JP4372247B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4372247B2
JP4372247B2 JP33562298A JP33562298A JP4372247B2 JP 4372247 B2 JP4372247 B2 JP 4372247B2 JP 33562298 A JP33562298 A JP 33562298A JP 33562298 A JP33562298 A JP 33562298A JP 4372247 B2 JP4372247 B2 JP 4372247B2
Authority
JP
Japan
Prior art keywords
refrigerant
indoor
heat source
heat exchanger
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33562298A
Other languages
Japanese (ja)
Other versions
JP2000161797A (en
Inventor
大祐 嶋本
智彦 河西
純一 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP33562298A priority Critical patent/JP4372247B2/en
Publication of JP2000161797A publication Critical patent/JP2000161797A/en
Application granted granted Critical
Publication of JP4372247B2 publication Critical patent/JP4372247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、HFC冷媒または非共沸混合冷媒等を用いた空気調和装置の冷媒回路制御に関するものである。
【0002】
【従来の技術】
図13は、例えば特公平7−92296号公報等に記載された、従来の冷暖房同時運転可能な空気調和装置である。
(A)は熱源機、(B),(C),(D)は後述するように互いに並列接続された室内機で、それぞれ同じ構成となっている。(E)は後述するように第1の分岐部,第2の流量制御装置,第2の分岐部,気液分離装置,熱交換部,第3の流量制御装置、第4の流量制御装置を内蔵した中継機である。
【0003】
1は容量可変な圧縮機、2は熱源機の冷媒流通方向を切換える四方切換弁、3は熱源機側熱交換部、4はアキュムレータで上記機器と接続されており、20は上記熱源機側熱交換部3に空気を送風する送風量可変の熱源機側送風機、40は冷媒流通方向を制限する切換弁でこれらによって熱源機(A)は構成される。
5は3台の室内機(B),(C),(D)に設けられた室内側熱交換器、6は熱源機(A)の四方切換弁2と中継機(E)を接続する太い第1の接続配管6b,6c,6dはそれぞれ室内機(B),(C),(D)の室内側熱交換器5と中継機(E)を接続し、第1の接続管6に対応する室内機側の第1の接続配管、7は熱源機(A)の熱源機側熱交換器3と中継機(E)を接続する上記第1の接続配管より細い第2の接続配管である。
【0004】
7b,7c,7dはそれぞれ室内機(B),(C),(D)の室内側熱交換器5と中継機(E)を第1の接続配管を介して接続し、第2の接続配管7に対応する室内機側の第2の接続配管、8は室内機側の第1の接続配管6b,6c,6dと、第1の接続配管6または、第2の接続配管7側に切換可能に接続する三方切換弁、9は室内側熱交換器5に近傍して接続され室内側熱交換器5の出口側の冷房時はスーパーヒート量、暖房時はサブクール量により制御される第1の流量制御装置で、室内機側の第2の接続配管7b,7c,7dに接続される。
10は室内機側の第1の接続配管6b,6c,6dと、第1の接続配管6または、第2の接続配管7に切換可能に接続する三方切換弁8よりなる第1の分岐部、11は室内機側の第2の接続配管7b,7c,7dと第2の接続配管7よりなる第2の分岐部、12は第2の接続配管7の途中に設けられた気液分離装置で、その気相部は三方切換弁8の第1弁8aに接続され、その液相部は第2の分岐部11に接続されている。
【0005】
13は気液分離装置12と第2の分岐部11との間に接続する開閉自在な第2の流量制御装置(ここでは電気式膨張弁)、14は第2の分岐部11と上記第1の接続配管6とを結ぶバイパス配管である。
15は第1のバイパス配管14の途中に設けられた第3の流量制御装置(ここでは電気式膨張弁)、16aは第1のバイパス配管14の途中に設けられた第3の流量制御装置15の下流に設けられ、第2の分岐部11における各室内機側の第2の接続配管7b,7c,7dの合流部との間でそれぞれ熱交換を行う第2の熱交換部、16b,16c,16dはそれぞれ第1のバイパス配管14の途中に設けられた第3の流量制御装置15の下流に設けられ、第2の分岐部11における各室内機側の第2の接続配管7b,7c,7dとの間でそれぞれ熱交換を行う第3の熱交換部、19は第1のバイパス配管14の上記第3の流量制御装置15の下流および第2の熱交換部16aの下流に設けられ気液分離装置12と第2の流量制御装置13とを接続する配管との間で熱交換を行う第1の熱交換部、17は第2の分岐部11と上記第1の接続配管6との間に接続する開閉自在な第4の流量制御装置(ここでは電気式膨張弁)である。
【0006】
32は、上記熱源機側熱交換部3と上記第2の接続配管7との間に設けられた第3の逆止弁であり、上記熱源機側熱交換器3から上記第2の接続配管7へのみ冷媒冷媒流通を許容する。
33は、上記熱源機(A)の四方切換弁2と上記第1の接続配管6との間に設けられた第4の逆止弁であり、上記第1の接続配管6から上記四方切換弁2へのみ冷媒流通を許容する。
34は、上記熱源機(A)の四方切換弁2と上記第2の接続配管7との間に設けられた第5の逆止弁であり、上記四方切換弁2から上記第2の接続配管7へのみ冷媒流通を許容する。
35は、上記熱源機側熱交換器3と上記第1の接続配管6との間に設けられた第6の逆止弁であり、上記第1の接続配管6から上記熱源機側熱交換器3へのみ冷媒流通を許容する。
上記第3,第4,第5,第6の逆止弁32,33,34,35で切換弁40を構成する。
25は上記第1の分岐部10と第2の流量制御装置13の間に設けられた第1の圧力検出手段、26は上記第2の流量制御装置13と第4の流量制御装置17との間に設けられた第2の圧力検出手段である。
【0007】
また、上記熱源機側熱交換部3は、互いに並列に接続された第1の熱源機側熱交換器41,第1の熱源機側熱交換器41と同じ伝熱面積を有する第2の熱源機側熱交換器42,熱源機側バイパス路43,および第1の熱源機側熱交換器41の上記四方切換弁2と接続する側の一端に設けられた第1の電磁開閉弁44,上記第1の熱源機側熱交換器41の他端に設けられた第2の電磁開閉弁45,上記第2の熱源機側熱交換器42の上記四方切換弁2と接続する側の一端に設けられた第3の電磁開閉弁46,上記第2の熱源機側熱交換器42の他端に設けられた第4の電磁開閉弁47,熱源機側バイパス路43の途中に設けられた第5の電磁開閉弁48によって構成されている。
また、18は上記四方切換弁2と上記圧縮機1の吐出部とを接続する配管途中に設けられた第4の圧力検出手段である。
【0008】
【発明が解決しようとする課題】
しかし、従来の技術では、非共沸混合冷媒を冷媒として使用した場合に、停止した室内機や室外機に冷媒が多く滞留した場合に、室内機の流量制御装置の入り口サブクールがとれないための冷媒音や能力不足の他に、冷媒回路を循環する冷媒の冷媒組成比が変化してしまい、これに対応した制御ができずに冷媒音や能力不足、更には空気調和装置の故障を起こす恐れがあった。
また、HFC407CのようにHCFC22より高圧なHFC混合冷媒を使用した場合、冷媒回路内の圧力が上昇し過ぎて、空気調和装置の故障を起こす恐れがあった。
また、熱源機側熱交換器を蒸発器として作用させる運転時に、この熱源機側熱交換器に付いた霜を除去するために一時的に熱源機側熱交換器を凝縮器として作用させた運転に切り換える場合、冷媒の分布が安定しないために冷媒回路の低圧が急激に低下してしまう恐れがあった。
【0009】
この発明は、このような冷媒音の発生や能力不足を的確に防止しようとするものである。
【0010】
【課題を解決するための手段】
この発明の第1の発明に係わる空気調和装置では、圧縮機,切換弁,熱源機側熱交換器,アキュムレータよりなる熱源機と、室内側熱交換器,流量制御装置よりなる複数の室内機を備え、上記室内機が冷房と暖房の両方を同時に運転することが可能な空気調和装置において、冷媒として非共沸混合冷媒を用い、上記熱源機と上記室内機とを第1,第2の接続配管を介して接続し、上記室内機の室内側熱交換器の一方を上記第1の接続配管または第2の接続配管に切換可能に接続する弁装置を有する第1の分岐部と、上記室内機の室内側熱交換器の他方に上記流量制御装置を介して接続され、かつ上記第2の接続配管に接続する第2の分岐部とを備え、かつ上記第2の分岐部と上記第1の接続配管とを接続し、上記第2の分岐部のサブクールを検知する手段を有し、上記熱源機側熱交換器が凝縮器として作用する運転の場合に、この第2の分岐部のサブクールの検知値が一定値以下の場合に上記熱源機に滞留した冷媒を冷媒の循環する冷媒回路部に回収する制御を行うものである。
【0015】
この発明の第の発明に係る空気調和装置では、圧縮機,切換弁,熱源機側熱交換器よりなる熱源機と、室内側熱交換器、流量制御装置よりなる複数の室内機を備え、上記室内機が冷房と暖房の両方を同時に運転することが可能な空気調和装置において、冷媒として非共沸混合冷媒を用い、上記熱源機と上記室内機とを第1,第2の接続配管を介して接続し、上記室内機の室内側熱交換器の一方を上記第1の接続配管または第2の接続配管に切換可能に接続する弁装置を有する第1の分岐部と、上記室内機の室内側熱交換器の他方に上記流量制御装置を介して接続され、かつ上記第2の接続配管に接続する第2の分岐部とを備え、かつ上記第2の分岐部と上記第1の接続配管とを接続し、上記第2の分岐部のサブクールを検知する手段を有し、上記熱源機側熱交換器が凝縮器として作用する運転の場合に、この第2の分岐部のサブクールの検知値が一定値以下の場合に上記室内機のうち停止している室内機に滞留した冷媒を冷媒の循環する冷媒回路部に回収する制御を行うものである。
【0018】
この発明の第の発明に係る空気調和装置では、圧縮機,切換弁,熱源機側熱交換器よりなる熱源機と、室内側熱交換器、流量制御装置よりなる複数の室内機を備え、上記室内機が冷房と暖房の両方を同時に運転することが可能な空気調和装置において、冷媒として非共沸混合冷媒を用い、上記熱源機と上記室内機とを第1,第2の接続配管を介して接続し、上記室内機の室内側熱交換器の一方を上記第1の接続配管または第2の接続配管に切換可能に接続する弁装置を有する第1の分岐部と、上記室内機の室内側熱交換器の他方に上記流量制御装置を介して接続され、かつ上記第2の接続配管に接続する第2の分岐部とを備え、かつ上記第2の分岐部と上記第1の接続配管とを接続し、上記室内機の少なくとも1つが運転している状態からすべて停止の状態になった場合に、上記弁装置を一定時間開く制御を行うものである。
【0019】
この発明の第の発明に係る空気調和装置では、圧縮機,切換弁,熱源機側熱交換器よりなる熱源機と、室内側熱交換器、流量制御装置よりなる複数の室内機を備え、上記室内機が冷房と暖房の両方を同時に運転することが可能な空気調和装置において、冷媒として非共沸混合冷媒を用い、上記熱源機と上記室内機とを第1,第2の接続配管を介して接続し、上記室内機の室内側熱交換器の一方を上記第1の接続配管または第2の接続配管に切換可能に接続する弁装置を有する第1の分岐部と、上記室内機の室内側熱交換器の他方に上記流量制御装置を介して接続され、かつ上記第2の接続配管に接続する第2の分岐部とを備え、かつ上記第2の分岐部と上記第1の接続配管とを接続し、第2の接続配管の途中に気液分離装置を設け、その気相部を第1の分岐部に、液相部を第2の分岐部に接続し、熱源機側熱交換器が蒸発器として作用する運転時に熱源機側熱交換器の霜を取るため一時的に熱源機側熱交換器が凝縮器として作用する運転に切り換える場合、上記弁装置の操作によって気液分離装置の気相部の冷媒を第1の分岐部に送り込む制御を行うものである。
【0020】
この発明の第の発明に係る空気調和装置では、圧縮機,切換弁,熱源機側熱交換器,アキュムレータよりなる熱源機と、室内側熱交換器、第1の流量制御装置よりなる複数の室内機を備え、上記室内機が冷房と暖房の両方を同時に運転することが可能な空気調和装置において、冷媒としてHCFC22より圧力の高いHFC混合冷媒を用い、上記熱源機と上記室内機とを第1,第2の接続配管を介して接続し、上記室内機の室内側熱交換器の一方を上記第1の接続配管または第2の接続配管に切換可能に接続する弁装置を有する第1の分岐部と、上記室内機の室内側熱交換器の他方に上記第1の流量制御装置を介して接続され、かつ上記第2の接続配管に接続する第2の分岐部とを備え、かつ上記第2の分岐部と上記第1の接続配管とを接続し、第2の分岐部に第2の流量制御装置を備え、上記第2の流量制御装置の前後に第1の圧力検出手段および第2の圧力検出手段を備え、上記第1の圧力検出手段および第2の圧力検出手段のうちどちらかが一定圧力値以上になった場合に、上記第2の流量制御装置を開く制御を行うものである。
【0022】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態を説明する。
図1は、この発明に関わる空気調和装置の冷媒系を中心とする全体構成の一例である空気調和装置の冷媒回路図を示すものである。
また、図2,図3および図4は、図1に示す実施の形態1における冷暖房運転時と動作状態を示したもので、図2は冷房または暖房のみの運転動作状態図、図3および図4は冷暖房同時運転の動作を示すもので、図3は暖房主体(暖房運転容量が冷房運転容量より大きい場合)を、図4は冷房主体(冷房運転容量が暖房運転容量より大きい場合)を示す運転動作状態図である。
なお、この実施の形態では、熱源機1台に室内機3台を接続した場合について説明するが、2台以上の任意の台数の室内機を接続した場合も同様である。
【0023】
図1において、(A)は熱源機、(B),(C),(D)は後述するように互いに並列接続された室内機で、それぞれ同じ構成となっている。(E)は後述するように第1の分岐部,第2の流量制御装置,第2の分岐部,気液分離装置,熱交換部,第3の流量制御装置,第4の流量制御装置を内蔵した中継機である。
【0024】
1は容量可変な圧縮機、2は熱源機の冷媒流通方向を切換える四方切換弁、3は熱源機側熱交換部、4はアキュムレータで上記機器と接続されており、20は上記熱源機側熱交換部3に空気を送風する送風量可変の熱源機側送風機、40は冷媒流通方向を制限する切換弁、50は第1の循環組成検知装置で圧縮機の吐出部と圧縮機の吸入部に接続されていて、また101は途中に第6の電磁開閉弁102を備えた第3のバイパス管で圧縮機1の吐出部とアキュムレータ4に接続されていて、これらによって熱源機(A)は構成される。
【0025】
5は3台の室内機(B),(C),(D)に設けられた室内側熱交換機、6は熱源機(A)の四方切換弁2と中継機(E)を接続する太い第1の接続配管6b,6c,6dはそれぞれ室内機(B),(C),(D)の室内側熱交換器5と中継機(E)を接続し、第1の接続管6に対応する室内機側の第1の接続配管、7は熱源機(A)の熱源機側熱交換器3と中継機(E)を接続する上記第1の接続配管より細い第2の接続配管、7b,7c,7dはそれぞれ室内機(B),(C)、(D)の室内側熱交換器5と中継機(E)を第1の接続配管を介して接続し、第2の接続配管7に対応する室内機側の第2の接続配管である。
【0026】
8は室内機側の第1の接続配管6b,6c,6dと、第1の接続配管6または、第2の接続配管7側に切換可能に接続する三方切換弁、9は室内側熱交換器5に近傍して接続され室内側熱交換器5の出口側の冷房時はスーパーヒート量、暖房時はサブクール量により制御される第1の流量制御装置で、室内機側の第2の接続配管7b,7c,7dに接続される。
10は室内機側の第1の接続配管6b,6c,6dと、第1の接続配管6または、第2の接続配管7に切換可能に接続する三方切換弁8よりなる第1の分岐部、11は室内機側の第2の接続配管7b,7c,7dと第2の接続配管7よりなる第2の分岐部である。
【0027】
12は第2の接続配管7の途中に設けられた気液分離装置で、その気相部は三方切換弁8の第1弁8aに接続され、その液相部は第2の分岐部11に接続されている。13は気液分離装置12と第2の分岐部11との間に接続する開閉自在な第2の流量制御装置(ここでは電気式膨張弁)、14は第2の分岐部11と上記第1の接続配管6とを結ぶバイパス配管、15は第1のバイパス配管14の途中に設けられた第3の流量制御装置(ここでは電気式膨張弁)である。
【0028】
16aは第1のバイパス配管14の途中に設けられた第3の流量制御装置15の下流に設けられ、第2の分岐部11における各室内機側の第2の接続配管7b,7c,7dの合流部との間でそれぞれ熱交換を行う第2の熱交換部、16b,16c,16dはそれぞれ第1のバイパス配管14の途中に設けられた第3の流量制御装置15の下流に設けられ、第2の分岐部11における各室内機側の第2の接続配管7b,7c,7dとの間でそれぞれ熱交換を行う第3の熱交換部、19は第1のバイパス配管14の上記第3の流量制御装置15の下流および第2の熱交換部16aの下流に設けられ気液分離装置12と第2の流量制御装置13とを接続する配管との間で熱交換を行う第1の熱交換部、17は第2の分岐部11と上記第1の接続配管6との間に接続する開閉自在な第4の流量制御装置(ここでは電気式膨張弁)である。
【0029】
32は、上記熱源機側熱交換部3と上記第2の接続配管7との間に設けられた第3の逆止弁であり、上記熱源機側熱交換器3から上記第2の接続配管7へのみ冷媒冷媒流通を許容する。
33は、上記熱源機(A)の四方切換弁2と上記第1の接続配管6との間に設けられた第4の逆止弁であり、上記第1の接続配管6から上記四方切換弁2へのみ冷媒流通を許容する。
34は、上記熱源機(A)の四方切換弁2と上記第2の接続配管7との間に設けられた第5の逆止弁であり、上記四方切換弁2から上記第2の接続配管7へのみ冷媒流通を許容する。
35は、上記熱源機側熱交換器3と上記第1の接続配管6との間に設けられた第6の逆止弁であり、上記第1の接続配管6から上記熱源機側熱交換器3へのみ冷媒流通を許容する。
上記第3,第4,第5,第6の逆止弁32,33,34,35で切換弁40を構成する。
【0030】
25は上記第1の分岐部10と第2の流量制御装置13の間に設けられた第1の圧力検出手段、26は上記第2の流量制御装置13と第4の流量制御装置17との間に設けられた第2の圧力検出手段である。
27,28は室内機側熱交換器5の両端に設けられた第4の温度検出手段および第5の温度検出手段で、第1の流量制御装置側に接続されるものが第5の温度検出手段28、他端に接続されるものが第4の温度検出手段27である。
59は、第2の熱交換部16aと第3の流量制御装置15の間の第1のバイパス配管14に接続される第6の温度検出手段である。
【0031】
また、上記熱源機側熱交換部3は互いに並列に接続された第1の熱源機側熱交換器41,第1の熱源機側熱交換器41と同じ伝熱面積を有する第2の熱源機側熱交換器42,熱源機側バイパス路43,および第1の熱源機側熱交換器41の上記四方切換弁2と接続する側の一端に設けられた第1の電磁開閉弁44,上記第1の熱源機側熱交換器41の他端に設けられた第2の電磁開閉弁45,上記第2の熱源機側熱交換器42の上記四方切換弁2と接続する側の一端に設けられた第3の電磁開閉弁46,上記第2の熱源機側熱交換器42の他端に設けられた第4の電磁開閉弁47,熱源機側バイパス路43の途中に設けられた第5の電磁開閉弁48によって構成されている。
また、18は上記四方切換弁2と上記圧縮機1の吐出部とを接続する配管途中に設けられた第4の圧力検出手段である。
【0032】
また、上記第1の循環組成検知装置50は圧縮機から吐出する冷媒の冷媒組成比を検出する装置で、圧縮機1の吐出配管と圧縮機の吸入配管をバイパスするバイパス配管51であり、52の第4の熱交換部,53の第1の減圧装置,54の第1の温度検出手段,55の第2の温度検出手段から構成される。
また、56は上記圧縮機1の吸入部と四方切換弁2とを接続する配管途中に吸入部に設けられた第5の圧力検出手段である。
【0033】
また、第2の循環組成検知装置58は、熱源機側熱交換器と第1の分岐部10または第2の分岐部11までの間の冷暖房同時運転の冷房主体の場合に高圧となる配管の途中に設けられた第3の温度検出手段57の検出値および上記第4の圧力検出手段18の検出値、第1の循環組成検知装置50の検出値から冷暖房同時運転の冷房主体の場合の暖房室内機に流入する冷媒組成比を演算する。
【0034】
この図1の空気調和装置内には、HFCのR32/R125/R134aが23/25/52wt%の比率で混合されている非共沸混合冷媒であるR407Cが充填されている。
そして、この冷媒R407Cは、HCFC22より圧力の高いHFC混合冷媒である。
【0035】
このように構成されたこの発明の実施の形態について説明する。まず、図2を用いて冷房運転のみの場合について説明する。
すなわち、同図に実線矢印で示すように圧縮機1より吐出された高温高圧冷媒ガスは四方切換弁2を通り、熱源機側熱交換部3で送風量可変の熱源機側送風機20によって送風される空気と熱交換して凝縮液化された後、第3の逆止弁32,第2の接続配管7,気液分離装置12,第2の流量制御装置13の順に通り、更に第2の分岐部11,室内機側の第2の接続配管7b,7c,7dを通り、各室内機(B),(C),(D)に流入する。
【0036】
そして、各室内機(B),(C),(D)に流入した冷媒は、各室内機側熱交換器5出口のスーパーヒート量により制御される第1の流量制御装置9により低圧まで減圧されて室内側熱交換器5で、室内空気と熱交換して蒸発しガス化され室内を冷房する。
【0037】
そして、このガス状態となった冷媒は、室内機側の第1の接続配管6b,6c,6d、三方切換弁8,第1の分岐部10,第1の接続配管6,第4の逆止弁33、熱源機の四方切換弁2,アキュムレータ4を経て圧縮機1に吸入される循環サイクルを構成し、冷房運転を行う。
この時、三方切換弁8の第1口8aは閉路、第2口8bおよび第3口8cは開路されている。そして、第1の接続配管6が低圧、第2の接続配管7が高圧のため、冷媒は必然的に第3の逆止弁32,第4の逆止弁33へ流通する。
【0038】
また、このサイクルの時、第2の流量制御装置13を通過した冷媒の一部が第1のバイパス配管14へ入り第3の流量制御装置15で低圧まで減圧されて第3の熱交換部16b,16c,16dで第2の分岐部11の各室内機側の第2の接続配管7b,7c,7dとの間で、第2の熱交換部16aで第2の分岐部11の各室内機側の第2の接続配管7b,7c,7dの合流部との間で、更に第1の熱交換部19で第2の流量制御装置13に流入する冷媒との間で熱交換を行い蒸発した冷媒は、第1の接続配管6、第4の逆止弁33へ入り熱源機の四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される。
【0039】
一方、第1,第2,第3の熱交換部19,16a,16b,16c,16dで熱交換し、冷却されるサブクールを充分につけられた上記第2の分岐部11の冷媒は冷房しようとしている室内機(B),(C),(D)へ流入する。
ここで、室内機の蒸発温度および熱源機側送風機20の凝縮温度が予め定められた目標温度になるように容量可変な圧縮機1の容量および熱源機側送風機20の送風量を調節し、各室内機では目標とする冷房能力を得ることができる。
また、通常時は第6の電磁開閉弁102は閉の状態である。
【0040】
次に、図2を用いて暖房運転のみの場合について説明する。
すなわち、同図に点線矢印で示すように圧縮機1より吐出された高温高圧冷媒ガスは、四方切換弁2を通り、第5の逆止弁34,第2の接続配管7,気液分離装置12を通り、第1の分岐部10,三方切換弁8,室内機側の第1の接続配管6b,6c,6dの順に通り、各室内機(B),(C),(D)に流入し、室内空気と熱交換して凝縮液化し、室内を暖房する。
【0041】
そして、この状態となった冷媒は、各室内側熱交換器5出口サブクール量により制御されてほぼ全開状態の第1の流量制御装置9を通り、室内機側の第2の接続配管7b,7c,7dから第2の分岐部11に流入して合流し、更に第4の流量制御装置17を通る。
ここで、第1の流量制御装置9または、第3,第4の流量制御装置15,17のどちらか一方で低圧の気液二相まで減圧される。
【0042】
そして、低圧まで減圧された冷媒は第1の接続配管6を経て熱源機(A)の第6の逆止弁35,熱源機側熱交換部3に流入し、ここで送風量可変の熱源機側送風機20によって送風される空気と熱交換して蒸発しガス状態となった冷媒は、四方切換弁2,アキュムレータ4を経て圧縮機1に吸入される循環サイクルを構成し、暖房運転を行う。
この時、三方切換弁8は、第2口8bは閉路、第1口8aおよび第3口8cは開路されている。
また、冷媒はこの時、第1の接続配管6が低圧、第2の接続配管7が高圧であるために必然的に第5の逆止弁34,第6の逆止弁35へ流通する。
ここで、室内機の凝縮温度および熱源機側送風機20の蒸発温度が予め定められた目標温度になるように容量可変な圧縮機1の容量および熱源機側送風機20の送風量を調節し、各室内機では目標とする暖房能力を得ることができる。
また、通常時は第6の電磁開閉弁102は閉の状態である。
【0043】
冷暖房同時運転における暖房主体運転の場合について、図3を用いて説明する。
すなわち、同図に点線矢印で示すように圧縮機1より吐出された高温高圧冷媒ガスは、四方切換弁2、第5の逆止弁34,第2の接続配管7を通して中継機(E)へ送られ、気液分離装置12を通り、そして第1の分岐部10,三方切換弁8,室内機側の第1の接続配管6b,6cの順に通り、暖房しようとする各室内機(B),(C)に流入し、室内側熱交換器5で室内空気と熱交換して凝縮液化され室内を暖房する。
【0044】
そして、この凝縮液化した冷媒は、各室内機側熱交換器(B),(C)出口サブクール量により制御されほぼ全開状態の第1の流量制御装置9を通り少し減圧されて第2の分岐部11に流入する。
そして、この冷媒の一部は、室内機側の第2の接続配管7dを通り冷房しようとする室内機(D)に入り、室内機側熱交換器(D)出口のスーパーヒート量により制御される第1の流量制御装置9に入り減圧された後に、室内側熱交換器5に入って熱交換して蒸発しガス状態となって室内を冷房し、三方切換弁8を介して第1の接続配管6に流入する。
【0045】
一方、他の冷媒は第1の圧力検出手段25の検出圧力,第2の圧力検出手段26の検出圧力の圧力差が所定範囲となるように制御される第4の流量制御装置17を通って、冷房しようとする室内機(D)を通った冷媒と合流して太い第1の接続配管6を経て熱源機(A)の第6の逆止弁35,熱源機側熱交換部3に流入しここで送風量可変の熱源機側送風機20によって送風される空気と熱交換して蒸発しガス状態となる。
【0046】
ここで、冷房室内機の蒸発温度および暖房室内機の凝縮温度が予め定められた目標温度になるように容量可変な圧縮機1の容量および熱源機側送風機20の送風量を調節し、かつ第1および第2の熱源機側熱交換器41,42の両端の第1,第2,第3,第4の電磁弁44,45,46,47を開閉して伝熱面積を調整し、かつ熱源機側バイパス路43の電磁開閉弁48を開閉して第1および第2の熱源機側熱交換器41,42を流通する冷媒流量を調整することにより熱源機側熱交換部3で任意量の熱交換量が得られ、また、各室内機では目標とする暖房能力または冷房能力を得ることができる。
【0047】
そして、冷媒は、熱源機の四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される循環サイクルを構成し、暖房主体運転を行う。この時、冷房する室内機(D)の室内側熱交換器5の蒸発圧力と熱源機側熱交換器3の圧力差が、太い第1の接続配管6に切換えるために小さくなる。
また、この時、室内機(B)、(C)に接続された三方切換弁8の第2口8bは閉路、第1口8aおよび第3口8cは開路されており、室内機(D)の第1口8aは閉路、第2口8bおよび第3口8cは開路されている。
また、冷媒はこの時、第1の接続配管6が低圧、第2の接続配管7が高圧のため必然的に第5の逆止弁34,第6の逆止弁35へ流通する。
【0048】
また、このサイクルの時、一部の液冷媒は第2の分岐部11の各室内機側の第2の接続配管7b,7c,7dの合流部から第1のバイパス配管14へ入り第3の流量制御装置15で低圧まで減圧されて第3の熱交換部16b,16c,16dで第2の分岐部11の各室内機側の第2の接続配管7b,7c,7dとの間で、第2の熱交換部16aで第2の分岐部11の各室内機側の第2の接続配管7b,7c,7dとの間で、第2の熱交換部16aで第2の分岐部11の各室内機側の第2の接続配管7b,7c,7dの合流部との間で熱交換を行い蒸発した冷媒は、第1の接続配管6,第6の逆止弁35へ入り熱源機の四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される。
一方、第2,3の熱交換部16a,16b,16c,16dで熱交換し冷却されサブクールを充分つけられた上記第2の分岐部11の冷媒は冷房しようとしている室内機(D)へ流入する。
また、通常時は第6の電磁開閉弁102は閉の状態である。
【0049】
冷暖房同時運転における冷房主体運転の場合について、図4を用いて説明する。
すなわち、同図に実線矢印で示すように圧縮機1より吐出された冷媒ガスは、四方切換弁2を経て熱源機側熱交換部3に流入しここで送風量可変の熱源機側送風機20によって送風される空気と熱交換して二相の高温高圧状態となる。
ここで、室内機の蒸発温度および凝縮温度が予め定められた目標温度になるように容量可変な圧縮機1の容量および熱源機側送風機20の送風量を調節し、かつ第1および第2の熱源機側熱交換器41,42の両端の第1,第2,第3,第4の電磁開閉弁44,45,46,47を開閉して伝熱面積を調整し、かつ熱源機側バイパス路43の電磁開閉弁48を開閉して第1および第2の熱源機側熱交換器41,42を流通する冷媒流量を調整することにより熱源機側熱交換部3で任意量の熱交換量が得られ、また、各室内機では目標とする暖房能力または冷房能力を得ることができる。
【0050】
その後この二相の高温高圧状態の冷媒は第3の逆止弁32,第2の接続配管7を経て、中継機(E)の気液分離装置12へ送られる。そして、ここで、ガス状態冷媒と液状態冷媒に分離され、分離されたガス状冷媒を第1の分岐部10、三方切換弁8、室内機側の第1の接続配管6dの順に通り、暖房しようとする室内機(D)に流入し、室内側熱交換器5で室内空気と熱交換して凝縮液化し、室内を暖房する。
更に、室内側熱交換器5出口サブクール量により制御されほぼ全開状態の第1の流量制御装置9を通り少し減圧されて第2の分岐部11に流入する。
【0051】
一方、残りの液状冷媒は、第1の圧力検出手段25の検出圧力、第2の圧力検出手段26の検出圧力によって制御される第2の流量制御装置13を通って第2の分岐部11に流入し、暖房しようとする室内機(D)を通った冷媒と合流する。そして、第2の分岐部11、室内機側の第2の接続配管7b,7cの順に通り、各室内機(B),(C)に流入する。
そして、各室内機(B),(C)に流入した冷媒は、室内側熱交換器(B),(C)出口スーパーヒート量により制御される第1の流量制御装置9により低圧まで減圧されて室内空気と熱交換して蒸発ガス化され室内を冷房する。
【0052】
更に、このガス状態となった冷媒は、室内側の第1の接続配管6b,6c,三方切換弁8,第1の分岐部10を通り、第1の接続配管6,第4の逆止弁33,熱源機の四方切換弁2,アキュムレータ4を経て圧縮機1に吸入される循環サイクルを構成し、冷房主体運転を行う。
又、この時、室内機(B),(C)に接続された三方切換弁8の第1口8aは閉路、第2口8bおよび第3口8cは開路されており、室内機(D)の第2口8bは閉路、第1口8aおよび第3口8cは開路されている。
また、冷媒はこの時、第1の接続配管6が低圧、第2の接続配管7が高圧のため必然的に第3の逆止弁32,第4の逆止弁33へ流入する。
【0053】
また、このサイクルの時、一部の液冷媒は第2の分岐部11の各室内機側の第2の接続配管7b,7c,7dの合流部から第1のバイパス配管14へ入り第3の流量制御装置15で低圧まで減圧されて第3の熱交換部16b,16c,16dで第2の分岐部11の各室内機側の第2の接続配管7b,7c,7dの合流部との間で、第2の熱交換部16aで第2の分岐部11の各室内機側の第2の続配管7b,7c,7dの合流部との間で、更に第1の熱交換部19で第2の流量制御装置13に流入する冷媒との間で熱交換を行い蒸発した冷媒は、第1の接続配管6,第4の逆止弁33へ入り熱源機の四方切換弁2,アキュムレータ4を経て圧縮機1に吸入される。
一方、第1,第2,第3の熱交換部19,16a,16b,16c,16dで熱交換し冷却されサブクールを充分につけられた上記第2の分岐部11の冷媒は冷房しようとしている室内機(B)、(C)へ流入する。また、通常時は第6の電磁開閉弁102は閉の状態である。
【0054】
次に、停止している室内機および停止している室内機に接続される三方切換弁8の動作について説明する。
室内機の第1の流量制御装置9は室内機熱交換器5に冷媒が流入しないように全閉または微開にする。三方切換弁8は第3口8cを閉じる(第1口8aおよび第2口8bを閉じても良い)。
【0055】
次に、空気調和装置における冷媒の低沸点冷媒と高沸点冷媒の比率について説明する。ただし、以後低沸点冷媒と高沸点冷媒の比率はどちらか一方が分かれば分かるので、低沸点冷媒と高沸点冷媒の比率を冷媒組成比率として表現する。
冷房運転のみの場合、暖房運転のみの場合および冷暖房同時運転における暖房主体の場合では、気液分離装置12において冷媒を気相と液相に分離しないためにアキュムレータ4内のガス冷媒を含め冷凍サイクルを循環する冷媒は同じ冷媒組成比率の冷媒となる。
冷暖房同時運転における暖房主体の場合では、気液分離装置12において冷媒を気相と液相に分離するために、アキュムレータ4内のガス冷媒を含め冷凍サイクルを循環する冷媒は、圧縮機1から同じ冷媒組成比率の冷媒となる。
【0056】
すなわち冷房運転のみの場合、アキュムレータ4内のガス冷媒,圧縮機1から吐出されたガス冷媒,気液分離装置12での気液二相冷媒,各室内機(B),(C),(D)出口のガス冷媒は同じ冷媒組成比率となる。
また、暖房運転のみの場合、アキュムレータ4内のガス冷媒,圧縮機1から吐出されたガス冷媒、各室内機(B),(C),(D)出口の液冷媒は同じ冷媒組成比率となる。
【0057】
また、冷暖房同時運転における暖房主体の場合、圧縮機1から吐出されたガス冷媒,気液分離装置12での気液二相冷媒,暖房しようとする室内機(B),(C)出口の液冷媒,冷房しようとする室内機(D)出口のガス冷媒は同じ冷媒組成比率となる。
また、冷暖房同時運転における冷房主体の場合、圧縮機1から吐出されたガス冷媒の冷媒組成比率は、気液分離装置12での気液二相冷媒が液冷媒とガス冷媒とに別れ、この気液分離装置12から別れたガス冷媒は圧縮機1吐出部の冷媒組成比より低沸点成分R32,R125の割合が多い冷媒組成比となり暖房しようとする室内機(D)へ流入し、室内機(D)から出た冷媒は上記気液分離装置12から別れた液冷媒は高沸点成分R134aの割合が多い冷媒組成比合流して圧縮機1から吐出されたガス冷媒と同じ冷媒組成比となり冷房しようとする室内機(B),(C)へ流入する。
【0058】
一方、アキュムレータ4のガス冷媒,液冷媒を考えると、アキュムレータ4で気液平衡関係が成立する。非共沸の混合冷媒において気液平衡が成立するとき、ガスは液よりも低沸点成分を多く含む冷媒となる。従って、アキュムレータ4内のガス冷媒は液冷媒よりも低沸点の冷媒R32,R125が多く含まれる冷媒となる。
逆に、アキュムレータ4内の液冷媒はガス冷媒よりも高沸点の冷媒R134aが多く含まれる冷媒となる。
【0059】
空気調和装置内の全冷媒は空気調和装置内を循環している冷媒とアキュムレータ4内の液冷媒を合わせた冷媒となり、合わせた冷媒の冷媒組成比率が充填した冷媒R407Cの冷媒組成比率と同じになるので、アキュムレータ6内に液冷媒が存在する場合は、アキュムレータ6内のガス冷媒を含め、図1の冷凍サイクルを循環する冷媒は充填した冷媒よりも低沸点の冷媒R32,R125が多く含まれる冷媒となり、アキュムレータ4内の液冷媒は、充填した冷媒R407Cの組成よりも高沸点の冷媒R134aが多く含まれる冷媒となる。
また、アキュムレータ6内に液冷媒が存在しない場合は、図1の空気調和装置内を循環する冷媒の冷媒組成比率はR407Cと同じ冷媒組成比率となる。
【0060】
次に、第1の循環組成検知装置50の作用を説明する。
圧縮機1を出た高圧のガス冷媒は、第2のバイパス配管51を通り、第4の熱交換部52で低圧の冷媒と熱交換し、液化した後、第1の減圧装置53で減圧し、低圧の二相冷媒となる。
その後、第4の熱交換部52で高圧の冷媒と熱交換して蒸発し、ガス化した後圧縮機1の吸入に戻る。
【0061】
この装置において、第1の温度検出手段54の液冷媒の温度,第2の温度検出手段55と第5の圧力検出手段56の二相冷媒の温度と圧力を検出し(第5の圧力検出手段56の値と第1の減圧装置53の出口圧力はほぼ等しいため、第1の減圧装置53の出口圧力を第5の圧力検出手段56の値とする)、その温度と圧力に基づいて冷凍装置内の非共沸混合冷媒の冷媒循環組成を演算、検出する。
また、この循環組成検知は、冷凍空調装置に電源が投入されている間、常時行われる。
【0062】
ここで、冷媒循環組成の演算の方法を説明する。R407Cは非共沸三種混合冷媒であり、三種類の冷媒循環組成は未知数であるため、3つの方程式を立てて、これを解けば未知である循環組成がわかる。
しかし、三種類の各循環組成を足せば1となるため、R32はα32、R125はα125、R134aはα134aと表すと、
α32+α125+α134a=1
が常に成り立つので、未知である二種類の循環組成に対して2つの方程式(上記α32+α125+α134a=1は除く)を立てて、これを解けば循環組成がわかる。例えばα32とα125を未知とする方程式が2つできれば循環組成がわかる。
【0063】
それでは、このα32とα125を未知とする方程式の立て方について説明する。
まず、一つ目の方程式は、第1の循環組成検知装置50から立てることができる。図7は第1の循環組成検知装置50における冷媒の状態変化を表したモリエル線図であるが、この図のなかで、(1)は圧縮機1を出た高圧のガス冷媒の状態、(2)は第4の熱交換部52で低圧の冷媒と熱交換し、液化した状態、(3)は第1の減圧装置53で減圧し、低圧の二相冷媒となった状態、(4)は第4の熱交換部52で高圧の冷媒と熱交換して蒸発し、ガス化した状態を示す。この図7の(2)および(3)は同じエンタルピであるために、α32とα125を未知数とする(2)のエンタルピおよび(3)のエンタルピが等しいとする方程式が立てることができる。すなわち、(2)のエンタルピをhl、(3)のエンタルピをht、第1の温度検出手段54の温度をT11、第2の温度検出手段55の温度をT12、第5の圧力検出手段56の圧力をP13とすると、
hl(α32,α125,T11)=ht(α32,α125,T12,P13)
と立てることができる。
【0064】
二つ目の方程式は、冷凍装置に最初に入れる充填組成がR407Cである限りにおいては、気液平衡が成り立ち、アキュムレータに液が滞留したり、冷媒漏れした後でも循環組成の各組成成分間には一定の関係がある。すなわち、AおよびBを定数とすると、
α32=A×α125+B
とする気液平衡組成実験式を立てることができる。
【0065】
以上のようにして立てた二つの式を解くことで、α32,α125およびα134aがわかる。
そして、α32=A×α125+Bの式およびα32+α125+α134a=1の式から、循環組成の三種類の成分の内一つの組成の値が既知であれば、他の組成の値もこれらの式からわかる。
【0066】
次に、第2の循環組成検知装置58の作用について説明する。
まず、冷暖房同時運転の冷房主体の場合に気液分離装置12に流入する冷媒は第1の循環組成検知装置50で検出する冷媒組成比と同じである。またこの運転の場合は、流入する冷媒は気液二相状態であるため、気液分離装置12の温度および圧力として第3の温度検出手段57および上記第4の圧力検出手段18の検出値が検出されると、その値から図6のような気液平衡の関係が求められる。
【0067】
また、気液分離装置12に流入する冷媒の冷媒組成比として第1の循環組成検知装置50で検出する冷媒組成比が分かるので、例えば、その値がR32:R125:R134a=25%:27%:48%(図6の(1)の状態で)であるとすると、分離したガス冷媒の冷媒組成比率がR32:R125:R134a=30%:32%:38%(図6の(2)の状態)、分離した液冷媒の冷媒組成比率R32:R125:R134a=20%:22%:48%(図6の(3)の状態)と演算でき、暖房室内機に流入する上記ガス冷媒の冷媒組成比(図6の(2)の状態)を検出できる。
この第1の循環組成検知装置50の検出値から冷暖房同時運転の冷房主体の場合の暖房室内機に流入する冷媒組成比を演算する。
【0068】
次に、室内機5および熱源機側熱交換器3の蒸発温度または凝縮温度を目標温度に制御する場合の蒸発温度または凝縮温度の演算方法について説明する。
まず、冷房運転のみの場合、室内機側熱交換器5の蒸発温度は第5の圧力検出手段56の検出圧力と第1の循環組成検知装置50で検出される冷媒組成比によって第5の圧力検出手段56の検出圧力での飽和温度(液飽和温度)として演算され、また熱源機側熱交換器3の凝縮温度は、第4の圧力検出手段18の検出圧力と第1の循環組成検知装置50で検出される冷媒組成比によって第5の圧力検出手段56の検出圧力での飽和温度(液飽和温度とガス飽和温度の平均値)として演算される。
そして、それぞれ予め定められた目標温度になるように容量可変な圧縮機1の容量および熱源機側送風機20の送風量を調節する。
ただし、上記第5の圧力検出手段56の検出圧力と第1の循環組成検知装置50で検出される冷媒組成比によって演算される第5の圧力検出手段56の検出圧力での飽和温度(液飽和温度)は、第2の温度検出手段55で検出した値を使用しても良い。
【0069】
暖房運転のみの場合、熱源機側熱交換器3の蒸発温度は第5の圧力検出手段56の検出圧力と第1の循環組成検知装置50で検出される冷媒組成比によって第5の圧力検出手段56の検出圧力での飽和温度(液飽和温度)として演算され、また室内機側熱交換器5の凝縮温度は、第4の圧力検出手段18の検出圧力と第1の循環組成検知装置50で検出される冷媒組成比によって第4の圧力検出手段18の検出圧力での飽和温度(液飽和温度とガス飽和温度の平均値)として演算される。
そして、それぞれ予め定められた目標温度になるように容量可変な圧縮機1の容量および熱源機側送風機20の送風量を調節する。
ただし、上記第5の圧力検出手段56の検出圧力と第1の循環組成検知装置50で検出される冷媒組成比によって演算される第5の圧力検出手段56の検出圧力での飽和温度(液飽和温度)は、第2の温度検出手段55で検出した値を使用しても良い。
【0070】
冷暖房同時運転の暖房主体の場合、冷房する室内機側熱交換器5の蒸発温度は第5の圧力検出手段56の検出圧力と第1の循環組成検知装置50で検出される冷媒組成比によって第5の圧力検出手段56の検出圧力での飽和温度(液飽和温度)として演算され、また暖房する室内機側熱交換器5の凝縮温度は、第4の圧力検出手段18の検出圧力と第1の循環組成検知装置50で検出される冷媒組成比によって第4の圧力検出手段18の検出圧力での飽和温度(液飽和温度とガス飽和温度の平均値)として演算される。
【0071】
そして、それぞれ予め定められた目標温度になるように容量可変な圧縮機1の容量および熱源機側送風機20の送風量を調節し、かつ第1および第2の熱源機側熱交換器41,42の両端の第1,第2,第3,第4の電磁弁44,45,46,47を開閉して伝熱面積を調整し、かつ熱源機側バイパス路43の電磁開閉弁48を開閉して第1および第2の熱源機側熱交換器41,42を流通する冷媒流量を調整する。
ただし、上記第5の圧力検出手段56の検出圧力と第1の循環組成検知装置50で検出される冷媒組成比によって演算される第5の圧力検出手段56の検出圧力での飽和温度(液飽和温度)は、第2の温度検出手段55で検出した値を使用しても良い。
【0072】
冷暖房同時運転の冷房主体の場合、冷房する室内機側熱交換器5の蒸発温度は第5の圧力検出手段56の検出圧力と第1の循環組成検知装置50で検出される冷媒組成比によって第5の圧力検出手段56の検出圧力での飽和温度(液飽和温度)として演算され、また暖房する室内機側熱交換器5の凝縮温度は、第4の圧力検出手段18の検出圧力と第2の循環組成検知装置58で検出される冷媒組成比によって第4の圧力検出手段18の検出圧力での飽和温度(液飽和温度とガス飽和温度の平均値)として演算される。
【0073】
そして、それぞれ予め定められた目標温度になるように容量可変な圧縮機1の容量および熱源機側送風機20の送風量を調節し、かつ第1および第2の熱源機側熱交換器41,42の両端の第1,第2,第3,第4の電磁開閉弁44,45,46,47を開閉して伝熱面積を調整し、かつ熱源機側バイパス路43の電磁開閉弁48を開閉して第1および第2の熱源機側熱交換器41,42を流通する冷媒流量を調整する。
ただし、上記第5の圧力検出手段56の検出圧力と第1の循環組成検知装置50で検出される冷媒組成比によって演算される第5の圧力検出手段56の検出圧力での飽和温度(液飽和温度)は、第2の温度検出手段55で検出した値を使用しても良い。
【0074】
次に、冷暖房同時運転の場合の上記熱源機側送風機20,第1,第2,第3,第4,第5の電磁開閉弁44,45,46,47,48の制御について説明する。
図8は、熱源機側送風機20,第1,第2,第3,第4,第5の電磁開閉弁44,45,46,47,48の制御機構を示し、29は第4の圧力検出手段18(冷主の場合)または第5の圧力検出手段56(暖主の場合)の検出圧力および第1の循環組成検知装置50から演算される第4の圧力検出手段18または第5の圧力検出手段56の飽和温度の値に応じて熱源機側送風機20の送風量,第1,第2,第3,第4,第5の電磁開閉弁44,45,46,47,48の開閉を制御する熱源機側熱交換容量調整手段である。
【0075】
図9は、冷暖房同時運転における冷房主体の場合の熱源機側熱交換量調整手段29の制御内容を示すフローチャートである。図10は冷暖房主体運転における暖房主体の場合の熱源機側熱交換容量調整手段29の制御内容を示すフローチャートである。
【0076】
まず、熱源機側熱交換容量調整手段29による熱源機側熱交換容量の調整方法を説明する。
この実施の形態では、熱源機側熱交換容量を次に示す4段階で調整する。第1段階は最も大きな熱源機側熱交換容量を必要とする場合に対応し、上記第1,第2,第3,第4の電磁開閉弁44〜47を開弁し、第5の電磁開閉弁48を閉弁することにより上記第1および第2の熱源機側熱交換器41,42の両方に冷媒を流通させかつ上記熱源機側熱交換器バイパス路43には冷媒を流通させないで、熱源機側送風機20の送風量をインバータ等(図示せず)により停止から全速までの間で調整する。
【0077】
この場合、ビル風等の外風があれば、熱源機側送風機を停止してもかなり大きな熱交換をしてしまい、冷暖房同時運転における暖房主体の場合の冷房能力、冷暖房同時運転における冷房主体運転の場合の暖房能力が不足する。
また、外風がないときにも自然対流による熱交換量以下の熱交換容量は得られないので、外気温度と熱源機側熱交換部3における冷媒の凝縮または蒸発温度との温度差が大きいと冷暖房同時運転における冷房主体の場合の暖房能力が不足する。
【0078】
第2段階は、次に大きな熱源機側熱交換容量を必要とする場合に対応し、上記第1,第2の電磁開閉弁44,45を開弁し、第3,第4の電磁開閉弁46,47および第5の電磁開閉弁48を閉弁することにより上記第1の熱交換器41のみに冷媒を流通させ、かつ上記第2の熱交換器側熱交換器42および上記熱源機側熱交換器バイパス路43には冷媒を流通させないで、熱源機側熱交換部3の伝熱面積を半減させ、熱源機側送風機20の送風量をインバータ等(図示せず)により停止から全速までの間で調整する。
【0079】
この場合、ビル風等の外風による熱交換量も半減し、また外風がないときの自然対流による熱交換量も半減するので冷暖房同時運転における暖房主体の場合の冷房能力,冷暖房同時運転における冷房主体運転の場合の暖房能力の不足もあまり大きくない。
【0080】
第3段階は第2段階より小さな熱源機側熱交換容量を必要とする場合に対応し、上記第1,第2の電磁開閉弁44,45および第5の電磁開閉弁48を開弁し、第3,第4の電磁開閉弁46,47を閉弁することにより上記第1の熱源機側熱交換器41および上記熱源機側熱交換器バイパス路43に冷媒を流通させ、かつ上記第2の熱源機側熱交換器42には冷媒を流通させないで、熱源機側熱交換部3の伝熱面積を半減させかつ第1の熱源機側熱交換器41への冷媒流量を減少させ、熱源機側送風機20の送風量をインバータ等(図示せず)により停止から全速までの間で調整する。
【0081】
この場合、ビル風等の外風による熱交換量も第2段階より更に減少し、また外風がないときの自然対流による熱交換量も同様に減少するので、冷暖房同時運転における暖房主体の場合の冷房能力,冷暖房同時運転における冷房主体の場合の暖房能力の不足はかなり小さい。
【0082】
第4段階は最も小さい熱源機側熱交換量を必要とする場合に対応し、上記第5の開閉弁48を開弁し、第1,第2,第3,第4の電磁開閉弁44,45,46,47を閉弁することにより、上記熱源機側熱交換部3の熱交換量を皆無にする。
【0083】
この場合、ビル風等の外風による熱交換量も全くなく、冷暖房同時運転における暖房主体運転の場合の冷房能力、冷暖房同時運転における冷房主体の場合の暖房能力の不足はない。
また、外風があっても、第2段階の熱源機側送風機20が全速の時の熱源機側熱交換量AK2maxが、第1段階の外風があって、かつ熱源機側送風機20が停止の時の熱源機側熱交換容量AK1minより大きい、つまりAK2max>AK1minとなる風速以下の外風であれば、第1段階と第2段階は連続的に制御可能である。
同様に、外風があっても第3段階の熱源機側送風機20が全速の時の熱源機側熱交換容量AK3maxが、第2段階の外風があってかつ熱源機側送風機20が停止の時の熱源機側熱交換器容量AK2minより大きい、つまりAK3max>AK2minとなる風速以下の外風であれば、第2段階と第3段階は連続的に制御可能である。
【0084】
このように、熱源機側熱交換容量を4段階で調整することによって、ある程度の外風があっても、連続的な熱源機側熱交換容量が得られ、高圧が過昇することなく、低圧が引き込むこともなく、冷暖房同時運転における暖房主体の場合の冷房能力、冷暖房同時運転における冷房主体の場合の暖房能力が充分得られる。
【0085】
次に、図9のフローチャートに添って冷暖房同時運転における冷房主体の場合の熱源機側熱交換容量調整手段29の制御内容を説明する。
ステップ60で圧力検出手段18の検出圧力と第2の循環組成検知装置58で検出した冷媒組成比から演算される圧力検出手段18の検出圧力の飽和温度Tを求めてこのTと予め定められた第1の目標温度T1とを比較し、T>T1であればステップ61へ進む。
【0086】
ステップ61で熱源機側送風機20が全速か否かを判定し、全速でなければステップ62に進んで送風量を増加してステップ60に戻る。
全速であればステップ63で電磁開閉弁44,45の開閉を判定し、閉弁していればステップ64にて電磁開閉弁44,45を開弁して第1の熱源機側熱交換器41を開路しステップ60に戻り、開弁していればステップ65に進む。
【0087】
ステップ65では電磁開閉弁48の開閉を判定し、開弁していればステップ66にて電磁開閉弁48を閉弁して熱源機側熱交換器バイパス路を閉路し、ステップ60に戻り、閉弁していればステップ67に進む。
ステップ67では電磁開閉弁46,47の開閉を判定し、閉弁していればステップ68にて電磁開閉弁46,47を開弁して第2の熱源機側熱交換器42を開路してステップ60に戻り、開弁していてもステップ60に戻る。
【0088】
一方、ステップ60でT≦T1と判定されると、ステップ70に進む。ステップ70で圧力検出手段18の検出圧力と第1の循環組成検知装置50で検出した冷媒組成比から演算される圧力検出手段18の検出圧力の飽和温度Tを求めてこのTと上記第1の目標温度より小さく定められた第2の目標温度T2とを比較し、T<T2であればステップ71へ進み、T≧T2であればステップ60に戻る。
【0089】
ステップ71で熱源機側送風機20が停止しているか否かを判定し、停止していなければステップ72に進んで送風量を減少してステップ60に戻る。
停止していればステップ73で電磁開閉弁46,47の開閉を判定し、開弁していればステップ74にて電磁開閉弁46,47を閉弁して第2の熱源機側熱交換器42を閉路しステップ60に戻り、閉弁していればステップ75に進む。
【0090】
ステップ75では電磁開閉弁48の開閉を判定し、閉弁していればステップ76にて電磁開閉弁を開弁して熱源機側熱交換器バイパス路43を開路しステップ60に戻り、開弁していればステップ77に進む。ステップ77では電磁開閉弁44,45の開閉を判定し、開弁していればステップ78にて電磁開閉弁44,45を閉弁して第1の熱源機側熱交換器41を閉路しステップ60に戻り、閉弁していてもステップ60に戻る。
このようにして、圧力検出手段18の検出圧力と第2の循環組成検知装置58で検出した冷媒組成比から演算される圧力検出手段18の検出圧力の飽和温度TをT1とT2の間の値とすることができる。
【0091】
次に、図10のフローチャートに添って冷暖房同時運転における暖房主体の場合の熱源機側熱交換容量調整手段29の制御内容を説明する。
ステップ80で圧力検出手段18の検出圧力と第1の循環組成検知装置50で検出した冷媒組成比から演算される圧力検出手段18の検出圧力の飽和温度Tを求めてこのTと予め定められた第3の目標温度T3とを比較し、T<T3であればステップ81へ進む。
一方、ステップ80でT≧T3と判定されると、ステップ90に進む。ステップ90で圧力検出手段18の検出圧力,第1の循環組成検知装置50で検出した冷媒組成比から演算される圧力検出手段18の検出圧力の飽和温度Tを求めてこのTと上記第3の目標温度より大きく予め定められた第4の目標温度T4とを比較し、T>T4であればステップ80に戻る。
ステップ81あるいはステップ91に進んだ後のステップ81〜88,ステップ91〜98については、図9のステップ61〜68、ステップ71〜78と全く同じなのでここでは説明を省略する。
このようにして、圧力検出手段18の検出圧力と循環組成検知装置50で検出した冷媒組成比から演算される圧力検出手段18の検出圧力の飽和温度TをT3とT4の間の値とすることができる。
【0092】
次に、室内側熱交換器のサブクールおよびスーパーヒートの演算方法について説明する。
冷房運転のみの場合、暖房運転のみの場合、および冷暖房同時運転の暖房主体運転の場合は、冷房する室内機側熱交換器5出口のスーパーヒート量は室内機側熱交換器5出口の第4の温度検出手段27の検知値から第5の圧力検出手段56の検出圧力と第1の循環組成検知装置50で検出される冷媒組成比によって演算される第5の圧力検出手段56の検出圧力での飽和温度(液飽和温度)を引いた値である。
ただし、上記第5の圧力検出手段56の検出圧力と第1の循環組成検知装置50で検出される冷媒組成比によって演算される第5の圧力検出手段56の検出圧力での飽和温度(液飽和温度)は、第2の温度検出手段55で検出した値を使用しても良い。
【0093】
暖房する室内機側熱交換器5出口のサブクール量は第4の圧力検出手段18の検出圧力と第1の循環組成検知装置50で検出される冷媒組成比によって演算される第4の圧力検出手段18の検出圧力での飽和温度(液飽和温度とガス飽和温度の平均値)から室内機側熱交換器5出口の第5の温度検出手段28の検知値を引いた値である。
冷暖房同時運転における冷房主体の場合、冷房する室内機側熱交換器5出口のスーパーヒート量は室内機側熱交換器5出口の第4の温度検出手段27の検知値から第5の圧力検出手段56の検出圧力と第1の循環組成検知装置50で検出される冷媒組成比によって演算される第5の圧力検出手段56の検出圧力での飽和温度(液飽和温度)を引いた値である。ただし、上記第5の圧力検出手段56の検出圧力と第1の循環組成検知装置50で検出される冷媒組成比によって演算される第5の圧力検出手段56の検出圧力での飽和温度(液飽和温度)は、第2の温度検出手段55で検出した値を使用しても良い。暖房する室内機側熱交換器5出口のサブクール量は第4の圧力検出手段18の検出圧力と第2の循環組成検知装置58で検出される冷媒組成比によって演算される第4の圧力検出手段18の検出圧力での飽和温度(液飽和温度とガス飽和温度の平均値)から室内機側熱交換器5出口の第5の温度検出手段28の検知値を引いた値である。
【0094】
次に、冷房運転のみの場合、冷暖房同時運転の冷房主体運転の場合に、冷房する室内機の入り口サブクールを確保する制御について説明する。この制御のフローチャートを図11に示す。
冷房運転のみの場合、冷暖房同時運転の冷房主体運転の場合のいずれかの運転で、ステップ111で運転が安定する圧縮機起動後5分以上経過かつ各室内機の運転モード(冷房運転,暖房運転,停止)の変化後5分以上経過の状態で、かつ本制御の前回の実施後例えば5分以上経過を判定し、条件が当てはまれば、ステップ112に進み、条件が当てはまらなければ、ステップ111の判定を繰り返す。
【0095】
ステップ112では、第6の温度検出装置59の検出位置のサブクールを検出して判定する。この第6の温度検出装置59の検出位置のサブクールは、第2の圧力検出手段26の検出値および第1の循環組成検出装置50で検出される冷媒組成比から演算される液飽和温度から第6の温度検出装置59の検出値を引いた値である。
以後、この第6の温度検出装置59の検出位置のサブクールをSC1とする。そして、このSC1を判定して(ステップ112)、SC1が例えば5deg以下であった場合、中継器(E)に冷媒が不足していると判断して、ステップ113に進み、そうでなければステップ111に戻る。
ステップ113では、第6の電磁開閉弁102を1分間開くことにより、アキュムレータ4に滞留している液冷媒を流出させて冷媒回路内に循環する冷媒量を増加させ、また第6の電磁開閉弁102を開くことと同時に停止している室内機の第1の流量制御装置9を例えば1分間全開状態にすることで、停止室内機に滞留した冷媒を停止室内機から流出させることによって冷媒回路内に循環する冷媒量を増加させ、中継器(E)の冷媒量を増やし、SC1が5deg以上になるまで5分おきにこれを繰り返す。
これによって、中継器(E)から冷房する室内機へ流出する冷媒のサブクールが増加し、冷房する室内機の入り口サブクールが確保され、室内機の冷媒音防止や能力確保ができる。
【0096】
また、別の適用例では、停止している室内機に接続している三方切換弁8の第1口8aを閉にし、第2口8bおよび第3口8cを開にすることを1分間続け、停止室内機に滞留した冷媒を停止室内機から流出させるようにしても同様の効果が得られる。
【0097】
次に、冷房運転のみの場合、冷暖房同時運転の冷房主体運転の場合、暖房運転のみの場合、冷暖房同時運転の暖房主体運転の場合に、停止している室内機に滞留した冷媒を定期的に冷媒が循環している冷媒回路内に回収する制御について説明する。
この制御は、停止室内機に冷媒が滞留すると、冷媒が循環している冷媒回路内の冷媒が不足して、室内機冷媒音や能力不足などの問題がある他、室内機に滞留する冷媒の量や冷媒組成比によって冷媒が循環している冷媒回路内の冷媒組成比が変化するため、運転が安定しなかったり、能力が大幅に不足したりするために実施する。
制御内容は、例えば圧縮機起動後30分で、停止している室内機の第1の流量制御装置9を例えば1分間全開状態にすることで、停止室内機に滞留した冷媒を停止室内機から流出させ、その後30分間隔で停止している室内機の第1の流量制御装置9を1分間全開状態にする制御を実施する。
【0098】
また、別の適用例では、停止している室内機に接続している三方切換弁8の第1口8aを閉にし、第2口8bおよび第3口8cを開にすることを1分間続け、停止室内機に滞留した冷媒を停止室内機から流出させるようにしても同様の効果が得られる。
【0099】
次に、冷房運転のみの場合、冷暖房同時運転の冷房主体運転の場合、暖房運転のみの場合、冷暖房同時運転の暖房主体運転の場合、霜取り運転の場合に、それぞれの運転から室内機がすべて停止する場合の三方切換弁8の制御について説明する。
この場合運転が切り換わった後例えば1分間は、全部の三方切換弁8の第1口8aは閉、第2口8bおよび第3口8cは開にする。
この制御によって、室内機に滞留する冷媒が極端に多くなることが防ぐことができ、次回の運転時に冷媒が循環している冷媒回路内の冷媒が不足して、室内機冷媒音や能力不足などの問題や、室内機に滞留する冷媒の量や冷媒組成比によって冷媒が循環している冷媒回路内の冷媒組成比が変化するため、運転が安定しなかったり、能力が大幅に不足したりするといった問題を防ぐことができる。
【0100】
次に、中継器(E)の第1の圧力検出手段25の検出値が高い場合に、この値を低下させる制御について説明する。制御フローチャートは図12に示す。
この制御は、HCFC22(R22)より圧力の高いR407Cのために冷媒回路の高圧が高くなるので、この場合に冷媒回路の高圧を低下させる制御である。
制御内容は、第1の圧力検出手段25の検出値が例えば27kg/cm2以上で、かつ本制御の前回実施後1分以上経過を判定し、(ステップ121)、もしその条件が当てはまればステップ122に進み、条件に当てはまらなければステップ121の判定を繰り返す。
【0101】
ステップ122では、第1の圧力検出手段25の検出値と第2の圧力検出手段26の検出値の差が、例えば3kg/cm2以上であるかを判定し、もし、その条件にあてはまればステップ123に進み、条件に当てはまらなければステップ124に進む。
ステップ123では、第2の流量制御装置13の開度を現在の開度の30%づつ増加させる。
ステップ124では、第3の流量制御装置15および第4の流量制御装置17の開度を現在の開度の10%づつ増加させる。これを1分毎に繰り返して、高圧を低下させる。
【0102】
次に、暖房のみの運転、および冷暖房同時運転における暖房主体運転における熱源機側熱交換器霜取り運転時の動作について説明する。
熱源機側熱交換器霜取り運転時の基本的な動作は、暖房のみの運転、および冷暖房同時運転における暖房主体運転において、第5の圧力検出手段56と第1の循環組成検出装置50から演算される飽和温度(ガス飽和温度と液飽和温度の平均値)が例えば−3℃以下になった場合に、熱源機側熱交換器41,42の霜を除去するために、熱源機側熱交換器41,42が凝縮器となる運転をする霜取り運転をする。
【0103】
この霜取り運転は、熱源機側送風機が停止し、暖房している室内機に接続された三方切換弁8の第3口8aが閉の状態かまたは、第1口8aおよび第2口8bが閉となり暖房する室内機での冷媒の流れがなくなる以外は、基本的に冷房のみの運転と同じである。
ただし、暖房する室内機のうち少なくとも1つの室内機に接続する三方切換弁8の第1口8a,第2口8b,第3口8cは開にしておく。
【0104】
この三方切換弁8の制御によって熱源機側熱交換器41,42で凝縮した冷媒は、気液分離装置に流入し、R32成分の多い高圧ガス冷媒が、二相冷媒の多く存在する第1の接続配管6の冷媒を蒸発させて、低圧低下を防止する。
ここで、第1の接続配管6に二相冷媒が多いのは、暖房のみの運転または冷暖房同時運転の暖房主体運転の場合に第1の接続配管6に二相冷媒が流れているためである。
【0105】
以上のように、この発明における実施の形態1によれば、圧縮機,切換弁,熱源機側熱交換器,アキュムレータよりなる熱源機と、室内側熱交換器,流量制御装置よりなる複数の室内機を備え、これらにより非共沸混合冷媒を用いた冷凍サイクルを構成するとともに、上記冷凍サイクルにおける熱伝達媒体としての冷媒のうち、その一部の滞留によって、熱伝達媒体として有効に作用している冷媒回路部の冷媒の組成状態が変化するものにおいて、「熱源機側の熱交換器が凝縮器として作用する運転の場合に冷媒回路部のサブクールの状況に応じて」、「周期的な時期の到来に応じて、すなわち定期的に」、「室内機の少なくとも1つが運転している状態から全て停止の状態になった場合に」等の所定の条件に応動し上記滞留した冷媒を熱伝達媒体として有効に作用するよう冷媒回路部に回収する制御を行うものであって、室内機の流量制御装置の入り口サブクールがとれないための冷媒音や能力不足、あるいは空気調和装置の故障を、冷媒回路の大きな状態変更を伴うことなく防止することができる。
【0106】
実施の形態2.
図5は、この発明の実施の形態2を示す冷媒回路図である。
図において、30,31は電磁弁からなる開閉弁である。この部分以外の構成および制御動作等は、図1ないし図4に示される実施の形態1のものと同様である。
電磁弁30,31は、実施の形態1における三方切換弁8と同様に、室内側の第1の接続配管6b,6c,6dと、第1の接続配管6または、第2の接続配管7とを切換可能に接続する機能を発揮するものである。
【0107】
この発明による実施の形態2によれば、実施の形態1における室内側の第1の接続配管6b,6c,6dと、第1の接続配管6または、第2の接続配管7とを切換可能に接続する三方切換弁8の代わりに、図5に示すように2つの電磁弁30,31等の開閉弁を設けて上述したように切換可能に接続することによって、実施の形態1と同様の作用効果を奏することができる。
【0108】
上記実施の形態1および実施の形態2では、熱源機側熱交換部3を2個の伝熱面積の等しい熱源機側熱交換器で構成しているが熱源機側熱交換器の伝熱面積は等しくなくても、あるいは3個以上の熱源機側熱交換器で構成しても良い。
また、上記実施の形態1および実施の形態2では、熱源機側熱交換器バイパス43を開路する時に開路している熱源機側熱交換器は2個以上でも良い。
そして、上記実施の形態1および実施の形態2では、HFCのR32/R125/R134aが23/25/52wt%の比率で混合されている非共沸混合冷媒であるR407Cを用いているが、冷媒としてHFCのR32,R125,R134aの3種類のうち少なくとも2種類を混合した冷媒でも同様の作用効果となる。
【0109】
【発明の効果】
この発明の第1の発明に係る空気調和装置によれば、圧縮機,切換弁,熱源機側熱交換器,アキュムレータよりなる熱源機と、室内側熱交換器,第1の流量制御装置よりなる複数の室内機を備え、上記室内機が冷房と暖房の両方を同時に運転することが可能な空気調和装置において、冷媒として非共沸混合冷媒を用い、上記熱源機と上記室内機とを第1,第2の接続配管を介して接続し、上記室内機の室内側熱交換器の一方を上記第1の接続配管または第2の接続配管に切換可能に接続する弁装置を有する第1の分岐部と、上記室内機の室内側熱交換器の他方に上記第1の流量制御装置を介して接続され、かつ上記第2の接続配管に接続する第2の分岐部とを備え、かつ上記第2の分岐部と上記第1の接続配管とを接続し、上記第2の分岐部のサブクールを検知する手段を有し、上記熱源機側熱交換器が凝縮器として作用する運転の場合に、この第2の分岐部のサブクールの検知値が一定値以下の場合に上記熱源機に滞留した冷媒を冷媒の循環する冷媒回路部に回収する制御であるために、室内機の流量制御装置の入り口サブクールがとれないための冷媒音や能力不足や、冷媒回路を循環する冷媒の冷媒組成比が変化してしまうための冷媒音や能力不足、空気調和装置の故障を、冷媒回路の大きな状態変更を伴うことなく防止することができる。
【0114】
この発明の第の発明に係わる空気調和装置によれば、圧縮機,切換弁,熱源機側熱交換器よりなる熱源機と、室内側熱交換器,第1の流量制御装置よりなる複数の室内機を備え、上記室内機が冷房と暖房の両方を同時に運転することが可能な空気調和装置において、冷媒として非共沸混合冷媒を用い、上記熱源機と上記室内機とを第1,第2の接続配管を介して接続し、上記室内機の室内側熱交換器の一方を上記第1の接続配管または第2の接続配管に切換可能に接続する弁装置を有する第1の分岐部と、上記室内機の室内側熱交換器の他方に上記第1の流量制御装置を介して接続され、かつ上記第2の接続配管に接続する第2の分岐部とを備え、かつ上記第2の分岐部と上記第1の接続配管とを接続し、上記第2の分岐部のサブクールを検知する手段を有し、上記熱源機側熱交換器が凝縮器として作用する運転の場合に、この第2の分岐部のサブクールの検知値が一定値以下の場合に上記室内機のうち停止している室内機に滞留した冷媒を冷媒の循環する冷媒回路部に回収する制御であるために、室内機の流量制御装置の入り口サブクールがとれないための冷媒音や能力不足や、冷媒回路を循環する冷媒の冷媒組成比が変化してしまうための冷媒音や能力不足、空気調和装置の故障を、冷媒回路の大きな状態変更を伴うことなく防止することができる。
【0117】
この発明の第の発明に係わる空気調和装置によれば、圧縮機,切換弁,熱源機側熱交換器よりなる熱源機と、室内側熱交換器,第1の流量制御装置よりなる複数の室内機を備え、上記室内機が冷房と暖房の両方を同時に運転することが可能な空気調和装置において、冷媒として非共沸混合冷媒を用い、上記熱源機と上記室内機とを第1,第2の接続配管を介して接続し、上記室内機の室内側熱交換器の一方を上記第1の接続配管または第2の接続配管に切換可能に接続する弁装置を有する第1の分岐部と、上記室内機の室内側熱交換器の他方に上記第1の流量制御装置を介して接続され、かつ上記第2の接続配管に接続する第2の分岐部とを備え、かつ上記第2の分岐部と上記第1の接続配管とを接続し、上記室内機の少なくとも1つが運転している状態からすべて停止の状態になった場合に、上記弁装置を一定時間開く制御であるために、室内機に極端に多く冷媒が分布することを防ぎ、再び室内機を運転させた時の、室内機の流量制御装置の入り口サブクールがとれないための冷媒音や能力不足や、冷媒回路を循環する冷媒の冷媒組成比が変化してしまうための冷媒音や能力不足、空気調和装置の故障を、冷媒回路の大きな状態変更を伴うことなく、防止することができる。
【0118】
この発明の第の発明に係わる空気調和装置によれば、圧縮機,切換弁,熱源機側熱交換器よりなる熱源機と、室内側熱交換器,第1の流量制御装置よりなる複数の室内機を備え、上記室内機が冷房と暖房の両方を同時に運転することが可能な空気調和装置において、冷媒として非共沸混合冷媒を用い、上記熱源機と上記室内機とを第1,第2の接続配管を介して接続し、上記室内機の室内側熱交換器の一方を上記第1の接続配管または第2の接続配管に切換可能に接続する弁装置を有する第1の分岐部と、上記室内機の室内側熱交換器の他方に上記第1の流量制御装置を介して接続され、かつ上記第2の接続配管に接続する第2の分岐部とを備え、かつ上記第2の分岐部と上記第1の接続配管とを接続し、第2の接続配管の途中に気液分離装置を設け、その気相部を第1の分岐部に、液相部を第2の分岐部に接続し、熱源機側熱交換器が蒸発器として作用する運転時に熱源機側熱交換器の霜を取るため一時的に熱源機側熱交換器が凝縮器として作用する運転に切り換える場合、上記弁装置の操作によって気液分離装置の気相部の冷媒を第1の分岐部に送り込む制御であるために、熱源機側熱交換器を蒸発器として作用させる運転時に、この熱源機側熱交換器に付いた霜を除去するために一時的に熱源機側熱交換器を凝縮器として作用させた運転に切り換える場合、冷媒の分布が安定しないために冷媒回路の低圧が急激に低下するその低圧の急激な低下を緩和することができる。
【0119】
この発明の第の発明に係わる空気調和装置によれば、圧縮機,切換弁,熱源機側熱交換器,アキュムレータよりなる熱源機と、室内側熱交換器,第1の流量制御装置よりなる複数の室内機を備え、上記室内機が冷房と暖房の両方を同時に運転することが可能な空気調和装置において、冷媒としてHCFC22より圧力の高いHFC混合冷媒を用い、上記熱源機と上記室内機とを第1,第2の接続配管を介して接続し、上記室内機の室内側熱交換器の一方を上記第1の接続配管または第2の接続配管に切換可能に接続する弁装置を有する第1の分岐部と、上記室内機の室内側熱交換器の他方に上記第1の流量制御装置を介して接続され、かつ上記第2の接続配管に接続する第2の分岐部とを備え、かつ上記第2の分岐部と上記第1の接続配管とを接続し、第2の分岐部に第2の流量制御装置を備え、上記第2の流量制御装置の前後に第1の圧力検出手段および第2の圧力検出手段を備え、上記第1の圧力検出手段および第2の圧力検出手段のうちどちらかが一定圧力値以上になった場合に、上記第2の流量制御装置を開く制御であるために、冷媒回路内の圧力が上昇し過ぎて、空気調和装置の故障を起こすことを、予め検知し、防止することができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1における冷媒回路図。
【図2】 この発明の実施の形態1における冷房運転のみ、暖房運転のみの冷媒流れの図。
【図3】 この発明の実施の形態1における冷暖房同時運転の暖房主体運転の冷媒流れの図。
【図4】 この発明の実施の形態1における冷暖房同時運転の冷房主体運転の冷媒流れの図。
【図5】 この発明の実施の形態2における冷媒回路図。
【図6】 この発明の実施の形態1における気液分離装置内の気液平衡状態図。
【図7】 この発明の実施の形態1における第1の循環組成検知装置のモリエル線図。
【図8】 この発明の実施の形態1における熱源機側熱交換容量調整手段系の構成図。
【図9】 この発明の実施の形態1における熱源機側熱交換容量調整手段系のフローチャートを示す図。
【図10】 この発明の実施の形態1における熱源機側熱交換容量調整手段系のフローチャートを示す図。
【図11】 この発明の実施の形態1における第2の分岐部サブクール確保制御のフローチャートを示す図。
【図12】 この発明の実施の形態1における高圧上昇防止制御のフローチャートを示す図。
【図13】 従来例における冷媒回路図。
【符号の説明】
A 熱源機、B,C,D 室内機、E 中継器、1 圧縮機、2 四方切換弁、3 熱源機側熱交換器、4 アキュムレータ、5 室内側熱交換器、6 第1の接続配管、7 第2の接続配管、6a,6b,6c 室内機側の第1の接続配管、7a,7b,7c 室内機側の第2の接続配管、9 第1の流量制御装置、10 第1の分岐部、11 第2の分岐部、12 気液分離装置、13 第2の流量制御装置、14 第1のバイパス配管、15 第3の流量制御装置、16a第2の熱交換部、16b,16c,16d 第3の熱交換部、17 第4の流量制御装置、18 第4の圧力検出手段、19 第1の熱交換部、20 熱源機側送風機、25 第1の圧力検出手段、26 第2の圧力検出手段、27 第4の温度検出手段、28 第5の温度検出手段、29 熱源機側熱交換容量調整手段、30,31 電磁開閉弁、32 第3の逆止弁、33 第4の逆止弁、34第5の逆止弁、35 第6の逆止弁、40 熱源機側切換弁、41,42 第1、第2の熱源機側熱交換器、43 熱源機側熱交換器バイパス器、44〜48第1〜第5の電磁開閉弁、50 第1の循環組成検出装置、51 第2のバイパス配管、52 第4の熱交換部、53 第1の減圧装置、54 第1の温度検出手段、55 第2の温度検出手段、56 第5の圧力検出手段、57 第3の温度検出手段、58 第2の循環組成検知装置、59 第6の温度検出手段、101 第3のバイパス配管、102 第6の電磁開閉弁、60〜68,70〜78,80〜88,90〜98,111〜113,121〜124 制御フローチャートのステップ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to refrigerant circuit control of an air conditioner using an HFC refrigerant or a non-azeotropic refrigerant mixture.
[0002]
[Prior art]
FIG. 13 shows a conventional air conditioner that can be operated simultaneously with cooling and heating described in, for example, Japanese Patent Publication No. 7-92296.
(A) is a heat source unit, and (B), (C), and (D) are indoor units connected in parallel to each other as will be described later, each having the same configuration. (E) includes a first branching unit, a second flow rate control device, a second branching unit, a gas-liquid separation device, a heat exchange unit, a third flow rate control device, and a fourth flow rate control device, as will be described later. It is a built-in repeater.
[0003]
1 is a variable capacity compressor, 2 is a four-way switching valve that switches the refrigerant flow direction of the heat source unit, 3 is a heat source unit side heat exchanging unit, 4 is connected to the above equipment by an accumulator, and 20 is the heat source unit side heat A heat source side blower 40 having a variable air flow rate for sending air to the exchanging unit 3, and a switching valve 40 for restricting the refrigerant flow direction, the heat source unit (A).
5 is an indoor heat exchanger provided in the three indoor units (B), (C), (D), and 6 is a thick connecting the four-way switching valve 2 of the heat source unit (A) and the relay unit (E). The first connection pipes 6b, 6c, and 6d connect the indoor side heat exchanger 5 and the relay machine (E) of the indoor units (B), (C), and (D), respectively, and correspond to the first connection pipe 6 The first connection pipe on the indoor unit side, 7 is a second connection pipe narrower than the first connection pipe connecting the heat source unit side heat exchanger 3 of the heat source unit (A) and the relay unit (E). .
[0004]
7b, 7c, and 7d connect the indoor side heat exchanger 5 and the repeater (E) of the indoor units (B), (C), and (D) through the first connection pipe, respectively, and the second connection pipe The second connection pipe on the indoor unit side corresponding to 7 can be switched to the first connection pipe 6b, 6c, 6d on the indoor unit side and the first connection pipe 6 or the second connection pipe 7 side. A three-way switching valve 9 is connected to the indoor heat exchanger 5 and is connected in the vicinity of the indoor heat exchanger 5, and is controlled by a superheat amount during cooling on the outlet side of the indoor heat exchanger 5 and a subcool amount during heating. The flow rate control device is connected to the second connection pipes 7b, 7c, 7d on the indoor unit side.
10 is a first branch section comprising a first connection pipe 6b, 6c, 6d on the indoor unit side and a three-way switching valve 8 that is switchably connected to the first connection pipe 6 or the second connection pipe 7. Reference numeral 11 denotes a second branch portion comprising the second connection pipes 7b, 7c, 7d and the second connection pipe 7 on the indoor unit side, and 12 denotes a gas-liquid separator provided in the middle of the second connection pipe 7. The gas phase portion is connected to the first valve 8 a of the three-way switching valve 8, and the liquid phase portion is connected to the second branch portion 11.
[0005]
Reference numeral 13 denotes a second flow control device (here, an electric expansion valve) which can be freely opened and closed connected between the gas-liquid separation device 12 and the second branch portion 11, and 14 is the second branch portion 11 and the first branch portion. This is a bypass pipe connecting the connection pipe 6.
Reference numeral 15 denotes a third flow control device (here, an electric expansion valve) provided in the middle of the first bypass pipe 14, and reference numeral 16a denotes a third flow control device 15 provided in the middle of the first bypass pipe 14. The second heat exchanging portions 16b and 16c are provided downstream of the second branch portions 11 and exchange heat with the joining portions of the second connecting pipes 7b, 7c and 7d on the indoor unit side in the second branching portion 11. , 16d are provided downstream of the third flow rate control device 15 provided in the middle of the first bypass pipe 14, respectively, and the second connection pipes 7b, 7c, A third heat exchanging part 19 for exchanging heat with 7d, respectively, is provided in the first bypass pipe 14 downstream of the third flow control device 15 and downstream of the second heat exchanging part 16a. Liquid separator 12 and second flow rate controller 13 A first heat exchanging section 17 for exchanging heat with the subsequent pipe, 17 is a fourth flow control device (17) that can be freely opened and closed connected between the second branch section 11 and the first connecting pipe 6. Here, an electric expansion valve).
[0006]
32 is a third check valve provided between the heat source unit side heat exchanging unit 3 and the second connection pipe 7, from the heat source unit side heat exchanger 3 to the second connection pipe. Only the refrigerant refrigerant flow to 7 is allowed.
Reference numeral 33 denotes a fourth check valve provided between the four-way switching valve 2 of the heat source machine (A) and the first connection pipe 6, and the four-way switching valve extends from the first connection pipe 6. Allow refrigerant flow only to 2.
Reference numeral 34 denotes a fifth check valve provided between the four-way switching valve 2 and the second connection pipe 7 of the heat source device (A). Allow refrigerant flow only to 7.
Reference numeral 35 denotes a sixth check valve provided between the heat source machine side heat exchanger 3 and the first connection pipe 6, and the heat source machine side heat exchanger extends from the first connection pipe 6. The refrigerant flow is allowed only to 3.
The switching valve 40 is constituted by the third, fourth, fifth and sixth check valves 32, 33, 34 and 35.
Reference numeral 25 denotes a first pressure detecting means provided between the first branch portion 10 and the second flow rate control device 13, and 26 denotes a relationship between the second flow rate control device 13 and the fourth flow rate control device 17. It is the 2nd pressure detection means provided in the middle.
[0007]
The heat source unit side heat exchanging unit 3 includes a first heat source unit side heat exchanger 41 and a second heat source having the same heat transfer area as the first heat source unit side heat exchanger 41 connected in parallel. The first electromagnetic on-off valve 44 provided at one end of the machine-side heat exchanger 42, the heat-source-machine-side bypass 43, and the first heat-source-machine-side heat exchanger 41 on the side connected to the four-way switching valve 2; Provided at one end on the side connected to the second electromagnetic switching valve 45 provided at the other end of the first heat source unit side heat exchanger 41 and the four-way switching valve 2 of the second heat source unit side heat exchanger 42. The third electromagnetic on-off valve 46 provided, the fourth electromagnetic on-off valve 47 provided at the other end of the second heat source side heat exchanger 42, and the fifth provided on the heat source side bypass path 43. The electromagnetic on-off valve 48 is used.
Reference numeral 18 denotes fourth pressure detecting means provided in the middle of the pipe connecting the four-way switching valve 2 and the discharge portion of the compressor 1.
[0008]
[Problems to be solved by the invention]
However, in the conventional technology, when a non-azeotropic refrigerant mixture is used as a refrigerant, if a large amount of refrigerant stays in the stopped indoor unit or outdoor unit, the entrance subcool of the indoor unit flow control device cannot be taken. In addition to refrigerant noise and lack of capacity, the refrigerant composition ratio of the refrigerant circulating in the refrigerant circuit may change, and control corresponding to this may not be possible, leading to refrigerant noise, lack of capacity, and failure of the air conditioner. was there.
In addition, when an HFC mixed refrigerant having a pressure higher than that of the HCFC 22 is used, such as the HFC 407C, the pressure in the refrigerant circuit may increase excessively, causing a failure of the air conditioner.
In addition, during operation in which the heat source machine side heat exchanger acts as an evaporator, in order to remove frost attached to this heat source machine side heat exchanger, operation in which the heat source machine side heat exchanger temporarily acts as a condenser When switching to, the distribution of the refrigerant is not stable, and the low pressure of the refrigerant circuit may be abruptly reduced.
[0009]
The present invention is intended to accurately prevent the generation of such refrigerant noise and insufficient capacity.
[0010]
[Means for Solving the Problems]
In the air conditioner according to the first aspect of the present invention, It has a heat source unit consisting of a compressor, switching valve, heat source side heat exchanger, accumulator, and a plurality of indoor units consisting of an indoor side heat exchanger and a flow control device, and the indoor unit operates both cooling and heating simultaneously. A non-azeotropic refrigerant mixture as a refrigerant, the heat source unit and the indoor unit are connected via first and second connection pipes, and the indoor side heat of the indoor unit is A first branch part having a valve device that connects one of the exchangers to the first connection pipe or the second connection pipe in a switchable manner; and the flow control device on the other side of the indoor heat exchanger of the indoor unit. And a second branch part connected to the second connection pipe, the second branch part and the first connection pipe are connected, and the second branch part is connected. Means for detecting the subcool of the heat source machine side heat exchanger is condensed Performed when the driver acts, a control for recovering the refrigerant staying in the above heat source apparatus when the detection value of the subcooled in the second branch portions is equal to or less than a predetermined value in the refrigerant circuit for circulation of the refrigerant as Is.
[0015]
No. 1 of this invention 2 The air conditioner according to the present invention comprises a heat source unit composed of a compressor, a switching valve, a heat source unit side heat exchanger, a plurality of indoor units composed of an indoor side heat exchanger and a flow rate control device, and the indoor unit is a cooling unit. In an air conditioner capable of operating both heating and heating at the same time, a non-azeotropic refrigerant mixture is used as a refrigerant, and the heat source unit and the indoor unit are connected via first and second connection pipes, A first branch section having a valve device for switching one of the indoor side heat exchangers of the indoor unit to the first connecting pipe or the second connecting pipe, and the indoor side heat exchanger of the indoor unit And a second branch part connected to the second connection pipe, and connecting the second branch part and the first connection pipe to each other. And means for detecting a subcool of the second branch part, and the heat source unit side In the operation where the exchanger acts as a condenser, when the subcool detection value of the second branch portion is equal to or less than a predetermined value, the refrigerant staying in the stopped indoor unit among the indoor units is circulated through the refrigerant. The refrigerant is recovered by the refrigerant circuit unit.
[0018]
No. 1 of this invention 3 The air conditioner according to the present invention comprises a heat source unit composed of a compressor, a switching valve, a heat source unit side heat exchanger, a plurality of indoor units composed of an indoor side heat exchanger and a flow rate control device, and the indoor unit is a cooling unit. In an air conditioner capable of operating both heating and heating at the same time, a non-azeotropic refrigerant mixture is used as a refrigerant, and the heat source unit and the indoor unit are connected via first and second connection pipes, A first branch section having a valve device for switching one of the indoor side heat exchangers of the indoor unit to the first connecting pipe or the second connecting pipe, and the indoor side heat exchanger of the indoor unit And a second branch part connected to the second connection pipe, and connecting the second branch part and the first connection pipe to each other. , When all of the indoor units are in operation If it becomes performs control to open the valve device a certain time.
[0019]
No. 1 of this invention 4 The air conditioner according to the present invention comprises a heat source unit composed of a compressor, a switching valve, a heat source unit side heat exchanger, a plurality of indoor units composed of an indoor side heat exchanger and a flow rate control device, and the indoor unit is a cooling unit. In an air conditioner capable of operating both heating and heating at the same time, a non-azeotropic refrigerant mixture is used as a refrigerant, and the heat source unit and the indoor unit are connected via first and second connection pipes, A first branch section having a valve device for switching one of the indoor side heat exchangers of the indoor unit to the first connecting pipe or the second connecting pipe, and the indoor side heat exchanger of the indoor unit And a second branch part connected to the second connection pipe, and connecting the second branch part and the first connection pipe to each other. The gas-liquid separation device is provided in the middle of the second connection pipe, and the gas phase portion is connected to the first separation pipe. In order to defrost the heat source machine side heat exchanger during operation in which the liquid phase part is connected to the second branch part and the heat source machine side heat exchanger acts as an evaporator, the heat source machine side heat exchanger When the operation is switched to the operation of the condenser, the control of feeding the refrigerant in the gas phase portion of the gas-liquid separation device to the first branching portion by the operation of the valve device is performed.
[0020]
No. 1 of this invention 5 The air conditioner according to the invention comprises a compressor, a switching valve, a heat source side heat exchanger, a heat source unit consisting of an accumulator, an indoor side heat exchanger, and a plurality of indoor units consisting of a first flow control unit, In the air conditioner in which the indoor unit can operate both cooling and heating at the same time, an HFC mixed refrigerant having a pressure higher than that of the HCFC 22 is used as a refrigerant, and the heat source unit and the indoor unit are connected to the first and second units. A first branching section having a valve device connected via a connection pipe and connected to one of the indoor heat exchangers of the indoor unit so as to be switchable to the first connection pipe or the second connection pipe; A second branch part connected to the other indoor side heat exchanger of the indoor unit via the first flow rate control device and connected to the second connection pipe, and the second branch part And the first connection pipe are connected to each other, A second flow rate control device, and a first pressure detection unit and a second pressure detection unit before and after the second flow rate control device, the first pressure detection unit and the second pressure detection unit. When one of the means becomes equal to or higher than a certain pressure value, control is performed to open the second flow rate control device.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Embodiments of the present invention will be described below.
FIG. 1 shows a refrigerant circuit diagram of an air conditioner which is an example of the entire configuration centering on a refrigerant system of an air conditioner according to the present invention.
2, 3 and 4 show the cooling / heating operation state and the operation state in the first embodiment shown in FIG. 1, and FIG. 2 shows the operation state diagram of cooling or heating only, FIG. 3 and FIG. 4 shows the operation of the simultaneous cooling and heating operation, FIG. 3 shows the heating main body (when the heating operation capacity is larger than the cooling operation capacity), and FIG. 4 shows the cooling main body (when the cooling operation capacity is larger than the heating operation capacity). It is a driving | running operation state figure.
In this embodiment, a case where three indoor units are connected to one heat source unit will be described, but the same applies to a case where two or more indoor units are connected.
[0023]
In FIG. 1, (A) is a heat source unit, and (B), (C), and (D) are indoor units connected in parallel to each other as will be described later, each having the same configuration. (E) includes a first branch unit, a second flow rate control device, a second branch unit, a gas-liquid separation device, a heat exchange unit, a third flow rate control device, and a fourth flow rate control device, as will be described later. It is a built-in repeater.
[0024]
1 is a variable capacity compressor, 2 is a four-way switching valve that switches the refrigerant flow direction of the heat source unit, 3 is a heat source unit side heat exchanging unit, 4 is connected to the above equipment by an accumulator, and 20 is the heat source unit side heat A heat source side blower with variable air volume for blowing air to the exchange unit 3, 40 is a switching valve that restricts the direction of refrigerant flow, and 50 is a first circulating composition detection device that is connected to the discharge part of the compressor and the suction part of the compressor Further, 101 is a third bypass pipe provided with a sixth electromagnetic on-off valve 102 on the way, and is connected to the discharge part of the compressor 1 and the accumulator 4, and the heat source machine (A) is constituted by these. Is done.
[0025]
5 is an indoor heat exchanger provided in the three indoor units (B), (C), (D), and 6 is a thick first connecting the four-way switching valve 2 of the heat source unit (A) and the relay unit (E). 1 connecting pipes 6b, 6c and 6d connect the indoor side heat exchanger 5 and the relay machine (E) of the indoor units (B), (C) and (D), respectively, and correspond to the first connecting pipe 6. A first connection pipe on the indoor unit side, 7 is a second connection pipe that is thinner than the first connection pipe connecting the heat source unit side heat exchanger 3 of the heat source unit (A) and the relay unit (E), 7b, 7c and 7d connect the indoor side heat exchanger 5 and the relay unit (E) of the indoor units (B), (C), and (D), respectively, via the first connection pipe, and are connected to the second connection pipe 7. It is the 2nd connection piping by the side of a corresponding indoor unit.
[0026]
Reference numeral 8 denotes a first connection pipe 6b, 6c, 6d on the indoor unit side and a three-way switching valve that is switchably connected to the first connection pipe 6 or the second connection pipe 7 side, and 9 denotes an indoor heat exchanger. 5 is a first flow control device that is connected in the vicinity of 5 and controlled by the superheat amount during cooling on the outlet side of the indoor heat exchanger 5 and the subcooling amount during heating. 7b, 7c, 7d.
10 is a first branch section comprising a first connection pipe 6b, 6c, 6d on the indoor unit side and a three-way switching valve 8 that is switchably connected to the first connection pipe 6 or the second connection pipe 7. Reference numeral 11 denotes a second branch portion including the second connection pipes 7b, 7c, 7d and the second connection pipe 7 on the indoor unit side.
[0027]
A gas-liquid separator 12 is provided in the middle of the second connection pipe 7, the gas phase portion of which is connected to the first valve 8 a of the three-way switching valve 8, and the liquid phase portion thereof is connected to the second branch portion 11. It is connected. Reference numeral 13 denotes a second flow control device (here, an electric expansion valve) which can be freely opened and closed connected between the gas-liquid separation device 12 and the second branch portion 11, and 14 is the second branch portion 11 and the first branch portion described above. Reference numeral 15 denotes a bypass pipe connecting the connecting pipe 6, and a third flow rate control device (here, an electric expansion valve) provided in the middle of the first bypass pipe 14.
[0028]
16a is provided downstream of the third flow control device 15 provided in the middle of the first bypass pipe 14, and is connected to the second connection pipes 7b, 7c, 7d on the indoor unit side in the second branch portion 11. Second heat exchange units 16b, 16c, and 16d that respectively exchange heat with the merge unit are provided downstream of the third flow rate control device 15 provided in the middle of the first bypass pipe 14, respectively. A third heat exchanging part 19 for exchanging heat with the second connection pipes 7b, 7c, 7d on the indoor unit side in the second branch part 11 is the third heat exchanging part 19 of the first bypass pipe 14. The first heat for exchanging heat between the gas-liquid separator 12 and the pipe connecting the second flow controller 13 downstream of the flow controller 15 and downstream of the second heat exchanger 16a. The exchange part 17 is the second branch part 11 and the first connection pipe. (Here an electric expansion valve) closable fourth flow rate control device connected is between.
[0029]
32 is a third check valve provided between the heat source unit side heat exchanging unit 3 and the second connection pipe 7, from the heat source unit side heat exchanger 3 to the second connection pipe. Only the refrigerant refrigerant flow to 7 is allowed.
Reference numeral 33 denotes a fourth check valve provided between the four-way switching valve 2 of the heat source machine (A) and the first connection pipe 6, and the four-way switching valve extends from the first connection pipe 6. Allow refrigerant flow only to 2.
Reference numeral 34 denotes a fifth check valve provided between the four-way switching valve 2 and the second connection pipe 7 of the heat source device (A). Allow refrigerant flow only to 7.
Reference numeral 35 denotes a sixth check valve provided between the heat source machine side heat exchanger 3 and the first connection pipe 6, and the heat source machine side heat exchanger extends from the first connection pipe 6. The refrigerant flow is allowed only to 3.
The switching valve 40 is constituted by the third, fourth, fifth and sixth check valves 32, 33, 34 and 35.
[0030]
Reference numeral 25 denotes a first pressure detecting means provided between the first branch portion 10 and the second flow rate control device 13, and 26 denotes a relationship between the second flow rate control device 13 and the fourth flow rate control device 17. It is the 2nd pressure detection means provided in the middle.
Reference numerals 27 and 28 denote fourth temperature detection means and fifth temperature detection means provided at both ends of the indoor unit side heat exchanger 5, and those connected to the first flow rate control device side are the fifth temperature detection means. The fourth temperature detecting means 27 is connected to the means 28 and the other end.
Reference numeral 59 denotes sixth temperature detection means connected to the first bypass pipe 14 between the second heat exchange unit 16 a and the third flow control device 15.
[0031]
The heat source unit side heat exchanging unit 3 includes a first heat source unit side heat exchanger 41 and a second heat source unit having the same heat transfer area as the first heat source unit side heat exchanger 41 connected in parallel. A first electromagnetic on-off valve 44 provided at one end of the side heat exchanger 42, the heat source unit side bypass 43, and the first heat source unit side heat exchanger 41 on the side connected to the four-way switching valve 2, the first 1 at the other end of the heat source unit side heat exchanger 41 and at one end of the second heat source unit side heat exchanger 42 on the side connected to the four-way switching valve 2. A third electromagnetic on / off valve 46, a fourth electromagnetic on / off valve 47 provided at the other end of the second heat source unit side heat exchanger 42, and a fifth electromagnetic on / off valve 43 provided in the middle of the heat source unit side bypass passage 43. An electromagnetic opening / closing valve 48 is used.
Reference numeral 18 denotes fourth pressure detecting means provided in the middle of the pipe connecting the four-way switching valve 2 and the discharge portion of the compressor 1.
[0032]
The first circulation composition detection device 50 is a device that detects the refrigerant composition ratio of the refrigerant discharged from the compressor, and is a bypass pipe 51 that bypasses the discharge pipe of the compressor 1 and the suction pipe of the compressor. The fourth heat exchanging section, the first pressure reducing device 53, the first temperature detecting means 54, and the second temperature detecting means 55 are configured.
Reference numeral 56 denotes fifth pressure detection means provided in the suction part in the middle of the pipe connecting the suction part of the compressor 1 and the four-way switching valve 2.
[0033]
In addition, the second circulating composition detection device 58 has a high-pressure pipe in the case of a cooling main operation in the simultaneous cooling and heating operation between the heat source unit side heat exchanger and the first branching section 10 or the second branching section 11. Heating in the case of the main cooling operation of the simultaneous cooling and heating operation from the detection value of the third temperature detection means 57 provided in the middle, the detection value of the fourth pressure detection means 18 and the detection value of the first circulating composition detection device 50 The refrigerant composition ratio flowing into the indoor unit is calculated.
[0034]
The air conditioner of FIG. 1 is filled with R407C, which is a non-azeotropic refrigerant mixture in which R32 / R125 / R134a of HFC is mixed at a ratio of 23/25/52 wt%.
The refrigerant R407C is an HFC mixed refrigerant having a pressure higher than that of the HCFC 22.
[0035]
An embodiment of the present invention configured as described above will be described. First, the case of only the cooling operation will be described with reference to FIG.
That is, as indicated by the solid line arrow in the figure, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2 and is blown by the heat source unit side heat exchange unit 3 and the heat source unit side blower 20 with variable air flow rate. After the heat is exchanged with the air to be condensed and liquefied, the third check valve 32, the second connection pipe 7, the gas-liquid separator 12, and the second flow rate controller 13 are passed in this order, and further the second branch. It passes through the part 11 and the second connection pipes 7b, 7c, 7d on the indoor unit side, and flows into the indoor units (B), (C), (D).
[0036]
And the refrigerant | coolant which flowed into each indoor unit (B), (C), (D) is pressure-reduced to low pressure by the 1st flow control apparatus 9 controlled by the superheat amount of each indoor unit side heat exchanger 5 exit. Then, the indoor side heat exchanger 5 exchanges heat with room air, evaporates and gasifies, and cools the room.
[0037]
And the refrigerant | coolant which became this gas state is the 1st connection piping 6b, 6c, 6d by the side of an indoor unit, the three-way switching valve 8, the 1st branch part 10, the 1st connection piping 6, the 4th non-return. A circulation cycle that is sucked into the compressor 1 through the valve 33, the four-way switching valve 2 of the heat source unit 2, and the accumulator 4 is configured, and the cooling operation is performed.
At this time, the first port 8a of the three-way switching valve 8 is closed, and the second port 8b and the third port 8c are opened. Since the first connection pipe 6 is at a low pressure and the second connection pipe 7 is at a high pressure, the refrigerant inevitably flows to the third check valve 32 and the fourth check valve 33.
[0038]
Further, during this cycle, a part of the refrigerant that has passed through the second flow rate control device 13 enters the first bypass pipe 14 and is decompressed to a low pressure by the third flow rate control device 15, so that the third heat exchanging part 16 b. , 16c, 16d, the second branch pipe 11 between the second connecting pipes 7b, 7c, 7d on the side of each indoor unit, and the second heat exchanger 16a, each indoor unit of the second branch section 11. Evaporates by exchanging heat with the refrigerant flowing into the second flow rate control device 13 at the first heat exchanging unit 19 with the junction of the second connection pipes 7b, 7c, 7d on the side. The refrigerant enters the first connection pipe 6 and the fourth check valve 33 and is sucked into the compressor 1 through the four-way switching valve 2 of the heat source unit and the accumulator 4.
[0039]
On the other hand, the refrigerant in the second branching section 11 that is heat-exchanged by the first, second, and third heat exchanging sections 19, 16a, 16b, 16c, and 16d and sufficiently cooled is cooled. Flows into the existing indoor units (B), (C), (D).
Here, the capacity of the compressor 1 with variable capacity and the air volume of the heat source unit side fan 20 are adjusted so that the evaporation temperature of the indoor unit and the condensation temperature of the heat source unit side fan 20 become a predetermined target temperature, The indoor unit can achieve the target cooling capacity.
In addition, the sixth electromagnetic on-off valve 102 is closed during normal times.
[0040]
Next, the case of only heating operation will be described with reference to FIG.
That is, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2 as shown by the dotted arrows in the figure, and the fifth check valve 34, the second connection pipe 7, and the gas-liquid separator. 12, the first branching section 10, the three-way switching valve 8, and the first connection pipes 6b, 6c, 6d on the indoor unit side in this order and into the indoor units (B), (C), (D). Then, heat is exchanged with room air to condense and heat the room.
[0041]
And the refrigerant | coolant which became this state is controlled by each indoor side heat exchanger 5 exit subcooling amount, passes the 1st flow control apparatus 9 of a substantially full open state, and is connected to the indoor unit side 2nd connection piping 7b, 7c. , 7 d to flow into the second branching section 11 and merge, and further passes through the fourth flow rate control device 17.
Here, either the first flow rate control device 9 or the third and fourth flow rate control devices 15 and 17 is depressurized to a low-pressure gas-liquid two-phase.
[0042]
Then, the refrigerant depressurized to a low pressure flows into the sixth check valve 35 of the heat source unit (A) and the heat source unit side heat exchanging unit 3 through the first connection pipe 6, and here, the heat source unit with variable air flow rate. The refrigerant that has evaporated into a gas state through heat exchange with the air blown by the side blower 20 constitutes a circulation cycle that is sucked into the compressor 1 through the four-way switching valve 2 and the accumulator 4, and performs a heating operation.
At this time, in the three-way switching valve 8, the second port 8b is closed, and the first port 8a and the third port 8c are opened.
At this time, the refrigerant inevitably flows to the fifth check valve 34 and the sixth check valve 35 because the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure.
Here, the capacity of the compressor 1 and the air volume of the heat source unit side fan 20 are adjusted so that the condensation temperature of the indoor unit and the evaporation temperature of the heat source unit side fan 20 become a predetermined target temperature, In the indoor unit, the target heating capacity can be obtained.
In addition, the sixth electromagnetic on-off valve 102 is closed during normal times.
[0043]
The case of the heating main operation in the simultaneous cooling and heating operation will be described with reference to FIG.
That is, the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, the fifth check valve 34, and the second connection pipe 7 to the relay machine (E) as indicated by the dotted arrow in FIG. Each indoor unit (B) to be heated passes through the gas-liquid separator 12 and passes through the first branch portion 10, the three-way switching valve 8, and the first connection pipes 6b and 6c on the indoor unit side in this order. , (C), and heat is exchanged with indoor air in the indoor heat exchanger 5 to be condensed and liquefied to heat the room.
[0044]
Then, the condensed and liquefied refrigerant is controlled by the indoor unit side heat exchangers (B) and (C) at the outlet subcooling amount, and is slightly depressurized through the first flow rate control device 9 in the substantially fully opened state, and then the second branch. Flows into the section 11.
A part of the refrigerant passes through the second connection pipe 7d on the indoor unit side, enters the indoor unit (D) to be cooled, and is controlled by the superheat amount at the outlet of the indoor unit side heat exchanger (D). After entering the first flow rate control device 9 and depressurizing, it enters the indoor heat exchanger 5 and exchanges heat to evaporate into a gas state to cool the room, and through the three-way switching valve 8, It flows into the connecting pipe 6.
[0045]
On the other hand, the other refrigerant passes through the fourth flow rate control device 17 that is controlled so that the pressure difference between the detected pressure of the first pressure detecting means 25 and the detected pressure of the second pressure detecting means 26 falls within a predetermined range. The refrigerant that has passed through the indoor unit (D) to be cooled merges with the refrigerant through the thick first connection pipe 6 and flows into the sixth check valve 35 of the heat source unit (A) and the heat source unit side heat exchange unit 3. In this case, heat is exchanged with the air blown by the heat source blower 20 having a variable blower amount to evaporate into a gas state.
[0046]
Here, the capacity of the compressor 1 with variable capacity and the amount of air blown by the heat source side blower 20 are adjusted so that the evaporation temperature of the cooling indoor unit and the condensation temperature of the heating indoor unit become a predetermined target temperature, and Adjusting the heat transfer area by opening and closing the first, second, third and fourth solenoid valves 44, 45, 46, 47 at both ends of the first and second heat source unit side heat exchangers 41, 42; and An arbitrary amount is set in the heat source unit side heat exchanging unit 3 by adjusting the flow rate of the refrigerant flowing through the first and second heat source unit side heat exchangers 41 and 42 by opening and closing the electromagnetic on-off valve 48 of the heat source unit side bypass passage 43. The amount of heat exchange can be obtained, and the target heating capacity or cooling capacity can be obtained in each indoor unit.
[0047]
And a refrigerant | coolant comprises the circulation cycle suck | inhaled by the compressor 1 through the four-way switching valve 2 and the accumulator 4 of a heat source machine, and heating main operation | movement is performed. At this time, the evaporation pressure of the indoor side heat exchanger 5 of the indoor unit (D) to be cooled and the pressure difference of the heat source unit side heat exchanger 3 are reduced because the switching is made to the thick first connection pipe 6.
At this time, the second port 8b of the three-way switching valve 8 connected to the indoor units (B) and (C) is closed, and the first port 8a and the third port 8c are opened, so that the indoor unit (D) The first port 8a is closed, and the second port 8b and the third port 8c are opened.
At this time, the refrigerant inevitably flows to the fifth check valve 34 and the sixth check valve 35 because the first connection pipe 6 has a low pressure and the second connection pipe 7 has a high pressure.
[0048]
Also, during this cycle, some liquid refrigerant enters the first bypass pipe 14 from the junction of the second connection pipes 7b, 7c, 7d on the side of each indoor unit of the second branch part 11 and enters the third bypass pipe 14. Between the second connection pipes 7b, 7c and 7d on the indoor unit side of the second branching section 11 by the third heat exchange sections 16b, 16c and 16d, the pressure is reduced to a low pressure by the flow control device 15. Between each of the second branch pipes 11 in the second heat exchanger 16a and the second connection pipes 7b, 7c, 7d on the indoor unit side of the second branch section 11 in the second heat exchanger 16a. The refrigerant that has evaporated and exchanged heat with the junctions of the second connection pipes 7b, 7c, and 7d on the indoor unit side enters the first connection pipe 6 and the sixth check valve 35. The air is sucked into the compressor 1 through the switching valve 2 and the accumulator 4.
On the other hand, the refrigerant in the second branch section 11 that has been cooled by heat exchange in the second and third heat exchange sections 16a, 16b, 16c, and 16d and has been sufficiently subcooled flows into the indoor unit (D) that is going to be cooled. To do.
In addition, the sixth electromagnetic on-off valve 102 is closed during normal times.
[0049]
The case of the cooling main operation in the simultaneous cooling and heating operation will be described with reference to FIG.
That is, the refrigerant gas discharged from the compressor 1 flows into the heat source unit side heat exchanging unit 3 through the four-way switching valve 2 as indicated by solid line arrows in FIG. Heat exchange with the blown air results in a two-phase high temperature and high pressure state.
Here, the capacity of the compressor 1 having a variable capacity and the air flow rate of the heat source side fan 20 are adjusted so that the evaporation temperature and the condensation temperature of the indoor unit become predetermined target temperatures, and the first and second The first, second, third, and fourth electromagnetic on-off valves 44, 45, 46, and 47 at both ends of the heat source apparatus side heat exchangers 41 and 42 are opened and closed to adjust the heat transfer area, and the heat source apparatus side bypass An arbitrary amount of heat exchange is performed in the heat source unit side heat exchanging unit 3 by adjusting the flow rate of the refrigerant flowing through the first and second heat source unit side heat exchangers 41 and 42 by opening and closing the electromagnetic on-off valve 48 of the passage 43. In addition, a target heating capacity or cooling capacity can be obtained in each indoor unit.
[0050]
Thereafter, the two-phase high-temperature and high-pressure refrigerant passes through the third check valve 32 and the second connection pipe 7 and is sent to the gas-liquid separator 12 of the relay machine (E). And here, it separates into a gaseous state refrigerant | coolant and a liquid state refrigerant | coolant, passes the separated gaseous refrigerant in order of the 1st branch part 10, the three-way switching valve 8, and the 1st connection piping 6d by the side of an indoor unit, and heating The air flows into the indoor unit (D) to be heated, and heat is exchanged with indoor air in the indoor heat exchanger 5 to be condensed and liquefied to heat the room.
Furthermore, it is controlled by the indoor side heat exchanger 5 outlet subcooling amount, passes through the first flow control device 9 that is substantially fully open, and is slightly depressurized to flow into the second branch portion 11.
[0051]
On the other hand, the remaining liquid refrigerant passes through the second flow rate control device 13 controlled by the detection pressure of the first pressure detection means 25 and the detection pressure of the second pressure detection means 26 to the second branch portion 11. It flows in and merges with the refrigerant that has passed through the indoor unit (D) to be heated. And it passes in order of the 2nd branch part 11 and the 2nd connection piping 7b and 7c by the side of an indoor unit, and flows into each indoor unit (B) and (C).
And the refrigerant | coolant which flowed into each indoor unit (B) and (C) is pressure-reduced to low pressure by the 1st flow control apparatus 9 controlled by the indoor side heat exchanger (B) and (C) exit superheat amount. Then, it exchanges heat with room air and evaporates and cools the room.
[0052]
Further, the refrigerant in the gas state passes through the first connection pipes 6b and 6c on the indoor side, the three-way switching valve 8, and the first branch portion 10, and passes through the first connection pipe 6 and the fourth check valve. 33, a circulation cycle that is sucked into the compressor 1 through the four-way switching valve 2 of the heat source machine 2 and the accumulator 4 is constituted, and the cooling main operation is performed.
At this time, the first port 8a of the three-way switching valve 8 connected to the indoor units (B) and (C) is closed, the second port 8b and the third port 8c are opened, and the indoor unit (D) The second port 8b is closed, and the first port 8a and the third port 8c are opened.
At this time, the refrigerant inevitably flows into the third check valve 32 and the fourth check valve 33 because the first connection pipe 6 is low pressure and the second connection pipe 7 is high pressure.
[0053]
Also, during this cycle, some liquid refrigerant enters the first bypass pipe 14 from the junction of the second connection pipes 7b, 7c, 7d on the side of each indoor unit of the second branch part 11 and enters the third bypass pipe 14. Between the second connection pipes 7b, 7c, and 7d on the side of each indoor unit of the second branching section 11 by the third heat exchanging sections 16b, 16c, and 16d after being depressurized to a low pressure by the flow control device 15 In the second heat exchanging part 16a, the second branch pipe 11 is connected to the joining part of the second connecting pipes 7b, 7c, 7d on the indoor unit side, and further in the first heat exchanging part 19. The refrigerant that has evaporated and exchanged heat with the refrigerant flowing into the flow rate control device 13 enters the first connecting pipe 6 and the fourth check valve 33 and causes the four-way switching valve 2 and the accumulator 4 of the heat source machine to enter. Then, it is sucked into the compressor 1.
On the other hand, the refrigerant in the second branch section 11 which is cooled by heat exchange in the first, second and third heat exchanging sections 19, 16a, 16b, 16c and 16d and is sufficiently subcooled is the room which is going to cool. Flows into machine (B), (C). In addition, the sixth electromagnetic on-off valve 102 is closed during normal times.
[0054]
Next, the operation of the stopped indoor unit and the three-way switching valve 8 connected to the stopped indoor unit will be described.
The first flow control device 9 of the indoor unit is fully closed or slightly opened so that the refrigerant does not flow into the indoor unit heat exchanger 5. The three-way switching valve 8 closes the third port 8c (the first port 8a and the second port 8b may be closed).
[0055]
Next, the ratio of the low boiling point refrigerant to the high boiling point refrigerant in the air conditioner will be described. However, since the ratio of the low-boiling point refrigerant and the high-boiling point refrigerant can be known thereafter, the ratio between the low-boiling point refrigerant and the high-boiling point refrigerant is expressed as the refrigerant composition ratio.
In the case of only the cooling operation, only the heating operation, and the case of heating mainly in the simultaneous cooling and heating operation, the refrigeration cycle including the gas refrigerant in the accumulator 4 is performed so that the gas-liquid separator 12 does not separate the refrigerant into the gas phase and the liquid phase. The refrigerant circulating through the refrigerant has the same refrigerant composition ratio.
In the case of heating mainly in the simultaneous cooling and heating operation, the refrigerant circulating in the refrigeration cycle including the gas refrigerant in the accumulator 4 is the same from the compressor 1 in order to separate the refrigerant into the gas phase and the liquid phase in the gas-liquid separator 12. The refrigerant has a refrigerant composition ratio.
[0056]
That is, in the case of only the cooling operation, the gas refrigerant in the accumulator 4, the gas refrigerant discharged from the compressor 1, the gas-liquid two-phase refrigerant in the gas-liquid separator 12, the indoor units (B), (C), (D ) The gas refrigerant at the outlet has the same refrigerant composition ratio.
In the case of heating operation only, the gas refrigerant in the accumulator 4, the gas refrigerant discharged from the compressor 1, and the liquid refrigerant at the outlets of the indoor units (B), (C), and (D) have the same refrigerant composition ratio. .
[0057]
In the case of heating mainly in the simultaneous cooling and heating operation, the gas refrigerant discharged from the compressor 1, the gas-liquid two-phase refrigerant in the gas-liquid separator 12, the liquid at the outlet of the indoor units (B) and (C) to be heated The refrigerant and the gas refrigerant at the outlet of the indoor unit (D) to be cooled have the same refrigerant composition ratio.
In the case of cooling mainly in the simultaneous cooling and heating operation, the refrigerant composition ratio of the gas refrigerant discharged from the compressor 1 is such that the gas-liquid two-phase refrigerant in the gas-liquid separator 12 is divided into liquid refrigerant and gas refrigerant. The gas refrigerant separated from the liquid separator 12 has a refrigerant composition ratio in which the ratio of the low-boiling components R32 and R125 is larger than the refrigerant composition ratio of the discharge portion of the compressor 1 and flows into the indoor unit (D) to be heated. The refrigerant discharged from D) is separated from the gas-liquid separator 12 and the liquid refrigerant separated from the gas-liquid separator 12 is combined with the refrigerant composition ratio having a high proportion of the high boiling point component R134a to cool the refrigerant composition to the same refrigerant composition ratio as the gas refrigerant discharged from the compressor 1. Into the indoor units (B) and (C).
[0058]
On the other hand, when considering the gas refrigerant and liquid refrigerant of the accumulator 4, the gas-liquid equilibrium relationship is established in the accumulator 4. When gas-liquid equilibrium is established in a non-azeotropic refrigerant mixture, the gas is a refrigerant containing more low-boiling components than liquid. Therefore, the gas refrigerant in the accumulator 4 is a refrigerant containing a larger amount of refrigerants R32 and R125 having a lower boiling point than the liquid refrigerant.
On the other hand, the liquid refrigerant in the accumulator 4 is a refrigerant containing a larger amount of refrigerant R134a having a higher boiling point than the gas refrigerant.
[0059]
The total refrigerant in the air conditioner is a combination of the refrigerant circulating in the air conditioner and the liquid refrigerant in the accumulator 4, and the refrigerant composition ratio of the combined refrigerant is the same as the refrigerant composition ratio of the refrigerant R407C. Therefore, when liquid refrigerant is present in the accumulator 6, the refrigerant circulating in the refrigeration cycle of FIG. 1 including the gas refrigerant in the accumulator 6 contains more refrigerants R32 and R125 having a lower boiling point than the filled refrigerant. It becomes a refrigerant, and the liquid refrigerant in the accumulator 4 becomes a refrigerant containing a larger amount of refrigerant R134a having a higher boiling point than the composition of the filled refrigerant R407C.
Further, when there is no liquid refrigerant in the accumulator 6, the refrigerant composition ratio of the refrigerant circulating in the air conditioner of FIG. 1 is the same refrigerant composition ratio as R407C.
[0060]
Next, the operation of the first circulating composition detection device 50 will be described.
The high-pressure gas refrigerant exiting the compressor 1 passes through the second bypass pipe 51, exchanges heat with the low-pressure refrigerant in the fourth heat exchange section 52, liquefies, and then depressurizes in the first decompression device 53. It becomes a low-pressure two-phase refrigerant.
Thereafter, heat is exchanged with the high-pressure refrigerant in the fourth heat exchanging section 52 to evaporate and gasify, and then return to the suction of the compressor 1.
[0061]
In this apparatus, the temperature of the liquid refrigerant of the first temperature detection means 54 and the temperature and pressure of the two-phase refrigerant of the second temperature detection means 55 and the fifth pressure detection means 56 are detected (fifth pressure detection means). 56 and the outlet pressure of the first pressure reducing device 53 are substantially equal, the outlet pressure of the first pressure reducing device 53 is taken as the value of the fifth pressure detecting means 56), and the refrigeration apparatus based on the temperature and pressure The refrigerant circulation composition of the non-azeotropic refrigerant mixture is calculated and detected.
This circulation composition detection is always performed while the refrigeration air conditioner is powered on.
[0062]
Here, a method of calculating the refrigerant circulation composition will be described. Since R407C is a non-azeotropic three-type mixed refrigerant, and the three types of refrigerant circulation composition are unknown numbers, the unknown circulation composition can be found by solving three equations.
However, since each of the three types of circulation composition is added to 1, R32 is expressed as α32, R125 is expressed as α125, and R134a is expressed as α134a.
α32 + α125 + α134a = 1
Therefore, two equations (except for the above α32 + α125 + α134a = 1) are established for two kinds of unknown circulation compositions, and the circulation composition can be found by solving them. For example, if two equations that make α32 and α125 unknown are found, the circulation composition can be known.
[0063]
Now, how to establish an equation in which α32 and α125 are unknown will be described.
First, the first equation can be established from the first circulating composition detection device 50. FIG. 7 is a Mollier diagram showing the state change of the refrigerant in the first circulating composition detection device 50. In this figure, (1) is the state of the high-pressure gas refrigerant leaving the compressor 1, ( 2) is a state in which heat is exchanged with the low-pressure refrigerant in the fourth heat exchange section 52 and liquefied, (3) is a state in which the pressure is reduced by the first decompression device 53 to become a low-pressure two-phase refrigerant, (4) Shows a state in which the fourth heat exchanging part 52 is evaporated and gasified by exchanging heat with a high-pressure refrigerant. Since (2) and (3) in FIG. 7 are the same enthalpy, an equation can be established that enthalpy of (2) and enthalpy of (3) are equal, with α32 and α125 being unknown. That is, the enthalpy of (2) is hl, the enthalpy of (3) is ht, the temperature of the first temperature detecting means 54 is T11, the temperature of the second temperature detecting means 55 is T12, and the temperature of the fifth pressure detecting means 56 is If the pressure is P13,
hl (α32, α125, T11) = ht (α32, α125, T12, P13)
Can stand.
[0064]
The second equation shows that as long as the filling composition initially put into the refrigeration system is R407C, gas-liquid equilibrium is established, and even after the liquid stays in the accumulator or the refrigerant leaks, it is between the components of the circulating composition. Have a certain relationship. That is, if A and B are constants,
α32 = A × α125 + B
The empirical formula of the vapor-liquid equilibrium composition can be established.
[0065]
By solving the two equations established as described above, α32, α125, and α134a can be obtained.
If the value of one of the three components of the circulation composition is known from the formula of α32 = A × α125 + B and the formula of α32 + α125 + α134a = 1, the values of the other compositions can be found from these formulas.
[0066]
Next, the operation of the second circulating composition detection device 58 will be described.
First, the refrigerant flowing into the gas-liquid separation device 12 in the case of the main cooling operation in the simultaneous cooling and heating operation is the same as the refrigerant composition ratio detected by the first circulation composition detection device 50. In this operation, since the refrigerant flowing in is in a gas-liquid two-phase state, the detected values of the third temperature detecting means 57 and the fourth pressure detecting means 18 are the temperature and pressure of the gas-liquid separator 12. When detected, the relationship of the vapor-liquid equilibrium as shown in FIG. 6 is obtained from the value.
[0067]
Further, since the refrigerant composition ratio detected by the first circulation composition detection device 50 is known as the refrigerant composition ratio of the refrigerant flowing into the gas-liquid separator 12, the value is, for example, R32: R125: R134a = 25%: 27%. : 48% (in the state of (1) in FIG. 6), the refrigerant composition ratio of the separated gas refrigerant is R32: R125: R134a = 30%: 32%: 38% (of (2) in FIG. 6). State), the refrigerant composition ratio of the separated liquid refrigerant R32: R125: R134a = 20%: 22%: 48% (state (3) in FIG. 6), and the refrigerant of the gas refrigerant flowing into the heating indoor unit. The composition ratio (state (2) in FIG. 6) can be detected.
From the detected value of the first circulating composition detection device 50, the ratio of the refrigerant composition flowing into the heating indoor unit in the case of the main cooling operation in the simultaneous cooling and heating operation is calculated.
[0068]
Next, a calculation method of the evaporation temperature or the condensation temperature when the evaporation temperature or the condensation temperature of the indoor unit 5 and the heat source unit side heat exchanger 3 is controlled to the target temperature will be described.
First, in the case of only the cooling operation, the evaporation temperature of the indoor unit-side heat exchanger 5 is the fifth pressure based on the detected pressure of the fifth pressure detecting means 56 and the refrigerant composition ratio detected by the first circulation composition detecting device 50. It is calculated as the saturation temperature (liquid saturation temperature) at the detection pressure of the detection means 56, and the condensation temperature of the heat source apparatus side heat exchanger 3 is the detection pressure of the fourth pressure detection means 18 and the first circulating composition detection device. Based on the refrigerant composition ratio detected at 50, the saturation temperature (average value of the liquid saturation temperature and the gas saturation temperature) at the detected pressure of the fifth pressure detecting means 56 is calculated.
And the capacity | capacitance of the compressor 1 with variable capacity | capacitance and the ventilation volume of the heat-source equipment side air blower 20 are adjusted so that it may become respectively predetermined target temperature.
However, the saturation temperature (liquid saturation) at the detected pressure of the fifth pressure detecting means 56 calculated from the detected pressure of the fifth pressure detecting means 56 and the refrigerant composition ratio detected by the first circulating composition detecting device 50. As the temperature, a value detected by the second temperature detecting means 55 may be used.
[0069]
In the case of only the heating operation, the evaporation temperature of the heat source apparatus side heat exchanger 3 is the fifth pressure detection means based on the detected pressure of the fifth pressure detection means 56 and the refrigerant composition ratio detected by the first circulation composition detection device 50. The saturation temperature (liquid saturation temperature) at the detected pressure of 56 is calculated, and the condensation temperature of the indoor unit side heat exchanger 5 is determined by the detected pressure of the fourth pressure detecting means 18 and the first circulation composition detecting device 50. It is calculated as a saturation temperature (an average value of the liquid saturation temperature and the gas saturation temperature) at the detected pressure of the fourth pressure detecting means 18 based on the detected refrigerant composition ratio.
And the capacity | capacitance of the compressor 1 with variable capacity | capacitance and the ventilation volume of the heat-source equipment side air blower 20 are adjusted so that it may become respectively predetermined target temperature.
However, the saturation temperature (liquid saturation) at the detected pressure of the fifth pressure detecting means 56 calculated from the detected pressure of the fifth pressure detecting means 56 and the refrigerant composition ratio detected by the first circulating composition detecting device 50. As the temperature, a value detected by the second temperature detecting means 55 may be used.
[0070]
In the case of heating mainly in simultaneous cooling and heating operation, the evaporating temperature of the indoor-unit-side heat exchanger 5 to be cooled depends on the detected pressure of the fifth pressure detecting means 56 and the refrigerant composition ratio detected by the first circulating composition detecting device 50. 5 is calculated as the saturation temperature (liquid saturation temperature) at the detection pressure of the pressure detection means 56, and the condensation temperature of the indoor-unit-side heat exchanger 5 to be heated is equal to the detected pressure of the fourth pressure detection means 18 and the first pressure. Is calculated as the saturation temperature (average value of the liquid saturation temperature and the gas saturation temperature) at the detected pressure of the fourth pressure detection means 18 by the refrigerant composition ratio detected by the circulating composition detection device 50.
[0071]
And the capacity | capacitance of the capacity variable compressor 1 and the ventilation volume of the heat source side air blower 20 are adjusted so that it may become respectively predetermined target temperature, and the 1st and 2nd heat source side heat exchangers 41 and 42 are adjusted. The first, second, third, and fourth electromagnetic valves 44, 45, 46, and 47 at both ends of the heater are opened and closed to adjust the heat transfer area, and the electromagnetic on-off valve 48 of the heat source side bypass passage 43 is opened and closed. Thus, the flow rate of the refrigerant flowing through the first and second heat source unit side heat exchangers 41 and 42 is adjusted.
However, the saturation temperature (liquid saturation) at the detected pressure of the fifth pressure detecting means 56 calculated from the detected pressure of the fifth pressure detecting means 56 and the refrigerant composition ratio detected by the first circulating composition detecting device 50. As the temperature, a value detected by the second temperature detecting means 55 may be used.
[0072]
In the case of cooling mainly in the simultaneous cooling and heating operation, the evaporating temperature of the indoor unit side heat exchanger 5 to be cooled is determined by the detected pressure of the fifth pressure detecting means 56 and the refrigerant composition ratio detected by the first circulating composition detecting device 50. 5 is calculated as a saturation temperature (liquid saturation temperature) at the detection pressure of the pressure detection means 56, and the condensation temperature of the indoor-unit-side heat exchanger 5 to be heated is equal to the detection pressure of the fourth pressure detection means 18 and the second pressure. Is calculated as the saturation temperature (average value of the liquid saturation temperature and the gas saturation temperature) at the detected pressure of the fourth pressure detection means 18 based on the refrigerant composition ratio detected by the circulating composition detection device 58.
[0073]
And the capacity | capacitance of the capacity variable compressor 1 and the ventilation volume of the heat source side air blower 20 are adjusted so that it may become respectively predetermined target temperature, and the 1st and 2nd heat source side heat exchangers 41 and 42 are adjusted. The first, second, third, and fourth electromagnetic on-off valves 44, 45, 46, and 47 at both ends are adjusted to adjust the heat transfer area, and the electromagnetic on-off valve 48 of the heat source unit side bypass passage 43 is opened and closed. Then, the flow rate of the refrigerant flowing through the first and second heat source unit side heat exchangers 41 and 42 is adjusted.
However, the saturation temperature (liquid saturation) at the detected pressure of the fifth pressure detecting means 56 calculated from the detected pressure of the fifth pressure detecting means 56 and the refrigerant composition ratio detected by the first circulating composition detecting device 50. As the temperature, a value detected by the second temperature detecting means 55 may be used.
[0074]
Next, the control of the heat source side fan 20, first, second, third, fourth, and fifth electromagnetic on-off valves 44, 45, 46, 47, and 48 in the simultaneous cooling and heating operation will be described.
FIG. 8 shows a control mechanism of the heat source side fan 20, first, second, third, fourth and fifth electromagnetic on-off valves 44, 45, 46, 47 and 48, and 29 is a fourth pressure detection. The detected pressure of the means 18 (in the case of the cold main) or the fifth pressure detecting means 56 (in the case of the warm main) and the fourth pressure detecting means 18 or the fifth pressure calculated from the first circulating composition detecting device 50 Depending on the value of the saturation temperature of the detecting means 56, the air flow rate of the heat source side blower 20 and the opening, closing, opening, closing, opening, closing, opening, closing, opening, closing, opening, closing of the first, second, third, fourth and fifth electromagnetic on-off valves It is a heat source machine side heat exchange capacity adjusting means to be controlled.
[0075]
FIG. 9 is a flowchart showing the control contents of the heat source unit side heat exchange amount adjusting means 29 in the case of mainly cooling in the cooling and heating simultaneous operation. FIG. 10 is a flowchart showing the control contents of the heat source unit side heat exchange capacity adjusting means 29 in the case of heating main in the cooling / heating main operation.
[0076]
First, a method of adjusting the heat source unit side heat exchange capacity by the heat source unit side heat exchange capacity adjusting unit 29 will be described.
In this embodiment, the heat source unit side heat exchange capacity is adjusted in the following four stages. The first stage corresponds to the case where the largest heat source side heat exchange capacity is required, and the first, second, third and fourth electromagnetic on-off valves 44 to 47 are opened, and the fifth electromagnetic on-off By closing the valve 48, the refrigerant is allowed to flow through both the first and second heat source machine side heat exchangers 41 and 42 and the refrigerant is not allowed to flow through the heat source machine side heat exchanger bypass path 43. The amount of air blown from the heat source side blower 20 is adjusted between the stop and full speed by an inverter or the like (not shown).
[0077]
In this case, if there is an outside wind such as a building wind, even if the fan on the heat source unit side is stopped, a considerable amount of heat is exchanged, and the cooling capacity in the case of heating mainly in the simultaneous cooling and heating operation, the cooling main operation in the simultaneous cooling and heating operation In the case of heating capacity is insufficient.
In addition, since a heat exchange capacity equal to or less than the heat exchange amount by natural convection cannot be obtained even when there is no outside wind, if the temperature difference between the outside air temperature and the refrigerant condensation or evaporation temperature in the heat source unit heat exchange unit 3 is large Heating capacity in the case of mainly cooling is insufficient in simultaneous cooling and heating operation.
[0078]
The second stage corresponds to the case where the next largest heat source unit side heat exchange capacity is required, and the first and second electromagnetic on-off valves 44 and 45 are opened to provide third and fourth electromagnetic on-off valves. 46, 47 and the fifth electromagnetic on-off valve 48 are closed to allow the refrigerant to flow only to the first heat exchanger 41, and to the second heat exchanger side heat exchanger 42 and the heat source machine side. The refrigerant is not circulated through the heat exchanger bypass passage 43, the heat transfer area of the heat source unit side heat exchange unit 3 is halved, and the air flow rate of the heat source unit side blower 20 is stopped to full speed by an inverter or the like (not shown). Adjust between.
[0079]
In this case, the amount of heat exchange due to outside wind such as building wind is also halved, and the amount of heat exchange due to natural convection when there is no outside wind is also halved. The lack of heating capacity in the case of cooling-dominated operation is not so great.
[0080]
The third stage corresponds to the case where a heat source side heat exchange capacity smaller than the second stage is required, and the first and second electromagnetic on-off valves 44 and 45 and the fifth electromagnetic on-off valve 48 are opened, By closing the third and fourth electromagnetic on-off valves 46 and 47, the refrigerant is circulated through the first heat source unit side heat exchanger 41 and the heat source unit side heat exchanger bypass passage 43, and the second The refrigerant is not circulated through the heat source unit side heat exchanger 42, the heat transfer area of the heat source unit side heat exchange unit 3 is halved, and the refrigerant flow rate to the first heat source unit side heat exchanger 41 is reduced. The air flow rate of the machine-side blower 20 is adjusted between the stop and the full speed by an inverter or the like (not shown).
[0081]
In this case, the amount of heat exchange by outside wind such as building wind is further reduced from the second stage, and the amount of heat exchange by natural convection when there is no outside wind is also reduced. The shortage of the cooling capacity and the heating capacity in the case of mainly cooling in the simultaneous cooling and heating operation are quite small.
[0082]
The fourth stage corresponds to the case where the smallest heat source side heat exchange amount is required, and the fifth on-off valve 48 is opened, and the first, second, third and fourth electromagnetic on-off valves 44, By closing valves 45, 46, and 47, the amount of heat exchange in the heat source unit side heat exchange section 3 is eliminated.
[0083]
In this case, there is no heat exchange amount due to outside winds such as building winds, and there is no shortage of cooling capacity in the case of heating main operation in the simultaneous cooling and heating operation and heating capacity in the case of cooling main in the simultaneous cooling and heating operation.
In addition, even when there is outside wind, the heat source side heat exchange amount AK2max when the second stage heat source side fan 20 is at full speed is the first stage outside wind and the heat source side fan 20 is stopped. If the outside wind is larger than the heat source capacity AK1min at that time, that is, if the outside wind is below the wind speed where AK2max> AK1min, the first stage and the second stage can be controlled continuously.
Similarly, even if there is an outside wind, the heat source side heat exchange capacity AK3max when the third stage heat source side fan 20 is at full speed is the second stage outside wind and the heat source side fan 20 is stopped. The second stage and the third stage can be controlled continuously if the outside wind is larger than the current heat source side heat exchanger capacity AK2min, that is, if the outside wind is below the wind speed where AK3max> AK2min.
[0084]
In this way, by adjusting the heat source side heat exchange capacity in four stages, a continuous heat source side heat exchange capacity can be obtained even if there is a certain amount of outside wind, and the high pressure does not rise excessively. Therefore, sufficient cooling capacity can be obtained in the case of mainly heating in the simultaneous cooling and heating operation and in the case of cooling only in the simultaneous cooling and heating operation.
[0085]
Next, the contents of control of the heat source unit side heat exchange capacity adjusting means 29 in the case of mainly cooling will be described with reference to the flowchart of FIG.
In step 60, a saturation temperature T of the detected pressure of the pressure detecting means 18 calculated from the detected pressure of the pressure detecting means 18 and the refrigerant composition ratio detected by the second circulating composition detecting device 58 is obtained and this T is predetermined. The first target temperature T1 is compared, and if T> T1, the process proceeds to step 61.
[0086]
In step 61, it is determined whether or not the heat source device side blower 20 is at full speed. If it is not full speed, the flow proceeds to step 62 to increase the amount of blown air and returns to step 60.
If it is full speed, it is determined in step 63 whether the electromagnetic on-off valves 44, 45 are opened or closed. If it is closed, the electromagnetic on-off valves 44, 45 are opened in step 64 to open the first heat source unit side heat exchanger 41. Is opened and the process returns to step 60. If the valve is opened, the process proceeds to step 65.
[0087]
In step 65, it is determined whether the electromagnetic on-off valve 48 is open or closed. If it is open, the electromagnetic on-off valve 48 is closed in step 66 to close the heat exchanger bypass heat exchanger bypass, and the flow returns to step 60 to close it. If yes, go to step 67.
In step 67, it is determined whether the electromagnetic on / off valves 46, 47 are open or closed. If the valves are closed, the electromagnetic on / off valves 46, 47 are opened in step 68 to open the second heat source unit side heat exchanger 42. Returning to step 60, the process returns to step 60 even if the valve is open.
[0088]
On the other hand, if it is determined in step 60 that T ≦ T1, the process proceeds to step 70. In step 70, the saturation temperature T of the detected pressure of the pressure detecting means 18 calculated from the detected pressure of the pressure detecting means 18 and the refrigerant composition ratio detected by the first circulating composition detecting device 50 is obtained, and this T and the above-mentioned first temperature are detected. The second target temperature T2 determined to be lower than the target temperature is compared. If T <T2, the process proceeds to step 71, and if T ≧ T2, the process returns to step 60.
[0089]
In step 71, it is determined whether or not the heat source device side blower 20 is stopped. If not, the process proceeds to step 72 to reduce the amount of blown air and returns to step 60.
If it is stopped, it is determined in step 73 whether the electromagnetic on-off valves 46, 47 are open or closed, and if it is open, the electromagnetic on-off valves 46, 47 are closed in step 74 and the second heat source side heat exchanger is opened. 42 is closed and the process returns to step 60. If the valve is closed, the process proceeds to step 75.
[0090]
In step 75, it is determined whether the electromagnetic on-off valve 48 is open or closed. If it is closed, the electromagnetic on-off valve is opened in step 76, the heat source side heat exchanger bypass passage 43 is opened, and the flow returns to step 60. If so, go to Step 77. In step 77, it is determined whether the electromagnetic on-off valves 44, 45 are open or closed. If they are open, the electromagnetic on-off valves 44, 45 are closed in step 78 to close the first heat source unit side heat exchanger 41. Returning to step 60, the process returns to step 60 even if the valve is closed.
Thus, the saturation temperature T of the detected pressure of the pressure detecting means 18 calculated from the detected pressure of the pressure detecting means 18 and the refrigerant composition ratio detected by the second circulating composition detecting device 58 is a value between T1 and T2. It can be.
[0091]
Next, the contents of control of the heat source unit side heat exchange capacity adjusting means 29 in the case of heating mainly in the simultaneous cooling and heating operation will be described with reference to the flowchart of FIG.
In step 80, a saturation temperature T of the detected pressure of the pressure detecting means 18 calculated from the detected pressure of the pressure detecting means 18 and the refrigerant composition ratio detected by the first circulating composition detecting device 50 is obtained and this T is predetermined. The third target temperature T3 is compared, and if T <T3, the process proceeds to step 81.
On the other hand, if it is determined in step 80 that T ≧ T3, the process proceeds to step 90. In step 90, a saturation temperature T of the detected pressure of the pressure detecting means 18 calculated from the detected pressure of the pressure detecting means 18 and the refrigerant composition ratio detected by the first circulating composition detecting device 50 is obtained, and this T and the above-mentioned third temperature are obtained. A comparison is made with a fourth target temperature T4 that is larger than the target temperature and predetermined, and if T> T4, the process returns to step 80.
Steps 81 to 88 and steps 91 to 98 after proceeding to step 81 or 91 are exactly the same as steps 61 to 68 and steps 71 to 78 in FIG.
In this way, the saturation temperature T of the detected pressure of the pressure detecting means 18 calculated from the detected pressure of the pressure detecting means 18 and the refrigerant composition ratio detected by the circulating composition detecting device 50 is set to a value between T3 and T4. Can do.
[0092]
Next, a subcool and superheat calculation method for the indoor heat exchanger will be described.
In the case of only the cooling operation, the heating operation only, and the heating main operation of the simultaneous cooling and heating operation, the superheat amount at the outlet of the indoor unit side heat exchanger 5 to be cooled is the fourth superheat amount at the outlet of the indoor unit side heat exchanger 5. The detected pressure of the fifth pressure detecting means 56 calculated from the detected value of the temperature detecting means 27 by the detected pressure of the fifth pressure detecting means 56 and the refrigerant composition ratio detected by the first circulating composition detecting device 50. This is a value obtained by subtracting the saturation temperature (liquid saturation temperature).
However, the saturation temperature (liquid saturation) at the detected pressure of the fifth pressure detecting means 56 calculated from the detected pressure of the fifth pressure detecting means 56 and the refrigerant composition ratio detected by the first circulating composition detecting device 50. As the temperature, a value detected by the second temperature detecting means 55 may be used.
[0093]
The subcooling amount at the outlet of the indoor unit side heat exchanger 5 to be heated is the fourth pressure detecting means calculated by the detected pressure of the fourth pressure detecting means 18 and the refrigerant composition ratio detected by the first circulating composition detecting device 50. It is a value obtained by subtracting the detection value of the fifth temperature detection means 28 at the outlet of the indoor unit side heat exchanger 5 from the saturation temperature (average value of liquid saturation temperature and gas saturation temperature) at 18 detected pressures.
In the case of cooling mainly in the simultaneous cooling and heating operation, the superheat amount at the outlet of the indoor unit side heat exchanger 5 to be cooled is the fifth pressure detecting unit based on the detection value of the fourth temperature detecting unit 27 at the outlet of the indoor unit side heat exchanger 5. This is a value obtained by subtracting the saturation temperature (liquid saturation temperature) at the detected pressure of the fifth pressure detecting means 56 calculated by the detected pressure of 56 and the refrigerant composition ratio detected by the first circulating composition detection device 50. However, the saturation temperature (liquid saturation) at the detected pressure of the fifth pressure detecting means 56 calculated by the detected pressure of the fifth pressure detecting means 56 and the refrigerant composition ratio detected by the first circulating composition detecting device 50. As the temperature, a value detected by the second temperature detecting means 55 may be used. The subcooling amount at the outlet of the indoor unit side heat exchanger 5 to be heated is the fourth pressure detecting means calculated by the detected pressure of the fourth pressure detecting means 18 and the refrigerant composition ratio detected by the second circulating composition detecting device 58. It is a value obtained by subtracting the detection value of the fifth temperature detection means 28 at the outlet of the indoor unit side heat exchanger 5 from the saturation temperature (average value of liquid saturation temperature and gas saturation temperature) at 18 detected pressures.
[0094]
Next, the control for securing the entrance subcooling of the indoor unit to be cooled will be described in the case of only the cooling operation, or in the case of the cooling main operation of the simultaneous cooling and heating operation. A flowchart of this control is shown in FIG.
In the case of only the cooling operation, in any operation in the cooling main operation of the simultaneous cooling and heating operation, the operation mode of each indoor unit (cooling operation, heating operation) has passed after 5 minutes have elapsed since the start of the compressor where the operation is stabilized in step 111. , Stop) in the state where more than 5 minutes have elapsed and after the previous execution of this control, for example, more than 5 minutes have been determined. If the condition is met, the process proceeds to step 112. If the condition is not met, the process proceeds to step 111. Repeat the determination.
[0095]
In step 112, a subcool at the detection position of the sixth temperature detection device 59 is detected and determined. The subcool of the detection position of the sixth temperature detection device 59 is calculated from the liquid saturation temperature calculated from the detection value of the second pressure detection means 26 and the refrigerant composition ratio detected by the first circulation composition detection device 50. 6 is a value obtained by subtracting the detection value of the temperature detection device 59.
Hereinafter, the subcool of the detection position of the sixth temperature detection device 59 is referred to as SC1. Then, this SC1 is determined (step 112). If SC1 is 5 deg or less, for example, it is determined that the refrigerant is insufficient in the relay (E), and the process proceeds to step 113; Return to 111.
In step 113, the sixth electromagnetic on-off valve 102 is opened for one minute to increase the amount of refrigerant circulating in the refrigerant circuit by causing the liquid refrigerant staying in the accumulator 4 to flow out. By opening the first flow control device 9 of the indoor unit that is stopped simultaneously with opening 102 for example for 1 minute, the refrigerant that has accumulated in the stopped indoor unit is caused to flow out of the stopped indoor unit. The amount of refrigerant circulating in the relay is increased, the amount of refrigerant in the relay (E) is increased, and this is repeated every 5 minutes until SC1 reaches 5 degrees or more.
Thereby, the subcool of the refrigerant flowing out from the repeater (E) to the indoor unit to be cooled increases, the entrance subcool of the indoor unit to be cooled is secured, and the refrigerant noise of the indoor unit can be prevented and the capability can be secured.
[0096]
In another application example, the first port 8a of the three-way switching valve 8 connected to the stopped indoor unit is closed and the second port 8b and the third port 8c are opened for one minute. The same effect can be obtained even if the refrigerant staying in the stop indoor unit is caused to flow out of the stop indoor unit.
[0097]
Next, in the case of only the cooling operation, in the case of the cooling main operation of the simultaneous cooling and heating operation, in the case of only the heating operation, or in the case of the heating main operation of the simultaneous cooling and heating operation, the refrigerant staying in the stopped indoor unit is periodically The control to collect in the refrigerant circuit in which the refrigerant is circulating will be described.
In this control, if the refrigerant stays in the stopped indoor unit, the refrigerant in the refrigerant circuit in which the refrigerant circulates becomes insufficient, causing problems such as the indoor unit refrigerant noise and insufficient capacity, as well as the refrigerant remaining in the indoor unit. Since the refrigerant composition ratio in the refrigerant circuit in which the refrigerant circulates varies depending on the amount and the refrigerant composition ratio, the operation is not stable, and the capacity is largely insufficient.
The control content is, for example, 30 minutes after the compressor is started, and the first flow control device 9 of the stopped indoor unit is fully opened for 1 minute, for example, so that the refrigerant accumulated in the stopped indoor unit is removed from the stopped indoor unit. The first flow control device 9 of the indoor unit that is allowed to flow out and is stopped at intervals of 30 minutes thereafter is controlled to be fully opened for 1 minute.
[0098]
In another application example, the first port 8a of the three-way switching valve 8 connected to the stopped indoor unit is closed and the second port 8b and the third port 8c are opened for one minute. The same effect can be obtained even if the refrigerant staying in the stop indoor unit is caused to flow out of the stop indoor unit.
[0099]
Next, in the case of only the cooling operation, in the case of the cooling main operation of the cooling and heating simultaneous operation, in the case of only the heating operation, in the case of the heating main operation of the simultaneous cooling and heating operation, or in the case of the defrosting operation, all the indoor units are stopped from each operation. The control of the three-way switching valve 8 in this case will be described.
In this case, for example, for 1 minute after the operation is switched, the first ports 8a of all the three-way switching valves 8 are closed and the second ports 8b and the third ports 8c are opened.
With this control, it is possible to prevent an excessive amount of refrigerant from staying in the indoor unit, and the refrigerant in the refrigerant circuit in which the refrigerant circulates during the next operation is insufficient, resulting in insufficient indoor unit refrigerant noise and capacity, etc. The refrigerant composition ratio in the refrigerant circuit in which the refrigerant circulates changes depending on the problem of the refrigerant, the amount of refrigerant stagnating in the indoor unit, and the refrigerant composition ratio, so the operation is not stable or the capacity is greatly insufficient Can be prevented.
[0100]
Next, the control for reducing this value when the detection value of the first pressure detection means 25 of the repeater (E) is high will be described. A control flowchart is shown in FIG.
This control is a control for reducing the high pressure of the refrigerant circuit in this case because the high pressure of the refrigerant circuit is increased due to R407C having a pressure higher than that of the HCFC 22 (R22).
As for the control content, it is determined that the detected value of the first pressure detecting means 25 is, for example, 27 kg / cm 2 or more and 1 minute or more has elapsed since the previous execution of this control (step 121). If the condition is not satisfied, the determination in step 121 is repeated.
[0101]
In step 122, it is determined whether the difference between the detection value of the first pressure detection means 25 and the detection value of the second pressure detection means 26 is, for example, 3 kg / cm 2 or more. Proceed to step 123, and if the condition is not met, proceed to step 124.
In step 123, the opening degree of the second flow control device 13 is increased by 30% of the current opening degree.
In step 124, the opening degree of the third flow rate control device 15 and the fourth flow rate control device 17 is increased by 10% of the current opening degree. This is repeated every minute to reduce the high pressure.
[0102]
Next, the operation | movement at the time of the heat-source-side heat exchanger defrost operation in the heating only operation and the heating main operation in the cooling / heating simultaneous operation will be described.
The basic operation during the heat source side heat exchanger defrosting operation is calculated from the fifth pressure detection means 56 and the first circulation composition detection device 50 in the heating only operation and the heating main operation in the simultaneous cooling and heating operation. When the saturation temperature (average value of gas saturation temperature and liquid saturation temperature) becomes, for example, −3 ° C. or lower, the heat source side heat exchanger 41 is used to remove frost from the heat source side heat exchangers 41 and 42. A defrosting operation is performed in which 41 and 42 are operated as condensers.
[0103]
In this defrosting operation, the heat source side blower is stopped and the third port 8a of the three-way switching valve 8 connected to the indoor unit being heated is closed, or the first port 8a and the second port 8b are closed. It is basically the same as the cooling only operation except that there is no refrigerant flow in the indoor unit to be heated.
However, the first port 8a, the second port 8b, and the third port 8c of the three-way switching valve 8 connected to at least one of the indoor units to be heated are kept open.
[0104]
The refrigerant condensed in the heat source apparatus side heat exchangers 41 and 42 by the control of the three-way switching valve 8 flows into the gas-liquid separation device, and the high-pressure gas refrigerant having a large amount of R32 is present in the first phase in which a large amount of two-phase refrigerant is present. The refrigerant in the connection pipe 6 is evaporated to prevent a low pressure drop.
Here, the reason why there are many two-phase refrigerants in the first connection pipe 6 is that the two-phase refrigerant flows through the first connection pipe 6 in the heating-only operation of heating only operation or simultaneous cooling and heating operation. .
[0105]
As described above, according to the first embodiment of the present invention, a heat source unit including a compressor, a switching valve, a heat source unit side heat exchanger, an accumulator, a plurality of indoor units including an indoor side heat exchanger, and a flow rate control device. A refrigeration cycle using a non-azeotropic refrigerant mixture, and effectively acting as a heat transfer medium by part of the refrigerant as a heat transfer medium in the refrigeration cycle. The composition state of the refrigerant in the refrigerant circuit section is changed in accordance with the subcooling status of the refrigerant circuit section in the case of the operation in which the heat exchanger on the heat source unit acts as a condenser. The refrigerant staying in response to a predetermined condition such as “when at least one of the indoor units is in operation, or when all of the indoor units are stopped”. The refrigerant circuit unit is controlled so as to effectively act as a medium, and the refrigerant noise or the lack of capacity or the failure of the air conditioner due to the failure of the inlet subcool of the flow control device of the indoor unit can be detected. This can be prevented without a large change in the state of the circuit.
[0106]
Embodiment 2. FIG.
FIG. 5 is a refrigerant circuit diagram showing Embodiment 2 of the present invention.
In the figure, reference numerals 30 and 31 denote on-off valves composed of electromagnetic valves. The configuration and control operations other than this part are the same as those of the first embodiment shown in FIGS.
As with the three-way switching valve 8 in the first embodiment, the electromagnetic valves 30 and 31 are the first connection pipes 6b, 6c and 6d on the indoor side, the first connection pipe 6 or the second connection pipe 7 and The function which connects so that it can switch is demonstrated.
[0107]
According to the second embodiment of the present invention, the indoor first connection pipes 6b, 6c, 6d and the first connection pipe 6 or the second connection pipe 7 in the first embodiment can be switched. As shown in FIG. 5, instead of the three-way switching valve 8 to be connected, two solenoid valves 30, 31 and the like are provided so as to be switchably connected as described above. There is an effect.
[0108]
In the said Embodiment 1 and Embodiment 2, although the heat source machine side heat exchange part 3 is comprised with the heat source machine side heat exchanger with two equal heat transfer areas, the heat transfer area of a heat source machine side heat exchanger May not be equal or may be constituted by three or more heat source side heat exchangers.
In the first embodiment and the second embodiment, two or more heat source device side heat exchangers may be opened when the heat source device side heat exchanger bypass 43 is opened.
In Embodiment 1 and Embodiment 2 above, R407C, which is a non-azeotropic refrigerant mixture in which R32 / R125 / R134a of HFC is mixed at a ratio of 23/25/52 wt%, is used. As described above, a refrigerant obtained by mixing at least two of the three types of HFCs R32, R125, and R134a has the same effect.
[0109]
【The invention's effect】
According to the air conditioner pertaining to the first aspect of the present invention, A heat source unit including a compressor, a switching valve, a heat source unit side heat exchanger, and an accumulator; and a plurality of indoor units including an indoor side heat exchanger and a first flow control device, wherein the indoor unit is both for cooling and heating In the air conditioner capable of operating simultaneously, the non-azeotropic refrigerant mixture is used as the refrigerant, the heat source unit and the indoor unit are connected via the first and second connection pipes, A first branch part having a valve device that connects one of the indoor side heat exchangers to the first connection pipe or the second connection pipe in a switchable manner; and the other of the indoor side heat exchangers of the indoor unit A second branch part connected via the first flow control device and connected to the second connection pipe, and connecting the second branch part and the first connection pipe; Means for detecting a subcool in the second branching section, and heat source side heat In the operation in which the converter acts as a condenser, when the detected value of the subcool of the second branch portion is equal to or less than a predetermined value, the refrigerant that has accumulated in the heat source unit is recovered in the refrigerant circuit unit through which the refrigerant circulates. Therefore, the refrigerant sound and capacity are insufficient for preventing the entrance subcooling of the flow control device of the indoor unit, the refrigerant sound and capacity are insufficient for changing the refrigerant composition ratio of the refrigerant circulating in the refrigerant circuit, air Prevents harmony equipment failure without major changes in refrigerant circuit conditions be able to.
[0114]
No. 1 of this invention 2 The air conditioner according to the invention comprises a heat source unit composed of a compressor, a switching valve, a heat source unit side heat exchanger, an indoor side heat exchanger, and a plurality of indoor units composed of a first flow rate control device, In the air conditioner in which the indoor unit can operate both cooling and heating at the same time, a non-azeotropic refrigerant mixture is used as the refrigerant, and the heat source unit and the indoor unit are connected to the first and second connection pipes. A first branch section having a valve device that connects one of the indoor heat exchangers of the indoor unit to the first connection pipe or the second connection pipe in a switchable manner, and the indoor unit A second branch part connected to the other of the indoor heat exchangers via the first flow rate control device and connected to the second connection pipe, and the second branch part and the second Means for detecting the subcooling of the second branch part by connecting to the connecting pipe of 1 In the operation in which the heat source unit side heat exchanger acts as a condenser, when the detected value of the subcool of the second branch portion is equal to or less than a certain value, Because it is the control that collects the accumulated refrigerant in the refrigerant circuit section where the refrigerant circulates, the refrigerant composition and the refrigerant composition of the refrigerant that circulates through the refrigerant circuit because the inlet subcool of the flow control device of the indoor unit cannot be taken. It is possible to prevent refrigerant noise, insufficient capacity, and failure of the air conditioner for the ratio to change without causing a large change in the state of the refrigerant circuit.
[0117]
No. 1 of this invention 3 The air conditioner according to the invention comprises a heat source unit composed of a compressor, a switching valve, a heat source unit side heat exchanger, an indoor side heat exchanger, and a plurality of indoor units composed of a first flow rate control device, In the air conditioner in which the indoor unit can operate both cooling and heating at the same time, a non-azeotropic refrigerant mixture is used as the refrigerant, and the heat source unit and the indoor unit are connected to the first and second connection pipes. A first branch section having a valve device that connects one of the indoor heat exchangers of the indoor unit to the first connection pipe or the second connection pipe in a switchable manner, and the indoor unit A second branch part connected to the other of the indoor heat exchangers via the first flow rate control device and connected to the second connection pipe, and the second branch part and the second A state where at least one of the above indoor units is in operation When you are ready for Rasubete stop, for a fixed time to open controlling the valve device, is extremely large refrigerant to the indoor unit distribution When the indoor unit is operated again, the refrigerant noise and lack of capacity to prevent the inlet subcooling of the indoor unit flow control device, and the refrigerant composition ratio of the refrigerant circulating in the refrigerant circuit change. Therefore, it is possible to prevent the refrigerant sound and capacity shortage and the failure of the air conditioner without causing a large change in the state of the refrigerant circuit.
[0118]
No. 1 of this invention 4 The air conditioner according to the invention comprises a heat source unit composed of a compressor, a switching valve, a heat source unit side heat exchanger, an indoor side heat exchanger, and a plurality of indoor units composed of a first flow rate control device, In the air conditioner in which the indoor unit can operate both cooling and heating at the same time, a non-azeotropic refrigerant mixture is used as the refrigerant, and the heat source unit and the indoor unit are connected to the first and second connection pipes. A first branch section having a valve device that connects one of the indoor heat exchangers of the indoor unit to the first connection pipe or the second connection pipe in a switchable manner, and the indoor unit A second branch part connected to the other of the indoor heat exchangers via the first flow rate control device and connected to the second connection pipe, and the second branch part and the second 1 connection pipe, and a gas-liquid separator is installed in the middle of the second connection pipe. The vapor phase part is connected to the first branch part, the liquid phase part is connected to the second branch part, and the heat source machine side heat exchanger is temporarily defrosted during operation in which the heat source machine side heat exchanger acts as an evaporator. When the operation is switched to the operation in which the heat source machine side heat exchanger acts as a condenser, the control of feeding the refrigerant in the gas phase part of the gas-liquid separation device to the first branch part by the operation of the valve device, When operating the machine side heat exchanger as an evaporator, when temporarily switching to the operation where the heat source machine side heat exchanger acts as a condenser in order to remove frost attached to the heat source machine side heat exchanger Since the distribution of the refrigerant is not stable, it is possible to mitigate the rapid decrease in the low pressure in which the low pressure in the refrigerant circuit rapidly decreases.
[0119]
No. 1 of this invention 5 According to the air conditioner of the present invention, a heat source unit composed of a compressor, a switching valve, a heat source unit side heat exchanger, an accumulator, a plurality of indoor units composed of an indoor side heat exchanger, and a first flow control unit are provided. Provided that the indoor unit is capable of operating both cooling and heating at the same time, using an HFC mixed refrigerant having a pressure higher than that of the HCFC 22 as a refrigerant, the heat source unit and the indoor unit being first and first. A first branch section having a valve device that is connected via two connection pipes and that connects one of the indoor heat exchangers of the indoor unit to the first connection pipe or the second connection pipe in a switchable manner; A second branch portion connected to the other indoor side heat exchanger of the indoor unit via the first flow rate control device and connected to the second connection pipe, and the second Connect the branch part and the first connection pipe, A second flow rate control device at the branch portion, and a first pressure detection means and a second pressure detection means before and after the second flow rate control device, and the first pressure detection means and the second pressure detection means. When one of the pressure detection means exceeds a certain pressure value, the second flow rate control device is controlled to open, so that the pressure in the refrigerant circuit rises too much and the air conditioner fails. It is possible to detect and prevent the occurrence in advance.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram according to Embodiment 1 of the present invention.
FIG. 2 is a refrigerant flow diagram for only cooling operation and only heating operation in Embodiment 1 of the present invention.
[Fig. 3] Fig. 3 is a flow chart of refrigerant in a heating main operation of the simultaneous cooling and heating operation in Embodiment 1 of the present invention.
[Fig. 4] Fig. 4 is a refrigerant flow diagram of a cooling main operation in the cooling and heating simultaneous operation in Embodiment 1 of the present invention.
FIG. 5 is a refrigerant circuit diagram according to Embodiment 2 of the present invention.
FIG. 6 is a gas-liquid equilibrium state diagram in the gas-liquid separator according to Embodiment 1 of the present invention.
FIG. 7 is a Mollier diagram of the first circulating composition detection device according to the first embodiment of the present invention.
FIG. 8 is a configuration diagram of a heat source machine side heat exchange capacity adjusting means system according to Embodiment 1 of the present invention;
FIG. 9 is a view showing a flowchart of a heat source machine side heat exchange capacity adjusting means system in Embodiment 1 of the present invention;
FIG. 10 is a view showing a flowchart of a heat source machine side heat exchange capacity adjusting means system in Embodiment 1 of the present invention;
FIG. 11 shows a flowchart of second branching section subcool securing control in Embodiment 1 of the present invention.
FIG. 12 is a view showing a flowchart of high-pressure rise prevention control in Embodiment 1 of the present invention.
FIG. 13 is a refrigerant circuit diagram in a conventional example.
[Explanation of symbols]
A heat source unit, B, C, D indoor unit, E relay, 1 compressor, 2 four-way switching valve, 3 heat source unit side heat exchanger, 4 accumulator, 5 indoor side heat exchanger, 6 first connection piping, 7 second connection piping, 6a, 6b, 6c first connection piping on the indoor unit side, 7a, 7b, 7c second connection piping on the indoor unit side, 9 first flow control device, 10 first branch 11, the second branching section, 12 the gas-liquid separator, 13 the second flow control device, 14 the first bypass pipe, 15 the third flow control device, 16 a the second heat exchange section, 16 b, 16 c, 16d 3rd heat exchange part, 17th 4th flow control device, 18th 4th pressure detection means, 19th 1st heat exchange part, 20 heat source side fan, 25 1st pressure detection means, 26 2nd Pressure detection means, 27th fourth temperature detection means, 28th fifth temperature detection means, 29 heat source side heat exchange Capacity adjusting means, 30, 31 electromagnetic on-off valve, 32 third check valve, 33 fourth check valve, 34 fifth check valve, 35 sixth check valve, 40 heat source machine side switching valve, 41, 42 1st, 2nd heat source machine side heat exchanger, 43 Heat source machine side heat exchanger bypass, 44-48 1st-5th electromagnetic on-off valve, 50 1st circulation composition detection apparatus, 51 1st 2 bypass piping, 52 4th heat exchange part, 53 1st pressure reduction device, 54 1st temperature detection means, 55 2nd temperature detection means, 56 5th pressure detection means, 57 3rd temperature detection Means, 58 second circulating composition detecting device, 59 sixth temperature detecting means, 101 third bypass piping, 102 sixth electromagnetic on-off valve, 60 to 68, 70 to 78, 80 to 88, 90 to 98, 111-113, 121-124 Steps in the control flowchart.

Claims (5)

圧縮機,切換弁,熱源機側熱交換器,アキュムレータよりなる熱源機と、室内側熱交換器,流量制御装置よりなる複数の室内機を備え、上記室内機が冷房と暖房の両方を同時に運転することが可能な空気調和装置において、冷媒として非共沸混合冷媒を用い、上記熱源機と上記室内機とを第1,第2の接続配管を介して接続し、上記室内機の室内側熱交換器の一方を上記第1の接続配管または第2の接続配管に切換可能に接続する弁装置を有する第1の分岐部と、上記室内機の室内側熱交換器の他方に上記流量制御装置を介して接続され、かつ上記第2の接続配管に接続する第2の分岐部とを備え、かつ上記第2の分岐部と上記第1の接続配管とを接続し、上記第2の分岐部のサブクールを検知する手段を有し、上記熱源機側熱交換器が凝縮器として作用する運転の場合に、この第2の分岐部のサブクールの検知値が一定値以下の場合に上記熱源機に滞留した冷媒を冷媒の循環する冷媒回路部に回収する制御を行うことを特徴とする空気調和装置。  It has a heat source unit consisting of a compressor, switching valve, heat source side heat exchanger, accumulator, and a plurality of indoor units consisting of an indoor side heat exchanger and a flow control device, and the indoor unit operates both cooling and heating simultaneously. A non-azeotropic refrigerant mixture as a refrigerant, the heat source unit and the indoor unit are connected via first and second connection pipes, and the indoor side heat of the indoor unit is A first branch part having a valve device that connects one of the exchangers to the first connection pipe or the second connection pipe in a switchable manner; and the flow control device on the other side of the indoor heat exchanger of the indoor unit. And a second branch part connected to the second connection pipe, the second branch part and the first connection pipe are connected, and the second branch part is connected. Means for detecting the subcool of the heat source machine side heat exchanger is condensed In the case of the operation that acts as the above, when the detected value of the subcool of the second branch portion is equal to or less than a predetermined value, control is performed to recover the refrigerant that has accumulated in the heat source unit to the refrigerant circuit unit in which the refrigerant circulates. Air conditioner. 圧縮機,切換弁,熱源機側熱交換器よりなる熱源機と、室内側熱交換器、流量制御装置よりなる複数の室内機を備え、上記室内機が冷房と暖房の両方を同時に運転することが可能な空気調和装置において、冷媒として非共沸混合冷媒を用い、上記熱源機と上記室内機とを第1,第2の接続配管を介して接続し、上記室内機の室内側熱交換器の一方を上記第1の接続配管または第2の接続配管に切換可能に接続する弁装置を有する第1の分岐部と、上記室内機の室内側熱交換器の他方に上記流量制御装置を介して接続され、かつ上記第2の接続配管に接続する第2の分岐部とを備え、かつ上記第2の分岐部と上記第1の接続配管とを接続し、上記第2の分岐部のサブクールを検知する手段を有し、上記熱源機側熱交換器が凝縮器として作用する運転の場合に、この第2の分岐部のサブクールの検知値が一定値以下の場合に上記室内機のうち停止している室内機に滞留した冷媒を冷媒の循環する冷媒回路部に回収する制御を行うことを特徴とする空気調和装置。  A heat source unit composed of a compressor, a switching valve, a heat source unit side heat exchanger, and a plurality of indoor units composed of an indoor side heat exchanger and a flow rate control device, wherein the indoor unit operates both cooling and heating simultaneously. In the air conditioner capable of performing the above, the non-azeotropic refrigerant mixture is used as the refrigerant, the heat source unit and the indoor unit are connected via the first and second connection pipes, and the indoor side heat exchanger of the indoor unit One of the two is connected to the first connection pipe or the second connection pipe in a switchable manner, and the other flow control device is connected to the other of the indoor side heat exchangers of the indoor unit. And a second branch part connected to the second connection pipe, the second branch part and the first connection pipe are connected, and a subcooling of the second branch part is provided. The heat source machine side heat exchanger acts as a condenser In the case of rotation, when the subcool detection value of the second branching portion is equal to or less than a predetermined value, control is performed to recover the refrigerant that has accumulated in the stopped indoor unit among the indoor units to the refrigerant circuit unit in which the refrigerant circulates An air conditioner characterized by 圧縮機,切換弁,熱源機側熱交換器よりなる熱源機と、室内側熱交換器、流量制御装置よりなる複数の室内機を備え、上記室内機が冷房と暖房の両方を同時に運転することが可能な空気調和装置において、冷媒として非共沸混合冷媒を用い、上記熱源機と上記室内機とを第1,第2の接続配管を介して接続し、上記室内機の室内側熱交換器の一方を上記第1の接続配管または第2の接続配管に切換可能に接続する弁装置を有する第1の分岐部と、上記室内機の室内側熱交換器の他方に上記流量制御装置を介して接続され、かつ上記第2の接続配管に接続する第2の分岐部とを備え、かつ上記第2の分岐部と上記第1の接続配管とを接続し、上記室内機の少なくとも1つが運転している状態からすべて停止の状態になった場合に、上記弁装置を一定時間開く制御を行うことを特徴とする空気調和装置。  A heat source unit composed of a compressor, a switching valve, a heat source unit side heat exchanger, and a plurality of indoor units composed of an indoor side heat exchanger and a flow rate control device, wherein the indoor unit operates both cooling and heating simultaneously. In the air conditioner capable of performing the above, the non-azeotropic refrigerant mixture is used as the refrigerant, the heat source unit and the indoor unit are connected via the first and second connection pipes, and the indoor side heat exchanger of the indoor unit One of the two is connected to the first connection pipe or the second connection pipe in a switchable manner, and the other flow control device is connected to the other of the indoor side heat exchangers of the indoor unit. And a second branch part connected to the second connection pipe, and connecting the second branch part and the first connection pipe, so that at least one of the indoor units is operated. If the valve is stopped from the An air conditioning apparatus and performs control to open the constant time. 圧縮機,切換弁,熱源機側熱交換器よりなる熱源機と、室内側熱交換器、流量制御装置よりなる複数の室内機を備え、上記室内機が冷房と暖房の両方を同時に運転することが可能な空気調和装置において、冷媒として非共沸混合冷媒を用い、上記熱源機と上記室内機とを第1,第2の接続配管を介して接続し、上記室内機の室内側熱交換器の一方を上記第1の接続配管または第2の接続配管に切換可能に接続する弁装置を有する第1の分岐部と、上記室内機の室内側熱交換器の他方に上記流量制御装置を介して接続され、かつ上記第2の接続配管に接続する第2の分岐部とを備え、かつ上記第2の分岐部と上記第1の接続配管とを接続し、第2の接続配管の途中に気液分離装置を設け、その気相部を第1の分岐部に、液相部を第2の分岐部に接続し、熱源機側熱交換器が蒸発器として作用する運転時に熱源機側熱交換器の霜を取るため一時的に熱源機側熱交換器が凝縮器として作用する運転に切り換える場合、上記弁装置の操作によって気液分離装置の気相部の冷媒を第1の分岐部に送り込む制御を行うことを特徴とする空気調和装置。  A heat source unit composed of a compressor, a switching valve, a heat source unit side heat exchanger, and a plurality of indoor units composed of an indoor side heat exchanger and a flow rate control device, wherein the indoor unit operates both cooling and heating simultaneously. In the air conditioner capable of performing the above, the non-azeotropic refrigerant mixture is used as the refrigerant, the heat source unit and the indoor unit are connected via the first and second connection pipes, and the indoor side heat exchanger of the indoor unit One of the two is connected to the first connection pipe or the second connection pipe in a switchable manner, and the other flow control device is connected to the other of the indoor side heat exchangers of the indoor unit. And a second branch part connected to the second connection pipe, and the second branch part and the first connection pipe are connected to each other in the middle of the second connection pipe. A gas-liquid separator is provided, with the gas phase part as the first branch part and the liquid phase part as the second branch part. If the heat source machine side heat exchanger temporarily switches to the operation in which the heat source machine side heat exchanger acts as a condenser in order to defrost the heat source machine side heat exchanger during the operation in which the heat source machine side heat exchanger acts as an evaporator, An air conditioner that performs control to send a refrigerant in a gas phase part of a gas-liquid separator to a first branch part by operating the apparatus. 圧縮機,切換弁,熱源機側熱交換器,アキュムレータよりなる熱源機と、室内側熱交換器、第1の流量制御装置よりなる複数の室内機を備え、上記室内機が冷房と暖房の両方を同時に運転することが可能な空気調和装置において、冷媒としてHCFC22より圧力の高いHFC混合冷媒を用い、上記熱源機と上記室内機とを第1,第2の接続配管を介して接続し、上記室内機の室内側熱交換器の一方を上記第1の接続配管または第2の接続配管に切換可能に接続する弁装置を有する第1の分岐部と、上記室内機の室内側熱交換器の他方に上記第1の流量制御装置を介して接続され、かつ上記第2の接続配管に接続する第2の分岐部とを備え、かつ上記第2の分岐部と上記第1の接続配管とを接続し、第2の分岐部に第2の流量制御装置を備え、上記第2の流量制御装置の前後に第1の圧力検出手段および第2の圧力検出手段を備え、上記第1の圧力検出手段および第2の圧力検出手段のうちどちらかが一定圧力値以上になった場合に、上記第2の流量制御装置を開く制御を行うことを特徴とする空気調和装置。  A heat source device including a compressor, a switching valve, a heat source device side heat exchanger, and an accumulator; and a plurality of indoor units including an indoor side heat exchanger and a first flow control device, wherein the indoor unit is both for cooling and heating In the air conditioner capable of simultaneously operating the HFC mixed refrigerant having a pressure higher than that of the HCFC 22 as the refrigerant, the heat source unit and the indoor unit are connected via the first and second connection pipes, A first branch section having a valve device for switching one of the indoor side heat exchangers of the indoor unit to the first connection pipe or the second connection pipe, and an indoor side heat exchanger of the indoor unit And a second branch portion connected to the second connection pipe via the first flow rate control device, and the second branch portion and the first connection pipe. Connected and equipped with a second flow control device at the second branch First pressure detection means and second pressure detection means are provided before and after the second flow rate control device, and one of the first pressure detection means and the second pressure detection means exceeds a certain pressure value. When it becomes, the air conditioning apparatus characterized by performing control which opens said 2nd flow control apparatus.
JP33562298A 1998-11-26 1998-11-26 Air conditioner Expired - Fee Related JP4372247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33562298A JP4372247B2 (en) 1998-11-26 1998-11-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33562298A JP4372247B2 (en) 1998-11-26 1998-11-26 Air conditioner

Publications (2)

Publication Number Publication Date
JP2000161797A JP2000161797A (en) 2000-06-16
JP4372247B2 true JP4372247B2 (en) 2009-11-25

Family

ID=18290656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33562298A Expired - Fee Related JP4372247B2 (en) 1998-11-26 1998-11-26 Air conditioner

Country Status (1)

Country Link
JP (1) JP4372247B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832954B2 (en) * 2006-05-16 2011-12-07 三菱電機株式会社 Air conditioner
WO2012049702A1 (en) * 2010-10-12 2012-04-19 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2000161797A (en) 2000-06-16

Similar Documents

Publication Publication Date Title
JP4396521B2 (en) Air conditioner
JP4675810B2 (en) Air conditioner
JP5855312B2 (en) Air conditioner
JP6005255B2 (en) Air conditioner
JP6895901B2 (en) Air conditioner
JP5137933B2 (en) Air conditioner
JP5968519B2 (en) Air conditioner
WO2003001129A1 (en) Freezing device
WO2013179334A1 (en) Air conditioning device
JP6661843B1 (en) Air conditioner
JP2019184207A (en) Air conditioner
JP2004037006A (en) Freezing device
KR102082881B1 (en) Multi-air conditioner for heating and cooling operations at the same time
WO2007102345A1 (en) Refrigeration device
JP2875507B2 (en) Air conditioner
JP4372247B2 (en) Air conditioner
JP7258129B2 (en) air conditioner
JP4023386B2 (en) Refrigeration equipment
JP6042037B2 (en) Refrigeration cycle equipment
JP6932551B2 (en) Heat exchange system and its control method
JP2765970B2 (en) Air conditioner
WO2024134852A1 (en) Air conditioning device
JP4238943B2 (en) Air conditioner
JP2007163011A (en) Refrigeration unit
WO2020202519A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees