the thickness of the pressed inorganic fiber molded body. Therefore, in such a case, it is preferable to determine according to the size and degree of the unevenness of the inorganic fiber molded body.

また、支柱の高さの上限を130%としたのは、例えば支柱の形状が図4(b)や図5(f)、(g)のような場合、キャップ部が無機繊維成形体の面上より突出しても支障しない場合があるためである。   Further, the upper limit of the height of the support is set to 130%, for example, when the shape of the support is as shown in FIGS. 4B, 5F, and 5G, the cap portion is the surface of the inorganic fiber molded body. This is because there may be no problem even if it protrudes from above.

また、本発明は上記支柱を無機繊維成形体の全面または一部に設ける。無機繊維成形体の圧縮強度を補強したい部位が予め限定されているときは、支柱を当該箇所だけに設けることができる。支柱を無機繊維成形体の一部に設けるとはこのような場合を意味する。これに対し、補強したい部位が決まっていないような場合、あるいは全体を補強したい場合には、無機繊維成形体の全面を支柱により補強し、補強された任意の部位で外装板を受け支えするのが推奨される。   Moreover, this invention provides the said support | pillar in the whole surface or a part of inorganic fiber molded object. When the site | part which wants to reinforce the compressive strength of an inorganic fiber molded object is previously limited, a support | pillar can be provided only in the said location. Providing the column in a part of the inorganic fiber molded body means such a case. On the other hand, when the part to be reinforced is not decided or when it is desired to reinforce the whole, the entire surface of the inorganic fiber molded body is reinforced with the support and the exterior plate is supported by the reinforced arbitrary part. Is recommended.

支柱で無機繊維成形体を補強するときには、支柱をボード面と垂直に刺挿する。支柱がボード面に対し傾いて刺挿されると、高さ寸法の不揃いを招く。そして、このように傾いて刺挿された支柱は、荷重によってますます傾斜の程度が大きくなり、支柱の機能が得られなくなるおそれがある。特に柱状、釘状の支柱は、傾いて刺挿されるとこの傾向が大きい。また、支柱は無機繊維成形体の全面または一部に均一に分布させて設けるほかに、特に補強を強化したい部位に蜜に分布させることもできる。さらに、前記したように低密度の無機繊維成形体に熱硬化性結合剤の含浸量を部分的に変えて密度がその他の部分より大きい部位を形成し、該部位に支柱を設けることにより、無機繊維成形体の圧縮強度の補強を効率よくできる。   When reinforcing the inorganic fiber molded body with a support, the support is inserted perpendicularly to the board surface. If the column is inserted while being tilted with respect to the board surface, the height dimension is uneven. And the support | pillar inserted by inclining in this way becomes the grade of inclination more and more with a load, and there exists a possibility that the function of a support | pillar may not be acquired. In particular, columnar and nail-shaped struts have a large tendency when they are inserted at an angle. In addition to providing the struts uniformly distributed over the entire surface or a part of the inorganic fiber molded body, it is also possible to distribute the struts in the nectar, particularly in the portion where reinforcement is desired. Further, as described above, by partially changing the impregnation amount of the thermosetting binder in the low-density inorganic fiber molded body to form a portion where the density is larger than the other portions, and by providing a column at the portion, inorganic It is possible to efficiently reinforce the compression strength of the fiber molded body.

次に、本発明の好ましい実施態様を図面に従って具体的に説明するが、本発明は当該図面とその説明に限定されない。なお、理解をしやすくするため、同一の部材には同じ符号を付して説明する。   Next, preferred embodiments of the present invention will be specifically described with reference to the drawings. However, the present invention is not limited to the drawings and the description thereof. In addition, in order to make it easy to understand, the same code | symbol is attached | subjected and demonstrated to the same member.

図1は外壁断熱構造の横断面図で、外装材の背面側における断熱(外断熱)を本発明に係る無機繊維断熱材1によって行っている。該無機繊維断熱材1は、図示するように外装材を受け支えする部位の厚さ方向の圧縮強度が支柱3によって補強されている。この外壁断熱構造において、2は外装材である例えばサイジングボードからなる外壁材であり、該外壁材2はその背面側を胴縁6を介して無機繊維断熱材1で受け支えられ鉄骨柱7に取り付けされる。このように外壁材2を胴縁6を介して無機繊維断熱材1で受け支えすることにより、無機繊維断熱材1と外壁材2との間に通気用空間部13を設けることができる。このような外壁断熱構造は、無機繊維断熱材1を透過した湿気を該通気用空間部13から外部に排出することができるので好ましい。しかし、無機繊維断熱材1と外壁材2との間に通気用空間部13を設けないで、外壁材2を無機繊維断熱材1で直接受け支えてもよい。   FIG. 1 is a cross-sectional view of an outer wall heat insulating structure, in which heat insulation (outer heat insulation) on the back side of the exterior material is performed by the inorganic fiber heat insulating material 1 according to the present invention. As shown in the figure, the inorganic fiber heat insulating material 1 is reinforced by the support column 3 in the compressive strength in the thickness direction of the portion that supports and supports the exterior material. In this outer wall heat insulating structure, reference numeral 2 denotes an outer wall material made of, for example, a sizing board, which is an exterior material. Attached. Thus, by receiving and supporting the outer wall material 2 with the inorganic fiber heat insulating material 1 via the trunk edge 6, the ventilation space 13 can be provided between the inorganic fiber heat insulating material 1 and the outer wall material 2. Such an outer wall heat insulating structure is preferable because moisture that has passed through the inorganic fiber heat insulating material 1 can be discharged from the ventilation space 13 to the outside. However, the outer wall material 2 may be directly supported by the inorganic fiber heat insulating material 1 without providing the ventilation space 13 between the inorganic fiber heat insulating material 1 and the outer wall material 2.

図1の外壁断熱構造において、無機繊維断熱材1を除く部分は、従来から知られているまたは実施されているものと実質同一であるので詳述はしないが、概説すると次の通りである。すなわち、鉄骨柱7にパネルフレーム8を取り付けし、該パネルフレーム8にガラスウールのような断熱材4を組み込み、さらに鉄骨柱7とパネルフレーム8内に設けた間柱10のそれぞれの室内側に内縦桟9を固定して設け、これらの内縦桟9に内壁板5(例えば石膏ボード)を取り付ける。そして、前記パネルフレーム8と間柱10の室外側に、前記無機繊維断熱材1を当ててその外側から胴縁6を押し当て、この状態で胴縁6の外側からビス11で締めて無機繊維断熱材1をパネルフレーム8と間柱10に固定し、外断熱を構成している。なお、12は鉄骨柱内に装填した断熱材である。   In the outer wall heat insulating structure of FIG. 1, the portions excluding the inorganic fiber heat insulating material 1 are substantially the same as those conventionally known or practiced, and therefore will not be described in detail. That is, the panel frame 8 is attached to the steel column 7, the heat insulating material 4 such as glass wool is incorporated into the panel frame 8, and the interior of each of the steel column 7 and the intermediate column 10 provided in the panel frame 8 is inside. The vertical bars 9 are fixedly provided, and inner wall plates 5 (for example, gypsum boards) are attached to the inner vertical bars 9. And the inorganic fiber heat insulating material 1 is applied to the outdoor side of the said panel frame 8 and the spacer 10, and the trunk edge 6 is pressed from the outer side, In this state, it tightens with the bis | screw 11 from the outer side of the trunk edge 6, and inorganic fiber heat insulation The material 1 is fixed to the panel frame 8 and the studs 10 to constitute an external heat insulation. Reference numeral 12 denotes a heat insulating material loaded in the steel column.

図2は、上記外壁断熱構造における無機繊維断熱材1、胴縁6および外壁板2の分解斜視図であり、図3は図2の無機繊維断熱材1のA−A’における部分断面図を示す。本例の無機繊維断熱材1は、例えばガラス短繊維(ガラスウール)を熱硬化性結合剤で結合して成形したボード状の無機繊維成形体12からなり、該無機繊維成形体12は密度が32〜250kg/mで、ある程度の剛性を有し、3本の胴縁6を介して外壁版2をその背面側から受け支えする。そして、前記無機繊維成形体12の胴縁6を介して外壁版2を受け支えする部位、すなわち胴縁6が当接する両側部と中央部に、2脚状(ステープル)の支柱3が横向きで縦方向に一定の間隔をあけてボード面に垂直に刺挿されている。 2 is an exploded perspective view of the inorganic fiber heat insulating material 1, the trunk edge 6 and the outer wall plate 2 in the outer wall heat insulating structure, and FIG. 3 is a partial cross-sectional view taken along line AA ′ of the inorganic fiber heat insulating material 1 of FIG. Show. The inorganic fiber heat insulating material 1 of this example includes a board-like inorganic fiber molded body 12 formed by bonding short glass fibers (glass wool) with a thermosetting binder, for example, and the inorganic fiber molded body 12 has a density. It has a certain degree of rigidity at 32 to 250 kg / m 3 , and receives and supports the outer wall plate 2 from its back side through the three barrel edges 6. And the biped (staple) support | pillar 3 is sideways at the site | part which receives and supports the outer wall plate 2 via the trunk edge 6 of the said inorganic fiber molded object 12, ie, the both sides and center part which the trunk edge 6 contact | abuts. It is inserted vertically into the board surface at regular intervals in the vertical direction.

本例では支柱3を前記のそれぞれの部位に縦一列で配列しているが、支柱3の刺挿の仕方は適宜決めることができる。例えば、無機繊維成形体12の前記部位をもっと広幅に補強したいときには、例えば支柱3を縦二列に配列したり、あるいは千鳥状に配列する。また、支柱3の向きも縦向きまたはその他の向きにしてもよい。無機繊維成形体12に刺挿された支柱3は、刺挿された部位の無機繊維成形体12が有している密度や剛性と、支柱3の二股形状とによって、無機繊維成形体12中において傾いたり、捩れたりすることなく安定した姿勢に保持される。なお、無機繊維成形体12への支柱3の刺挿は、所定の大きさに切断された無機繊維成形体12にその製造工程または別工程において行うことができる。   In this example, the support columns 3 are arranged in a single line in the respective portions, but the method of inserting the support columns 3 can be determined as appropriate. For example, when it is desired to reinforce the portion of the inorganic fiber molded body 12 with a wider width, for example, the columns 3 are arranged in two vertical rows or in a staggered manner. Further, the support 3 may be oriented vertically or in another direction. The strut 3 inserted into the inorganic fiber molded body 12 is formed in the inorganic fiber molded body 12 depending on the density and rigidity of the inorganic fiber molded body 12 at the inserted portion and the bifurcated shape of the strut 3. A stable posture is maintained without tilting or twisting. In addition, insertion of the support | pillar 3 to the inorganic fiber molded object 12 can be performed in the manufacturing process or another process to the inorganic fiber molded object 12 cut | disconnected by the predetermined magnitude | size.

本例の支柱3の高さLは、図3に示すように無機繊維成形体12の厚さHより、Hの80〜100%の範囲において短くなっている。しかし、支柱3の刺挿方向から胴縁6で押圧されると、無機繊維成形体12が圧縮変形するために、支柱3の先端は無機繊維成形体12の裏面に達しパネルフレーム8と間柱10に突き当たりる(図1参照)。そして、先端がパネルフレーム8と間柱10に突き当たった後は、胴縁6が無機繊維断熱材1を横方向から押圧しても、支柱3が胴縁6に対しストッパーとして働くので、無機繊維成形体12はそれ以上収縮しなくなり、胴縁12が当接している部位の無機繊維成形体12の厚さは支柱3の高さLとなる。これにより、胴縁6は鉄骨柱7に固定されたパネルケース8および間柱10から支柱3の高さLによって定まる位置に固定され、しかもこの位置が支柱3の前記ストッパー機能により不変であるので、外壁版2を背面側から安定して受け支える。このように支柱3の高さLが無機繊維断熱材1の厚さHより短くなっていると、通常の状態では支柱3の先端が無機繊維成形体12中に埋没しその裏面から突出しないので、無機繊維断熱材1の取り扱い性もよい。   The height L of the support | pillar 3 of this example is shorter in the range of 80 to 100% of H than the thickness H of the inorganic fiber molded object 12, as shown in FIG. However, since the inorganic fiber molded body 12 is compressed and deformed when pressed by the trunk edge 6 from the insertion direction of the column 3, the tip of the column 3 reaches the back surface of the inorganic fiber molded body 12, and the panel frame 8 and the intermediate column 10. (See FIG. 1). And after the front-end | tips contact | abutted the panel frame 8 and the spacer 10, even if the trunk edge 6 presses the inorganic fiber heat insulating material 1 from a horizontal direction, since the support | pillar 3 acts as a stopper with respect to the trunk edge 6, inorganic fiber shaping | molding The body 12 no longer contracts, and the thickness of the inorganic fiber molded body 12 at the portion where the body edge 12 is in contact is the height L of the column 3. As a result, the trunk edge 6 is fixed at a position determined by the height L of the column 3 from the panel case 8 and the intermediate column 10 fixed to the steel column 7, and this position is not changed by the stopper function of the column 3. The outer wall plate 2 is stably received and supported from the back side. Thus, if the height L of the support column 3 is shorter than the thickness H of the inorganic fiber heat insulating material 1, the tip end of the support column 3 is buried in the inorganic fiber molded body 12 and does not protrude from the back surface in a normal state. Moreover, the handleability of the inorganic fiber heat insulating material 1 is also good.

また、本例の無機繊維断熱材1は、上記したように単体の状態で外壁断熱構造の外断熱として他の構造材と組み合わせて施工するほかに、無機繊維断熱材1と外壁断熱構造を構成する他の構造材の少なくとも一部とを予め組み合わせてパネル化することもできる。例えば、図示はしないが無機繊維断熱材1とパネルフレーム8と胴縁6と外壁板2とをパネル化しておくと、該パネルを鉄骨柱7に取り付けすることにより施工できるので、作業が簡単となり便利である。   Moreover, the inorganic fiber heat insulating material 1 of this example constitutes the inorganic fiber heat insulating material 1 and the outer wall heat insulating structure in addition to being constructed in combination with other structural materials as the outer heat insulating material of the outer wall heat insulating structure in a single state as described above. It is also possible to form a panel by combining in advance with at least a part of other structural materials. For example, although not shown, if the inorganic fiber heat insulating material 1, the panel frame 8, the trunk edge 6, and the outer wall plate 2 are made into a panel, it can be constructed by attaching the panel to the steel column 7, so the work becomes simple. Convenient.

なお、図1には鉄骨柱の建物における外壁断熱構造を示したが、本発明に係る無機繊維断熱材による外断熱は木造建築に対しても同様に適用できる。すなわち、図8に例示するように柱21および間柱10の内側と外側にそれぞれ内装材(例えば石膏ボード)5および構造用合板22を張り付けし、これらの間の空間部にガラスウールのような断熱材4を充填して一般的な断熱壁を形成し、さらに本発明に係わる無機繊維断熱材1を用いて外断熱を構成し外装材2が取り付けられる。具体的には、前記構造用合板22の外側に無機繊維断熱材1と胴縁6を図示するように取り付け施工し、該胴縁6に外装材2を取り付けする。ことにより外装材2の裏面は胴縁6を介して該無機繊維断熱材1で受け支えられる。このとき、少なくとも胴縁6で押えられる部位の無機繊維断熱材1は、支柱3によって補強されているので、外装材2から荷重を受けても圧縮変形しない。これにより外装材2を安定して平坦に保持でき、しかも負担増なしに施工できる。   In addition, although the outer wall heat insulation structure in the building of a steel column was shown in FIG. 1, the outer heat insulation by the inorganic fiber heat insulating material which concerns on this invention is applicable similarly to wooden construction. That is, as illustrated in FIG. 8, the interior material (for example, gypsum board) 5 and the structural plywood 22 are attached to the inside and outside of the columns 21 and 10, respectively, and heat insulation such as glass wool is formed in the space between them. The material 4 is filled to form a general heat insulating wall, and further, the inorganic fiber heat insulating material 1 according to the present invention is used to form an outer heat insulating material and the exterior material 2 is attached. Specifically, the inorganic fiber heat insulating material 1 and the trunk edge 6 are attached to the outside of the structural plywood 22 as shown in the figure, and the exterior material 2 is attached to the trunk edge 6. Accordingly, the back surface of the exterior material 2 is supported and supported by the inorganic fiber heat insulating material 1 through the trunk edge 6. At this time, at least the portion of the inorganic fiber heat insulating material 1 that is pressed by the trunk edge 6 is reinforced by the support column 3, so that it is not compressed and deformed even when a load is applied from the exterior material 2. Thereby, the exterior material 2 can be stably held flat and can be constructed without increasing the burden.

図9は、外壁断熱構造以外の断熱への応用例で、本発明に係る無機繊維断熱材を床の外断熱に適用した例である。すなわち、基礎20に架設した大引17に根太16を装架し、そして、これら下地構造(16、17)の上に支柱3で補強された無機繊維断熱材1を敷設し、その上に床板15を張り断熱床を形成する。上記無機繊維断熱材1の少なくとも下地構造(16、17)に面合する部位には、前記した無機繊維断熱材と同様に補強用の支柱3が刺挿されており、床板15からの荷重のほとんどを無機繊維断熱材1に刺挿されている該支柱3で支えるようになっている。支柱3が設けられていない無機繊維成形体では充分な圧縮強度を持っていないために、前記荷重がかかると、荷重のかかった箇所の無機繊維成形体が圧縮変形し安定した床面を形成できないが、本発明の無機繊維断熱材1では厚さ方向の圧縮強度が支柱3で補強されているので、無機繊維断熱材1は床板15から荷重を受けても圧縮変形を生ぜず、安定した平らな床面を形成できる。   FIG. 9 is an example of application to heat insulation other than the outer wall heat insulation structure, in which the inorganic fiber heat insulating material according to the present invention is applied to the outer heat insulation of the floor. That is, the joist 16 is mounted on the large pull 17 installed on the foundation 20, and the inorganic fiber heat insulating material 1 reinforced with the support column 3 is laid on the foundation structure (16, 17), and the floor board is formed thereon. 15 is formed to form an insulating floor. At least a portion of the inorganic fiber heat insulating material 1 that faces the ground structure (16, 17) is inserted with a reinforcing support column 3 in the same manner as the inorganic fiber heat insulating material described above. Most of them are supported by the support 3 inserted into the inorganic fiber heat insulating material 1. Since the inorganic fiber molded body without the support 3 does not have a sufficient compressive strength, when the load is applied, the inorganic fiber molded body at the place where the load is applied is compressively deformed and a stable floor surface cannot be formed. However, in the inorganic fiber heat insulating material 1 of the present invention, since the compressive strength in the thickness direction is reinforced by the support columns 3, even if the inorganic fiber heat insulating material 1 receives a load from the floor plate 15, it does not cause compressive deformation and is stable and flat. A smooth floor can be formed.

さらに、本発明に係る無機繊維断熱材は、図10に例示する浮き床の断熱材にも適用でき、断熱性と遮音(防音)性に優れた床を得ることができる。従来、湿式施工による代表的浮き床工法は、駆体上に断熱、遮音効果のある例えばガラスウールのような緩衝材を敷設し、その上に防水層として例えばポリエチレンシートを設け、該ポリエチレンシート上に補強用溶接金網で補強されたコンクリートの浮き床層を形成している。駆体上に緩衝層を介在させて浮き床層を形成するこの構成は、乾式施工においても同じである。このような浮き床構造において、上記緩衝材の圧縮強度が十分でないと、浮き床の床面の安定性が損なわれるおそれが生じる。   Furthermore, the inorganic fiber heat insulating material according to the present invention can also be applied to a floating floor heat insulating material illustrated in FIG. 10, and a floor excellent in heat insulating properties and sound insulation (soundproofing) properties can be obtained. Conventionally, a typical floating floor construction method by wet construction is to lay a cushioning material such as glass wool having heat insulation and sound insulation effects on a fuselage, and to provide a waterproof layer, for example, a polyethylene sheet on the polyethylene sheet. A concrete floating floor layer reinforced with a reinforcing wire mesh is formed. This configuration for forming a floating floor layer with a buffer layer interposed on the precursor is the same in dry construction. In such a floating floor structure, if the compressive strength of the cushioning material is not sufficient, the stability of the floor surface of the floating floor may be impaired.

図10の浮き床構造は、上記緩衝材として本発明の支柱で補強した無機繊維断熱材を用いるものである。すなわち、例えば円柱状の支柱3をボード面に対し垂直に一定の間隔(密度)で刺挿し補強した無機繊維断熱材1を、上記緩衝材として駆体24の上に敷設し、その上に例えば0.1mm厚以上のポリエチレンシートを防水層26として設けたのち、補強用溶接金網(図示せず)を浮き床層の中心に入るように設けて浮き床層23を形成する。25は立ち上げ用絶縁材料で、浮き床層23が駆体24に直に接触しないようにするために、駆体24の壁面と浮き床層23との間に設けられ、その浮き床層から上の部分は施工の際に浮き床層仕上げ面で切断される。なお、立ち上げ用絶縁材料25としては、ガラスウールを用いることができる。   The floating floor structure of FIG. 10 uses an inorganic fiber heat insulating material reinforced with a support of the present invention as the cushioning material. That is, for example, the inorganic fiber heat insulating material 1 in which a columnar column 3 is inserted and reinforced with a certain interval (density) perpendicular to the board surface is laid on the driver 24 as the cushioning material. After a polyethylene sheet having a thickness of 0.1 mm or more is provided as the waterproof layer 26, a reinforcing welding wire mesh (not shown) is provided so as to enter the center of the floating floor layer to form the floating floor layer 23. 25 is an insulating material for start-up, and is provided between the wall surface of the precursor 24 and the floating floor layer 23 in order to prevent the floating floor layer 23 from coming into direct contact with the precursor 24, and from the floating floor layer The upper part is cut at the floating floor finish surface during construction. As the startup insulating material 25, glass wool can be used.

浮き床層23の緩衝材として、支柱3で補強された無機繊維断熱材1を使用することで、該無機繊維断熱材1は浮き床層23から荷重を受けても、該荷重を無機繊維断熱材1中の支柱3が実質的に支えるので圧縮変形しない。これは浮き床層23から仮に偏った荷重を受けても同じである。これにより、浮き床層23は裏面側から支柱3で均一に受け支えられるので、上下方向に変位したりあるいは傾斜することなく、床面を一定高さに平らに保持できる。   By using the inorganic fiber heat insulating material 1 reinforced with the support column 3 as a cushioning material for the floating floor layer 23, the inorganic fiber heat insulating material 1 receives the load from the floating floor layer 23, and the inorganic fiber heat insulating material 1 Since the column 3 in the material 1 is substantially supported, it is not compressed and deformed. This is the same even if a load that is biased from the floating floor layer 23 is received. Thereby, since the floating floor layer 23 is uniformly received and supported by the support columns 3 from the back side, the floor surface can be held flat at a constant height without being displaced or inclined in the vertical direction.

(実施例1)
密度が160kg/m、180kg/m、200kg/m、240kg/m、厚さが12mmである4種類のグラスウールボード(旭ファイバー社製)から、一辺100mm、厚さ12mmの直方体の試験片を、各グラスウールボードから10個づつ切り出し、そのうちの5個の試験片に高さが12mm、端面の面積が3mmの円柱状の樹脂製ピン(支柱)4本を各試験片の面に垂直に刺挿し、厚さ方向の圧縮強度が樹脂製ピンで補強された試験片を作製した。4本の樹脂製ピンは、各試験片の中心(対角線の交点)と各コーナーとの中点(4箇所)に刺挿した。かくして、密度の異なる4種類のグラスウールボードについて、樹脂製ピンで補強した5個の試験片とピンで補強しない5個の試験片を用意した。
Example 1
From four types of glass wool boards (made by Asahi Fiber Co., Ltd.) having a density of 160 kg / m 3 , 180 kg / m 3 , 200 kg / m 3 , 240 kg / m 3 and a thickness of 12 mm, a rectangular parallelepiped with a side of 100 mm and a thickness of 12 mm Ten test pieces are cut out from each glass wool board, and four of them are provided with four cylindrical resin pins (posts) having a height of 12 mm and an end surface area of 3 mm 2. A test piece having a compression strength in the thickness direction reinforced with a resin pin was prepared. The four resin pins were inserted into the center of each test piece (intersection of diagonal lines) and the midpoint (4 places) between each corner. Thus, for four types of glass wool boards having different densities, five test pieces reinforced with resin pins and five test pieces not reinforced with pins were prepared.

ついで、これらピンで補強された試験5個と、ピンで補強しない試験片5個の圧縮強度を、JIS K 7220(硬質材料の圧縮試験)に準じてそれぞれ次に従って測定し算出した。その結果を表1に示す。なお、表1の圧縮強度は5個の試験片の圧縮強度の平均値である。   Subsequently, the compressive strengths of the five tests reinforced with these pins and the five test pieces not reinforced with the pins were measured and calculated in accordance with JIS K 7220 (compression test of hard material), respectively. The results are shown in Table 1. In addition, the compressive strength of Table 1 is an average value of the compressive strength of five test pieces.

(圧縮強度の算出方法)
・試験速度 :可動板の移動速度を1mm/分、チャート紙の速度を20mm/分とする。
・規定変形量:2.0mmを規定変形量とする。荷重が0の領域をチャート紙で5mm以上記録してから、規定変形量を超えるまでチャート紙に記録する。
・圧縮強度 :チャート紙上で基準点からの変形量が所定量になった時の荷重を読み取り、下式により圧縮強度を求める(ゼロ変形点による基準点の補正は行わない)
σ=F/S
σ:規定量変形時の圧縮強度(kPa)
F:規定量変形時の荷重(N)
S:試験片の断面積(mm
(Calculation method of compressive strength)
Test speed: The moving speed of the movable plate is 1 mm / min, and the chart paper speed is 20 mm / min.
-Specified deformation amount: The specified deformation amount is 2.0 mm. The area where the load is 0 is recorded on the chart paper until it exceeds 5 mm after being recorded on the chart paper by 5 mm or more.
・ Compression strength: Read the load when the amount of deformation from the reference point reaches a predetermined amount on the chart paper, and calculate the compressive strength using the following formula (the reference point is not corrected by the zero deformation point)
σ = F / S
σ: Compressive strength (kPa) when deformed by specified amount
F: Load (N) when the specified amount is deformed
S: Cross-sectional area of the test piece (mm 2 )

Figure 0004385382
Figure 0004385382

表1に示すように、ピンで補強しない試験片の圧縮強度は密度が大きくなるに従って増大し80〜195kg/mであったが、該試験片の圧縮強度はピンにより補強され、その圧縮強度は196〜300kg/mに改善された。なお、試験片に刺挿された各ピンは、圧縮強度の測定時において試験片中に安定して保持されていた。 As shown in Table 1, the compressive strength of the test piece not reinforced with the pin increased as the density increased and was 80 to 195 kg / m 3. However, the compressive strength of the test piece was reinforced with the pin, and its compressive strength Was improved to 196 to 300 kg / m 3 . Each pin inserted into the test piece was stably held in the test piece when the compressive strength was measured.

(実施例2)
密度が140kg/mのグラスウールボード(旭ファイバー社製)を用いて次の方法により試験片を得た。
すなわち、上記の密度が140kg/mのグラスウールボードから、一辺100mm、厚さ12mmの直方体の試験片を15個切り出し、そのうちの5個の試験片には実施例1で使用した樹脂製ピンを、さらに5個の試験片には直径40mm、肉厚が2mm、高さが12mmの中空で頭部が有底の樹脂製円筒状支柱を、各試験片の面にそれぞれ垂直に刺挿し、厚さ方向の圧縮強度が樹脂製ピンと円筒状支柱で補強された試験片を5個づつ作製した。上記樹脂製ピンは実施例1と同様に各試験片に4箇所刺挿し、円筒状支柱は各試験片の中心に1個刺挿した。残り5個の試験片は補強なしとした。
(Example 2)
A test piece was obtained by the following method using a glass wool board (manufactured by Asahi Fiber Co., Ltd.) having a density of 140 kg / m 3 .
That is, from the glass wool board having the density of 140 kg / m 3 , 15 rectangular parallelepiped test pieces having a side of 100 mm and a thickness of 12 mm were cut out, and the resin pins used in Example 1 were used for five of the test pieces. In addition, a hollow cylindrical resin column with a diameter of 40 mm, a wall thickness of 2 mm, and a height of 12 mm was inserted into each of the five test pieces, and the thickness was inserted into each test piece surface vertically. Five test pieces each having a longitudinal compressive strength reinforced with a resin pin and a cylindrical column were prepared. The resin pins were inserted into each test piece at four locations in the same manner as in Example 1, and one cylindrical support was inserted into the center of each test piece. The remaining five test pieces were not reinforced.

これらの各試験片について、規定変形量を1.0mmとする以外は実施例1と同じ方法で圧縮強度を測定した。その結果を表2に示す。表2の圧縮強度は5個の試験片の平均値である。   About these each test piece, compressive strength was measured by the same method as Example 1 except having specified deformation amount to 1.0 mm. The results are shown in Table 2. The compressive strength in Table 2 is an average value of five test pieces.

Figure 0004385382
Figure 0004385382

表2に示すようにピンおよび円筒状支柱で補強した試験片の圧縮強度は、補強しない試験片に比べていずれも大きくなっていることが確認された。また、ピン補強と円筒状支柱補強とでは、後者は前者の約6倍の圧縮強度を有しており、円筒状支柱の方が補強効果において優れていることが分かる。   As shown in Table 2, it was confirmed that the compressive strength of the test piece reinforced with the pin and the cylindrical support was higher than that of the test piece not reinforced. Moreover, in the pin reinforcement and the cylindrical support reinforcement, the latter has a compressive strength about six times that of the former, and it can be seen that the cylindrical support is superior in the reinforcing effect.

本発明は、ボード状の無機繊維成形体に所定の高さの支柱をボード面と垂直に刺挿することにより厚さ方向の圧縮強度が補強された、不燃性で環境的にも優れている無機繊維断熱材を低コストで得ることができるので、建物の外断熱材として有効に使用できる。   The present invention is nonflammable and environmentally superior in that the compressive strength in the thickness direction is reinforced by inserting a pillar having a predetermined height into a board-shaped inorganic fiber molded body perpendicularly to the board surface. Since an inorganic fiber heat insulating material can be obtained at low cost, it can be effectively used as an external heat insulating material for buildings.

本発明の好ましい実施形態である外壁断熱構造の横断面図である。It is a cross-sectional view of the outer wall heat insulation structure which is preferable embodiment of this invention. 図1の無機繊維断熱材、胴縁、外壁材2の分解斜視図である。It is a disassembled perspective view of the inorganic fiber heat insulating material, trunk edge, and outer wall material 2 of FIG. 図2のA−A’部の断面図である。It is sectional drawing of the A-A 'part of FIG. (a)、(b)、(c)、(d)および(e)は主な支柱の斜視図である。(A), (b), (c), (d) and (e) are perspective views of main struts. (f)、(g)は他の支柱の(イ)正面図、および(ロ)底面図である。(F), (g) is the (a) front view of the other support | pillar, and (b) bottom view. 本発明の他の実施形態である円筒状支柱の斜視図である。It is a perspective view of the cylindrical support | pillar which is other embodiment of this invention. 本発明の他の実施形態である有底の円筒状支柱の断面図である。It is sectional drawing of the bottomed cylindrical support | pillar which is other embodiment of this invention. 本発明の他の実施形態である外壁断熱構造の横断面図である。It is a cross-sectional view of the outer wall heat insulation structure which is other embodiment of this invention. 本発明の実施形態である断熱床構造の縦断面図である。It is a longitudinal cross-sectional view of the heat insulation floor structure which is embodiment of this invention. 本発明の他の実施形態である断熱浮き床構造の部分縦断面図である。It is a fragmentary longitudinal cross-sectional view of the heat insulation floating floor structure which is other embodiment of this invention.

符号の説明Explanation of symbols

1:無機繊維断熱材 2:外壁材 3:支柱
4:断熱材 5:内壁材 6:胴縁
7:鉄骨柱 8:パネルフレーム 9:内縦桟
10:間柱 11:ビス 12:無機繊維成形体
13:通気用空間部 14:断熱材 15:床板
16:根太 17:大引 18:円盤状頭部
19、19’:十字状脚部 20:基礎 21:柱
22:構造用合板 23:浮き床層 24:コンクリートスラブ
25:立ち上げ用絶縁材 26:防水層 27:端面
28:円筒状支柱 29:底面
DESCRIPTION OF SYMBOLS 1: Inorganic fiber heat insulating material 2: Outer wall material 3: Support | pillar 4: Heat insulating material 5: Inner wall material 6: Trunk edge 7: Steel column 8: Panel frame 9: Inner vertical beam 10: Space pillar 11: Screw 12: Inorganic fiber molding 13: Space for ventilation 14: Heat insulating material 15: Floor board 16: joist 17: Large draw 18: Disc head 19, 19 ': Cross leg 20: Foundation 21: Pillar 22: Plywood for structure 23: Floating floor Layer 24: Concrete slab 25: Insulating material 26: Waterproof layer 27: End face 28: Cylindrical support 29: Bottom

Claims (7)

無機繊維を熱硬化性結合剤によって結合して密度が32〜250kg/mとなるように成形したボード状の無機繊維成形体からなり、該無機繊維成形体の全面または一部に無機繊維成形体の厚さの80〜130%に相当する高さを有する支柱がボード面と垂直に刺挿されて無機繊維成形体によって保持されており、前記支柱が一方の端部が有底である樹脂製の円筒状体であり、無機繊維成形体の厚さ方向の圧縮強度が該支柱によって補強されていることを特徴とする建材用無機繊維断熱材。 It consists of a board-like inorganic fiber molded body formed by bonding inorganic fibers with a thermosetting binder and having a density of 32 to 250 kg / m 3, and the inorganic fiber molding is formed on the entire surface or a part of the inorganic fiber molded body. Resin in which a strut having a height corresponding to 80 to 130% of the body thickness is inserted perpendicularly to the board surface and held by an inorganic fiber molded body, and the strut is bottomed at one end An inorganic fiber heat insulating material for building materials, wherein the insulating fiber is a cylindrical body, and the compressive strength in the thickness direction of the inorganic fiber molded body is reinforced by the support. 前記筒状体の最大径が10〜150mmである請求項1に記載の建材用無機繊維断熱材。   The inorganic fiber heat insulating material for building materials according to claim 1, wherein the cylindrical body has a maximum diameter of 10 to 150 mm. 前記筒状体の肉厚が、筒状体の最大径の2〜7%である請求項1または2に記載の建材用無機繊維断熱材。   The inorganic fiber heat insulating material for building materials according to claim 1 or 2, wherein a thickness of the cylindrical body is 2 to 7% of a maximum diameter of the cylindrical body. 前記支柱の端部が平担状をなしており、かつ該平坦状部の面積が1mm以上である請求項1〜3のいずれかに記載の建材用無機繊維断熱材。 The inorganic fiber heat insulating material for building materials according to any one of claims 1 to 3, wherein an end portion of the column has a flat shape and an area of the flat portion is 1 mm 2 or more. 請求項1〜4のいずれかの無機繊維断熱材と他の建材用構造材とをパネル化してなる建材用断熱パネル。   A heat insulating panel for building materials, comprising the inorganic fiber heat insulating material according to any one of claims 1 to 4 and another structural material for building material as a panel. 外壁材の背面側にボード状の無機繊維成形体からなる無機繊維断熱材が胴縁を介してまたは介さずに設けられており、該無機繊維断熱材の全面または一部に無機繊維断熱材の厚さの80〜130%に相当する高さの支柱がボード面と垂直に刺挿されて無機繊維成形体によって保持されており、前記支柱が一方の端部が有底である樹脂製の円筒状体であり、無機繊維断熱材の厚さ方向の圧縮強度が該支柱によって補強されており、外壁の背面側が無機繊維断熱材の支柱を設けた部位によって実質的に受け支えられていることを特徴とする外壁断熱構造。 An inorganic fiber heat insulating material made of a board-shaped inorganic fiber molded body is provided on the back side of the outer wall material with or without a trunk edge, and the inorganic fiber heat insulating material is formed on the entire surface or a part of the inorganic fiber heat insulating material. A column made of resin in which a column having a height corresponding to 80 to 130% of the thickness is inserted perpendicularly to the board surface and held by an inorganic fiber molded body, and the column has a bottom at one end. The compressive strength in the thickness direction of the inorganic fiber heat insulating material is reinforced by the support, and the back side of the outer wall material is substantially supported by the portion where the support of the inorganic fiber heat insulating material is provided. The outer wall insulation structure characterized by. 床板の背面側にボード状の無機繊維成形体からなる無機繊維断熱材が設けられており、該無機繊維断熱材の全面または一部に無機繊維断熱材の厚さの80〜130%に相当する高さの支柱がボード面と垂直に刺挿されて無機繊維成形体によって保持されており、前記支柱が一方の端部が有底である樹脂製の円筒状体であり、無機繊維断熱材の厚さ方向の圧縮強度が該支柱によって補強されており、床板の背面側が無機繊維断熱材の支柱を設けた部位によって受け支えられていることを特徴とする床断熱構造。 An inorganic fiber heat insulating material made of a board-shaped inorganic fiber molded body is provided on the back side of the floor board, and the entire surface or a part of the inorganic fiber heat insulating material corresponds to 80 to 130% of the thickness of the inorganic fiber heat insulating material. A pillar of height is inserted perpendicular to the board surface and held by an inorganic fiber molded body, and the pillar is a cylindrical body made of resin with one end having a bottom, A floor heat insulating structure, characterized in that the compressive strength in the thickness direction is reinforced by the columns, and the back side of the floor board is supported and supported by a portion provided with columns of inorganic fiber heat insulating material.
JP2005324172A 2004-11-15 2005-11-08 Inorganic fiber insulation for building materials Active JP4385382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005324172A JP4385382B2 (en) 2004-11-15 2005-11-08 Inorganic fiber insulation for building materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004330933 2004-11-15
JP2005324172A JP4385382B2 (en) 2004-11-15 2005-11-08 Inorganic fiber insulation for building materials

Publications (2)

Publication Number Publication Date
JP2006161546A JP2006161546A (en) 2006-06-22
JP4385382B2 true JP4385382B2 (en) 2009-12-16

Family

ID=36663867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005324172A Active JP4385382B2 (en) 2004-11-15 2005-11-08 Inorganic fiber insulation for building materials

Country Status (1)

Country Link
JP (1) JP4385382B2 (en)

Also Published As

Publication number Publication date
JP2006161546A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
US10968655B1 (en) Anchor device for a wooden post
US8015775B2 (en) Light weight load bearing architectural column
US11339568B2 (en) Construction system for a module of a building
US20170051506A1 (en) Concrete panel for constructing floor of building, shock absorption unit, and floor construction structure for building including same
CA2678452C (en) Device for anchoring concrete to an insulating panel and form employing the device
GB2314351A (en) Supports for floor, wall or ceiling claddings
CA2891385C (en) An insulating wall system for a building structure
KR200438912Y1 (en) Reinforcement bracket for constructing earthquake-proof wall
JP4385382B2 (en) Inorganic fiber insulation for building materials
JP2011132765A (en) Reinforcing method and reinforcing structure of floor
KR102461092B1 (en) Prefab shear wall module connecting structure
WO2015025789A1 (en) Block and wall structure
US11598091B2 (en) Slab fillers and methods for implementing fillers in two-way concrete slabs for building structures
JP6958996B2 (en) Sound insulation unit
KR200452855Y1 (en) Connecting construction of shock-absorbing using connecting member for supporting plate
KR100898181B1 (en) Structure for floor of dry method building
JP5189789B2 (en) Base block and a set of concrete blocks for a high-floor structure using the base block
JP2008223371A (en) Wall construction structure for existing building
KR102615547B1 (en) System formwork with insulation assembly
JPH11100976A (en) Heat insulation double-floor unit and floor panel with heat insulation material and execution for the floor
KR102276631B1 (en) N-shaped Spacer for Stripping Deck Plate and Stripping Deck
JP3434273B2 (en) Building exterior wall structure
JP3135218U (en) Building structure
KR200454372Y1 (en) Wood beam for concrete form
JP3703631B2 (en) Floor slab structure

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20051214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

R150 Certificate of patent or registration of utility model

Ref document number: 4385382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151009

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250