JP4378528B2 - Fluidized bed furnace and its incineration method. - Google Patents

Fluidized bed furnace and its incineration method. Download PDF

Info

Publication number
JP4378528B2
JP4378528B2 JP2004081081A JP2004081081A JP4378528B2 JP 4378528 B2 JP4378528 B2 JP 4378528B2 JP 2004081081 A JP2004081081 A JP 2004081081A JP 2004081081 A JP2004081081 A JP 2004081081A JP 4378528 B2 JP4378528 B2 JP 4378528B2
Authority
JP
Japan
Prior art keywords
fluidized bed
bed furnace
fluidized
hearth
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004081081A
Other languages
Japanese (ja)
Other versions
JP2005265345A (en
Inventor
美洋 岡田
匠 山田
孝之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Eco Systems Co Ltd filed Critical Dowa Eco Systems Co Ltd
Priority to JP2004081081A priority Critical patent/JP4378528B2/en
Publication of JP2005265345A publication Critical patent/JP2005265345A/en
Application granted granted Critical
Publication of JP4378528B2 publication Critical patent/JP4378528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E20/344

Landscapes

  • Air Supply (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Description

本発明は,廃棄物などを焼却処理する流動床炉とその焼却方法に関する。   The present invention relates to a fluidized bed furnace for incinerating wastes and the like and an incineration method thereof.

廃棄物などを焼却処理する焼却炉の一つとして,炉床の下方から流動床炉内にガスを吹込むことにより,流動床炉内において廃棄物などの原料を流動砂によって攪拌させながら焼却処理を行う流動床炉が知られている。特に最近では,廃棄自動車を粉砕したシュレッダーダスト(ASR:Automobile
Shredder Residue)の焼却処理に流動床炉が注目されている。
As one of the incinerators that incinerate waste, etc., by injecting gas into the fluidized bed furnace from the bottom of the hearth, incineration while stirring the raw materials such as waste with fluidized sand in the fluidized bed furnace Fluidized bed furnaces that perform are known. Particularly recently, shredder dust (ASR: Automobile) that crushed discarded automobiles.
Shredder Residue) is attracting attention as a fluidized bed furnace.

だが,シュレッダーダストといっても,その成分には,金属,ガラス等の無機物,プラスチック,ウレタン,油などの有機物が混在し,カロリーはまちまちである。また特に近年は,廃棄物中のプラスチックが急増しているが,そのような廃棄物は,投入と同時に炉内で殆ど分解され,フリーボード(上部燃焼室)へ一気にガスが放出されることになる。従来,このようなプラスチックなどが急増した近年の廃棄物に対処するために,特開平8−219425号公報には,焼却炉内に投入された廃棄物を先ず低温の流動層で熱分解させて,未燃ガスをフリーボードに放出させ,残りを高温の流動層で燃焼させる手段が示されている。この特開平8−219425号公報に示された焼却炉では,低温の流動層において廃棄物を燃やさずに熱分解させるために,低温の流動層に吹込む空気の吹込み量を少なくし,空気不足の状態で熱分解させるようにしている。   However, shredder dust is mixed with inorganic materials such as metal and glass, and organic materials such as plastic, urethane, and oil, and its calories vary. In recent years, plastics in wastes have been increasing rapidly. However, such wastes are almost decomposed in the furnace at the same time as being charged, and gas is released into the freeboard (upper combustion chamber) at once. Become. Conventionally, in order to cope with recent wastes such as plastics rapidly increased, Japanese Patent Laid-Open No. 8-219425 discloses that wastes put into an incinerator are first thermally decomposed in a low-temperature fluidized bed. , A means for discharging unburned gas to a freeboard and burning the rest in a high-temperature fluidized bed is shown. In the incinerator disclosed in JP-A-8-219425, in order to thermally decompose waste in a low-temperature fluidized bed without burning it, the amount of air blown into the low-temperature fluidized bed is reduced. Thermal decomposition is performed in a shortage state.

特開平8−219425号公報JP-A-8-219425

しかしながら,吹込み量を少なくすると流動砂の流動化が不十分になり,流動床炉内に投入された廃棄物が充分に攪拌されず,燃焼が不安定になってしまう心配がある。また流動不良のため,焼却後に残る不燃物の排出も不完全となり,炉内に不燃物が残ってしまう心配もある。これに対処するため,廃棄物の投入を減らすことも考えられるが,そうすると処理量能力が落ちることになるので,廃棄物の投入量はなるべく一定であることが望ましい。   However, if the blowing amount is reduced, fluidization of the fluidized sand becomes insufficient, and the waste thrown into the fluidized bed furnace is not sufficiently stirred, which may cause unstable combustion. In addition, due to poor flow, the discharge of incombustible materials after incineration is incomplete, and there is a concern that incombustible materials may remain in the furnace. In order to cope with this, it is conceivable to reduce the amount of waste input. However, if this is done, the throughput capacity will be reduced, so it is desirable that the amount of waste input be as constant as possible.

従って本発明の目的は,特にプラスチックなどが急増した近年のシュレーダーダストのような焼却原料でも安定して焼却処理できる流動床炉とその焼却方法を提供することにある。   Accordingly, it is an object of the present invention to provide a fluidized bed furnace capable of stably incinerating even an incineration raw material such as recent Schrader dust, in which plastics have increased rapidly, and an incineration method therefor.

本発明によれば,傾斜して設けられた炉床に,流動砂を流動化させるためのガスの吹込み部が形成された流動床炉であって,前記吹込み部を,炉床の傾斜する方向に沿って複数に分割して設け,各吹込み部から流動床炉内に吹き込むガス中の酸素量を可変に構成し,流動床炉の前面には中央の投入口と両側の投入口が開口し,中央の投入口から流動床炉内に供給される流動砂と焼却原料の供給量と,両側の投入口から流動床炉内に供給される流動砂と焼却原料の供給量をそれぞれ任意に設定できることを特徴とする,流動床炉が提供される。 According to the present invention, there is provided a fluidized bed furnace in which a gas blowing portion for fluidizing fluidized sand is formed on a hearth provided in an inclined manner, and the blowing portion is disposed on a slope of the hearth. The gas is blown into the fluidized bed furnace from each blowing section, and the amount of oxygen in the gas is variable. The center inlet and the inlets on both sides are located on the front of the fluidized bed furnace. The flow rate of fluidized sand and incinerated raw material supplied from the central inlet to the fluidized bed furnace, and the amount of fluidized sand and incinerated raw material supplied to the fluidized bed furnace from the inlets on both sides are respectively shown. A fluidized bed furnace is provided, characterized in that it can be set arbitrarily .

前記各吹込み部に,空気と流動床炉から排気された排ガスの混合ガスを供給する供給経路を接続し,前記供給経路から各吹込み部に供給される混合ガスにおける,空気と排ガスの混合比を可変に構成することが望ましい。   A supply path for supplying a mixed gas of air and exhaust gas exhausted from a fluidized bed furnace is connected to each of the blowing parts, and mixing of air and exhaust gas in the mixed gas supplied to each of the blowing parts from the supply path It is desirable to make the ratio variable.

また,焼却原料を流動床炉内に投入する投入口を,前記炉床の高所側の上方に配置し,焼却後に残る不燃物を流動砂と共に流動床炉外に取り出す取出し口を,前記炉床の低所側に連通させても良い。また,前記吹込み部を,炉床の傾斜する方向と交差する幅方向に沿って複数に分割して設け,前記幅方向において,中央部分におけるガスの吹込み量と,両端部分におけるガス中の吹込み量を可変に構成しても良い。   In addition, an inlet for charging the incinerated raw material into the fluidized bed furnace is disposed above the high side of the hearth, and an outlet for taking incombustibles remaining after incineration together with the fluidized sand out of the fluidized bed furnace is provided. You may communicate with the low side of the floor. The blowing portion is divided into a plurality along the width direction intersecting with the direction in which the hearth is inclined, and in the width direction, the amount of gas blown in the central portion and the amount of gas The blowing amount may be variable.

また本発明によれば,傾斜して設けられた炉床の下方から流動床炉内にガスを吹込むことにより,流動床炉内で流動砂を流動化させ,流動床炉内に投入した焼却原料を流動化した流動砂により攪拌させながら焼却する方法であって,前記炉床の高所側から投入口を介して流動床炉内に焼却原料を投入すると共に,焼却後に残る不燃物を,前記炉床の低所側から流動床炉外に取り出し,前記流動床炉内において,焼却原料の投入口近傍の酸素量を,他の箇所よりも少なくし,流動床炉の前面には中央の投入口と両側の投入口が開口し,中央の投入口から流動床炉内に供給される流動砂と焼却原料の供給量を,両側の投入口から流動床炉内に供給される流動砂と焼却原料の供給量よりも多くすることを特徴とする,流動床炉の焼却方法が提供される。 Further, according to the present invention, the incineration fluidized in the fluidized bed furnace by injecting gas into the fluidized bed furnace from below the inclined hearth and introduced into the fluidized bed furnace. A method of incineration while stirring the raw material with fluidized fluidized sand, injecting the incinerated raw material into the fluidized bed furnace through the inlet from the high side of the hearth, and incombustibles remaining after incineration, Take out from the lower part of the hearth to the outside of the fluidized bed furnace, and in the fluidized bed furnace, reduce the amount of oxygen in the vicinity of the inlet of the incinerated raw material to be smaller than the other parts . The inlet and the inlets on both sides are open, and the supply of fluidized sand and incinerated raw materials supplied from the central inlet to the fluidized bed furnace, characterized by more than the supply amount of incinerated material, incineration method of the fluidized bed furnace is provided .

前記流動床炉内において,炉床の下方から焼却原料の投入口近傍に吹込むガス中の酸素量を,他の箇所に吹込むガスの酸素量よりも少なくすることが望ましい。   In the fluidized bed furnace, it is desirable that the amount of oxygen in the gas blown from the lower part of the hearth to the vicinity of the inlet of the incinerated raw material is smaller than the amount of oxygen of the gas blown into other locations.

また,前記炉床の傾斜する方向と交差する幅方向での比較において,炉床の中央部分ではガスの吹込み速度を比較的小さくし,炉床の両端部分ではガスの吹込み速度を比較的大きくしても良い。   Further, in the comparison in the width direction crossing the direction in which the hearth is inclined, the gas blowing speed is relatively small in the center portion of the hearth, and the gas blowing speed is relatively small in both ends of the hearth. You may enlarge it.

本発明によれば,例えば酸素不足の状態が必要な場合であれば,炉床から流動床炉内に吹き込むガス中の酸素量を相対的に減らし,逆に,例えば酸素の多い状態が必要な場合であれば,炉床から流動床炉内に吹き込むガス中の酸素量を相対的に増やすことによって,ガスの吹込み量を変えずに酸素不足の状態や酸素の多い状態を作り出すことができる。本発明によれば,流動床炉内に吹き込むガス中の酸素量(酸素濃度)を調整することにより,流動床炉内に吹き込むガスの必要量を確保しつつ,所望の酸素量を流動床炉内に供給できるので,流動床炉内に安定した流動層を形成して焼却燃料を充分に攪拌して焼却でき,かつ,焼却の際の酸素量を調整することによって,所望の燃焼状態を実現できる。また本発明によれば,炉床から吹き込むガス中の酸素量を変えることによって流動床炉内において安定した焼却を行えるので,焼却原料の投入量を一定に保つことができるようになる。   According to the present invention, for example, when oxygen deficiency is required, the amount of oxygen in the gas blown from the hearth into the fluidized bed furnace is relatively reduced, and conversely, for example, oxygen-rich conditions are required. In some cases, by relatively increasing the amount of oxygen in the gas blown from the hearth into the fluidized bed furnace, it is possible to create oxygen-deficient or oxygen-rich conditions without changing the gas injection rate. . According to the present invention, by adjusting the amount of oxygen (oxygen concentration) in the gas blown into the fluidized bed furnace, the required amount of gas blown into the fluidized bed furnace is secured and the desired amount of oxygen is supplied to the fluidized bed furnace. Because a stable fluidized bed is formed in the fluidized bed furnace, the incinerated fuel can be thoroughly agitated and incinerated, and the desired combustion state can be achieved by adjusting the amount of oxygen during incineration. it can. Further, according to the present invention, stable incineration can be performed in the fluidized bed furnace by changing the amount of oxygen in the gas blown from the hearth, so that the input amount of the incinerated raw material can be kept constant.

また,流動床炉内にガスを吹込む吹込み部が炉床の傾斜する方向に沿って複数に分割されているので,炉床の高所側と低所側の間に渡って酸素量の多い箇所と少ない箇所を任意に形成することができる。例えばプラスチックなどを多く含む近年のシュレーダーダストのような焼却原料を処理する場合であれば,焼却原料の投入口近傍の酸素量を他の箇所よりも少なくすることにより,流動床炉内に投入された直後において,焼却原料を低酸素雰囲気で熱分解させ,可燃性ガスとしてフリーボード(上部燃焼室)へ放出させることができる。また,こうして熱分解させた後の焼却原料は,流動化した流動砂により攪拌させながら,高酸素雰囲気で燃焼させることができる。   In addition, since the blowing section for injecting gas into the fluidized bed furnace is divided into multiple parts along the direction of inclination of the hearth, the amount of oxygen is increased between the high side and low side of the hearth. Many places and few places can be formed arbitrarily. For example, when processing incineration materials such as recent Schrader dust containing a lot of plastics, the amount of oxygen in the vicinity of the incineration material input port is made smaller than in other locations, so that it is introduced into the fluidized bed furnace. Immediately after being done, the incinerated raw material can be pyrolyzed in a low oxygen atmosphere and released as a combustible gas to the free board (upper combustion chamber). Moreover, the incinerated raw material after pyrolyzing in this way can be burned in a high oxygen atmosphere while being agitated by fluidized fluidized sand.

以下,本発明の好ましい実施の形態を,図面を参照にして説明する。図1は,本発明の実施の形態にかかる流動床炉1の説明図である。この実施の形態の流動床炉1は,略長方形状の横断面形状を有している。   Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram of a fluidized bed furnace 1 according to an embodiment of the present invention. The fluidized bed furnace 1 of this embodiment has a substantially rectangular cross-sectional shape.

流動床炉1の炉床10は,流動床炉1の前面11から後面12に向って次第に低くなるように傾斜して設けられている。後述するように,この炉床10の上方に流動砂aと焼却原料bが供給される。   The hearth 10 of the fluidized bed furnace 1 is provided so as to be gradually lowered from the front surface 11 to the rear surface 12 of the fluidized bed furnace 1. As will be described later, fluidized sand a and incinerated raw material b are supplied above the hearth 10.

炉床10の下方には,複数に分割された各吹込み部15が形成されている。図2に示すように,この実施の形態では,各吹込み部15は,炉床10の傾斜する方向(即ち,流動床炉1の前面11から後面12に向かう方向)に沿って4つに分割されて配置されると共に,炉床10の傾斜する方向と交差する幅方向(即ち,流動床炉1の前面11及び後面12と平行な方向)に沿って3つに分割してされて配置されることにより,合計で,傾斜方向に4×幅方向に3=12に分割された各吹込み部15が,炉床10の下方全体に取り付けられている。これにより,後述するように,各吹込み部15から炉床10を介して流動床炉1内にガスを吹込むことによって,流動床炉1内において流動砂を吹き上げて流動化させるようになっている。   Below the hearth 10, a plurality of blow parts 15 divided into a plurality are formed. As shown in FIG. 2, in this embodiment, each blowing section 15 is divided into four along the direction in which the hearth 10 is inclined (that is, the direction from the front surface 11 to the rear surface 12 of the fluidized bed furnace 1). In addition to being divided and arranged, it is divided and arranged in three along the width direction (that is, the direction parallel to the front surface 11 and the rear surface 12 of the fluidized bed furnace 1) intersecting the direction in which the hearth 10 is inclined. Thus, in total, each blowing portion 15 divided into 4 × width direction 3 × 12 in the inclination direction is attached to the entire lower portion of the hearth 10. As a result, as will be described later, by injecting gas into the fluidized bed furnace 1 from each blowing section 15 through the hearth 10, fluidized sand is blown up and fluidized in the fluidized bed furnace 1. ing.

流動床炉1の前面11には,流動砂aと焼却原料bを流動床炉1内に投入する投入口16が,炉床10の高所側の上方となる位置に開口している。この投入口16には,流動砂aと焼却原料bの通路17が接続してあり,ホッパー18に投入された流動砂aと焼却原料bが,ブレンダ19で混合されてから,給塵装置20の稼動によって,所定の供給容量で,通路17及び投入口16を介して,流動床炉1内に連続的に供給される。   On the front surface 11 of the fluidized bed furnace 1, an inlet 16 for introducing the fluidized sand a and the incinerated raw material b into the fluidized bed furnace 1 opens at a position above the high place side of the furnace floor 10. A passage 17 for the fluidized sand a and the incinerated raw material b is connected to the charging port 16, and the fluidized sand a and the incinerated raw material b introduced into the hopper 18 are mixed by the blender 19 before the dust supplying device 20. Is continuously supplied into the fluidized bed furnace 1 through the passage 17 and the charging port 16 with a predetermined supply capacity.

図3に示すように,投入口16は,炉床10の高所側の上方となる位置において流動床炉1の前面11のほぼ中央に配置される中央の投入口16aと,流動床炉1の前面11においてこの投入口16aの両側に配置される両側の投入口16b,16bからなっている。これら投入口16a及び投入口16b,16bのそれぞれに給塵装置20及び通路17が接続してあり,各給塵装置20の稼動を制御することによって,流動床炉1の前面11のほぼ中央の投入口16aから流動床炉1内に供給される流動砂aと焼却原料bの供給量と,流動床炉1の前面11において投入口16aの両側に配置される投入口16b,16bから流動床炉1内に供給される流動砂aと焼却原料bの供給量をそれぞれ任意に設定できるようになっている。   As shown in FIG. 3, the charging port 16 includes a central charging port 16 a disposed substantially at the center of the front surface 11 of the fluidized bed furnace 1 at a position above the high side of the hearth 10, and the fluidized bed furnace 1. The front surface 11 is composed of input ports 16b and 16b on both sides arranged on both sides of the input port 16a. A dust feeder 20 and a passage 17 are connected to each of the inlet 16a and the inlets 16b and 16b. By controlling the operation of each dust feeder 20, the center of the front surface 11 of the fluidized bed furnace 1 is controlled. Fluidized bed a and incineration raw material b supplied from the inlet 16a into the fluidized bed furnace 1 and fluidized bed from the inlets 16b and 16b disposed on both sides of the inlet 16a on the front surface 11 of the fluidized bed furnace 1. The supply amounts of the fluidized sand a and the incineration raw material b supplied into the furnace 1 can be set arbitrarily.

流動床炉1の後面12の最下部には,焼却後に残る不燃物を流動砂aと共に流動床炉1外に取り出す取出し口21が,炉床10の低所側と連通する位置に開口している。この取出し口21には,流動砂aの通路22が接続してあり,流動床炉1内から取出し口21を通って通路22に落下した流動砂aが,排出装置23及び砂コンベア24やスクリュー(図示せず)の稼動によって,再びホッパー18に戻されるようになっている。   At the bottom of the rear surface 12 of the fluidized bed furnace 1, an extraction port 21 for taking incombustible material remaining after incineration together with the fluidized sand a to the outside of the fluidized bed furnace 1 opens at a position communicating with the lower side of the hearth 10. Yes. A passage 22 for fluid sand a is connected to the take-out port 21, and the fluid sand a that has fallen into the passage 22 from the fluidized bed furnace 1 through the take-out port 21 is discharged into the discharge device 23, the sand conveyor 24, and the screw. By operation (not shown), it is returned to the hopper 18 again.

流動床炉1の上方はフリーボード(上部燃焼室)25となっており,流動床炉1の後面12の上方には,このフリーボード25に向って空気を吹き込む給気経路26が接続してある。なお給気経路26は,流動床炉1の後面12の複数箇所に開口している。このフリーボード25では,後述するように流動床炉1内に投入された焼却原料bから熱分解で生じた可燃性ガスが,所定の温度条件下(例えば800℃)で,所定時間(例えば2秒間)燃焼処理される。   Above the fluidized bed furnace 1 is a free board (upper combustion chamber) 25, and above the rear surface 12 of the fluidized bed furnace 1, an air supply path 26 for blowing air toward the free board 25 is connected. is there. The air supply path 26 opens at a plurality of locations on the rear surface 12 of the fluidized bed furnace 1. In this free board 25, as will be described later, the combustible gas generated by thermal decomposition from the incinerated raw material b introduced into the fluidized bed furnace 1 is subjected to a predetermined time (for example, 2O 0 C) for a predetermined time (for example For 2 seconds).

流動床炉1の上面には,焼却によって発生した排ガスを流動床炉1外に排気させる排気経路30が接続してある。この排気経路30はバグフィルタ31に接続されており,バグフィルタ31で塵埃を捕捉した後,排ガスが外部に排気されるようになっている。また,バグフィルタ31で塵埃を捕捉された排ガスの一部は,戻し経路32を通って,給気経路33から供給された空気と混合され,こうして空気と排ガスとの混合ガスが,供給経路34から,前述の各吹込み部15に供給される。   Connected to the upper surface of the fluidized bed furnace 1 is an exhaust passage 30 for exhausting exhaust gas generated by incineration to the outside of the fluidized bed furnace 1. The exhaust path 30 is connected to a bag filter 31. After dust is captured by the bag filter 31, the exhaust gas is exhausted to the outside. Part of the exhaust gas in which dust is captured by the bag filter 31 passes through the return path 32 and is mixed with the air supplied from the air supply path 33, and thus the mixed gas of air and exhaust gas is supplied to the supply path 34. From the above, it is supplied to each blowing section 15 described above.

図2に示すように,供給経路34は,各吹込み部15ごとに接続されている。流動床炉から排気された排ガスを供給する戻し経路32と空気を供給する給気経路33が2つの混合チャンバ40a,40bに接続してあり,これら混合チャンバ40a,40b内において排ガスと空気が混合され,その混合ガスが各供給経路34から各吹込み部15にそれぞれ供給されている。一方の混合チャンバ40aでは,炉床10の傾斜する方向において高所側となる位置に配置された半分の各吹込み部15(炉床10の高所側において幅方向に2列に並んで配置された6つの各吹込み部15)に供給される混合ガスが作られるようになっている。また他方の混合チャンバ40bでは,炉床10の傾斜する方向において低所側となる位置に配置された半分の各吹込み部15(炉床10の低所側において幅方向に2列に並んで配置された6つの各吹込み部15)に供給される混合ガスが作られるようになっている。戻し経路32には,混合チャンバ40a,40b内に供給する排ガスの供給量を調整する排ガス流量調整弁41が,各混合チャンバ40a,40bごとにそれぞれ装着され,同様に,給気経路33には,混合チャンバ40a,40b内に供給する空気の供給量を調整する空気流量調整弁42が,各混合チャンバ40a,40bごとにそれぞれ装着されている。そして,排ガス流量調整弁41と空気流量調整弁42を調整することによって,各混合チャンバ40a,40b内で作られる混合ガスにおける空気と排ガスの混合比がそれぞれ独立して可変に構成されている。流動床炉1の焼却によって発生した排ガスは焼却で酸素が消費されたことによって酸素濃度が空気よりも低くなっているので,このように各混合チャンバ40a,40b内で混合ガスを作る際に,空気と排ガスの混合比を変えることにより,各混合チャンバ40a,40bにおいて,混合ガス中の酸素量(即ち,ガスの酸素濃度)をそれぞれ任意に制御することが可能である。   As shown in FIG. 2, the supply path 34 is connected to each blowing unit 15. A return path 32 for supplying exhaust gas exhausted from the fluidized bed furnace and an air supply path 33 for supplying air are connected to the two mixing chambers 40a and 40b, and the exhaust gas and air are mixed in the mixing chambers 40a and 40b. The mixed gas is supplied from each supply path 34 to each blowing section 15. In one mixing chamber 40a, each half blowing part 15 arrange | positioned in the position which becomes a high place side in the direction where the hearth 10 inclines (it arranges in 2 rows along the width direction in the high place side of the hearth 10). The mixed gas to be supplied to each of the six blowing portions 15) is made. Moreover, in the other mixing chamber 40b, each half blowing part 15 arrange | positioned in the position which becomes the low place side in the direction where the hearth 10 inclines (it arranges in 2 rows in the width direction in the low place side of the hearth 10). A mixed gas to be supplied to each of the six arranged blowing portions 15) is made. An exhaust gas flow rate adjustment valve 41 for adjusting the supply amount of exhaust gas supplied into the mixing chambers 40a and 40b is mounted on the return path 32 for each of the mixing chambers 40a and 40b. The air flow rate adjusting valve 42 for adjusting the amount of air supplied into the mixing chambers 40a and 40b is mounted for each of the mixing chambers 40a and 40b. By adjusting the exhaust gas flow rate adjustment valve 41 and the air flow rate adjustment valve 42, the mixing ratio of air and exhaust gas in the mixed gas produced in each mixing chamber 40a, 40b is independently variable. Since the exhaust gas generated by the incineration of the fluidized bed furnace 1 has a lower oxygen concentration than the air due to the consumption of oxygen in the incineration, when making the mixed gas in each mixing chamber 40a, 40b in this way, By changing the mixing ratio of air and exhaust gas, it is possible to arbitrarily control the amount of oxygen in the mixed gas (that is, the oxygen concentration of the gas) in each mixing chamber 40a, 40b.

また各供給経路34にも,各吹込み部15に供給する混合ガスの供給量を調整する混合ガス流量調整弁43がそれぞれ装着されている。これら混合ガス流量調整弁43を調整することによって,各吹込み部15に供給される混合ガスの流量がそれぞれ可変に構成されている。前述のように,各吹込み部15は,炉床10の傾斜する方向と交差する幅方向に沿って3つに分割してされて配置されるが,各吹込み部15に設けられている混合ガス流量調整弁43を調整することによって,例えば幅方向において,中央部分に配置される吹込み部15からのガスの吹込み量を相対的に少なくし,両端部分に配置される吹込み部15からのガスの吹込み量を相対的に多くするなど,任意に制御できるように構成されている。   Each supply path 34 is also equipped with a mixed gas flow rate adjustment valve 43 that adjusts the supply amount of the mixed gas supplied to each blowing section 15. By adjusting the mixed gas flow rate adjusting valve 43, the flow rate of the mixed gas supplied to each blowing portion 15 is configured to be variable. As described above, each blowing portion 15 is divided and arranged in three along the width direction intersecting the direction in which the hearth 10 inclines, but is provided in each blowing portion 15. By adjusting the mixed gas flow rate adjusting valve 43, for example, in the width direction, the amount of gas blown from the blowing portion 15 disposed in the central portion is relatively reduced, and the blowing portions disposed at both end portions. It is configured such that it can be arbitrarily controlled, for example, by relatively increasing the amount of gas blown from 15.

以上のように構成された本発明の実施の形態にかかる流動床炉1において,ホッパー18に投入された流動砂aと焼却原料bをブレンダ19で混合し,給塵装置20の稼動によって所定の供給容量で通路17及び投入口16を介して,炉床10の高所側の上方となる位置から流動床炉1内に流動砂aと焼却原料bを連続的に供給する。この時,例えば流動床炉1の前面11のほぼ中央に配置された投入口16aから流動床炉1内に供給する流動砂aと焼却原料bの供給量を,投入口16aの両側に配置された投入口16b,16bから流動床炉1内に供給する流動砂aと焼却原料bの供給量よりも多くすることにより,炉床10の傾斜する方向と交差する幅方向において,流動床炉1内の中央には比較的多く流動砂aと焼却原料bを供給し,流動床炉1内の両側となる位置には比較的少なく流動砂aと焼却原料bを供給する。   In the fluidized bed furnace 1 according to the embodiment of the present invention configured as described above, the fluidized sand a and the incineration raw material b introduced into the hopper 18 are mixed by the blender 19, and a predetermined amount is obtained by operating the dust supply device 20. The fluidized sand a and the incinerated raw material b are continuously supplied into the fluidized bed furnace 1 from a position above the high place side of the hearth 10 through the passage 17 and the inlet 16 with a supply capacity. At this time, for example, the supply amount of the fluid sand a and the incinerated raw material b supplied into the fluidized bed furnace 1 from the charging port 16a disposed in the approximate center of the front surface 11 of the fluidized bed furnace 1 is arranged on both sides of the charging port 16a. The fluidized bed furnace 1 in the width direction intersecting the direction in which the hearth 10 inclines is increased by increasing the flow rate of the fluidized sand a and the incineration raw material b supplied into the fluidized bed furnace 1 from the inlets 16b and 16b. A relatively large amount of fluidized sand a and incinerated material b are supplied to the center of the inside, and a relatively small amount of fluidized sand a and incinerated material b are supplied to positions on both sides in the fluidized bed furnace 1.

このように流動砂aと一緒に流動床炉1内に供給される焼却原料bは,例えば廃棄自動車からリサイクル備品を取除いた残りを粉砕したシュレッダーダスト(ASR)である。このようなシュレッダーダストは,例えば廃棄自動車処理場などで粉砕され発生する。また,そのようなシュレッダーダストに,廃棄家電品の粉砕物などを混ぜたものを焼却原料bとしても良い。シュレッダーダストの如き焼却原料bは,無機物としてFe,Cu,Zn,Pb等の金属,ガラス等を含み,また,有機化合物として,ゴム,繊維くずやウレタンなどの軟質樹脂,塩ビなどの硬質プラスチック等を含む。また,シュレッダーダストの如き焼却原料bは大きさや形状はまちまちであるので,焼却を安定させるために,破砕機やローラーミルによる粉砕などの前処理し,廃棄物の最大の粒径を50mm以下としておくことが望ましい。また,振動ふるい機,風力選別機等による分級によって焼却原料中から微細に粉砕されたガラスを選択的に除去し,廃棄物の粒径のばらつきを小さくしておくことが望ましい。その他,磁選や渦電流選別,比重選別等によって,焼却原料中からFe,Cu,Alなどの金属成分を除去してから焼却することが望ましい。   Thus, the incineration raw material b supplied into the fluidized bed furnace 1 together with the fluidized sand a is, for example, shredder dust (ASR) obtained by pulverizing the remainder obtained by removing the recycle equipment from the discarded automobile. Such shredder dust is generated by being pulverized, for example, at a waste automobile treatment plant. In addition, a material obtained by mixing such shredder dust with a pulverized product of discarded household electrical appliances may be used as the incineration raw material b. Incineration raw material b such as shredder dust includes metals such as Fe, Cu, Zn, and Pb as inorganic substances, glass, etc., and organic compounds such as soft resins such as rubber, fiber scrap and urethane, and hard plastics such as vinyl chloride, etc. including. Incineration raw materials b such as shredder dust vary in size and shape, so in order to stabilize incineration, pretreatment such as crushing with a crusher or roller mill is performed, and the maximum particle size of waste is set to 50 mm or less. It is desirable to keep it. In addition, it is desirable to selectively remove finely pulverized glass from the incinerated raw material by classification using a vibration sieve, a wind sorter, etc., and to reduce the variation in the particle size of the waste. In addition, it is desirable to incinerate after removing metal components such as Fe, Cu, and Al from the incineration raw material by magnetic separation, eddy current selection, specific gravity selection, or the like.

そして,このように流動床炉1内に流動砂aと焼却原料bを連続的に供給する一方で,流動床炉1の炉床10の下方に形成された各吹込み部15から,空気と流動床炉1から排気された排ガスの混合ガスを流動床炉1内に上向きに吹込み,流動床炉1内において流動砂aを吹き上げて流動化させる。これにより,投入口16から流動砂aと一緒に流動床炉1内に投入した焼却原料bを,流動化した流動砂aにより攪拌させながら焼却する。   And while supplying the fluidized sand a and the incineration raw material b continuously in the fluidized bed furnace 1 in this way, from each blowing part 15 formed under the hearth 10 of the fluidized bed furnace 1, air and A mixed gas of exhaust gas exhausted from the fluidized bed furnace 1 is blown upward into the fluidized bed furnace 1, and fluidized sand a is blown up and fluidized in the fluidized bed furnace 1. In this way, the incineration raw material b introduced into the fluidized bed furnace 1 together with the fluidized sand a from the inlet 16 is incinerated while being agitated by the fluidized fluidized sand a.

この場合,各吹込み部15に供給される混合ガスにおける空気と排ガスの混合比をそれぞれ調整することが可能である。即ち,例えば,一方の混合チャンバ40aについては,排ガス流量調整弁41と空気流量調整弁42を調整することによって,排ガスの混合比を高くし(空気の混合比を低くし),炉床10の傾斜する方向において高所側となる位置に配置された半分の各吹込み部15(炉床10の高所側において幅方向に2列に並んで配置された6つの各吹込み部15)からは,排ガスを多く含む混合ガス(即ち,空気を少なく含むことにより,酸素量の少ない状態の混合ガス)を流動床炉1内に吹込む。また,他方の混合チャンバ40bについては,排ガス流量調整弁41と空気流量調整弁42を調整することによって,排ガスの混合比を低くし(空気の混合比を高くし),炉床10の傾斜する方向において低所側となる位置に配置された半分の各吹込み部15(炉床10の低所側において幅方向に2列に並んで配置された6つの各吹込み部15)からは,空気を多く含む混合ガス(即ち,空気を多く含むことにより,酸素量の多い状態の混合ガス)を流動床炉1内に吹込む。こうすることにより,流動床炉1内において,投入口16近傍の酸素濃度を相対的に低くすることができる。これにより,シュレーダーダストのようなプラスチックなどを多く含む焼却原料bを処理する場合であれば,投入口16の近傍の酸素量を低くすることにより,流動床炉1内に投入された直後において,焼却原料bを低酸素雰囲気で熱分解させ,可燃性ガスとしてフリーボード25(上部燃焼室)へ放出させることができるようになる。   In this case, the mixing ratio of air and exhaust gas in the mixed gas supplied to each blowing section 15 can be adjusted. That is, for example, in one mixing chamber 40a, the exhaust gas flow rate adjustment valve 41 and the air flow rate adjustment valve 42 are adjusted to increase the exhaust gas mixing ratio (lower the air mixing ratio). From each of the half blowing parts 15 (six blowing parts 15 arranged in two rows in the width direction on the high side of the hearth 10) arranged at a position on the high place side in the inclined direction. Injects a mixed gas containing a large amount of exhaust gas (that is, a mixed gas having a small amount of oxygen by containing a small amount of air) into the fluidized bed furnace 1. For the other mixing chamber 40b, the exhaust gas flow rate adjustment valve 41 and the air flow rate adjustment valve 42 are adjusted to lower the exhaust gas mixture ratio (increase the air mixture ratio) and to incline the hearth 10. From the half blow parts 15 (six blow parts 15 arranged in two rows in the width direction on the low part side of the hearth 10) arranged at the position which becomes the low side in the direction, A mixed gas containing a large amount of air (that is, a mixed gas containing a large amount of air and a large amount of oxygen) is blown into the fluidized bed furnace 1. By doing so, the oxygen concentration in the vicinity of the inlet 16 can be relatively lowered in the fluidized bed furnace 1. As a result, in the case of processing an incineration raw material b containing a large amount of plastic such as Schröder dust, the oxygen amount in the vicinity of the inlet 16 is lowered, and immediately after being put into the fluidized bed furnace 1. The incinerated raw material b can be pyrolyzed in a low oxygen atmosphere and released as a combustible gas to the free board 25 (upper combustion chamber).

前述したように,粉砕などの前処理によって焼却原料bの大きさや形状を揃えておけば,流動床炉1内に焼却原料bを投入した際,焼却原料b中に含まれる有機化合物の粒径も揃っているため,その昇華に要する時間のばらつきも少なく,焼却原料bを安定して可燃性ガスに熱分解させることができる。   As described above, if the size and shape of the incinerated raw material b are made uniform by pretreatment such as pulverization, the particle size of the organic compound contained in the incinerated raw material b when the incinerated raw material b is introduced into the fluidized bed furnace 1. Therefore, there is little variation in time required for sublimation, and the incinerated raw material b can be stably thermally decomposed into a combustible gas.

そして,こうして流動床炉1内における投入口16の近傍箇所で熱分解させた後の焼却原料b(流動床炉1内における投入口16の近傍箇所で可燃性ガスとならなかった残りの焼却原料b)は,更に流動化した流動砂aにより攪拌させながら,流動床炉1内における投入口16近傍以外の箇所において高酸素雰囲気で燃焼させることができる。   Then, the incinerated raw material b after pyrolysis in the vicinity of the inlet 16 in the fluidized bed furnace 1 (the remaining incinerated raw material that did not become combustible gas in the vicinity of the inlet 16 in the fluidized bed furnace 1). b) can be burned in a high oxygen atmosphere at locations other than the vicinity of the inlet 16 in the fluidized bed furnace 1 while being further stirred by the fluidized fluidized sand a.

この場合,前述したように,流動砂aと焼却原料bを予め混合して流動床炉1内に供給することにより,熱分解させた後の焼却原料bを流動床炉1の下部に確実に到達させ,フリーボード25に放出させないで燃焼させることができるため燃焼が安定する。   In this case, as described above, the fluidized sand a and the incinerated raw material b are mixed in advance and supplied into the fluidized bed furnace 1 to ensure that the pyrolyzed incinerated raw material b is placed in the lower part of the fluidized bed furnace 1. Combustion is stabilized because it can be made to reach and burn without being released to the free board 25.

また,予め前処理することによって焼却原料b中からガラスやFe,Cu,Alなどの金属成分を選択的に除去し,焼却原料bの粒径のばらつきを小さくしておくことにより,可燃物の割合が高められているので,焼却原料bの単位容量当たりの熱量も増量して高効率化がはかれる。加えて,焼却原料bの大きさが揃っていることと金属成分が低減されていることにより,銅が触媒となったダイオキシンの発生抑制,未回収金属の低減が図れる他,処理量の向上が図れる。また,ガラスや金属成分が低減されていることにより,設備の磨耗も低減される。   Further, by pre-treating the incineration raw material b in advance to selectively remove metal components such as glass, Fe, Cu, and Al, and reducing the variation in the particle size of the incinerated raw material b, Since the ratio is increased, the amount of heat per unit capacity of the incinerated raw material b is also increased to achieve higher efficiency. In addition, because the incineration raw material b is the same size and the metal components are reduced, the generation of dioxins using copper as a catalyst can be suppressed, unrecovered metals can be reduced, and the throughput can be improved. I can plan. In addition, equipment wear is reduced due to reduced glass and metal components.

また,このように流動床炉1内において焼却原料bを焼却するに際し,各吹込み部15に装着されている混合ガス流量調整弁43を調整することによって,例えば,炉床10の傾斜する方向と交差する幅方向に沿って3つに分割してされて配置された各吹込み部15のうち,中央部分に配置される吹込み部15からのガスの吹込み量を相対的に(両端部分に配置される吹込み部15からのガスの吹込み量よりも)少なくし,両端部分に配置される吹込み部15からのガスの吹込み量を相対的に(中央部分に配置される吹込み部15からのガスの吹込み量よりも)多くする。これにより,図3に示すように,流動床炉1内において側壁面(流動床炉1の前面11及び後面12と直交する側壁面)の内側に沿って流動砂aを勢いよく吹上げて,焼却原料bを効果的に攪拌することができ,未燃物を含む可燃ガスの流れが流動床炉1内の側壁面付近に局所的に形成されることを抑制でき,クリンカの付着防止がはかれる。また,側壁面近傍に不燃物が溜まるのも防止できるようになる。   Further, when the incinerated raw material b is incinerated in the fluidized bed furnace 1 in this way, by adjusting the mixed gas flow rate adjustment valve 43 attached to each blowing portion 15, for example, the direction in which the hearth 10 is inclined. Among the blowing portions 15 arranged by being divided into three along the width direction intersecting with the gas, the amount of gas blown from the blowing portion 15 arranged in the central portion is relatively (both ends The amount of gas blown from the blowing portions 15 disposed at both end portions is relatively smaller than the amount of gas blown from the blowing portions 15 disposed at the portions (relative to the central portion). More than the amount of gas blow-in from the blow-in part 15. Thereby, as shown in FIG. 3, the fluidized sand a is blown vigorously along the inside of the side wall surface (the side wall surface orthogonal to the front surface 11 and the rear surface 12 of the fluidized bed furnace 1) in the fluidized bed furnace 1. The incineration raw material b can be effectively stirred, the flow of the combustible gas containing unburned material can be prevented from being locally formed near the side wall surface in the fluidized bed furnace 1, and the adhesion of the clinker can be prevented. . In addition, it is possible to prevent incombustible material from accumulating near the side wall surface.

更に,流動砂aと焼却原料bを投入口16から流動床炉1内に供給する場合,例えば流動床炉1の前面11のほぼ中央に配置される中央の投入口16aからは相対的に多い供給量で(即ち,両側の投入口16b,16bから投入される流動砂aと焼却原料bよりも多い供給量で)流動砂aと焼却原料bを流動床炉1内に投入し,流動床炉1の前面11において投入口16aの両側に配置される両側の投入口16b,16bからは相対的に少ない供給量で(即ち,中央の投入口16aから投入される流動砂aと焼却原料bよりも少ない供給量で)流動砂aと焼却原料bを流動床炉1内に投入する。これにより,特に流動床炉1内の中央でより多くの焼却原料bを安定して可燃性ガスに熱分解させることができ,また,流動床炉1の側壁面付近に不燃物が溜まることも防止できる。   Further, when the fluidized sand a and the incinerated raw material b are supplied into the fluidized bed furnace 1 from the inlet 16, for example, there are relatively many from the central inlet 16 a disposed almost at the center of the front surface 11 of the fluidized bed furnace 1. The fluidized sand a and the incinerated material b are charged into the fluidized bed furnace 1 in the supply amount (that is, in a larger amount than the fluidized sand a and the incinerated material b input from the input ports 16b and 16b on both sides). In the front surface 11 of the furnace 1, the flow sand a and the incineration raw material b are introduced from the input ports 16 b and 16 b on both sides of the input port 16 a on the both sides of the furnace 1 with a relatively small supply amount (that is, the central flow port 16 a and the incineration raw material b The fluidized sand a and the incinerated raw material b are charged into the fluidized bed furnace 1 (with a smaller supply amount). As a result, more incinerated raw material b can be stably thermally decomposed into combustible gas, particularly in the center of the fluidized bed furnace 1, and incombustible material may accumulate near the side wall surface of the fluidized bed furnace 1. Can be prevented.

そして,焼却後に残った不燃物は,流動床炉1の後面12の最下部において炉床10の低所側と連通して開口している取出し口21から,流動砂aと共に流動床炉1外に取り出す。そして,篩等によって不燃物を選別除去した後,排出装置23及び砂コンベア24,スクリューなどの稼動によって,再びホッパー18に戻される。   Then, the incombustible material remaining after incineration is removed from the fluidized bed furnace 1 together with the fluidized sand a from the outlet 21 which is open at the bottom of the rear surface 12 of the fluidized bed furnace 1 and communicates with the lower side of the hearth 10. Take out. Then, after incombustible material is sorted and removed by a sieve or the like, it is returned to the hopper 18 again by the operation of the discharge device 23, sand conveyor 24, screw and the like.

以上のように,本発明の実施の形態にかかる流動床炉1によれば,流動床炉1内において酸素不足の状態や酸素の多い状態を任意に作り出すことができ,流動床炉1内に安定した流動層を形成でき,焼却燃料bを充分に攪拌して焼却することができる。本発明によれば,焼却燃料bの投入量を一定に保つことができるので,常に最大能力で焼却することにより,処理能力の低下を防ぐことができる。   As described above, according to the fluidized bed furnace 1 according to the embodiment of the present invention, an oxygen-deficient state or an oxygen-rich state can be arbitrarily created in the fluidized bed furnace 1. A stable fluidized bed can be formed, and the incinerated fuel b can be incinerated with sufficient stirring. According to the present invention, the input amount of the incinerated fuel b can be kept constant. Therefore, it is possible to prevent a decrease in processing capacity by always incinerating with the maximum capacity.

また,流動床炉1内にガスを吹込む吹込み部15が炉床10の傾斜する方向に沿って複数に分割されているので,炉床10の高所側と低所側の間に渡って酸素量の多い箇所と少ない箇所を任意に形成することができる。例えばプラスチックなどを多く含む近年のシュレーダーダストのような焼却原料bを処理する場合であれば,焼却原料bの投入口16近傍の酸素量を他の箇所よりも少なくすることにより,流動床炉1内に投入された直後において,焼却原料bを低酸素雰囲気で熱分解させ,可燃性ガスとしてフリーボード25へ放出させることができる。また,こうして熱分解させた後の焼却原料bは,流動化した流動砂aにより攪拌させながら,高酸素雰囲気で燃焼させることができる。   Further, since the blowing portion 15 for injecting gas into the fluidized bed furnace 1 is divided into a plurality along the direction in which the hearth 10 is inclined, it extends between the high side and the low side of the hearth 10. Thus, a portion having a large amount of oxygen and a portion having a small amount of oxygen can be arbitrarily formed. For example, in the case of processing an incineration raw material b such as recent Schrader dust containing a lot of plastics, a fluidized bed furnace can be obtained by reducing the amount of oxygen in the vicinity of the inlet 16 of the incineration raw material b from other locations. Immediately after being put in 1, the incinerated raw material b can be thermally decomposed in a low oxygen atmosphere and released to the free board 25 as a combustible gas. In addition, the incinerated raw material b after being thermally decomposed in this way can be burned in a high oxygen atmosphere while being stirred by the fluidized fluid sand a.

こうして安定した焼却を行うことにより,焼却後の残渣を低減でき,COを少なくすることができる。また,排気ガスを混合したガスを流動床炉1内に吹込んで,空気量をなるべくすることにより,NOxの発生も低減できる。   By carrying out stable incineration in this way, residues after incineration can be reduced and CO can be reduced. Moreover, the generation of NOx can be reduced by blowing the gas mixed with the exhaust gas into the fluidized bed furnace 1 to reduce the amount of air as much as possible.

以上,本発明の好ましい実施の形態を説明したが,本発明は以上に例示した形態に限定されない。図示の形態では,炉床10の下方に形成された吹込み部15を,炉床10の傾斜する方向に沿って4つに分割し,炉床10の傾斜する方向と交差する幅方向に沿って3つに分割した例を示したが,炉床10の傾斜する方向に沿って吹込み部15を2または3に分割して設けても良いし,5以上に分割して設けても良い。一方,炉床10の傾斜する方向と交差する幅方向には,込み部15は必ずしも分割しなくても良いし,2または4以上に分割して設けても良い。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to the form illustrated above. In the illustrated embodiment, the blowing portion 15 formed below the hearth 10 is divided into four along the direction in which the hearth 10 is inclined, and along the width direction intersecting the direction in which the hearth 10 is inclined. However, the blowing portion 15 may be divided into 2 or 3 along the direction in which the hearth 10 is inclined, or may be divided into 5 or more. . On the other hand, in the width direction intersecting with the direction in which the hearth 10 is inclined, the recessed portion 15 is not necessarily divided, and may be divided into two or four or more.

また,2つの混合チャンバ40a,40bを設けることによって,炉床10の傾斜する方向において高所側となる位置に配置された半分の各吹込み部15に供給される混合ガスと,炉床10の傾斜する方向において低所側となる位置に配置された半分の各吹込み部15に供給される混合ガスについて,空気と排ガスの混合比を2種類に調整できるように構成したが,混合チャンバを3つ以上設けることにより,空気と排ガスの混合比を3種類以上に調整できるように構成しても良い。また,戻し経路32から供給される排ガスの酸素濃度と,給気経路33から供給される空気の酸素濃度を測定し,燃焼状況にあわせて,各吹込み部15から炉床10内に吹き込む混合ガスの酸素濃度を決定しても良い。例えば流動床炉1内の下部(流動層)での燃焼温度を下げ,流動床炉1の上部のフリーボード25での燃焼温度を上げたい場合は,各吹込み部15から炉床10内に吹き込む混合ガスについては,排ガスの混合比を低くし(空気の混合比を高くし),排ガスを少なく含む混合ガス(即ち,空気を多く含むことにより,酸素量の多い状態の混合ガス)を炉床10から流動床炉1内に吹込み,また,給気経路26から流動床炉1上部のフリーボード25に吹き込む空気量を増加させると良い。一方,流動床炉1内の下部(流動層)での燃焼温度を上げ,流動床炉1の上部のフリーボード25での燃焼温度を下げたい場合は,各吹込み部15から炉床10内に吹き込む混合ガスについては,排ガスの混合比を高くし(空気の混合比を低くし),排ガスを多く含む混合ガス(即ち,空気を少なく含むことにより,酸素量の少ない状態の混合ガス)を炉床10から流動床炉1内に吹込み,また,給気経路26から流動床炉1上部のフリーボード25に吹き込む空気量を低減させると良い。   Further, by providing the two mixing chambers 40a and 40b, the mixed gas supplied to each of the blow-in portions 15 arranged at the high position in the tilting direction of the hearth 10 and the hearth 10 The mixed gas supplied to each of the blow-in portions 15 arranged at the lower side in the direction of inclination of the gas is configured so that the mixing ratio of air and exhaust gas can be adjusted to two types. By providing three or more, the mixing ratio of air and exhaust gas may be adjusted to three or more. Further, the oxygen concentration of the exhaust gas supplied from the return path 32 and the oxygen concentration of the air supplied from the air supply path 33 are measured, and the mixture blown into the hearth 10 from each blowing section 15 according to the combustion state. The oxygen concentration of the gas may be determined. For example, when it is desired to lower the combustion temperature in the lower part (fluidized bed) in the fluidized bed furnace 1 and increase the combustion temperature in the free board 25 at the upper part of the fluidized bed furnace 1, each blowing part 15 enters the hearth 10. Regarding the mixed gas to be blown in, the exhaust gas mixture ratio is lowered (the air mixture ratio is increased), and the mixed gas containing a small amount of exhaust gas (that is, the mixed gas containing a large amount of air and a large amount of oxygen) is removed from the furnace. The amount of air that is blown into the fluidized bed furnace 1 from the bed 10 and that is blown into the freeboard 25 at the top of the fluidized bed furnace 1 from the air supply path 26 may be increased. On the other hand, when raising the combustion temperature in the lower part (fluidized bed) in the fluidized bed furnace 1 and lowering the combustion temperature in the freeboard 25 at the upper part of the fluidized bed furnace 1, For the mixed gas to be blown into the exhaust gas, increase the exhaust gas mixture ratio (lower the air mixture ratio), and increase the exhaust gas mixture gas (that is, the mixture gas in a state where the amount of oxygen is low by containing less air). The amount of air blown from the hearth 10 into the fluidized bed furnace 1 and blown from the air supply path 26 into the free board 25 at the top of the fluidized bed furnace 1 may be reduced.

また,流動床炉1の前面11に配置された投入口16を,中央の投入口16aとその両側の投入口16b,16bの3つで構成した例を示したが,投入口16は1箇所のみでも良いし,2または4以上に配置しても良い。なお,図示の形態で説明したように流動床炉1の前面11に複数の投入口16を横に並べて配置すれば,炉床10の幅方向に渡って流動砂aと焼却原料bを均一に供給しやすい。   Moreover, although the example which comprised the inlet 16 arrange | positioned in the front surface 11 of the fluidized-bed furnace 1 by the center inlet 16a and the inlets 16b and 16b of the both sides was shown, the inlet 16 is one place. May be sufficient, and it may be arranged in two or four or more. In addition, if the several inlet 16 is arranged side by side in the front surface 11 of the fluidized bed furnace 1 as demonstrated in the form of illustration, the fluid sand a and the incineration raw material b will be made uniform over the width direction of the hearth 10. Easy to supply.

また,ホッパー18に投入された流動砂aと焼却原料bをブレンダ19で混合して流動床炉1内に投入していたが,ブレンダ19を省略し,流動砂aと焼却原料bを混合せずに流動床炉1内に投入しても良い。また,ホッパー18を省略することもできる。更に,流動床炉1内には流動砂aと焼却原料bを一緒に投入しなくても良く,流動砂aと焼却原料bを別の箇所から流動床炉1内に供給しても良い。なお,流動砂aと焼却原料bを別の箇所から流動床炉1内に供給する場合は,流動砂aを焼却原料bよりも上方から供給すれば,焼却原料bを上から流動砂aで抑えることにより,熱分解させた後の焼却原料bを流動床炉1の下部に確実に到達させることができ,焼却原料bの飛散も防止できる。   Moreover, although the fluid sand a and the incineration raw material b put into the hopper 18 were mixed in the blender 19 and put into the fluidized bed furnace 1, the blender 19 was omitted and the fluid sand a and the incineration raw material b were mixed. Instead, it may be put into the fluidized bed furnace 1. Further, the hopper 18 can be omitted. Furthermore, the fluidized sand a and the incinerated raw material b do not have to be put together in the fluidized bed furnace 1, and the fluidized sand a and the incinerated raw material b may be supplied into the fluidized bed furnace 1 from different locations. In addition, when supplying the fluid sand a and the incineration raw material b into the fluidized bed furnace 1 from different locations, if the fluid sand a is supplied from above the incineration raw material b, the incineration raw material b is fluidized sand a from above. By suppressing the temperature, the incinerated raw material b after pyrolysis can surely reach the lower part of the fluidized bed furnace 1, and the incinerated raw material b can be prevented from being scattered.

また,排気経路30にボイラーなどを設置して,排ガスの熱を回収することも可能である。その場合,ボイラーを流動床炉1から排気される排ガスの出口において熱回収して排ガスを冷却し,その後,バグフィルタ31で塵埃を捕捉すると良い。   It is also possible to install a boiler or the like in the exhaust path 30 to recover the heat of the exhaust gas. In that case, it is preferable that the boiler recovers heat at the outlet of the exhaust gas exhausted from the fluidized bed furnace 1 to cool the exhaust gas, and then trap the dust with the bag filter 31.

また,流動床炉1内に水分を供給することによって,焼却温度を調整することも可能である。その場合,流動床炉1内に水分を供給すると,流動床炉1内において高温となっている流動砂aを急激に冷却することにより,流動砂aを破損する心配があるので,これから流動床炉1内に供給する流動砂aもしくは焼却原料bに水分を含ませるようにすると良い。   In addition, the incineration temperature can be adjusted by supplying moisture into the fluidized bed furnace 1. In that case, if water is supplied into the fluidized bed furnace 1, there is a concern that the fluidized sand a may be damaged by rapidly cooling the fluidized sand a that is high in the fluidized bed furnace 1. It is preferable that water is contained in the fluidized sand a or the incineration raw material b supplied into the furnace 1.

本発明は,各種焼却原料を焼却処理する流動床炉に利用できる。   The present invention can be used in a fluidized bed furnace that incinerates various incineration raw materials.

本発明の実施の形態にかかる流動床炉の説明図である。It is explanatory drawing of the fluidized-bed furnace concerning embodiment of this invention. 吹込み部の斜視図である。It is a perspective view of a blowing part. 投入口を説明するための流動床炉の横断面図である。It is a cross-sectional view of a fluidized bed furnace for explaining an inlet. 炉床の幅方向の中央部分に配置される吹込み部からのガスの吹込み量を少なくし,両端部分に配置される吹込み部からのガスの吹込み量を多くした状態の説明図である。An explanatory diagram of a state in which the amount of gas blown from the blow-in portion arranged in the center part in the width direction of the hearth is reduced and the gas blow-in amount from the blow-in portions arranged at both end portions is increased. is there.

符号の説明Explanation of symbols

a 流動砂
b 焼却原料
1 流動床炉
10 炉床
15 吹込み部
16 投入口
21 取出し口
25 フリーボード
30 排気経路
31 バグフィルタ
32 戻し経路
33 給気経路
34 供給経路
40a,40b 混合チャンバ
41 排ガス流量調整弁
42 空気流量調整弁
43 混合ガス流量調整弁
a fluidized sand b incinerated raw material 1 fluidized bed furnace 10 hearth 15 blowing section 16 inlet 21 outlet 25 freeboard 30 exhaust path 31 bag filter 32 return path 33 air supply path 34 supply path 40a, 40b mixing chamber 41 exhaust gas flow rate Adjustment valve 42 Air flow adjustment valve 43 Mixed gas flow adjustment valve

Claims (7)

傾斜して設けられた炉床に,流動砂を流動化させるためのガスの吹込み部および流動砂と焼却原料を投入する投入口が形成された流動床炉であって,
前記吹込み部を,炉床の傾斜する方向に沿って複数に分割して設け,各吹込み部から流動床炉内に吹き込むガス中の酸素量を可変に構成し,
複数の前記投入口を流動床炉前面の中央および両側に設け,各投入口から流動床炉内に供給される流動砂および焼却原料の量を可変に構成したことを特徴とする,流動床炉。
A fluidized bed furnace in which a gas blowing portion for fluidizing fluidized sand and an inlet for introducing fluidized sand and incinerated raw material are formed in an inclined hearth.
The blowing section is divided into a plurality along the direction in which the hearth is inclined, and the amount of oxygen in the gas blown into the fluidized bed furnace from each blowing section is variably configured.
A fluidized bed furnace characterized in that a plurality of the inlets are provided in the center and both sides of the front of the fluidized bed furnace, and the amount of fluidized sand and incineration raw material supplied from each inlet into the fluidized bed furnace is variable. .
前記各吹込み部に,空気と流動床炉から排気された排ガスの混合ガスを供給する供給経路を接続し,前記供給経路から各吹込み部に供給される混合ガスにおける,空気と排ガスの混合比を可変に構成したことを特徴とする,請求項1に記載の流動床炉。   A supply path for supplying a mixed gas of air and exhaust gas exhausted from a fluidized bed furnace is connected to each of the blowing parts, and mixing of air and exhaust gas in the mixed gas supplied to each of the blowing parts from the supply path The fluidized bed furnace according to claim 1, wherein the ratio is variable. 焼却原料を流動床炉内に投入する投入口を,前記炉床の高所側の上方に配置し,焼却後に残る不燃物を流動砂と共に流動床炉外に取り出す取出し口を,前記炉床の低所側に連通させたことを特徴とする,請求項1または2に記載の流動床炉。   An inlet for introducing incinerated raw material into the fluidized bed furnace is disposed above the high side of the hearth, and an outlet for taking out non-combustible materials remaining after incineration together with fluidized sand to the outside of the fluidized bed furnace is provided. The fluidized bed furnace according to claim 1, wherein the fluidized bed furnace is communicated with a low side. 前記吹込み部を,炉床の傾斜する方向と交差する幅方向に沿って複数に分割して設け,前記幅方向において,中央部分におけるガスの吹込み量と,両端部分におけるガスの吹込み量を可変に構成したことを特徴とする,請求項1,2または3に記載の流動床炉。   The blowing portion is provided by being divided into a plurality along the width direction intersecting with the direction in which the hearth is inclined, and in the width direction, the amount of gas blown in the central portion and the amount of gas blown in both end portions. The fluidized bed furnace according to claim 1, 2 or 3, characterized in that is configured to be variable. 傾斜して設けられた炉床の下方から流動床炉内にガスを吹込むことにより,流動床炉内で流動砂を流動化させ,流動床炉内に投入した焼却原料を流動化した流動砂により攪拌させながら焼却する方法であって,
前記炉床の高所側から投入口を介して流動床炉内に焼却原料を投入すると共に,焼却後に残る不燃物を,前記炉床の低所側から流動床炉外に取り出し,
前記流動床炉内において,焼却原料の投入口近傍の酸素量を,他の箇所よりも少なくし,
前記流動床炉内において,流動床炉中央部に投入する流動砂および焼却原料の量を,流動床炉端部に投入する流動砂および焼却原料の量よりも少なくすることを特徴とする,流動床炉の焼却方法。
Fluidized sand in which fluidized sand is fluidized in the fluidized bed furnace by injecting gas into the fluidized bed furnace from below the inclined hearth, and the incinerated raw material charged in the fluidized bed furnace is fluidized. Incineration with stirring by
The incinerated raw material is charged into the fluidized bed furnace from the high side of the hearth through the inlet, and the incombustible material remaining after the incineration is taken out of the fluidized bed furnace from the low side of the hearth.
In the fluidized bed furnace, the amount of oxygen in the vicinity of the incineration raw material inlet is made smaller than in other places,
In the fluidized bed furnace, the amount of fluidized sand and incinerated raw material charged into the center of the fluidized bed furnace is less than the amount of fluidized sand and incinerated raw material charged into the end of the fluidized bed furnace. How to incinerate the furnace.
前記流動床炉内において,炉床の下方から焼却原料の投入口近傍に吹込むガス中の酸素量を,他の箇所に吹込むガス中の酸素量よりも少なくすることを特徴とする,請求項5に記載の流動床炉の焼却方法。 Wherein in a fluidized bed furnace, characterized in that the amount of oxygen blown in gas inlet near the incineration material from below the hearth, to less than the amount of oxygen blown gas elsewhere, according Item 6. A method for incinerating a fluidized bed furnace according to Item 5 . 前記炉床の傾斜する方向と交差する幅方向での比較において,炉床の中央部分ではガスの吹込み速度を比較的小さくし,炉床の両端部分ではガスの吹込み速度を比較的大きくすることを特徴とする,請求項5または6に記載の流動床炉の焼却方法。   In the comparison in the width direction crossing the direction in which the hearth is inclined, the gas blowing speed is relatively small in the center part of the hearth, and the gas blowing speed is relatively large in both ends of the hearth. The incineration method of a fluidized bed furnace according to claim 5 or 6, characterized in that
JP2004081081A 2004-03-19 2004-03-19 Fluidized bed furnace and its incineration method. Expired - Lifetime JP4378528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081081A JP4378528B2 (en) 2004-03-19 2004-03-19 Fluidized bed furnace and its incineration method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081081A JP4378528B2 (en) 2004-03-19 2004-03-19 Fluidized bed furnace and its incineration method.

Publications (2)

Publication Number Publication Date
JP2005265345A JP2005265345A (en) 2005-09-29
JP4378528B2 true JP4378528B2 (en) 2009-12-09

Family

ID=35090088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081081A Expired - Lifetime JP4378528B2 (en) 2004-03-19 2004-03-19 Fluidized bed furnace and its incineration method.

Country Status (1)

Country Link
JP (1) JP4378528B2 (en)

Also Published As

Publication number Publication date
JP2005265345A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP4565279B2 (en) Fluidized bed furnace and its incineration method
EP0628767A2 (en) Fluidized bed reactor and method utilizing refuse derived fuel
JP4830140B2 (en) Combustion control method and incinerator
JP2007247962A (en) Combustible material treatment apparatus
US4280417A (en) Incineration plant
JP4707435B2 (en) Stoker-type pyrolysis furnace
JP6391046B2 (en) Metal smelting raw material recovery apparatus and method from waste incineration ash, and metal recovery apparatus and method from waste incineration ash
JP4378528B2 (en) Fluidized bed furnace and its incineration method.
JP4660757B2 (en) Fluidized bed furnace and its incineration method
JP2006308226A (en) Fluidized bed furnace and incineration method of fluidized bed furnace
JP4432047B2 (en) Waste treatment furnace and waste treatment equipment that treats dust and sludge together
EP1367323A1 (en) Gasification melting furnace and gasification melting method for combustible refuse and/or burned ash
JP3623751B2 (en) Vertical waste incineration facility equipped with ash melting device and its operation method
WO1995014194A1 (en) Method of disposing incineration residue ash and apparatus therefor
JP2003166705A (en) Method and device for waste disposal by stoker furnace
JP4036826B2 (en) Incineration melt cooling method
JP2003074817A (en) Waste gasifying/melting equipment, and its operation method
JP3779681B2 (en) Incinerator
JP2007147135A (en) Fluidized bed furnace
JP2003042419A (en) Operation method of gasifying/melting furnace equipment, and the gasifying/melting furnace equipment
EP0381195B1 (en) Incinerating furnace
JP5876264B2 (en) Waste treatment equipment
JP3172751B2 (en) Fluidized bed combustion method
JP5344308B2 (en) Gasification and melting apparatus and operation method thereof
JP2004169931A (en) Waste treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4378528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term