JP4381666B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4381666B2
JP4381666B2 JP2002263772A JP2002263772A JP4381666B2 JP 4381666 B2 JP4381666 B2 JP 4381666B2 JP 2002263772 A JP2002263772 A JP 2002263772A JP 2002263772 A JP2002263772 A JP 2002263772A JP 4381666 B2 JP4381666 B2 JP 4381666B2
Authority
JP
Japan
Prior art keywords
semiconductor
substrate
sapphire substrate
layer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002263772A
Other languages
Japanese (ja)
Other versions
JP2004103833A (en
Inventor
敦 中川
忠義 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2002263772A priority Critical patent/JP4381666B2/en
Publication of JP2004103833A publication Critical patent/JP2004103833A/en
Application granted granted Critical
Publication of JP4381666B2 publication Critical patent/JP4381666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、サファイア基板上に形成されたGaN系半導体素子の熱抵抗の低減を図る技術に関するものである。
【0002】
【従来の技術】
ワイドギャップ材料のGaN系半導体は、高電流密度・高出力化を図る上で、熱伝導性に優れたSiC基板上に形成されたGaN系半導体素子を用いてきた。また、サファイア基板に形成されたGaN系半導体素子は、図5に示すように、構成されていた。図5において、31はサファイア基板、32は低温GaNバッファ層、33はアンドープGaN層、34はAl0.25Ga0.75N層、35はソース、ドレイン電極、36はゲート電極である。サファイア基板31の熱伝導率はSiCに比べて1桁程度悪いので、サファイア基板31の薄層化により高電流密度・高出力化を図っていた(参考、非特許文献1)。
【0003】
【非特許文献1】
安藤裕二、他5名、「薄層化サファイア基板上の110W出力AlGaN/GaNヘテロ接合FET」、電子情報通信学会技術研究報告、(社)電子通信学会、2002年1月9日発行、Vol.101,No.549、p.7−12。
【0004】
【発明が解決しようとする課題】
しかしながら、SiC基板上に形成されたGaN系半導体素子は、SiC基板自体の口径が2インチ程度であり、その大口径化に問題を抱えているために、量産化によるコストダウンは難しい。
【0005】
一方、サファイア基板は口径が8インチまで商品化されており、サファイア基板上に形成されたGaN系半導体素子の量産化によるコストダウンはSiC基板に比べて容易である。しかし、サファイア基板は熱伝導率が悪いためにサファイア基板の薄層化による熱抵抗の低減を図っているものの、研磨後のハンドリングの問題もあり、熱抵抗を十分に低減できるほどの薄層化が実現されていない。
【0006】
本発明の目的は、このような従来技術を解決し、サファイア基板に形成されたGaN系半導体素子の熱抵抗の低減を図り、高電流密度・高出力化の実現と基板の大口径化による量産効果により低価格を可能とする半導体装置の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
請求項1にかかる発明は、(1)サファイア基板上に少なくともGaN層を含む複数の半導体層を形成し、該複数の半導体層上に第1の半導体基板を接合する工程と、(2)前記サファイア基板を平面研磨法により薄膜化する工程と、(3)平面研磨された前記サファイア基板上に第2の半導体基板を接合する工程と、(4)前記第1の半導体基板を平面研磨法により薄膜化した後、化学的なエッチングにより選択的に除去する工程と、(5)前記複数の半導体層上に半導体素子を形成する工程と、を含むことを特徴とする半導体装置の製造方法とした。
【0008】
請求項2にかかる発明は、(1)サファイア基板上に少なくともGaN層を含む複数の半導体層を形成し、該複数の半導体層上に第1の半導体基板を接合する工程と、(2)前記サファイア基板側からレーザ光を照射して前記複数の半導体層から該サファイア基板を剥離する工程と、(3)前記サファイア基板の剥離により大気中に露出した前記複数の半導体層上に第2の半導体基板を接合する工程と、(4)前記第1の半導体基板を平面研磨法により薄膜化した後、化学的なエッチングにより選択的に除去する工程と、(5)前記複数の半導体層上に半導体素子を形成する工程と、を含むことを特徴とする半導体装置の製造方法とした。
【0009】
請求項3にかかる発明は、請求項1又は2に記載の半導体装置の製造方法において、前記第1の半導体基板はGaAsまたはInP基板であり、前記第2の半導体基板はSi、ダイアモンドまたはAlN基板であることを特徴とする半導体装置の製造方法とした。
【0010】
請求項4にかかる発明は、請求項1記載の半導体装置の製造方法において、前記第(1)の工程は、前記第1の半導体基板および前記半導体層の表面を、前記第(3)の工程は、前記第2の半導体基板および平面研磨された前記サファイア基板の表面を、それぞれ高真空中でのイオン衝撃により活性化し、室温若しくは加熱した状態で活性な表面を相手側に接触させることにより半導体接合を行うことを特徴とする半導体装置の製造方法とした。
請求項5にかかる発明は、請求項2記載の半導体装置の製造方法において、前記第(1)の工程は、前記第1の半導体基板および前記半導体層の表面を、前記第(3)の工程は、前記第2の半導体基板および大気中に露出した前記半導体層の表面を、それぞれ高真空中でのイオン衝撃により活性化し、室温若しくは加熱した状態で活性な表面を相手側に接触させることにより半導体接合を行うことを特徴とする半導体装置の製造方法とした。
【0011】
【発明の実施の形態】
[実施形態1]
図1は実施形態1のサファイア基板上GaN系半導体素子の断面図、図2はその半導体素子の製造方法の説明図である。まず、厚み330μmのサファイア基板(0001)11の上に、例えばMOCVD等により、低温(LT)GaNバッファ層12を堆積後、アンドープのGaN層13を2.5μm堆積し、更に不純物濃度5×1018cm-3のAl0.25Ga0.75N(15nm厚)がアンドープAl0.25Ga0.75N(5nm厚)にはさまれた層14(計25nm厚)を堆積した半導体基板を用意する(図2(a))。ここで、表面の粗さは1nm以下とする必要がある。
【0012】
次に、層14の半導体表面に高真空中にてArイオンビームを照射し、表面に形成された自然酸化膜を除去して表面を活性化させ(図2(b))、同様な方法で表面を活性化させた厚み350μmのGaAs基板(001)15を室温若しくは400℃以下まで加熱して直接接合する(図2(c))。この例ではGaAs基板15を用いたが、InP基板を用いてもよい。
【0013】
次に、サファイア基板11の裏面を、ダイアモンドパウダーを用いた平面研磨法により50μm厚以下まで鏡面研磨を行う(図2(d))。
【0014】
次に、研磨後のサファイア基板11の裏面を高真空中にてArイオンビームの照射によって活性化させ、同様に表面を活性化させたSi基板16を室温若しくは400℃以下まで加熱して接合する(図2(e))。この例では、Si基板16を用いたが、その他にも熱伝導率のよいダイアモンド基板やAlN基板を用いてもよい。
【0015】
次に、GaAs基板15を平面研磨法により10μm厚まで研磨した後、硫酸系のエッチャントを用いてGaAs基板15のみを選択エッチング除去し、層14のアンドープのAl0.25Ga0.75N層を露出させる(図2(f))。
【0016】
その後、Al0.25Ga0.75N層14上に、リフトオフ法によりTi/Alを150/2000Å厚形成した後、600℃、30秒でRTAを行い、ソース、ドレイン電極を形成する(図2(g))。
【0017】
次に、素子の活性領域上をフォトレジストでパターニング後、Cl2系ガスを用いたICPドライエッチング法により素子分離を行う(図2(h))。
【0018】
その後、リフトオフ法によりNi/Auを200/2000Å厚形成して層14のアンドープのAl0.25Ga0.75N層にショットキー接触させ、ゲート電極18を形成する(図2(i))。
【0019】
最後に、ダイシングをしてGaN系の半導体素子(この例ではHFET)が完成する(図2(j))。
【0020】
このように実施形態1では、サファイア基板11を薄膜化し、その裏面に熱伝導率の良好なSi基板16、ダイアモンド基板、AlN基板等(第2の半導体基板)を接合するので、基板全体の熱伝導率を向上させることができ、高電流密度・高出力化を実現できる。GaAs基板15、InP基板(第1の半導体基板)は、サファイア基板11の薄層化の後に、Si基板、ダイアモンド基板、AlN基板(第2の半導体基板)を接合する際の支持基板として機能する。GaAs基板、InP基板(第1の半導体基板)は、GaN系の半導体材料、サファイア基板、Si基板、ダイアモンド基板、AlN基板等に対して選択的に、且つ容易にエッチング除去される。また、GaN系半導体層のエピタキシャル成長用基板として使用されているサファイア基板は、大口径化が容易であるので、量産効果により低価格を実現することができる。
【0021】
[実施形態2]
図3は実施形態2のGaN系半導体素子の断面図、図4はその半導体素子の製造方法の説明図である。まず、厚み330μmのサファイア基板(0001)21の上に、例えばMOCVD等により、低温(LT)GaNバッファ層22を堆積後、アンドープのGaN層23を2.5μm厚堆積し、さらに不純物濃度5×1018cm-3のAl0.25Ga0.75N(15nm厚)がアンドープAl0.25Ga0.75N(5nm厚)にはさまれた層24(計25nm厚)を堆積した半導体基板を用意する(図4(a))。ここで、表面の粗さは1nm以下とする必要がある。
【0022】
次に、層24の半導体表面を高真空中にてArイオンビームを照射し、表面に形成された自然酸化膜を除去して表面を活性化させ(図4(b))、同様な方法で表面を活性化させた厚み350μmのGaAs基板(001)25を室温若しくは400℃以下まで加熱して直接接合する(図4(c))。前例と同様、ここではGaAs基板25を用いたが、InP基板を用いてもよい。
【0023】
次に、ビーム径7mm,波長355nmのYAGレーザーをサファイア基板21側から照射してサファイア基板21を剥離する(Jpn J.Appl.Phys.Vol.38 L217 1999)(図2(d))。
【0024】
次に、剥離後のGaN層23の表面を高真空中にて水素プラズマ処理によって活性化させ、同様に表面を活性化させたSi基板26を室温若しくは400℃以下まで加熱して接合する(図2(e))。前例と同様、ここではSi基板26を用いたが、その他にも熱伝導率のよいダイアモンド基板やAlN基板を用いてもよい。
【0025】
次に、GaAs基板25を平面研磨法により10μmまで研磨した後、硫酸系のエッチャントを用いてGaAsのみを選択エッチング除去し、層24のアンドープのAl0.25Ga0.75N層を露出させる(図4(f))。
【0026】
その後は、実施形態1と同様の作製方法により半導体素子(HFET)が完成する(図4(g)〜(j))。
【0027】
このように実施形態2では、サファイア基板21を除去しこれに代えて熱伝導率の良好なSi基板26、ダイアモンド基板、AlN基板等(第2の半導体基板)を接合するので、基板全体の熱伝導率を向上させることができ、高電流密度・高出力化を実現できる。GaAs基板25、InP基板(第1の半導体基板)は、サファイア基板21のエッチング除去後に、Si基板、ダイアモンド基板、AlN基板(第2の半導体基板)を接合する際の支持基板として機能する。GaAs基板、InP基板(第1の半導体基板)は、GaN系の半導体材料、サファイア基板、Si基板、ダイアモンド基板、AlN基板等に対して選択的に、且つ容易にエッチング除去される。また、GaN系半導体層のエピタキシャル成長用基板として使用されているサファイア基板は、大口径化が容易であるので、量産効果により低価格を実現することができる。
【0028】
【発明の効果】
以上説明したように、本発明のGaN系半導体素子は、サファイア基板を薄層化してそこに熱伝導率の良好なSi基板、ダイアモンド基板、AlN基板等の第2の半導体基板を接合し、あるいはサファイア基板を除去してこれに代えて同様の第2の半導体基板を接合するので、基板全体の熱伝導率を向上させることができ、熱抵抗を従来よりも大幅に低減することができ、高電流密度・高出力化を実現できる。また、サファイア基板の大口径化による量産効果により、低価格を可能とする半導体装置の製造方法を提供できる。
【図面の簡単な説明】
【図1】 実施形態1のGaN系半導体素子の断面図である。
【図2】 図1の半導体素子の製造方法を説明する図である。
【図3】 実施形態2のGaN系半導体素子の断面図である。
【図4】 図2の半導体素子の製造方法を説明する図である。
【図5】 従来のGaN系半導体素子の断面図である。
【符号の説明】
11:サファイア基板、12:低温GaN層、13:アンドープGaN層、14:Al0.25Ga0.75N層、15:GaAs基板、16:Si基板、17:ソース、ドレイン電極、18:ゲート電極
21:サファイア基板、22:低温GaN層、23:アンドープGaN層、24:Al0.25Ga0.75N層、25:GaAs基板、26:Si基板、27:ソース、ドレイン電極、28:ゲート電極
31:サファイア基板、32:低温GaN層、33:アンドープGaN層、34:Al0.25Ga0.75N層、35:ソース、ドレイン電極、36:ゲート電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for reducing the thermal resistance of a GaN-based semiconductor element formed on a sapphire substrate.
[0002]
[Prior art]
As a wide gap material GaN-based semiconductor, a GaN-based semiconductor element formed on a SiC substrate having excellent thermal conductivity has been used in order to achieve high current density and high output. In addition, the GaN-based semiconductor element formed on the sapphire substrate is configured as shown in FIG. In FIG. 5, 31 is a sapphire substrate, 32 is a low-temperature GaN buffer layer, 33 is an undoped GaN layer, 34 is an Al 0.25 Ga 0.75 N layer, 35 is a source / drain electrode, and 36 is a gate electrode. Since the thermal conductivity of the sapphire substrate 31 is about an order of magnitude worse than that of SiC, the sapphire substrate 31 has been made thin to increase the current density and output (reference, Non-Patent Document 1).
[0003]
[Non-Patent Document 1]
Yuji Ando and five others, "110W output AlGaN / GaN heterojunction FET on a thin sapphire substrate", IEICE Technical Report, IEICE, January 9, 2002, Vol. 101, no. 549, p. 7-12.
[0004]
[Problems to be solved by the invention]
However, the GaN-based semiconductor element formed on the SiC substrate has a diameter of the SiC substrate itself of about 2 inches, and has a problem in increasing the diameter, so it is difficult to reduce the cost by mass production.
[0005]
On the other hand, the sapphire substrate has been commercialized to a diameter of 8 inches, and the cost reduction due to the mass production of the GaN-based semiconductor element formed on the sapphire substrate is easier than the SiC substrate. However, because the thermal conductivity of sapphire substrates is poor, the thermal resistance is reduced by thinning the sapphire substrate. However, there is a problem with handling after polishing, and the layer is thin enough to reduce the thermal resistance sufficiently. Is not realized.
[0006]
The object of the present invention is to solve such a conventional technique, to reduce the thermal resistance of the GaN-based semiconductor element formed on the sapphire substrate, to realize high current density and high output, and to mass-produce by increasing the substrate diameter. An object of the present invention is to provide a method of manufacturing a semiconductor device that can be manufactured at a low cost.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is a step of (1) forming a plurality of semiconductor layers including at least a GaN layer on a sapphire substrate, and bonding the first semiconductor substrate on the plurality of semiconductor layers; A step of thinning the sapphire substrate by a planar polishing method, (3) a step of bonding a second semiconductor substrate onto the planarly polished sapphire substrate, and (4) a planar polishing method of the first semiconductor substrate. A method of manufacturing a semiconductor device, comprising: a step of selectively removing the film by chemical etching after thinning; and (5) a step of forming a semiconductor element on the plurality of semiconductor layers. .
[0008]
According to a second aspect of the present invention, there is provided (1) a step of forming a plurality of semiconductor layers including at least a GaN layer on a sapphire substrate, and bonding a first semiconductor substrate on the plurality of semiconductor layers; Irradiating a laser beam from the sapphire substrate side and peeling the sapphire substrate from the plurality of semiconductor layers; and (3) a second semiconductor on the plurality of semiconductor layers exposed to the atmosphere by peeling the sapphire substrate. (4) a step of selectively removing the first semiconductor substrate by chemical etching after thinning the first semiconductor substrate by a planar polishing method; and (5) a semiconductor on the plurality of semiconductor layers. And a step of forming an element.
[0009]
According to a third aspect of the present invention, in the method of manufacturing a semiconductor device according to the first or second aspect, the first semiconductor substrate is a GaAs or InP substrate, and the second semiconductor substrate is a Si, diamond or AlN substrate. Thus, a method for manufacturing a semiconductor device is provided.
[0010]
Such invention in claim 4, in the manufacturing method of a semiconductor device according to claim 1 Symbol mounting step of the first (1), said first semiconductor substrate and the surface of said semiconductor layer, said first (3) step, the second semiconductor substrate and a planar polished surface of the sapphire substrate, respectively by Rikatsu activatable to ion bombardment in a high vacuum, contacting the active surface while at room temperature or heated to the other side Thus, a semiconductor device manufacturing method is characterized in that semiconductor bonding is performed.
According to a fifth aspect of the present invention, in the method for manufacturing a semiconductor device according to the second aspect, in the first step, the surface of the first semiconductor substrate and the semiconductor layer is formed on the surface of the first semiconductor substrate. The surface of the semiconductor layer exposed to the second semiconductor substrate and the atmosphere is activated by ion bombardment in high vacuum, and the active surface is brought into contact with the other side at room temperature or in a heated state. A semiconductor device manufacturing method is characterized by performing semiconductor bonding.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment 1]
FIG. 1 is a cross-sectional view of a GaN-based semiconductor element on a sapphire substrate according to Embodiment 1, and FIG. 2 is an explanatory view of the method for manufacturing the semiconductor element. First, a low temperature (LT) GaN buffer layer 12 is deposited on a sapphire substrate (0001) 11 having a thickness of 330 μm by MOCVD, for example, and then an undoped GaN layer 13 is deposited by 2.5 μm, and further an impurity concentration of 5 × 10 A semiconductor substrate on which a layer 14 (total 25 nm thickness) in which 18 cm −3 Al 0.25 Ga 0.75 N (15 nm thickness) is sandwiched between undoped Al 0.25 Ga 0.75 N (5 nm thickness) is prepared (FIG. 2A )). Here, the surface roughness needs to be 1 nm or less.
[0012]
Next, the semiconductor surface of the layer 14 is irradiated with an Ar ion beam in a high vacuum, the natural oxide film formed on the surface is removed, and the surface is activated (FIG. 2B). A 350 μm-thick GaAs substrate (001) 15 whose surface is activated is directly bonded by heating to room temperature or 400 ° C. or less (FIG. 2C). In this example, the GaAs substrate 15 is used, but an InP substrate may be used.
[0013]
Next, the back surface of the sapphire substrate 11 is mirror-polished to a thickness of 50 μm or less by a planar polishing method using diamond powder (FIG. 2 (d)).
[0014]
Next, the back surface of the polished sapphire substrate 11 is activated by irradiation with an Ar ion beam in a high vacuum, and the Si substrate 16 whose surface is activated similarly is heated to room temperature or 400 ° C. or lower to be bonded. (FIG. 2 (e)). In this example, the Si substrate 16 is used, but a diamond substrate or an AlN substrate having good thermal conductivity may also be used.
[0015]
Next, after polishing the GaAs substrate 15 to a thickness of 10 μm by a planar polishing method, only the GaAs substrate 15 is selectively etched away using a sulfuric acid-based etchant to expose the undoped Al 0.25 Ga 0.75 N layer of the layer 14 ( FIG. 2 (f)).
[0016]
Thereafter, Ti / Al is formed on the Al 0.25 Ga 0.75 N layer 14 to a thickness of 150/2000 by lift-off, and then RTA is performed at 600 ° C. for 30 seconds to form source and drain electrodes (FIG. 2 (g) ).
[0017]
Next, after patterning the active region of the element with a photoresist, element isolation is performed by ICP dry etching using Cl 2 gas (FIG. 2 (h)).
[0018]
Thereafter, Ni / Au is formed to a thickness of 200/2000 by the lift-off method and brought into Schottky contact with the undoped Al 0.25 Ga 0.75 N layer of the layer 14 to form the gate electrode 18 (FIG. 2 (i)).
[0019]
Finally, dicing is performed to complete a GaN-based semiconductor element (HFET in this example) (FIG. 2 (j)).
[0020]
As described above, in the first embodiment, the sapphire substrate 11 is thinned, and the Si substrate 16, diamond substrate, AlN substrate or the like (second semiconductor substrate) having a good thermal conductivity is bonded to the back surface thereof. Conductivity can be improved, and high current density and high output can be realized. The GaAs substrate 15 and the InP substrate (first semiconductor substrate) function as a support substrate when the Si substrate, diamond substrate, and AlN substrate (second semiconductor substrate) are joined after the sapphire substrate 11 is thinned. . The GaAs substrate and InP substrate (first semiconductor substrate) are selectively removed by etching selectively with respect to a GaN-based semiconductor material, a sapphire substrate, a Si substrate, a diamond substrate, an AlN substrate, and the like. Moreover, since the sapphire substrate used as the substrate for epitaxial growth of the GaN-based semiconductor layer can be easily increased in size, it can be realized at a low price due to the mass production effect.
[0021]
[Embodiment 2]
FIG. 3 is a cross-sectional view of a GaN-based semiconductor device according to the second embodiment, and FIG. 4 is an explanatory view of the method for manufacturing the semiconductor device. First, a low temperature (LT) GaN buffer layer 22 is deposited on a sapphire substrate (0001) 21 having a thickness of 330 μm by, for example, MOCVD, then an undoped GaN layer 23 is deposited to a thickness of 2.5 μm, and an impurity concentration of 5 × A semiconductor substrate on which a layer 24 (total 25 nm thickness) in which 10 18 cm −3 Al 0.25 Ga 0.75 N (15 nm thickness) is sandwiched between undoped Al 0.25 Ga 0.75 N (5 nm thickness) is prepared (FIG. 4 ( a)). Here, the surface roughness needs to be 1 nm or less.
[0022]
Next, the semiconductor surface of the layer 24 is irradiated with an Ar ion beam in a high vacuum, the natural oxide film formed on the surface is removed, and the surface is activated (FIG. 4B). A GaAs substrate (001) 25 having a thickness of 350 μm whose surface is activated is directly bonded by heating to room temperature or 400 ° C. or less (FIG. 4C). As in the previous example, the GaAs substrate 25 is used here, but an InP substrate may be used.
[0023]
Next, a YAG laser with a beam diameter of 7 mm and a wavelength of 355 nm is irradiated from the sapphire substrate 21 side to peel off the sapphire substrate 21 (Jpn J. Appl. Phys. Vol. 38 L217 1999) (FIG. 2 (d)).
[0024]
Next, the surface of the peeled GaN layer 23 is activated by hydrogen plasma treatment in a high vacuum, and the Si substrate 26 having the surface activated in the same manner is heated to room temperature or 400 ° C. or lower to be bonded (FIG. 2 (e)). Similar to the previous example, the Si substrate 26 is used here, but a diamond substrate or an AlN substrate having good thermal conductivity may also be used.
[0025]
Next, after polishing the GaAs substrate 25 to 10 μm by a planar polishing method, only GaAs is selectively etched away using a sulfuric acid-based etchant to expose the undoped Al 0.25 Ga 0.75 N layer of the layer 24 (FIG. 4 ( f)).
[0026]
Thereafter, a semiconductor element (HFET) is completed by the same manufacturing method as that of the first embodiment (FIGS. 4G to 4J).
[0027]
As described above, in the second embodiment, the sapphire substrate 21 is removed and the Si substrate 26, diamond substrate, AlN substrate or the like (second semiconductor substrate) having good thermal conductivity is joined instead. Conductivity can be improved, and high current density and high output can be realized. The GaAs substrate 25 and the InP substrate (first semiconductor substrate) function as a support substrate when the Si substrate, diamond substrate, and AlN substrate (second semiconductor substrate) are bonded after the sapphire substrate 21 is removed by etching. The GaAs substrate and InP substrate (first semiconductor substrate) are selectively removed by etching selectively with respect to a GaN-based semiconductor material, a sapphire substrate, a Si substrate, a diamond substrate, an AlN substrate, and the like. Moreover, since the sapphire substrate used as the substrate for epitaxial growth of the GaN-based semiconductor layer can be easily increased in size, it can be realized at a low price due to the mass production effect.
[0028]
【The invention's effect】
As described above, the GaN-based semiconductor device of the present invention has a thin sapphire substrate and a second semiconductor substrate such as a Si substrate, a diamond substrate, or an AlN substrate having good thermal conductivity is joined thereto, or Since the sapphire substrate is removed and a similar second semiconductor substrate is joined instead of this, the thermal conductivity of the entire substrate can be improved, and the thermal resistance can be greatly reduced compared to the prior art. Achieving high current density and high output. In addition, a method for manufacturing a semiconductor device that can be manufactured at low cost can be provided by the mass production effect of the sapphire substrate having a large diameter.
[Brief description of the drawings]
1 is a cross-sectional view of a GaN-based semiconductor device according to Embodiment 1. FIG.
2 is a diagram illustrating a method for manufacturing the semiconductor element of FIG. 1. FIG.
3 is a cross-sectional view of a GaN-based semiconductor element according to Embodiment 2. FIG.
4 is a diagram illustrating a method for manufacturing the semiconductor element of FIG. 2; FIG.
FIG. 5 is a cross-sectional view of a conventional GaN-based semiconductor element.
[Explanation of symbols]
11: sapphire substrate, 12: low-temperature GaN layer, 13: undoped GaN layer, 14: Al 0.25 Ga 0.75 N layer, 15: GaAs substrate, 16: Si substrate, 17: source and drain electrodes, 18: gate electrode 21: sapphire Substrate, 22: Low-temperature GaN layer, 23: Undoped GaN layer, 24: Al 0.25 Ga 0.75 N layer, 25: GaAs substrate, 26: Si substrate, 27: Source, drain electrode, 28: Gate electrode 31: Sapphire substrate, 32 : Low-temperature GaN layer, 33: Undoped GaN layer, 34: Al 0.25 Ga 0.75 N layer, 35: Source, drain electrode, 36: Gate electrode

Claims (5)

(1)サファイア基板上に少なくともGaN層を含む複数の半導体層を形成し、該複数の半導体層上に第1の半導体基板を接合する工程と、
(2)前記サファイア基板を平面研磨法により薄膜化する工程と、
(3)平面研磨された前記サファイア基板上に第2の半導体基板を接合する工程と、
(4)前記第1の半導体基板を平面研磨法により薄膜化した後、化学的なエッチングにより選択的に除去する工程と、
(5)前記複数の半導体層上に半導体素子を形成する工程と、
を含むことを特徴とする半導体装置の製造方法。
(1) forming a plurality of semiconductor layers including at least a GaN layer on a sapphire substrate, and bonding the first semiconductor substrate on the plurality of semiconductor layers;
(2) a step of thinning the sapphire substrate by a planar polishing method;
(3) a step of bonding a second semiconductor substrate onto the sapphire substrate that has been polished;
(4) A step of selectively removing the first semiconductor substrate by chemical etching after thinning it by a planar polishing method;
(5) forming a semiconductor element on the plurality of semiconductor layers;
A method for manufacturing a semiconductor device, comprising:
(1)サファイア基板上に少なくともGaN層を含む複数の半導体層を形成し、該複数の半導体層上に第1の半導体基板を接合する工程と、
(2)前記サファイア基板側からレーザ光を照射して前記複数の半導体層から該サファイア基板を剥離する工程と、
(3)前記サファイア基板の剥離により大気中に露出した前記複数の半導体層上に第2の半導体基板を接合する工程と、
(4)前記第1の半導体基板を平面研磨法により薄膜化した後、化学的なエッチングにより選択的に除去する工程と、
(5)前記複数の半導体層上に半導体素子を形成する工程と、
を含むことを特徴とする半導体装置の製造方法。
(1) forming a plurality of semiconductor layers including at least a GaN layer on a sapphire substrate, and bonding the first semiconductor substrate on the plurality of semiconductor layers;
(2) irradiating a laser beam from the sapphire substrate side and peeling the sapphire substrate from the plurality of semiconductor layers;
(3) bonding a second semiconductor substrate onto the plurality of semiconductor layers exposed to the atmosphere by peeling off the sapphire substrate;
(4) A step of selectively removing the first semiconductor substrate by chemical etching after thinning it by a planar polishing method;
(5) forming a semiconductor element on the plurality of semiconductor layers;
A method for manufacturing a semiconductor device, comprising:
前記第1の半導体基板はGaAsまたはInP基板であり、前記第2の半導体基板はSi、ダイアモンドまたはAlN基板であることを特徴とする請求項1又は2に記載の半導体装置の製造方法。  3. The method of manufacturing a semiconductor device according to claim 1, wherein the first semiconductor substrate is a GaAs or InP substrate, and the second semiconductor substrate is a Si, diamond, or AlN substrate. 前記第(1)の工程は、前記第1の半導体基板および前記半導体層の表面を、前記第(3)の工程は、前記第2の半導体基板および平面研磨された前記サファイア基板の表面を、それぞれ高真空中でのイオン衝撃により活性化し、室温若しくは加熱した状態で活性な表面を相手側に接触させることにより半導体接合を行うことを特徴とする請求項1記載の半導体装置の製造方法。The first step (1) includes the surface of the first semiconductor substrate and the semiconductor layer, and the third step (3) includes the surface of the second semiconductor substrate and the surface-polished sapphire substrate. respectively by Rikatsu activatable to ion bombardment in a high vacuum, according to claim 1 Symbol mounting of the semiconductor device and performing semiconductor junction by contacting the active surface while at room temperature or heated to the other side Production method. 前記第(1)の工程は、前記第1の半導体基板および前記半導体層の表面を、前記第(3)の工程は、前記第2の半導体基板および大気中に露出した前記半導体層の表面を、それぞれ高真空中でのイオン衝撃により活性化し、室温若しくは加熱した状態で活性な表面を相手側に接触させることにより半導体接合を行うことを特徴とする請求項2記載の半導体装置の製造方法。  The step (1) includes the surfaces of the first semiconductor substrate and the semiconductor layer, and the step (3) includes the surface of the second semiconductor substrate and the semiconductor layer exposed to the atmosphere. 3. The method of manufacturing a semiconductor device according to claim 2, wherein each of the semiconductor devices is activated by ion bombardment in a high vacuum, and a semiconductor surface is joined by bringing the active surface into contact with the other side at room temperature or in a heated state.
JP2002263772A 2002-09-10 2002-09-10 Manufacturing method of semiconductor device Expired - Fee Related JP4381666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263772A JP4381666B2 (en) 2002-09-10 2002-09-10 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263772A JP4381666B2 (en) 2002-09-10 2002-09-10 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2004103833A JP2004103833A (en) 2004-04-02
JP4381666B2 true JP4381666B2 (en) 2009-12-09

Family

ID=32263400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263772A Expired - Fee Related JP4381666B2 (en) 2002-09-10 2002-09-10 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4381666B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4225510B2 (en) * 2005-07-06 2009-02-18 昭和電工株式会社 Compound semiconductor light emitting diode and method for manufacturing the same
JP2007332012A (en) * 2006-06-19 2007-12-27 Hitachi Cable Ltd Fabrication process of semiconductor wafer
US7989261B2 (en) * 2008-12-22 2011-08-02 Raytheon Company Fabricating a gallium nitride device with a diamond layer
KR101984698B1 (en) 2012-01-11 2019-05-31 삼성전자주식회사 Substrate structure, semiconductor device fabricated from the same and fabricating method thereof
CN106784073A (en) * 2016-12-29 2017-05-31 苏州爱彼光电材料有限公司 Electro-optical device
CN106601840A (en) * 2016-12-30 2017-04-26 苏州爱彼光电材料有限公司 Photoelectric device

Also Published As

Publication number Publication date
JP2004103833A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP5355888B2 (en) Method for fabricating a nitride-based transistor having a cap layer and a buried gate
JP4871973B2 (en) Semiconductor thin film element manufacturing method, semiconductor wafer, and semiconductor thin film element
US20090078943A1 (en) Nitride semiconductor device and manufacturing method thereof
WO2018016350A1 (en) Semiconductor substrate and method for producing same
JP5297806B2 (en) Manufacture of group III nitride semiconductor devices
TW200539264A (en) Methods of fabricating nitride-based transistors having regrown ohmic contact regions and nitride-based transistors having regrown ohmic contact regions
TW201230149A (en) Semiconductor device and its fabricating method
JP5202897B2 (en) Field effect transistor and manufacturing method thereof
JP4906023B2 (en) GaN-based semiconductor device
CN108598036B (en) Method for manufacturing diamond-based gallium nitride device
WO2020149186A1 (en) Method for fabricating field-effect transistor
JP7433370B2 (en) Composite substrate and its manufacturing method, semiconductor device, and electronic equipment
JP4381666B2 (en) Manufacturing method of semiconductor device
JP7052503B2 (en) Transistor manufacturing method
JP6348451B2 (en) Heterojunction bipolar transistor
CN108847392B (en) Buddha's warrior attendant ground mass gallium nitride device manufacturing method
JP4336071B2 (en) Semiconductor device with excellent heat dissipation
CN112530803B (en) Preparation method of GaN-based HEMT device
JP2012064663A (en) Nitride semiconductor device and method of manufacturing the same
CN109037065A (en) Semiconductor devices and its manufacturing method
JP2010087376A (en) Manufacturing method of semiconductor device including semiconductor laminate
JP2007329154A (en) Method of manufacturing nitride semiconductor device
CN111223927B (en) GaN-diamond-Si semiconductor structure, device and preparation method
JP2016046459A (en) Field-effect transistor and method for manufacturing the same
CN116564811A (en) Gallium nitride switching device, preparation method of power amplifier and corresponding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151002

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees