JP4373685B2 - Plasma processing method - Google Patents

Plasma processing method Download PDF

Info

Publication number
JP4373685B2
JP4373685B2 JP2003049805A JP2003049805A JP4373685B2 JP 4373685 B2 JP4373685 B2 JP 4373685B2 JP 2003049805 A JP2003049805 A JP 2003049805A JP 2003049805 A JP2003049805 A JP 2003049805A JP 4373685 B2 JP4373685 B2 JP 4373685B2
Authority
JP
Japan
Prior art keywords
plasma
frequency power
processing
voltage
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003049805A
Other languages
Japanese (ja)
Other versions
JP2003347285A (en
Inventor
正 権代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2003049805A priority Critical patent/JP4373685B2/en
Publication of JP2003347285A publication Critical patent/JP2003347285A/en
Application granted granted Critical
Publication of JP4373685B2 publication Critical patent/JP4373685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はプラズマ処理方法にかかり,特に印加する高周波電力が低い場合にも安定してプラズマの生成が可能なプラズマ処理方法に関する。
【0002】
【従来の技術】
半導体製造工程,液晶表示装置の製造工程などで行われるプラズマ処理においては,電極が備えられた気密な処理容器内に処理ガスを導入し,この電極に高周波電力を印加して,処理ガスをプラズマ化し,被処理体表面にエッチングや成膜等の処理を行っている(例えば,特許文献1参照)。
【0003】
【特許文献1】
特開平11−340207
【0004】
【発明が解決しようとする課題】
ところが,上記製造工程のプロセスの多様化に伴って,電極に印加される高周波電力が低い条件の下で処理を行う必要性が生じる場合がある。また,製品の製造工程などで,連続的に長時間,プラズマ処理装置を稼動させる場合には,プラズマ処理容器内部に,処理により発生した異物が付着し,プラズマが安定して発生させられない場合がある。
【0005】
本発明は,従来のプラズマ処理方法が有する上記問題点に鑑みてなされたものであり,本発明の目的は,印加する高周波電力が低い場合,および長時間のプラズマ処理装置稼動後においても安定してプラズマの生成が可能な,新規かつ改良されたプラズマ処理方法を提供することである。
【0006】
【課題を解決するための手段】
上記課題を解決するため,本発明によれば,電極が配置された気密な処理容器内に処理ガスを導入するとともに,前記電極に高周波電力を印加して処理ガスのプラズマを形成し,前記電極に載置された被処理体の処理面に対してプラズマ処理を施す方法であって,被処理体を載置した電極に直流電圧を印加する工程と,直流電圧を印加した後,直流電力を印加した電極に高周波電力を印加する工程とを有するプラズマ処理方法が提供される。かかる方法によれば,印加される高周波電力が低い場合,および長時間使用後の異物付着が生じた処理装置によっても,安定してプラズマを発生させることができる。
【0007】
直流電圧が,高周波電力を印加した後で,プラズマ形成中に遮断される工程を有するようにしてもよい。かかる方法によれば,被処理体のプラズマ処理時の,直流電圧の影響を最小限に留めることが可能であり,従来の処理条件をそのまま適用することができる。
【0008】
なお,直流電圧は,アースを基準として−0.5kV以下であることが好ましい。また,処理容器内の圧力は,10mTorr以上20mTorr以下,高周波電力は,50W以上450W以下,または,処理容器内の圧力は,10mTorr以上25mTorr以下,高周波電力は,50W以上200W以下,あるいは,処理容器内の圧力が,10mTorr以上30mTorr以下,高周波電力が,50W以上150W以下とすることができる。これらの領域では,直流電圧を印加しないときプラズマ着火しづらかったが,直流電圧を印加することで,安定したプラズマ着火が行える。
【0009】
本発明の別の観点によれば,第1電極と第2電極とが対向して配置された気密な処理容器内に処理ガスを導入するとともに,高周波電力を印加して処理ガスのプラズマを形成し,前記第2電極に載置された被処理体の処理面に対してプラズマ処理を施すプラズマ処理方法であって,第2電極に直流電圧を印加する工程と,直流電圧を印加した後,第1電極に第1周波数の第1高周波電力を印加する工程と,第1高周波電力の印加後,第2電極に第1周波数よりも低い第2周波数の第2高周波電力を印加する工程とを有するプラズマ処理方法が提供される。さらに,上記工程後に直流電圧を遮断する工程を含むこともできる。
【0010】
被処理体が載置された第2電極に直流電圧を印加する工程と,直流電圧を印加した後,第2電極に第2周波数の第2高周波電力を印加する工程と,第2高周波電力の印加後,第1電極に前記第2周波数よりも高い第1周波数を有する第1高周波電力を印加する工程とを有するプラズマ処理方法でもよい。さらに,上記工程後に直流電圧を遮断する工程を含むこともできる。
【0011】
電極が配置された気密な処理容器内に処理ガスを導入するとともに,処理容器外に備えられたアンテナに高周波電力を印加して処理ガスのプラズマを形成し,電極に載置された被処理体の処理面に対してプラズマ処理を施す方法であって,電極に直流電圧を印加する工程と,直流電圧の印加後,アンテナに第1周波数の第1高周波電力を印加する工程と,電極に第1周波数よりも低い第2周波数を有する第2高周波電力を印加する工程とを有するプラズマ処理方法でもよい。さらに,上記工程後で,プラズマ形成中に直流電圧を遮断する工程を含むこともできる。
【0012】
かかる方法によれば,印加される高周波電力が低い場合,および長時間使用後の異物付着が生じた処理装置によっても,安定してプラズマを発生させることができる。また,直流電圧を遮断する工程により,被処理体のプラズマ処理時の,直流電圧の影響を最小限に留めることが可能であり,従来の処理条件をそのまま適用することができる。
【0013】
【発明の実施の形態】
以下に添付図面を参照しながら,本発明にかかるプラズマ処理方法の好適な実施の形態について詳細に説明する。なお,本明細書及び図面において,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。
【0014】
ここでは,本発明を,プラズマエッチング装置を例にして説明する。図1は,本発明の第1の実施形態にかかるプラズマエッチング装置100の概略断面図である。
【0015】
図1に示すように,プラズマエッチング装置100には,例えば略円筒形の接地された気密な処理容器102内に,半導体ウエハWを載置する載置台を兼ねた下部電極104が上下動可能に設けられている。
【0016】
下部電極104は,内部に埋め込まれたヒータや温度測定部材などからなる温度調節機構(図示せず)により所定温度に維持される。半導体ウエハWと下部電極104との間には伝熱ガス供給機構(図示せず)から伝熱ガス(例えばHeガス)が所定の圧力で供給され,下部電極104からの熱を半導体ウエハWに伝えるように構成され,半導体ウエハWの温度を制御することが可能になっている。
【0017】
下部電極104に対向して上部電極108が設けられ,処理容器102を介して接地されている。処理容器102上部には,ガス導入系(図示せず)に接続されたガス導入口106が設けられ,上部電極108に設けられた複数のガス吐出口109より,処理ガスを処理容器102内に導入する。処理ガスには,例えばCとCOとArとOとの混合ガス等が用いられる。
【0018】
処理容器102下部には,排気機構(図示せず)に接続された排気管110が設けられ,この排気管110を介して真空引きされることで,処理容器102内は所定の圧力に保たれる。処理容器102の両側壁外部に磁石を設け,電界に垂直な磁場を与えるようにしてもよい。この場合,磁石は磁場の強度が可変であるように構成されることが好ましい。
【0019】
下部電極104には,整合器112を介して高周波電源114が,そして抵抗116を介して本発明の特徴である直流電源118が接続されている。抵抗116は,高周波電源114からの高周波電力を遮断するフィルタとして作用する。高周波電源114の周波数は,10MHz〜200MHzが好ましく,例えば13.56MHzとすることができる。また,直流電源118は,下部電極104にマイナスの電位,例えば−0.5kVの電位を与えるように構成される。直流電源118と高周波電源114との間に,チョークコイルを設け,高周波電力の遮断を補助するように構成してもよい。
【0020】
この高周波電源114および直流電源118から電力を与え,処理容器102内に導入された処理ガスをプラズマ状態とし,電極間の下部電極104近傍に発生する自己バイアス電圧により加速されたイオン及びラジカルのエネルギーにより,被処理体にエッチング処理を施す。
【0021】
次に,プラズマエッチング装置100を用いてエッチング処理を行う際の動作を説明する。まず,処理容器102内の下部電極104上に半導体ウエハWを載置し,排気管110を介して排気機構(図示せず)により処理容器102を排気する。その後,ガス導入口106から,ガス吐出口109を介して所定の処理ガスを所定の流量で処理容器102内に導入し,所定の圧力になるように調節する。
【0022】
続いて,直流電源118より,例えば−0.5kVの直流電圧を印加し,その後に,高周波電源114から例えば周波数が13.56MHzの高周波電力を印加する。高周波電源114からの印加電力については後述する。これら,直流電圧および高周波電力を印加して,処理容器102内の処理ガスをプラズマ化し,被処理体表面に所定のエッチング処理を施す。
【0023】
次に,本発明の特徴である直流電源118による効果について説明する。プラズマエッチング装置100で,処理ガスとして,COとOガスとNとの混合ガスを用い,いろいろな高周波印加電力,および処理容器内の圧力でプラズマを形成した。その結果を表1に示す。ここでは半導体ウエハ5枚を連続で処理し,全て安定してプラズマが着火した場合は○,5枚中1枚の処理時に,プラズマが着火しづらかった場合を△,全てプラズマが着火しなかった場合を×とした。
【0024】
【表1】

Figure 0004373685
【0025】
表1に示すように,処理容器内の圧力が低いほど,また,高周波電力が小さいほどプラズマは着火しづらい。例えば,圧力20mTorrの場合には,高周波電力を約500W印加しないとプラズマは着火せず,圧力を50mTorrにすると,100Wの高周波電力によってプラズマが着火することになる。空欄は,実施はしていないが,上記のような傾向から,安定してプラズマ着火が行えると判断される。
【0026】
これに対して,下部電極104に高周波電力を印加する前に−0.5kVの直流電圧を印加すると,処理容器102内の圧力が10mTorr,高周波電力が50Wで半導体ウエハ5枚全てでプラズマが着火することが確かめられた。また,直流電圧が−0.4kV以下では,処理容器102内の圧力10mTorr,高周波電力50Wで,半導体ウエハ5枚全てでプラズマは着火しなかった。
【0027】
プラズマ着火後は,直流電源118からの電力供給を遮断しても,プラズマは安定して生成されていた。なお,プラズマの着火は,整合器112内部のコンデンサ(図示せず)容量を調節し,反射波がゼロとなる整合状態が存在することで確認される。また,処理ガスとしてCとCOとArとOとの混合ガスを用いた場合の,整合時の整合器112内のコンデンサ容量値には,直流電圧を印加したことによる有意な変化はないことから,プラズマ状態への直流電圧印加による影響は無視できると考えられ,従って,被処理体に対するプラズマ処理は,直流電圧を印加しない場合と同様に行うことが可能である。
【0028】
以上のように,気密な処理容器102内に,処理ガスを導入し,高周波電源114により電力を印加して処理ガスをプラズマ化し,被処理体表面に所定の処理を行う際に,処理容器102内の圧力10mTorr,高周波電源114の電力50Wに対し,直流電源118により,−0.5kVの直流電圧を印加すると,処理ガスをエネルギー的に励起させた状態で高周波電力を印加することになるので,印加する高周波電力が50W程度と低い場合にも,プラズマの着火が容易に行える。プラズマ安定後には,直流電源を遮断してもよいので,被処理体のプラズマ処理への影響を最小限に留めることができる。
【0029】
また,このように,低高周波電力,低ガス圧力でのプラズマ着火が容易になることで,様々な条件のプロセスに使用可能なプラズマ処理方法が提供でき,また,長時間使用後の異物が付着した状態でも,プラズマの着火が可能なので,メインテナンスが容易になる効果がある。
【0030】
次に,図2を参照しながら,第2の実施の形態にかかるプラズマ処理方法について説明する。図2は,第2の実施の形態にかかるプラズマエッチング装置200の概略断面図である。第1の実施の形態にかかるプラズマエッチング装置100と,実質的に同一の機能構成を有する構成要素については,同一の符号を付することにより重複説明を省略する。
【0031】
プラズマエッチング装置100とプラズマエッチング装置200の構成は,次点で相違がある。すなわち,プラズマエッチング装置100では,上部電極108と処理容器102は接しており,処理容器102は接地されている。これにより上部電極108は処理容器102を介して接地されており,また,上部電極108には電力の供給は行われていない。プラズマエッチング装置200では,上部電極108に,整合器212を介して高周波電源214が接続され,高周波電力の印加が可能である。また,上部電極108と処理容器202との間に絶縁体210が備えられ,互いに絶縁されている。なお,処理容器202は保安接地されている。
【0032】
プラズマエッチング装置200を用いてエッチング処理を行う際の動作を説明する。まず,処理容器202内の第2電極である下部電極104上に半導体ウエハWを載置し,排気管110を介して排気機構(図示せず)により処理容器202を排気する。その後,ガス導入口106から,ガス吐出口109を介して所定の処理ガスを所定の流量で処理容器102内に導入し,所定の圧力になるように調節する。
【0033】
続いて,直流電源118より,下部電極104に例えば−0.5kVの直流電圧を印加し,その後に,高周波電源214から例えば周波数が60MHzの第1高周波電力を第1電極である上部電極108に印加する。さらにその後,高周波電源114から,高周波電源214よりも低い周波数,例えば周波数が13.56MHzの第2高周波電力を,下部電極104に印加する。これら,直流電圧および第1高周波電力,第2高周波電力を印加して,処理容器202内の処理ガスをプラズマ化し,被処理体表面に所定のエッチング処理を施す。
【0034】
ここで,直流電源118より下部電極104に直流電圧を印加した後,続いて高周波電源114から第2高周波電力を印加し,その後に,上部電極108に高周波電源214から,高周波電源114よりも高い周波数の第1高周波電力を印加する方法でもよい。上記いずれのプラズマ処理方法においても,プラズマ着火後に下部電極104に印加した直流電圧を遮断するようにしてもよい。
【0035】
また,本発明は処理容器の上部を構成する誘電体板を介してアンテナが配置された誘導結合型プラズマ処理装置にも適用できる。
【0036】
アンテナを有するプラズマエッチング装置を用いてエッチング処理を行う際の動作を説明する。まず,処理容器内の電極上に半導体ウエハWを載置し,その後,処理ガスを処理容器内に導入し,所定の真空度になるように調節する。
【0037】
続いて,直流電源より電極に直流電圧を印加し,その後アンテナに,例えば13.56MHzの第1高周波電力を印加する。さらにその後,第1高周波電力よりも低い周波数,例えば3.2MHzの第2高周波電力を,電極に印加する。これら,直流電圧および第1高周波電力,第2高周波電力を印加して,処理容器内の処理ガスをプラズマ化し,被処理体表面に所定のエッチング処理を施す。なお,プラズマ着火後に,電極に印加した直流電圧を遮断するようにしてもよい。
【0038】
以上のように,気密な処理容器202内に,処理ガスを導入し,高周波電力を印加して処理ガスをプラズマ化し,被処理体表面に所定の処理を行う際に,直流電源118により,直流電圧を印加し,上記のように,下部電極104,上部電極108,またはアンテナに所定の順序で高周波電力を印加すると,処理ガスをエネルギー的に励起させた状態で高周波電力を印加することになるので,印加する高周波電力が低い場合にも,プラズマの着火が容易に行える。プラズマ安定後には,直流電圧を遮断してもよいので,被処理体のプラズマ処理への影響を最小限に留めることができる。
【0039】
また,このように,低高周波電力,低圧力下でのプラズマ着火が容易になることで,様々な条件のプロセスに使用可能なプラズマ処理方法が提供でき,また,長時間使用後の異物が付着した状態でも,プラズマの着火が可能なので,メインテナンスが容易になる効果がある。
【0040】
以上,添付図面を参照しながら本発明にかかるプラズマ処理方法の好適な実施形態について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。
【0041】
【発明の効果】
以上説明したように,本発明によれば,印加する高周波電力が低い場合,および長時間のプラズマ処理装置稼動後においても安定してプラズマの生成が可能なプラズマ処理方法が提供される。
【図面の簡単な説明】
【図1】プラズマエッチング装置100の概略断面図である。
【図2】プラズマエッチング装置200の概略断面図である。
【符号の説明】
100 プラズマエッチング装置
102 処理容器
104 下部電極
106 ガス導入口
108 上部電極
109 ガス吐出口
110 排気管
112 整合器
114 高周波電源
116 抵抗
118 直流電源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma processing method, and more particularly to a plasma processing method capable of stably generating plasma even when a high frequency power applied is low.
[0002]
[Prior art]
In plasma processing performed in semiconductor manufacturing processes, liquid crystal display manufacturing processes, etc., a processing gas is introduced into an airtight processing container equipped with electrodes, and high-frequency power is applied to the electrodes to process the processing gas into plasma. The surface of the object to be processed is subjected to processing such as etching and film formation (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
JP 11-340207 A
[0004]
[Problems to be solved by the invention]
However, with the diversification of the manufacturing process, there is a case where it is necessary to perform processing under a condition where the high frequency power applied to the electrode is low. Also, when the plasma processing equipment is operated continuously for a long time in the product manufacturing process, etc., foreign substances generated by the processing adhere to the inside of the plasma processing container, and the plasma cannot be generated stably. There is.
[0005]
The present invention has been made in view of the above-mentioned problems of the conventional plasma processing method, and the object of the present invention is to stabilize when the applied high frequency power is low and even after the plasma processing apparatus is operated for a long time. The present invention provides a new and improved plasma processing method capable of generating plasma.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, according to the present invention, a processing gas is introduced into an airtight processing container in which an electrode is disposed, and a high-frequency power is applied to the electrode to form a plasma of the processing gas. A plasma treatment is performed on the processing surface of the object mounted on the substrate, the step of applying a DC voltage to the electrode on which the object is mounted, and the DC power after applying the DC voltage. And a step of applying high frequency power to the applied electrode. According to such a method, plasma can be stably generated even when the applied high-frequency power is low, and even by a processing apparatus in which foreign matter adheres after long-time use.
[0007]
You may make it have the process by which direct-current voltage is interrupted | blocked during plasma formation, after applying high frequency electric power. According to such a method, it is possible to minimize the influence of the DC voltage during the plasma processing of the workpiece, and the conventional processing conditions can be applied as they are.
[0008]
The DC voltage is preferably −0.5 kV or less with respect to the ground. The pressure in the processing container is 10 mTorr to 20 mTorr, the high frequency power is 50 W to 450 W, or the pressure in the processing container is 10 mTorr to 25 mTorr, and the high frequency power is 50 W to 200 W, or the processing container The internal pressure can be 10 mTorr to 30 mTorr, and the high frequency power can be 50 W to 150 W. In these regions, plasma ignition was difficult when no DC voltage was applied, but stable plasma ignition can be achieved by applying DC voltage.
[0009]
According to another aspect of the present invention, a processing gas is introduced into an airtight processing container in which a first electrode and a second electrode are arranged to face each other, and a plasma of the processing gas is formed by applying high-frequency power. A plasma processing method for performing plasma processing on a processing surface of an object to be processed placed on the second electrode, the step of applying a DC voltage to the second electrode, and after applying the DC voltage, Applying a first high-frequency power having a first frequency to the first electrode; and applying a second high-frequency power having a second frequency lower than the first frequency to the second electrode after applying the first high-frequency power. A plasma processing method is provided. Furthermore, the process of interrupting | blocking DC voltage after the said process can also be included.
[0010]
A step of applying a DC voltage to the second electrode on which the workpiece is placed, a step of applying a second high-frequency power of the second frequency to the second electrode after applying the DC voltage, and a step of And a step of applying a first high frequency power having a first frequency higher than the second frequency to the first electrode after the application. Furthermore, the process of interrupting | blocking DC voltage after the said process can also be included.
[0011]
A processing gas is introduced into an airtight processing container in which an electrode is disposed, and a plasma of the processing gas is formed by applying high-frequency power to an antenna provided outside the processing container, and a target object placed on the electrode And applying a DC voltage to the electrode, applying a first high-frequency power of a first frequency to the antenna after applying the DC voltage, and applying a DC voltage to the electrode. A plasma processing method having a step of applying a second high-frequency power having a second frequency lower than the first frequency may be used. Furthermore, it is possible to include a step of cutting off the DC voltage during plasma formation after the above step.
[0012]
According to such a method, plasma can be stably generated even when the applied high-frequency power is low, and even by a processing apparatus in which foreign matter adheres after long-time use. In addition, the process of cutting off the DC voltage makes it possible to minimize the influence of the DC voltage during the plasma processing of the workpiece, and the conventional processing conditions can be applied as they are.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a plasma processing method according to the present invention will be described in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
[0014]
Here, the present invention will be described using a plasma etching apparatus as an example. FIG. 1 is a schematic cross-sectional view of a plasma etching apparatus 100 according to the first embodiment of the present invention.
[0015]
As shown in FIG. 1, in the plasma etching apparatus 100, for example, a lower electrode 104 that also serves as a mounting table on which a semiconductor wafer W is mounted is movable up and down in a substantially cylindrical grounded airtight processing container 102. Is provided.
[0016]
The lower electrode 104 is maintained at a predetermined temperature by a temperature adjusting mechanism (not shown) including a heater and a temperature measuring member embedded therein. A heat transfer gas (for example, He gas) is supplied between the semiconductor wafer W and the lower electrode 104 from a heat transfer gas supply mechanism (not shown) at a predetermined pressure, and heat from the lower electrode 104 is supplied to the semiconductor wafer W. The temperature of the semiconductor wafer W can be controlled.
[0017]
An upper electrode 108 is provided to face the lower electrode 104 and is grounded through the processing container 102. A gas introduction port 106 connected to a gas introduction system (not shown) is provided at the upper portion of the processing vessel 102, and processing gas is introduced into the processing vessel 102 from a plurality of gas discharge ports 109 provided in the upper electrode 108. Introduce. For example, a mixed gas of C 4 F 8 , CO, Ar, and O 2 is used as the processing gas.
[0018]
An exhaust pipe 110 connected to an exhaust mechanism (not shown) is provided at a lower portion of the processing container 102, and the inside of the processing container 102 is maintained at a predetermined pressure by being evacuated through the exhaust pipe 110. It is. Magnets may be provided outside both side walls of the processing container 102 to apply a magnetic field perpendicular to the electric field. In this case, the magnet is preferably configured such that the strength of the magnetic field is variable.
[0019]
A high frequency power source 114 is connected to the lower electrode 104 through a matching unit 112, and a DC power source 118, which is a feature of the present invention, is connected through a resistor 116. The resistor 116 acts as a filter that cuts off high frequency power from the high frequency power supply 114. The frequency of the high frequency power supply 114 is preferably 10 MHz to 200 MHz, and can be set to 13.56 MHz, for example. The DC power supply 118 is configured to give a negative potential, for example, a potential of −0.5 kV, to the lower electrode 104. A choke coil may be provided between the direct current power source 118 and the high frequency power source 114 to assist in cutting off the high frequency power.
[0020]
Ions and radical energy accelerated by a self-bias voltage generated near the lower electrode 104 between the electrodes by applying power from the high-frequency power source 114 and the DC power source 118 to bring the processing gas introduced into the processing vessel 102 into a plasma state. Thus, the object to be processed is etched.
[0021]
Next, an operation when performing an etching process using the plasma etching apparatus 100 will be described. First, the semiconductor wafer W is placed on the lower electrode 104 in the processing container 102, and the processing container 102 is exhausted by an exhaust mechanism (not shown) through the exhaust pipe 110. Thereafter, a predetermined processing gas is introduced into the processing vessel 102 from the gas introduction port 106 through the gas discharge port 109 at a predetermined flow rate and adjusted to a predetermined pressure.
[0022]
Subsequently, a DC voltage of, for example, −0.5 kV is applied from the DC power source 118, and then, a high frequency power having a frequency of, for example, 13.56 MHz is applied from the high frequency power source 114. The applied power from the high frequency power supply 114 will be described later. The DC voltage and the high frequency power are applied to turn the processing gas in the processing container 102 into plasma, and a predetermined etching process is performed on the surface of the object to be processed.
[0023]
Next, the effect of the DC power supply 118 that is a feature of the present invention will be described. In the plasma etching apparatus 100, plasma was formed with various high-frequency applied power and pressure in the processing vessel using a mixed gas of CO, O 2 gas and N 2 as the processing gas. The results are shown in Table 1. Here, when 5 semiconductor wafers were processed continuously and all the plasmas were ignited stably, ◯, when one of the 5 wafers was processed, △ when the plasma was difficult to ignite, all the plasma was not ignited The case was marked with x.
[0024]
[Table 1]
Figure 0004373685
[0025]
As shown in Table 1, the lower the pressure in the processing container and the lower the high frequency power, the more difficult the plasma is ignited. For example, when the pressure is 20 mTorr, the plasma is not ignited unless the high frequency power is applied about 500 W, and when the pressure is 50 mTorr, the plasma is ignited by the high frequency power of 100 W. Although the blank is not implemented, it is judged that plasma ignition can be stably performed from the above-mentioned tendency.
[0026]
On the other hand, when a DC voltage of −0.5 kV is applied before applying the high frequency power to the lower electrode 104, the plasma is ignited in all the five semiconductor wafers with the pressure in the processing chamber 102 being 10 mTorr and the high frequency power being 50 W. It was confirmed to do. Further, when the DC voltage was −0.4 kV or less, the plasma was not ignited in all the five semiconductor wafers at a pressure of 10 mTorr and a high frequency power of 50 W in the processing chamber 102.
[0027]
After the plasma was ignited, the plasma was stably generated even if the power supply from the DC power source 118 was cut off. The ignition of the plasma is confirmed by adjusting the capacitance of the condenser (not shown) inside the matching unit 112 and the presence of a matching state where the reflected wave becomes zero. In addition, when a mixed gas of C 4 F 8 , CO, Ar, and O 2 is used as the processing gas, the capacitance value in the matching unit 112 during matching changes significantly due to the application of a DC voltage. Therefore, it can be considered that the influence of the DC voltage application on the plasma state can be ignored. Therefore, the plasma treatment on the object to be processed can be performed in the same manner as when the DC voltage is not applied.
[0028]
As described above, when the processing gas is introduced into the hermetic processing container 102 and the processing gas is converted into plasma by applying electric power from the high-frequency power source 114 to perform a predetermined processing on the surface of the processing object, the processing container 102. When a DC voltage of −0.5 kV is applied from the DC power supply 118 to the internal pressure of 10 mTorr and the electric power of 50 W of the high frequency power supply 114, the high frequency power is applied in a state where the processing gas is energetically excited. The plasma can be easily ignited even when the applied high frequency power is as low as about 50 W. After the plasma stabilizes, the DC power supply may be shut off, so that the influence of the object to be processed on the plasma processing can be minimized.
[0029]
In addition, plasma ignition with low-frequency power and low gas pressure is facilitated in this way, providing a plasma processing method that can be used in processes under various conditions, and that foreign matter adheres after prolonged use. Even in such a state, plasma can be ignited, which makes maintenance easier.
[0030]
Next, the plasma processing method according to the second embodiment will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view of a plasma etching apparatus 200 according to the second embodiment. Components having substantially the same functional configuration as those of the plasma etching apparatus 100 according to the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
[0031]
The configurations of the plasma etching apparatus 100 and the plasma etching apparatus 200 are different in the following points. That is, in the plasma etching apparatus 100, the upper electrode 108 and the processing container 102 are in contact with each other, and the processing container 102 is grounded. As a result, the upper electrode 108 is grounded via the processing vessel 102, and power is not supplied to the upper electrode 108. In the plasma etching apparatus 200, a high frequency power source 214 is connected to the upper electrode 108 via a matching unit 212, and high frequency power can be applied. In addition, an insulator 210 is provided between the upper electrode 108 and the processing vessel 202 and is insulated from each other. Note that the processing container 202 is grounded for safety.
[0032]
An operation when performing an etching process using the plasma etching apparatus 200 will be described. First, the semiconductor wafer W is placed on the lower electrode 104 which is the second electrode in the processing container 202, and the processing container 202 is exhausted by an exhaust mechanism (not shown) through the exhaust pipe 110. Thereafter, a predetermined processing gas is introduced into the processing vessel 102 from the gas introduction port 106 through the gas discharge port 109 at a predetermined flow rate and adjusted to a predetermined pressure.
[0033]
Subsequently, for example, a direct current voltage of −0.5 kV is applied from the direct current power source 118 to the lower electrode 104, and then a first high frequency power having a frequency of, for example, 60 MHz is applied from the high frequency power source 214 to the upper electrode 108 that is the first electrode. Apply. After that, the second high frequency power having a frequency lower than that of the high frequency power source 214, for example, a frequency of 13.56 MHz, is applied from the high frequency power source 114 to the lower electrode 104. The DC voltage, the first high-frequency power, and the second high-frequency power are applied to turn the processing gas in the processing container 202 into plasma, and a predetermined etching process is performed on the surface of the object to be processed.
[0034]
Here, after a DC voltage is applied from the DC power supply 118 to the lower electrode 104, the second high frequency power is subsequently applied from the high frequency power supply 114, and then the upper electrode 108 is higher than the high frequency power supply 114 from the high frequency power supply 214. A method of applying a first high frequency power having a frequency may be used. In any of the above plasma processing methods, the DC voltage applied to the lower electrode 104 after plasma ignition may be cut off.
[0035]
The present invention can also be applied to an inductively coupled plasma processing apparatus in which an antenna is disposed via a dielectric plate constituting the upper part of the processing container.
[0036]
An operation when performing an etching process using a plasma etching apparatus having an antenna will be described. First, the semiconductor wafer W is placed on the electrode in the processing container, and then a processing gas is introduced into the processing container and adjusted to a predetermined degree of vacuum.
[0037]
Subsequently, a DC voltage is applied to the electrodes from the DC power source, and then a first high frequency power of 13.56 MHz, for example, is applied to the antenna. Thereafter, a frequency lower than the first high frequency power, for example, a second high frequency power of 3.2 MHz is applied to the electrodes. The DC voltage, the first high frequency power, and the second high frequency power are applied to turn the processing gas in the processing container into plasma, and a predetermined etching process is performed on the surface of the object to be processed. Note that the DC voltage applied to the electrode may be cut off after plasma ignition.
[0038]
As described above, when the processing gas is introduced into the airtight processing container 202, the processing gas is turned into plasma by applying high-frequency power, and a predetermined processing is performed on the surface of the object to be processed, the direct current power supply 118 performs direct current. When a voltage is applied and, as described above, high-frequency power is applied to the lower electrode 104, the upper electrode 108, or the antenna in a predetermined order, the high-frequency power is applied in a state where the processing gas is energetically excited. Therefore, plasma can be easily ignited even when the applied high frequency power is low. After the plasma stabilizes, the DC voltage may be cut off, so that the influence of the object to be processed on the plasma processing can be minimized.
[0039]
In addition, plasma ignition under low-frequency power and low pressure is facilitated in this way, so that a plasma processing method that can be used for various conditions can be provided, and foreign matter adheres after a long period of use. Even in such a state, plasma can be ignited, which makes maintenance easier.
[0040]
The preferred embodiments of the plasma processing method according to the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be obvious to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.
[0041]
【The invention's effect】
As described above, according to the present invention, there is provided a plasma processing method capable of stably generating plasma when the applied high frequency power is low and even after the plasma processing apparatus is operated for a long time.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a plasma etching apparatus 100. FIG.
FIG. 2 is a schematic sectional view of a plasma etching apparatus 200. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 100 Plasma etching apparatus 102 Processing container 104 Lower electrode 106 Gas inlet 108 Upper electrode 109 Gas outlet 110 Exhaust pipe 112 Matching device 114 High frequency power source 116 Resistance 118 DC power source

Claims (2)

上部電極と下部電極とが対向して配置された気密な処理容器内に処理ガスを導入するとともに,前記下部電極に接続された給電ラインを介して前記下部電極に高周波電力を印加して前記処理ガスのプラズマを形成し,前記下部電極上に載置された被処理体の処理面に対してプラズマ処理を施す方法であって,
前記下部電極に前記給電ラインを介して直流電圧を印加する工程と,
前記直流電圧を印加した後,前記下部電極に前記給電ラインを介して高周波電力を印加する工程と,
を有し、
前記直流電圧は,−0.5kV以下であり,
前記処理容器内の圧力は,10mTorr以上30mTorr以下であり,
前記高周波電力は,50W以上150W以下であることを特徴とするプラズマ処理方法。
The processing gas is introduced into an airtight processing container in which the upper electrode and the lower electrode are arranged to face each other, and high-frequency power is applied to the lower electrode via a power supply line connected to the lower electrode. A method of forming a plasma of gas and performing a plasma treatment on a treatment surface of an object to be treated placed on the lower electrode,
Applying a DC voltage to the lower electrode via the feed line;
Applying high frequency power to the lower electrode through the power supply line after applying the DC voltage;
I have a,
The DC voltage is −0.5 kV or less,
The pressure in the processing vessel is 10 mTorr or more and 30 mTorr or less,
The plasma processing method , wherein the high-frequency power is 50 W or more and 150 W or less .
プラズマの着火後に、前記直流電圧の印加を停止する工程をさらに有することを特徴とする、請求項に記載のプラズマ処理方法。After ignition of the plasma, further comprising a step of stopping the application of the DC voltage, the plasma processing method according to claim 1.
JP2003049805A 2002-03-19 2003-02-26 Plasma processing method Expired - Fee Related JP4373685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049805A JP4373685B2 (en) 2002-03-19 2003-02-26 Plasma processing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002076039 2002-03-19
JP2002-76039 2002-03-19
JP2003049805A JP4373685B2 (en) 2002-03-19 2003-02-26 Plasma processing method

Publications (2)

Publication Number Publication Date
JP2003347285A JP2003347285A (en) 2003-12-05
JP4373685B2 true JP4373685B2 (en) 2009-11-25

Family

ID=29781856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049805A Expired - Fee Related JP4373685B2 (en) 2002-03-19 2003-02-26 Plasma processing method

Country Status (1)

Country Link
JP (1) JP4373685B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943780B2 (en) * 2006-08-31 2012-05-30 株式会社日立ハイテクノロジーズ Plasma processing apparatus and plasma processing method

Also Published As

Publication number Publication date
JP2003347285A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
TWI622081B (en) Plasma processing apparatus and plasma processing method
JP5205378B2 (en) Method and system for controlling the uniformity of a ballistic electron beam by RF modulation
JP4657473B2 (en) Plasma processing equipment
TWI460784B (en) Apparatus for providing a plasma etch of a layer over a wafer
JP4578651B2 (en) Plasma processing method, plasma processing apparatus, and plasma etching method
KR100886273B1 (en) Plasma processing apparatus and plasma processing method
JP5199595B2 (en) Plasma processing apparatus and cleaning method thereof
EP2911187A1 (en) Etching method
TWI595528B (en) Plasma processing method
KR20100087266A (en) Plasma etching apparatus, plasma etching method and storage medium
JPH08288267A (en) Upper case electrode to operate parallel electrode etching
TWI632606B (en) Method of etching an insulating film
WO2004061928A1 (en) Method and device for plasma-etching organic material film
TW202126122A (en) Plasma processing method and plasma processing apparatus
JPS58158929A (en) Plasma generator
TW201630068A (en) Plasma etching method
JPH10223607A (en) Plasma treating apparatus
JP2002110650A (en) Plasma etching method and plasma etching apparatus
JPH11283940A (en) Plasma treatment method
JP2023507941A (en) Semiconductor processing equipment and method for cleaning dielectric window of semiconductor processing equipment
JP2000331996A (en) Plasma processing device
JPH1027780A (en) Plasma treating method
JP4373685B2 (en) Plasma processing method
JP2001102361A (en) Plasma treatment method
JP2021132126A (en) Substrate processing method and substrate processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4373685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150911

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees