JP4380926B2 - Auto handler for COF - Google Patents

Auto handler for COF Download PDF

Info

Publication number
JP4380926B2
JP4380926B2 JP2001020478A JP2001020478A JP4380926B2 JP 4380926 B2 JP4380926 B2 JP 4380926B2 JP 2001020478 A JP2001020478 A JP 2001020478A JP 2001020478 A JP2001020478 A JP 2001020478A JP 4380926 B2 JP4380926 B2 JP 4380926B2
Authority
JP
Japan
Prior art keywords
cof
pusher
imaging
light
illumination device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001020478A
Other languages
Japanese (ja)
Other versions
JP2002228712A (en
Inventor
光弘 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2001020478A priority Critical patent/JP4380926B2/en
Priority to TW090131729A priority patent/TW571376B/en
Priority to KR1020020003530A priority patent/KR100622791B1/en
Publication of JP2002228712A publication Critical patent/JP2002228712A/en
Application granted granted Critical
Publication of JP4380926B2 publication Critical patent/JP4380926B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2893Handling, conveying or loading, e.g. belts, boats, vacuum fingers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/001Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8812Diffuse illumination, e.g. "sky"

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、COF(Chip on film)を試験・分類するオートハンドラに関する。
【0002】
【従来の技術】
COF用オートハンドラは、周知のTAB(Tape Automated Bonding)用オートハンドラと同様、テープ上に実装したICデバイスを搬送し、ICテスタからの分類信号に従って、ICデバイスを、例えば、良品、不良品に分類する装置である。
ここで、COFは、従来のTABと比較し、下記の特徴を備えている。
(1)TABのテープ厚さは75um以上であったのに対し、COFは、テープの厚さが40um以下で薄く半透明なものがある。
(2)TABではパターン裏面よりの実装が主流であったのに対し、COFは、ICチップ実装とパターン面が同一である。
(3)TABでは折り曲げ窓での短絡があったのに対し、COFは、折り曲げ用の窓が無く、裏面での電気的な短絡がない。
このような特徴を備えるCOFは、例えば、LCD(液晶ディスプレイ)の駆動用IC等に利用されている。
【0003】
図4はCOFの一般な構成例を示したもので、1はCOF、1aはリード、1bはICチップ、1cはテストパッド、1dはレジスト、1eは位置決めマークである。
COF1において、リード1aでICチップ1bとテストパッド1cが電気的接続され、ICチップ1bの周辺には、リード1aとICチップ1bを保護するためのレジスト1dと位置決めマーク1eが形成されている。
【0004】
図5は従来のCOF用オートハンドラと撮像装置及び照明装置の概略構成を正面から示したもので、2はプッシャー(測定部)、2aはプッシャープレート、3はプローブカード、4はテストヘッド、4aは穴部、5はカメラユニット(撮像装置)、6は照明装置、11は供給リール、12は収容リール、13と14はスプロケット、15はパンチ(分類部)である。
このCOF用オートハンドラは、具体的には、COF1を供給リール11から測定部(プッシャー)2、分類部(パンチ)15に搬送し、収容リール12まで搬送して、実装したICデバイス(ICチップ1b)を分類する。例えば、不良品はパンチ15による穴あけ処理により分類される。
なお、供給リール11及び収容リール12の近傍において、COF1が一定以上たるむと、図示しない光センサにより検出され、それぞれスプロケット13・14が必要に応じ駆動されることで、COF1の一定以上のたるみが取り除かれる。
【0005】
そして、測定部(プッシャー)2において、COF1はプローブカード3に遮られることなく照明装置6により照明され、その画像がカメラユニット5により撮像される。
ここで、プッシャープレート2aは、COF1の裏面に密着し、COF1を平坦に保持している。また、カメラユニット5及び照明装置6は、プッシャー2に対しテストヘッド4の対向側に配置されており、テストヘッド4の中央の穴部4aを通して照明・撮像される。すなわち、COF1に対してほぼ平行となるように配置されたカメラユニット5によって、照明装置6により照射されたCOF1がテストヘッド4中央の穴部4aを通してCOF1表面の位置決めマーク1eやテストパッド1c、リード1aが撮像される。
撮像後は、図示しない画像処理装置において、予め登録されている位置決めマーク1eの画像データと、現在の画像データの位置決めマーク1eの位置関係を計算し、その差分だけプッシャー2を動かし、プローブカード3とCOF1を位置決めする。
【0006】
【発明が解決しようとする課題】
しかし、照明時において、半透明のCOF1は光を透過するため、その表面と裏面のプッシャープレート2aで反射する光が交錯し、図6に示したように、乱反射が発生する。この乱反射の状態を撮像すると、COF1のパターンは、その裏面側のプッシャープレート2aの表面と混じりあった状態となり、目視でも確認できない状態となる。
従って、画像処理装置においても、特定のパターンの登録、検出ができなかった。
【0007】
本発明の課題は、オートハンドラにおいて、COF撮像の際に、光の反射量を押さえ、更には、乱反射を防止し、画像処理可能な安定したCOFの画像が取り込めるようにすることである。
【0008】
【課題を解決するための手段】
以上の課題を解決すべく請求項1記載の発明は、
例えば、図1及び図2に示すように、
半透明のCOF1を供給リール11からプッシャー2を経て収容リール12まで搬送し、COF1に対しプッシャー2と反対側に配置され、COF1を照射する撮像用照明装置7を備え、COF1に対しプッシャー2と反対側に配置され、COF1を撮像する撮像装置5を有し、撮像装置5によりCOF表面を撮像し、プッシャー2を動かしてプローブカード3とCOF1を位置決めするCOF用オートハンドラにおいて、
プッシャー2とCOF1との間に浮き部分が生じた場合においても、鮮明なCOF画像が得られるようにするために、前記プッシャー2の前記COF1の背面に当接する面を、前記撮像用照明装置7から照射され、COF1を通過した光を吸収する光吸収色部2bとしたことを特徴とする。
【0009】
請求項1記載の発明によれば、オートハンドラのプッシャーにおいて、撮像時の照明光がCOF背面に当接する面の光吸収色となる黒色の表面部で吸収されるので、プッシャー表面での反射光が微小なものとなる。
従って、光の反射量を押さえて、画像処理可能な安定したCOF画像が取り込めるようになる。
【0010】
請求項2記載の発明は、
請求項1記載のCOF用オートハンドラであって、
前記撮像用照明装置7は前記COF1の表面と照射がなす角が鋭角な照明部7bを有することを特徴とする。
【0011】
請求項2記載の発明によれば、請求項1記載の撮像用照明装置による鋭角な入射角をもった照明光がCOF表面とプッシャー表面とで鋭角な斜め方向に抜けるので、COF表面及びプッシャー表面での反射光は撮像装置には直接戻らない。
従って、光の反射量を押さえて、画像処理可能な安定したCOF画像が取り込めるようになる。
【0012】
請求項3記載の発明は、
請求項2記載のCOF用オートハンドラであって、
前記撮像用照明装置7は散乱光を照射することを特徴とする。
【0013】
請求項3記載の発明によれば、請求項2記載の撮像用照明装置による散乱光の照射によって、乱反射を防止でき、より安定したCOF画像が取り込める。
【0014】
請求項4記載の発明は、
請求項1〜3のいずれかに記載のCOF用オートハンドラであって、
前記光吸収色部は黒色メッキが施されていることを特徴とする。
【0015】
請求項5記載の発明は、
請求項1〜4のいずれかに記載のCOF用オートハンドラであって、
前記プッシャーは前記COFを平坦に密着保持することを特徴とする。
【0016】
請求項6記載の発明は、
請求項1〜5のいずれかに記載のCOF用オートハンドラであって、
前記COFは位置決めマークを有し、
前記COFに対し前記プッシャーと反対側に配置された撮像装置により前記位置決めマークを含んで前記COF表面を撮像し、
その位置決めマークを含んだ画像を取り込んだ画像処理装置において、予め登録されている位置決めマークの画像データと現在の画像データの位置決めマークの位置関係を計算し、
その位置決めマークの位置の差分だけ前記プッシャーを動かして、前記COFとその表面側に配置されたプローブカードの位置決めを行うことを特徴とする。
【0017】
【発明の実施の形態】
以下、図を参照して本発明の実施の形態を詳細に説明する。
まず、図1及び図2において、1はCOF、2はプッシャー(測定部)、2aはプッシャープレート、3はプローブカード、4はテストヘッド、4aは穴部、5はカメラユニット(撮像装置)、7は照明装置、11は供給リール、12は収容リール、13・14はスプロケット、15はパンチ(分類部)である。
本発明は、プッシャープレート2a及び照明装置7に変更を施したものである。
【0018】
すなわち、プッシャー2には、COF1の種類に応じて製作されたプッシャープレート2aが装着されている。
このプッシャープレート2aのCOF1の裏面に平坦に密着する部分は、例えば、黒色メッキが施された黒色表面部2bとなっている。すなわち、この黒色表面部2bは、光の反射を防止する光吸収機能を有している。
【0019】
そして、照明装置7は、プッシャー2に対しテストヘッド4の手前側に配置されており、例えば、LED照明のような散乱光を発する中央照明部7a及び側方照明部7bからなる。
これら中央照明部7a及び側方照明部7bは、図示のように、プローブカード3とテストヘッド4の間に配置され、プローブカード3に遮られない位置でCOF1を照射する。特に、中央照明部7aの両側の側方照明部7bは、COF1の表面と照射がなす角が浅い角度(鋭角)で照射する配置となっている。
【0020】
以上のようにCOF用オートハンドラにおいて、黒色表面部2bを有するプッシャープレート2aと、COF1の表面と照射がなす角が鋭角に照射する側方照明部7bを有する照明装置7とを備えたことで、測定部(プッシャー)2でのCOF撮像時に以下の作用効果が得られる。
測定部(プッシャー)2において、プッシャープレート2aの黒色表面部2bにより背面を平坦に密着保持されたCOF1が、照明装置7のLED照明のような散乱光により照射された状態で、カメラユニット5により良好に撮像される。
【0021】
すなわち、照明装置7の中央照明部7a及び側方照明部7bからそれぞれ照射された散乱光は、半透明のCOF1を通過してプッシャープレート2aに達するが、その黒色表面部2bで吸収される。このため、プッシャープレート2a表面での反射光は、図3に矢印で示したように、COF1表面のレジスト1d及び位置決めマーク1eでの反射光と同様、微小な反射光となる。
そして、側方照明部7bから照射された散乱光は、図3に矢印で示したように、COF1表面とプッシャープレート2a表面とで鋭角な斜め方向に抜け、プッシャープレート2a表面に対し直角方向のカメラユニット5には直接戻らない。
以上の結果、図3に小さな矢印で示したように、COF1表面の位置決めマーク1eで代表される光沢面で反射した散乱光のみがカメラユニット5に戻るだけとなる。
【0022】
従って、カメラユニット5によりCOF1表面の位置決めマーク1eを含んで撮像し、その位置決めマーク1eを含んだ画像を図示しない画像処理装置に取り込んで、乱反射が生じない鮮明な画像が得られる。
その結果、画像処理装置において、予め登録されている位置決めマーク1eの画像データと現在の画像データの位置決めマーク1eの位置関係を計算後、その差分だけプッシャー2を動かしてプローブカード3とCOF1を正確に位置決めできる。また、同様に、COF1のテストパッド1cとプローブカード3のプローブの初期の位置合わせも正確にできる。
【0023】
なお、プッシャープレート2aの黒色表面部(光吸収色部)2bの形成、照明装置7の散乱光用の光源、その側方照明部7bの配置角度等については、実施形態に限らず任意であることは勿論である。
【0024】
【発明の効果】
請求項1記載の発明によれば、COF背面に当接する面の光吸収色による黒色の表面部で照明光を吸収して、プッシャー表面での反射光を微小にできるため、光の反射量を押さえて安定したCOF画像の取り込みが可能になる。
請求項2記載の発明によれば、請求項1記載の発明により得られる効果に加え、COF表面とプッシャー表面で照明光を鋭角な斜め方向に反射させて、反射光を撮像装置に直接戻らなくできるため、光の反射量を押さえて安定したCOF画像の取り込みが可能になる。
請求項3記載の発明によれば、請求項2記載の発明により得られる効果に加え、撮像用照明装置による散乱光による照射により乱反射を防止して、より安定したCOF画像を撮像できる。
従って、本発明によれば、オートハンドラにおいて、乱反射が生じない鮮明なCOF画像を得て、プローブカードとCOFを正確に位置決めできる。
【図面の簡単な説明】
【図1】本発明を適用した一例としてのCOF用オートハンドラと撮像装置及び照明装置の概略構成を正面から見た模式図である。
【図2】図1の測定部及び照明装置部分の拡大図である。
【図3】図1及び図2の照明装置による照明光の反射状態を示した図である。
【図4】COFの一般な構成例を示した平面図である。
【図5】従来のCOF用オートハンドラと撮像装置及び照明装置の概略構成を正面から見た模式図である。
【図6】図5の照明装置による照明光の反射状態を示した図である。
【符号の説明】
1 COF
1a リード
1b ICチップ
1c テストパッド
1d レジスト
1e 位置決めマーク
2 プッシャー(測定部)
2a プッシャープレート
2b 黒色表面部(光吸収色部)
4 テストヘッド
4a 穴部
5 撮像装置
7 照明装置
7a 中央照明部
7b 側方照明部
11 供給リール
12 収容リール
15 パンチ(分類部)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an auto handler that tests and classifies COF (Chip on film).
[0002]
[Prior art]
Similar to the well-known TAB (Tape Automated Bonding) auto handler, the COF auto handler transports IC devices mounted on a tape, and converts the IC devices into, for example, good products and defective products according to the classification signal from the IC tester. It is a device to classify.
Here, the COF has the following characteristics as compared with the conventional TAB.
(1) The tape thickness of TAB was 75 um or more, whereas COF is thin and translucent with a tape thickness of 40 um or less.
(2) In TAB, mounting from the back side of the pattern was the mainstream, whereas in COF, the IC chip mounting and the pattern surface are the same.
(3) In TAB, there was a short circuit in the folding window, whereas in COF, there was no folding window and there was no electrical short circuit on the back surface.
The COF having such a feature is used in, for example, a driving IC for an LCD (liquid crystal display).
[0003]
FIG. 4 shows a general configuration example of the COF, where 1 is a COF, 1a is a lead, 1b is an IC chip, 1c is a test pad, 1d is a resist, and 1e is a positioning mark.
In the COF 1, the IC chip 1b and the test pad 1c are electrically connected by the lead 1a, and a resist 1d and a positioning mark 1e for protecting the lead 1a and the IC chip 1b are formed around the IC chip 1b.
[0004]
FIG. 5 shows a schematic configuration of a conventional COF auto-handler, imaging device and illumination device from the front. 2 is a pusher (measurement unit), 2a is a pusher plate, 3 is a probe card, 4 is a test head, 4a Is a hole portion, 5 is a camera unit (imaging device), 6 is an illumination device, 11 is a supply reel, 12 is a receiving reel, 13 and 14 are sprockets, and 15 is a punch (classification portion).
More specifically, this COF autohandler transports COF 1 from a supply reel 11 to a measurement unit (pusher) 2 and a classification unit (punch) 15, transports it to a storage reel 12, and mounts an IC device (IC chip). 1b) is classified. For example, defective products are classified by a punching process using the punch 15.
In the vicinity of the supply reel 11 and the receiving reel 12, if the COF 1 sags more than a certain value, it is detected by an optical sensor (not shown), and the sprockets 13 and 14 are driven as necessary, so that the COF 1 sags more than a certain value. Removed.
[0005]
In the measurement unit (pusher) 2, the COF 1 is illuminated by the illumination device 6 without being blocked by the probe card 3, and the image is captured by the camera unit 5.
Here, the pusher plate 2a is in close contact with the back surface of the COF 1 and holds the COF 1 flat. The camera unit 5 and the illumination device 6 are disposed on the opposite side of the test head 4 with respect to the pusher 2, and are illuminated and imaged through the central hole 4 a of the test head 4. That is, the COF 1 irradiated by the illuminating device 6 by the camera unit 5 arranged so as to be substantially parallel to the COF 1 passes through the hole 4a in the center of the test head 4 and the positioning marks 1e, test pads 1c, leads on the COF 1 surface. 1a is imaged.
After imaging, an image processing apparatus (not shown) calculates the positional relationship between the image data of the registration mark 1e registered in advance and the positioning mark 1e of the current image data, moves the pusher 2 by the difference, and moves the probe card 3 And COF1 are positioned.
[0006]
[Problems to be solved by the invention]
However, since the translucent COF 1 transmits light during illumination, the light reflected by the front and back pusher plates 2a intersects, and irregular reflection occurs as shown in FIG. When this irregular reflection state is imaged, the pattern of COF1 is mixed with the surface of the pusher plate 2a on the back side, and cannot be confirmed visually.
Therefore, the specific pattern cannot be registered and detected even in the image processing apparatus.
[0007]
SUMMARY OF THE INVENTION An object of the present invention is to suppress the amount of light reflection during COF imaging in an auto handler, and further to prevent irregular reflection so that a stable COF image capable of image processing can be captured.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the invention described in claim 1
For example, as shown in FIGS.
The translucent COF 1 is transported from the supply reel 11 through the pusher 2 to the receiving reel 12, and is provided on the opposite side of the pusher 2 with respect to the COF 1, and includes an imaging illumination device 7 that irradiates the COF 1. In the COF auto handler, which is disposed on the opposite side and has the imaging device 5 that images the COF 1, images the COF surface by the imaging device 5, and moves the pusher 2 to position the probe card 3 and the COF 1.
Even when a floating portion is generated between the pusher 2 and the COF 1, in order to obtain a clear COF image , the surface of the pusher 2 that is in contact with the back surface of the COF 1 is placed on the imaging illumination device 7. The light-absorbing color portion 2b absorbs the light that has been irradiated through and passes through the COF1.
[0009]
According to the invention of claim 1, wherein, in the pusher of the automatic handler, since the illumination light at the time of imaging is absorbed by the surface portion of the black as the light absorption color of surface abutting the COF back reflected light at the pusher surface Is very small.
Accordingly, it is possible to capture a stable COF image capable of image processing while suppressing the amount of reflected light.
[0010]
The invention according to claim 2
An auto handler for COF according to claim 1,
The imaging illumination device 7 includes an illumination unit 7b having an acute angle formed by irradiation with the surface of the COF1.
[0011]
According to the second aspect of the present invention, since the illumination light having an acute angle of incidence of the imaging illumination apparatus according to claim 1, wherein the exit at an acute angle oblique direction in the COF surface and pusher surface, COF surface and the pusher surface The reflected light does not return directly to the imaging device.
Accordingly, it is possible to capture a stable COF image capable of image processing while suppressing the amount of reflected light.
[0012]
The invention described in claim 3
An auto handler for COF according to claim 2,
The imaging illumination device 7 irradiates scattered light.
[0013]
According to the invention described in claim 3, irregular reflection can be prevented by irradiation of scattered light by the imaging illumination device according to claim 2, and a more stable COF image can be captured.
[0014]
The invention according to claim 4
The auto handler for COF according to any one of claims 1 to 3 ,
The light absorbing color portion is black-plated .
[0015]
The invention according to claim 5
An auto handler for COF according to any one of claims 1 to 4 ,
The pusher is characterized in that the COF is held in close contact with the flat surface .
[0016]
The invention described in claim 6
A COF auto handler according to any one of claims 1 to 5 ,
The COF has a positioning mark,
The COF surface including the positioning mark is imaged by an imaging device arranged on the opposite side of the pusher with respect to the COF,
In the image processing apparatus that captures the image including the positioning mark, calculate the positional relationship between the registration mark image data registered in advance and the current image data positioning mark,
The pusher is moved by the difference between the positions of the positioning marks to position the COF and the probe card disposed on the surface thereof.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 and 2, 1 is a COF, 2 is a pusher (measurement unit), 2a is a pusher plate, 3 is a probe card, 4 is a test head, 4a is a hole, 5 is a camera unit (imaging device), 7 is an illumination device, 11 is a supply reel, 12 is a receiving reel, 13 and 14 are sprockets, and 15 is a punch (classification unit).
In the present invention, the pusher plate 2a and the lighting device 7 are modified.
[0018]
In other words, the pusher plate 2 a manufactured according to the type of the COF 1 is attached to the pusher 2.
The portion of the pusher plate 2a that is in close contact with the back surface of the COF 1 is, for example, a black surface portion 2b that is black-plated. That is, the black surface portion 2b has a light absorbing function for preventing light reflection.
[0019]
And the illuminating device 7 is arrange | positioned in front of the test head 4 with respect to the pusher 2, and consists of the center illumination part 7a and the side illumination part 7b which emit scattered light like LED illumination, for example.
The central illumination unit 7a and the side illumination unit 7b are arranged between the probe card 3 and the test head 4 and irradiate the COF 1 at a position not blocked by the probe card 3 as illustrated. In particular, the side illumination units 7b on both sides of the central illumination unit 7a are arranged to irradiate at a shallow angle (acute angle) between the surface of the COF 1 and the irradiation .
[0020]
As described above, the COF auto handler includes the pusher plate 2a having the black surface portion 2b and the illumination device 7 having the side illumination portion 7b that irradiates the surface of the COF 1 with an acute angle. The following functions and effects can be obtained at the time of COF imaging at the measurement unit (pusher) 2.
In the measurement unit (pusher) 2, the COF 1 whose back surface is flatly held tightly by the black surface portion 2 b of the pusher plate 2 a is irradiated by scattered light such as LED illumination of the illumination device 7, and is irradiated by the camera unit 5. Good image is taken.
[0021]
That is, scattered light emitted from the central illumination unit 7a and the side illumination unit 7b of the illumination device 7 passes through the translucent COF 1 and reaches the pusher plate 2a, but is absorbed by the black surface portion 2b. For this reason, the reflected light on the surface of the pusher plate 2a becomes a minute reflected light like the reflected light on the resist 1d and the positioning mark 1e on the surface of the COF 1 as indicated by arrows in FIG.
Then, as shown by the arrows in FIG. 3, the scattered light emitted from the side illumination unit 7b passes through the COF1 surface and the pusher plate 2a surface in an acute oblique direction, and is perpendicular to the pusher plate 2a surface. It does not return directly to the camera unit 5.
As a result, as shown by the small arrows in FIG. 3, only the scattered light reflected by the glossy surface represented by the positioning mark 1e on the surface of the COF 1 is returned to the camera unit 5.
[0022]
Accordingly, the camera unit 5 captures an image including the positioning mark 1e on the surface of the COF 1, and an image including the positioning mark 1e is taken into an image processing device (not shown), thereby obtaining a clear image free from irregular reflection.
As a result, in the image processing apparatus, after calculating the positional relationship between the image data of the registration mark 1e registered in advance and the positioning mark 1e of the current image data, the pusher 2 is moved by the difference and the probe card 3 and the COF 1 are accurately set. Can be positioned. Similarly, the initial alignment of the test pad 1c of the COF 1 and the probe of the probe card 3 can be accurately performed.
[0023]
In addition, about formation of the black surface part (light absorption color part) 2b of the pusher plate 2a, the light source for the scattered light of the illuminating device 7, the arrangement | positioning angle of the side illumination part 7b, etc., it is arbitrary. Of course.
[0024]
【The invention's effect】
According to the first aspect of the present invention, the illumination light is absorbed by the black surface portion of the light absorptive color of the surface abutting on the COF back surface, and the reflected light on the pusher surface can be made minute. A stable COF image can be captured by pressing.
According to the second aspect of the invention, in addition to the effect obtained by the first aspect of the invention , the reflected light is not returned directly to the imaging device by reflecting the illumination light in an acute oblique direction on the COF surface and the pusher surface. Therefore, it is possible to capture a stable COF image while suppressing the amount of reflected light.
According to the invention described in claim 3, in addition to the effect obtained by the invention described in claim 2, irregular reflection can be prevented by irradiation with scattered light from the imaging illumination device, and a more stable COF image can be captured.
Therefore, according to the present invention, the auto handler can obtain a clear COF image in which irregular reflection does not occur, and can accurately position the probe card and the COF.
[Brief description of the drawings]
FIG. 1 is a schematic view of a schematic configuration of a COF autohandler, an imaging apparatus, and an illumination apparatus as an example to which the present invention is applied as viewed from the front.
FIG. 2 is an enlarged view of a measurement unit and a lighting device portion of FIG.
3 is a view showing a reflection state of illumination light by the illumination device of FIGS. 1 and 2. FIG.
FIG. 4 is a plan view showing a general configuration example of a COF.
FIG. 5 is a schematic view of a schematic configuration of a conventional COF auto handler, an imaging device, and an illumination device as viewed from the front.
6 is a view showing a reflection state of illumination light by the illumination device of FIG. 5. FIG.
[Explanation of symbols]
1 COF
1a Lead 1b IC chip 1c Test pad 1d Resist 1e Positioning mark 2 Pusher (measurement part)
2a Pusher plate 2b Black surface part (light absorption color part)
4 Test Head 4a Hole 5 Imaging Device 7 Illumination Device 7a Central Illumination Unit 7b Side Illumination Unit 11 Supply Reel 12 Storage Reel 15 Punch (Classification Unit)

Claims (6)

半透明のCOFを供給リールからプッシャーを経て収容リールまで搬送し、COFに対しプッシャーと反対側に配置され、COFを照射する撮像用照明装置を備え、COFに対しプッシャーと反対側に配置され、COFを撮像する撮像装置を有し、撮像装置によりCOF表面を撮像し、プッシャーを動かしてプローブカードとCOFを位置決めするCOF用オートハンドラにおいて、
前記プッシャーと前記COFとの間に浮き部分が生じた場合においても、鮮明なCOF画像が得られるようにするために、前記プッシャーの前記COFの背面に当接する面を、前記撮像用照明装置から照射され、COFを通過した光を吸収する光吸収色部としたことを特徴とするCOF用オートハンドラ。
The translucent COF is transported from the supply reel to the receiving reel through the pusher, and is disposed on the opposite side of the pusher with respect to the COF, and includes an imaging illumination device that irradiates the COF, and is disposed on the opposite side of the pusher with respect to the COF . In a COF auto handler that has an imaging device that images a COF, images the surface of the COF by the imaging device, and moves the pusher to position the probe card and the COF.
Even when a floating portion is generated between the pusher and the COF, in order to obtain a clear COF image, the surface of the pusher that is in contact with the back surface of the COF is separated from the imaging illumination device. An auto handler for COF, characterized in that a light-absorbing color portion that absorbs light that has been irradiated and passed through the COF is formed.
前記撮像用照明装置は前記COFの表面と照射がなす角が鋭角な照明部を有することを特徴とする請求項1記載のCOF用オートハンドラ。2. The COF auto handler according to claim 1, wherein the imaging illumination device includes an illumination unit that forms an acute angle with the surface of the COF. 前記撮像用照明装置は散乱光を照射することを特徴とする請求項2記載のCOF用オートハンドラ。  3. The COF autohandler according to claim 2, wherein the imaging illumination device irradiates scattered light. 前記光吸収色部は黒色メッキが施されていることを特徴とする請求項1〜3のいずれかに記載のCOF用オードハンドラ。  The COF aud handler according to any one of claims 1 to 3, wherein the light absorption color portion is black-plated. 前記プッシャーは前記COFを平坦に密着保持することを特徴とする請求項1〜4のいずれかに記載のCOF用オートハンドラ。  The COF autohandler according to any one of claims 1 to 4, wherein the pusher holds the COF flatly and closely. 前記COFは位置決めマークを有し、
前記COFに対し前記プッシャーと反対側に配置された撮像装置により前記位置決めマークを含んで前記COF表面を撮像し、
その位置決めマークを含んだ画像を取り込んだ画像処理装置において、予め登録されている位置決めマークの画像データと現在の画像データの位置決めマークの位置関係を計算し、
その位置決めマークの位置の差分だけ前記プッシャーを動かして、前記COFとその表面側に配置されたプローブカードの位置決めを行うことを特徴とする請求項1〜5のいずれかに記載のCOF用オートハンドラ。
The COF has a positioning mark,
The COF surface including the positioning mark is imaged by an imaging device arranged on the opposite side of the pusher with respect to the COF,
In the image processing apparatus that captures the image including the positioning mark, calculate the positional relationship between the registration mark image data registered in advance and the current image data positioning mark,
6. The COF auto-handler according to claim 1, wherein the pusher is moved by the difference between the positions of the positioning marks to position the COF and the probe card disposed on the surface thereof. .
JP2001020478A 2001-01-29 2001-01-29 Auto handler for COF Expired - Lifetime JP4380926B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001020478A JP4380926B2 (en) 2001-01-29 2001-01-29 Auto handler for COF
TW090131729A TW571376B (en) 2001-01-29 2001-12-20 Auto handler for COF and lighting system and method for COF image pickup
KR1020020003530A KR100622791B1 (en) 2001-01-29 2002-01-22 Autohandler for cof and lighting device for cof photographing and method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020478A JP4380926B2 (en) 2001-01-29 2001-01-29 Auto handler for COF

Publications (2)

Publication Number Publication Date
JP2002228712A JP2002228712A (en) 2002-08-14
JP4380926B2 true JP4380926B2 (en) 2009-12-09

Family

ID=18886178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020478A Expired - Lifetime JP4380926B2 (en) 2001-01-29 2001-01-29 Auto handler for COF

Country Status (3)

Country Link
JP (1) JP4380926B2 (en)
KR (1) KR100622791B1 (en)
TW (1) TW571376B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100751584B1 (en) * 2003-02-21 2007-08-27 니혼 하츠쵸 가부시키가이샤 Chip-mounting tape inspecting method and probe unit used for inspection
JPWO2008132934A1 (en) * 2007-04-19 2010-07-22 株式会社アドバンテスト TCP handling equipment
WO2008132935A1 (en) * 2007-04-19 2008-11-06 Advantest Corporation Tcp handling apparatus

Also Published As

Publication number Publication date
KR20020063503A (en) 2002-08-03
JP2002228712A (en) 2002-08-14
KR100622791B1 (en) 2006-09-13
TW571376B (en) 2004-01-11

Similar Documents

Publication Publication Date Title
KR100926872B1 (en) Pattern checker
US9047526B2 (en) Reading device
KR100578560B1 (en) Automated optical inspection machine
TW200842347A (en) Pattern checking device and pattern checking mehtod
JP3617547B2 (en) Method and processing apparatus for observing wiring pattern
TW201621481A (en) Position determining device, position determining method, lithographic apparatus, and method for manufacturing object
KR100671770B1 (en) Pattern inspection device
JP4380926B2 (en) Auto handler for COF
KR100618254B1 (en) Apparatus and method for inspecting film carrier tape for mounting electronic component
JP2000088542A (en) Apparatus and method for inspecting soldering
TW201336760A (en) Examination device of mounting machine
JP3680704B2 (en) Image recognition method for recognition mark in electronic component mounting apparatus
JP2006317391A (en) Slit light irradiation device
JP3886668B2 (en) Base film tape inspection device for film carrier
TWI272379B (en) Pattern checking method and device
JP3665495B2 (en) Inspection device and method for cream solder printing machine and printing machine having the inspection device
TWI307769B (en) Apparatus for inspecting leads and method thereof
JPH03192800A (en) Component mounting recognition method for printed board
JP3084926B2 (en) Chip observation device
JPS5934154Y2 (en) Printed board
JP2998420B2 (en) Chip observation device
JP2000249745A (en) Recognition of needle point of contact probe
JPWO2008132935A1 (en) TCP handling equipment
JP2000235046A (en) Contact probe and probe device
JP2781022B2 (en) Solder appearance inspection device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070816

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070921

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4380926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term